JP4893450B2 - Circuit breaker and SPD protection system using the circuit breaker - Google Patents

Circuit breaker and SPD protection system using the circuit breaker Download PDF

Info

Publication number
JP4893450B2
JP4893450B2 JP2007115384A JP2007115384A JP4893450B2 JP 4893450 B2 JP4893450 B2 JP 4893450B2 JP 2007115384 A JP2007115384 A JP 2007115384A JP 2007115384 A JP2007115384 A JP 2007115384A JP 4893450 B2 JP4893450 B2 JP 4893450B2
Authority
JP
Japan
Prior art keywords
current
circuit breaker
spd
circuit
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007115384A
Other languages
Japanese (ja)
Other versions
JP2008270135A (en
Inventor
征浩 伏見
和宏 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007115384A priority Critical patent/JP4893450B2/en
Priority to CN2007101631735A priority patent/CN101295610B/en
Publication of JP2008270135A publication Critical patent/JP2008270135A/en
Application granted granted Critical
Publication of JP4893450B2 publication Critical patent/JP4893450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Description

この発明は、SPD(urge rotective evice、サージ保護装置)を配設した回路に設置する回路遮断器、およびこの回路遮断器を用いたSPD保護システムに関するものである。 The present invention, SPD (S urge P rotective D evice, surge protection device) circuit breaker to be installed to arranged the circuit, and to a SPD protection system using the circuit breaker.

近年、地球温暖化の影響と思われる集中豪雨や雷の発生が増加する傾向にあり、また一方では、高度情報化社会の進展による電子化機器の普及などで、雷サージによる各種負荷機器の被害が増えていることに言を俟たない。そこで、この雷サージから負荷機器を保護するために、該負荷機器の入力側とアース(大地)間に、アレスタ、あるいはバリスタといったSPDを配設することが知られている(例えば、特許文献1参照)。   In recent years, there has been a tendency for the occurrence of torrential rains and lightning, which are thought to be the effects of global warming, and on the other hand, the damage to various load devices due to lightning surges due to the spread of electronic devices due to the advancement of advanced information society. I do not hesitate to say that is increasing. Therefore, in order to protect the load device from the lightning surge, it is known to arrange an SPD such as an arrester or a varistor between the input side of the load device and the ground (ground) (for example, Patent Document 1). reference).

ところで、このSPDも電路上においては、一つの「機器」と見なすこともでき、また広く普及するにつれ、その過電流保護も最近クローズアップされ始めた。こういった動向を背景に、SPDの短絡保護を担う過電流保護装置の設置が規格化され(詳細はJIS(日本工業規格)C−60364−5−53(建築電気設備− 第5−53部:電気機器の選定及び施工− 断路、開閉及び制御)による)、これを受け、SPDの上位に回路遮断器を設置するケースが増えてきたことも、やはり周知の通りである(例えば、特許文献2または3参照)。   By the way, this SPD can also be regarded as one “device” on the electric circuit, and as the SPD becomes widespread, its overcurrent protection has recently begun to be highlighted. Against this background, the installation of overcurrent protection devices responsible for SPD short-circuit protection has been standardized (for details, refer to JIS (Japanese Industrial Standards) C-60364-5-53 (Building Electrical Equipment-Part 5-53). In response to this, the number of cases in which circuit breakers are installed above SPDs is increasing (for example, patent literature). 2 or 3).

一方、特許文献1にも開示されているように、雷サージをSPDを介してアースへ放電する際、継続時間の長い放電電流が発生するが、SPDの上位に回路遮断器を設置した場合、当然、この回路遮断器にも放電電流が流れ続けることになる。そのため、この放電電流によって、該回路遮断器の固定接点から可動接点が浮き上がり、両接点の間でアークが発生(これを一般に発弧と呼ぶ)し、この発弧をきっかけとした両接点間の溶着発生が懸念される。そこで、回路遮断器に具備した警報および補助スイッチと該回路遮断器の機構との連動のタイミングに工夫を凝らし、警報スイッチからは出力が得られるが、補助スイッチからは出力が得られないことで、その回路遮断器の溶着発生という事態を報知させることが開示されている(例えば、特許文献4参照)。   On the other hand, as disclosed in Patent Document 1, when a lightning surge is discharged to the ground through the SPD, a discharge current having a long duration is generated, but when a circuit breaker is installed above the SPD, Naturally, the discharge current continues to flow through this circuit breaker. For this reason, the discharge current causes the movable contact to rise from the fixed contact of the circuit breaker, and an arc is generated between the two contacts (this is generally referred to as arcing). There is concern about the occurrence of welding. Therefore, the alarm and auxiliary switch provided in the circuit breaker are devised for the interlocking timing of the circuit breaker mechanism, and an output is obtained from the alarm switch, but no output is obtained from the auxiliary switch. In addition, it is disclosed to notify a situation of occurrence of welding of the circuit breaker (see, for example, Patent Document 4).

特開2000−166079号公報(第3頁左欄第8行〜第11行、図1)Japanese Unexamined Patent Publication No. 2000-166079 (page 3, left column, 8th to 11th lines, FIG. 1) 特開2002−101505号公報(第4頁左欄第10行〜第12行、図1)JP 2002-101505 A (page 4, left column, lines 10-12), FIG. 1) 特開2005−237157号公報(第4頁第20行〜第30行、図1)JP-A-2005-237157 (page 4, line 20 to line 30, FIG. 1) 特開平11−67048号公報(第5頁左欄第1行〜第32行、図1)JP 11-67048 A (page 5, left column, lines 1 to 32, FIG. 1)

回路遮断器の溶着に対しては、特許文献4を始め、各メーカーより様々な対策・方策が練られていることは周知の通りであるが、その多くは、この特許文献4のように、溶着発生の事後対策(溶着時、該回路遮断器の起倒形ハンドルがOFF位置を表示させない、いわゆるアイソレーション機能の具現化も含む)、あるいは、起倒形ハンドルの操作によるその解除(溶着剥離)に重点を置いていた。したがって、SPDを保護するにあたって、そのSPDの設置箇所を鑑みた場合、これらの対策では自ずと限界があった。すなわち、SPDの設置箇所は広範囲に亘っており、例えば、山頂の無人中継局では、前述した起倒形ハンドルの操作は現実的な対応とは言い難く、また一方で、いくら溶着発生の報知手段を充実させたとしても、回路遮断器の交換など、そのメンテナンスに係わる経済的損失も無視できない。つまり、SPDを保護する回路遮断器にあっては、発弧による溶着が防止できることが求められていた。   It is well known that various countermeasures and measures have been devised from each manufacturer, including Patent Document 4, for the welding of the circuit breaker. Subsequent countermeasures for occurrence of welding (including the realization of the so-called isolation function that prevents the tilting handle of the circuit breaker from displaying the OFF position at the time of welding), or canceling it by operating the tilting handle (welding separation) ). Therefore, when protecting the SPD, when considering the installation location of the SPD, these countermeasures have their own limits. That is, the SPD is installed in a wide range. For example, in an unmanned repeater station at the top of a mountain, it is difficult to say that the operation of the above-described tilting handle is a realistic response. Even if it is enriched, economic losses related to maintenance such as replacement of circuit breakers cannot be ignored. That is, the circuit breaker that protects the SPD is required to prevent welding due to arcing.

この溶着防止の実現に向け、実験・評価を進める中で、発明者たちは以下に記述する内容を発見した。すなわち、溶着に至る過程において、過大な負荷電流に応じて該回路遮断器の電流引き外し素子は必ず動作するものと思われていたが、こと雷サージ電流に関して言えば、エネルギーが大きい割には、その継続時間が短いことが災いして、電流引き外し素子が応動しない領域がある、ということである。一般に、回路遮断器の電流引き外し素子の動作には、数ミリ秒掛かることから、特に、短絡時の限流を意図した回路遮断器では、その動作を待っていたのでは、到底、限流が成し得ないため、固定接点が具設される固定接触子と可動接点が具設される可動接触子の間に発生する電磁反発力を利用して、電流引き外し素子の動作を待たずに、可動接点を固定接点から浮き上がらせ、高速開極することが知られている。一方、この限流構造を有する回路遮断器においては、商用周波数成分における使用条件下では、
可動接点が浮き上がる電流値(A)>電流引き外し素子が動作する電流値(B)
となるようBが設定されることになるが、これはあくまで、電磁反発力を生じさせるような大きな電流では、必ず電流引き外し素子も応動する、ということが大前提であることは言うまでもない。
In pursuing experiments and evaluations to achieve this prevention of welding, the inventors discovered the contents described below. In other words, in the process leading to welding, the current tripping element of the circuit breaker was supposed to operate in response to an excessive load current. This means that there is a region where the current tripping element does not respond due to the short duration. In general, since the operation of the current tripping element of a circuit breaker takes several milliseconds, especially in the case of a circuit breaker intended to limit the current at the time of a short circuit, Therefore, the operation of the current tripping element is not waited using the electromagnetic repulsive force generated between the fixed contact provided with the fixed contact and the movable contact provided with the movable contact. In addition, it is known that a movable contact is lifted from a fixed contact to open a high speed. On the other hand, in the circuit breaker having this current limiting structure, under the use conditions in the commercial frequency component,
Current value at which the movable contact rises (A)> Current value at which the current tripping element operates (B)
However, it is needless to say that the current tripping element always reacts with a large current that generates an electromagnetic repulsive force.

ところが、雷サージ電流のような時間幅の短い場合では、前述したように、
可動接点が浮き上がる電流値(A)<電流引き外し素子が動作する電流値(B)
という具合に逆転現象を起こすことが判明し、この浮き上がりによる発弧を経て、電流引き外し素子が応動しないことに伴う再閉極が、両接点間における溶着の可能性を高めてしまっている。ここで、問題となるのは、電流引き外し素子が応動しない、ということであり、特許文献4に代表されるように、この応動を拠り所として、溶着を報知する限りにおいては、SPD保護用としては相応しくない、と言わざるを得ない。つまり、溶着が認知されないままでの使用継続は、SPDの保護はもちろんのこと、該回路遮断器とアース間における短絡や地絡事故での遮断という、回路遮断器本来の機能喪失に繋がり、火災や感電などの重大事故に波及する恐れがあった。
However, in the case of a short time width such as lightning surge current, as described above,
Current value at which the movable contact floats (A) <Current value at which the current tripping element operates (B)
It has been found that the reverse phenomenon occurs, and the reclosing due to the fact that the current tripping element does not respond has increased the possibility of welding between the two contacts through the arcing due to the floating. Here, the problem is that the current tripping element does not respond. As represented by Patent Document 4, as long as the welding is reported based on this response, it is used for SPD protection. I have to say that is not suitable. In other words, continuation of use without recognition of welding leads to loss of the original function of the circuit breaker, such as short circuit between the circuit breaker and the earth or interruption due to ground fault, as well as protection of the SPD. There was a risk of spilling over serious accidents such as electric shocks.

この発明は、上述のような課題を解決するためになされたものであり、雷サージが侵入しても、溶着を引き起こさない回路遮断器を得るとともに、この回路遮断器を使用したSPD保護システムを、特にSPD使用者に提供することを目的とするものである。   The present invention has been made to solve the above-described problems. A circuit breaker that does not cause welding even when a lightning surge enters is obtained, and an SPD protection system using the circuit breaker is provided. In particular, it is intended to be provided to SPD users.

この発明に係る回路遮断器は、筐体と、この筐体に収納され電路に流れる電流を開閉する開閉手段と、上記電流が落雷などで発生するサージ電流のときに応動する電流引き外し素子と、この電流引き外し素子の動作に基づいて上記開閉手段を動作させて上記電路を開路させるトグルリンク機構とを備え、上記サージ電流が該回路遮断器を通過する際、このサージ電流によって上記開閉手段を構成する固定接点と可動接点の間が発弧する前に、上記電流引き外し素子を動作させることで、上記電路を開路させるように構成させたものである。   A circuit breaker according to the present invention includes a housing, opening / closing means for opening and closing a current flowing in the electric circuit that is housed in the housing, and a current tripping element that responds when the current is a surge current generated by a lightning strike, etc. A toggle link mechanism for operating the switching means based on the operation of the current tripping element to open the circuit, and when the surge current passes through the circuit breaker, the switching current is generated by the surge current. Before the arc between the fixed contact and the movable contact that constitutes, the current tripping element is operated to open the circuit.

また、この発明に係るSPD保護システムは、母線に接続された負荷機器の入力側とアース間に配設されたSPDの上位に、かつ、上記母線から分岐させた電路に、前述した回路遮断器を設置したものである。   In addition, the SPD protection system according to the present invention includes the circuit breaker described above on the upper side of the SPD disposed between the input side of the load device connected to the bus and the ground, and in the electric circuit branched from the bus. Is installed.

この発明は以上説明したように、SPDの過電流保護装置として回路遮断器が適用できることから、SPD保護システムの信頼性が向上するとともに、コストパフォーマンスに優れた該システムを構築することができる。   As described above, since the circuit breaker can be applied as an SPD overcurrent protection device as described above, the reliability of the SPD protection system can be improved and the system with excellent cost performance can be constructed.

実施の形態1.
図1はこの発明の実施の形態1における回路遮断器の断面図、図2はこの回路遮断器を使用したSPD保護システムの構成図、図3および図4は、図2における雷サージ電流をSPDに注入させたときの電流波形図であり、ぞれぞれ、図3は再閉極を、図4はトリップを示している。また、図5は、図3および図4における電流波形での試験結果を示すグラフである。
Embodiment 1 FIG.
1 is a cross-sectional view of a circuit breaker according to Embodiment 1 of the present invention, FIG. 2 is a configuration diagram of an SPD protection system using this circuit breaker, and FIGS. 3 and 4 show the lightning surge current in FIG. FIG. 3 shows a reclosing and FIG. 4 shows a trip, respectively. FIG. 5 is a graph showing the test results with the current waveforms in FIGS. 3 and 4.

図1において、回路遮断器101は、カバー1とベース2により構成された筐体内に、遮断機構51を備えており、この遮断機構51は、図示しない電路に流れる負荷電流を開閉する開閉手段である、反発接触子3およびこの反発接触子3に接離する可動接触子4、過電流が流れたときに可動接触子4を反発接触子3から開離させるトグルリンク機構52、電磁引き外し機構や熱動引き外し機構からなる電流引き外し素子53、および消弧板5を有している。   In FIG. 1, a circuit breaker 101 includes a breaker mechanism 51 in a casing constituted by a cover 1 and a base 2, and this breaker mechanism 51 is an opening / closing means for opening and closing a load current flowing in an electric circuit (not shown). A certain repulsive contact 3 and a movable contact 4 that contacts and separates from the repulsive contact 3, a toggle link mechanism 52 that separates the movable contact 4 from the repulsive contact 3 when an overcurrent flows, an electromagnetic trip mechanism And a current tripping element 53 having a thermal tripping mechanism and an arc extinguishing plate 5.

反発接触子3には反発接点3a、可動接触子4には可動接点4aが夫々対向して配設されており、これらの反発接点3a、可動接点4aの近傍に消弧板5が配置されている。また、6は絶縁材から成るアームで、可動接触子4はアーム6に保持されており、軸7を中心としてアーム6とともに回動するようになっている。   The repulsive contact 3 is provided with a repulsive contact 3a, and the movable contact 4 is provided with a movable contact 4a facing each other. An arc extinguishing plate 5 is disposed in the vicinity of the repulsive contact 3a and the movable contact 4a. Yes. Reference numeral 6 denotes an arm made of an insulating material, and the movable contact 4 is held by the arm 6 so as to rotate together with the arm 6 about a shaft 7.

8はアームに軸着されたピンで、このピン8にはトグルリンク機構52の一部を構成する下部リンク9の下端部が結合している。下部リンク9の上端部はピン10によって上部リンク11の下端部と結合されており、上部リンク11の上端部はピン12によってクレドル13に結合されている。クレドル13は軸14に回動自在に軸支されており、自由端において係止部13aを有している。なお、15は起倒形ハンドル16とピン10との間に張設されたスプリングである。   Reference numeral 8 denotes a pin pivotally attached to the arm, and the lower end portion of the lower link 9 constituting a part of the toggle link mechanism 52 is coupled to the pin 8. The upper end of the lower link 9 is coupled to the lower end of the upper link 11 by a pin 10, and the upper end of the upper link 11 is coupled to the cradle 13 by a pin 12. The cradle 13 is pivotally supported by a shaft 14 and has a locking portion 13a at a free end. Reference numeral 15 denotes a spring stretched between the raising / lowering handle 16 and the pin 10.

電流引き外し素子53は、電流リレー17、バイメタル18、トリップバー19、ラッチ20、係止レバー21などにより構成されている。また、22は電路の電源側に接続される電源側端子、23はこの電源側端子22と反発接触子3とを電気的に接続するシャント、24は電路の負荷側(すなわち、後述するSPD側)に接続される負荷側端子である。なお、本実施の形態においては、限流構造、すなわち高速開極を意図した反発接触子3を使用しているが、必ずしも、この限流構造を有しておく必要はなく、可動接点4aと対向する接点は、電源側端子22から延設され、ベース2に直接固着される固定接触子に配設した固定接点であっても構わない。   The current tripping element 53 includes a current relay 17, a bimetal 18, a trip bar 19, a latch 20, a locking lever 21, and the like. Reference numeral 22 denotes a power supply side terminal connected to the power supply side of the electric circuit, 23 denotes a shunt that electrically connects the power supply side terminal 22 and the repulsive contact 3, and 24 denotes a load side of the electric circuit (that is, an SPD side described later) ) Is connected to the load side terminal. In this embodiment, the current limiting structure, that is, the repulsive contact 3 intended for high-speed opening is used, but it is not always necessary to have this current limiting structure, and the movable contact 4a and The opposing contact may be a fixed contact provided on a fixed contact that extends from the power supply side terminal 22 and is directly fixed to the base 2.

続いて、この回路遮断器101の動作を、図2に示すSPD102と絡めて説明する。起倒形ハンドル16を紙面上、時計方向に操作することにより、この図1のように、上部リンク11と下部リンク9が伸長され、アーム6が軸7を中心として時計方向の回動力を与えられることにより可動接点4aが反発接点3aに接触する。このとき、クレドル13の係止部13aは係止レバー21に係止しているので、上部リンク11と下部リンク9の伸長状態が保持され、反発接点3aと可動接点4aは、その接触が保持されることになり、回路遮断器101はON状態となる。したがって、この回路遮断器101のONにより、図2に示すSPD102が母線98とアース99の間に配設されることになり、母線98に侵入する直撃雷あるいは誘導雷を、このSPD102を介してアース99に逃がすことで、母線98に接続された負荷機器100が雷サージより保護されることになる。   Next, the operation of the circuit breaker 101 will be described in connection with the SPD 102 shown in FIG. By operating the tilting handle 16 in the clockwise direction on the paper surface, the upper link 11 and the lower link 9 are extended as shown in FIG. 1, and the arm 6 gives a clockwise turning force about the shaft 7. As a result, the movable contact 4a comes into contact with the repulsive contact 3a. At this time, since the locking portion 13a of the cradle 13 is locked to the locking lever 21, the extended state of the upper link 11 and the lower link 9 is maintained, and the contact between the repulsive contact 3a and the movable contact 4a is maintained. As a result, the circuit breaker 101 is turned on. Accordingly, when the circuit breaker 101 is turned on, the SPD 102 shown in FIG. 2 is disposed between the bus 98 and the ground 99, and direct lightning or induced lightning entering the bus 98 is caused to pass through the SPD 102. By escaping to the ground 99, the load device 100 connected to the bus 98 is protected from lightning surge.

特に直撃雷が侵入した場合には、再び図1に戻り、電流リレー17が作動し、トリップバー19を軸19aを中心として時計方向へ回動させ、ラッチ20を軸20aを中心として反時計方向へ回動させる。このラッチ20の回動により、係止レバー21との係合が解除され、係止レバー21は図示しないスプリングの付勢力により軸21aを中心として反時計方向に回動して、クレドル13の係止部13aが係止レバー21から外れる。すると、上部リンク11と下部リンク9が座屈し、アーム6が軸7を中心として反時計方向の回動力を受けるので可動接点4aは反発接点3aから開離を開始する。なお、この開離より前に、反発接触子3と可動接触子4に流れる電流の方向が反対であることに伴う電磁反発力により、反発接触子3と可動接触子4はお互い離れ合う方向、すなわち、反発接触子3は軸3bを回動中心として時計方向に、可動接触子4は軸7を回動中心として反時計方向に、それぞれ動作する。この際に両接点間に発生するアークは、消弧板5によって速やかに消弧され、遮断、いわゆるトリップ動作が完了する。   In particular, when a direct lightning strike enters, the flow returns to FIG. 1 again, the current relay 17 is activated, the trip bar 19 is rotated clockwise about the shaft 19a, and the latch 20 is counterclockwise about the shaft 20a. Turn to. By the rotation of the latch 20, the engagement with the locking lever 21 is released, and the locking lever 21 is rotated counterclockwise about the shaft 21 a by the biasing force of a spring (not shown) to engage the cradle 13. The stop 13a is disengaged from the locking lever 21. Then, the upper link 11 and the lower link 9 are buckled, and the arm 6 receives a counterclockwise turning force about the shaft 7, so that the movable contact 4a starts to be separated from the repulsive contact 3a. In addition, before this separation, the repulsive contact 3 and the movable contact 4 are separated from each other due to the electromagnetic repulsive force caused by the opposite directions of the current flowing through the repulsive contact 3 and the movable contact 4. That is, the repulsive contact 3 operates in the clockwise direction around the shaft 3b, and the movable contact 4 operates in the counterclockwise direction around the shaft 7 as the rotation center. At this time, the arc generated between the two contacts is quickly extinguished by the arc extinguishing plate 5, and the interruption, so-called trip operation is completed.

以上、これまでの説明で明らかなように、「SPD保護用の回路遮断器」といっても、これ用に何らかの細工、あるいは部材を追加している訳ではなく、あくまで周知の、しかも汎用の回路遮断器での対応を意図している。然るに、汎用の回路遮断器であっても、直撃雷の侵入時に、両接点間を溶着させることなく、いかにこの両接点を開離させたか、換言すれば、電流リレー17を作動させるための電流値をどのようにして導き出したかを、以下に詳しく説明する。   As described above, as is apparent from the above description, even though the “circuit breaker for SPD protection” is not added, any workmanship or members are not added for this purpose. Intended for use with circuit breakers. However, even in the case of a general-purpose circuit breaker, when the direct lightning strikes, the two contacts are disconnected without welding the two contacts, in other words, the current for operating the current relay 17 How the value was derived will be described in detail below.

まず、SPDに係わる雷サージ電流の波形は、JIS C−5381−1(低圧配電システムに接続するサージ保護デバイスの所要性能及び試験方法)およびこの解説にて、SPDの配設目的に応じて、このSPDをクラスI(直撃雷を想定)およびクラスII(誘導雷を想定)に分類した上で、下記のように定めている。
クラスI 波頭長:10マイクロ秒、波尾長:350マイクロ秒
クラスII 波頭長: 8マイクロ秒、波尾長: 20マイクロ秒
よって、ここでは、より条件の厳しい(ピーク値が同じだとしても、波形で比較した場合、クラスIはクラスIIの約30倍のエネルギーItを有する)クラスIに適用されるSPDの保護を目的とした。また、回路遮断器としては、下記に示す汎用の2つの機種を選定した。
試料1:250AF、定格電流225A、瞬時引き外し電流値3150A
試料2:400AF、定格電流400A、瞬時引き外し電流値4000A
(AF:アンペアフレーム)
さらに、溶着、および引き外し有無を確認するにあたり、前述の雷サージ電流に対し、負荷電流を重畳した(つまり、回路遮断器(試料1および2))の設置箇所は、図2(ロ)とした)。
First, the waveform of the lightning surge current related to the SPD is JIS C-5381-1 (required performance and test method of the surge protection device connected to the low-voltage power distribution system) and this explanation, according to the SPD installation purpose. This SPD is classified as class I (assuming direct lightning strike) and class II (assuming induced lightning), and is defined as follows.
Class I wavefront length: 10 microseconds, wavetail length: 350 microseconds Class II wavefront length: 8 microseconds, wavetail length: 20 microseconds, so here the conditions are more severe (even if the peak value is the same, the waveform When compared, Class I was intended to protect SPD applied to Class I (which has an energy I 2 t about 30 times that of Class II). In addition, two general-purpose models shown below were selected as circuit breakers.
Sample 1: 250 AF, rated current 225 A, instantaneous trip current value 3150 A
Sample 2: 400AF, rated current 400A, instantaneous trip current value 4000A
(AF: Ampere frame)
Furthermore, in confirming the presence or absence of welding and tripping, the installation location of the load current superimposed on the above-described lightning surge current (that is, the circuit breakers (samples 1 and 2)) is as shown in FIG. did).

前述した条件による実験結果を図3および4に示す。まず、図3では、雷サージ電流が流れた(イ)あと、負荷電流が一時的に流れていない期間が発生(ロ)し、以降、再び負荷電流が流れている(ハ)。つまり、雷サージ電流によって可動接点4aが浮き上がった(ロ)ものの、電流引き外し素子53が動作せず、両接点間が再閉極(ハ)してしまっている。したがって、浮き上がりによる発弧、さらには再閉極による溶着を起こした可能性が極めて高い(この実験結果が、「発明が解決しようとする課題」0008で述べた内容の根拠である)。一方、図4では、雷サージ電流が流れた(イ)あとは、負荷電流が流れていない(ロ)、つまり、再閉極を起こしていない。したがって、可動接点4aが浮き上がったあと、電流引き外し素子53が応動して、可動接触子4を機械的に開極せしめたことがわかる。   The experimental results under the conditions described above are shown in FIGS. First, in FIG. 3, after a lightning surge current flows (b), a period in which the load current does not flow temporarily occurs (b), and thereafter the load current flows again (c). That is, although the movable contact 4a is lifted by the lightning surge current (b), the current tripping element 53 does not operate and the contacts are reclosed (c). Therefore, there is a very high possibility that arcing due to floating and welding due to reclosing have occurred (the result of this experiment is the basis for the contents described in “Problems to be Solved by the Invention” 0008). On the other hand, in FIG. 4, after the lightning surge current flows (b), no load current flows (b), that is, no reclosing occurs. Therefore, it can be seen that after the movable contact 4a is lifted, the current tripping element 53 is actuated to mechanically open the movable contact 4.

この2つの実験結果、すなわち、接点浮き上がり(図3)と瞬時動作(図4)を、前述した2つの機種で行った、それぞれの最小のピーク値を、いわゆる回路遮断器の特性グラフにプロットしたのが図5である。この図からもわかるように、雷サージ電流通過時における接点浮き上がり電流値は、
試料1:8kA(ピーク値)
試料2:14kA(ピーク値)
一方、雷サージ電流通過時における瞬時引き外し電流値は、
試料1:25kA(ピーク値)
試料2:28kA(ピーク値)
であった。この結果より、発明者たちは、以下の記述を見出した。すなわち、商用周波数成分での引き外しと雷サージ電流での引き外しでは、
試料1:25kA/4450A≒5.62 (4450Aはピーク値換算)
試料2:28kA/5660A≒4.95 (5660Aはピーク値換算)
という具合に約5倍の開きがある、という点である。
The results of these two experiments, that is, contact lift (FIG. 3) and instantaneous operation (FIG. 4) were performed on the two models described above, and the minimum peak values of each were plotted on a so-called circuit breaker characteristic graph. This is shown in FIG. As can be seen from this figure, the contact floating current value during lightning surge current passage is
Sample 1: 8 kA (peak value)
Sample 2: 14 kA (peak value)
On the other hand, the instantaneous tripping current value during lightning surge current passage is
Sample 1: 25 kA (peak value)
Sample 2: 28 kA (peak value)
Met. From this result, the inventors found the following description. That is, in tripping with commercial frequency components and tripping with lightning surge current,
Sample 1: 25 kA / 4450 A≈5.62 (4450 A is converted into a peak value)
Sample 2: 28 kA / 5660A≈4.95 (5660A is converted into a peak value)
That is, there is an opening of about 5 times.

この「5倍」という結果に、発明者たちは大いに着目した。つまり、「発明が解決しようとする課題」0008で述べた関係を、0007で述べた関係に戻す、よりわかり易く述べると、
雷サージ電流で 雷サージ電流で
可動接点が浮き上がる電流値(C)>電流引き外し素子が動作する電流値(D)
とするには、前述した接点浮き上がり時の電流値を5で除した値でもって、商用周波数成分における瞬時引き外し電流値とすればよいことになる。これを具体的に数値化すると、
試料1: 8kA/5=1.6kA(実効値換算:1.1kA)
試料2:14kA/5=2.8kA(実効値換算:2.0kA)
となり、さらにこの値は定格電流に対しては、
試料1:1.1kA/225A≒4.89
試料2:2.0kA/400A=5
となることから、瞬時引き外し電流値を定格電流の5倍に設定すれば、雷サージ電流通過時における両接点間の溶着を防止することが期待できる。
The inventors paid much attention to this “5 times” result. In other words, the relationship described in "Problem to be solved by the invention" 0008 is returned to the relationship described in 0007, and in a more understandable manner,
With lightning surge current Current value when movable contact rises with lightning surge current (C)> Current value with which current tripping element operates (D)
In order to achieve this, the instantaneous tripping current value in the commercial frequency component may be obtained by dividing the above-described current value at the time when the contact is lifted by five. When this is specifically quantified,
Sample 1: 8 kA / 5 = 1.6 kA (effective value conversion: 1.1 kA)
Sample 2: 14 kA / 5 = 2.8 kA (effective value conversion: 2.0 kA)
Furthermore, this value is
Sample 1: 1.1 kA / 225 A≈4.89
Sample 2: 2.0 kA / 400 A = 5
Therefore, if the instantaneous tripping current value is set to 5 times the rated current, it can be expected to prevent welding between the two contacts when the lightning surge current passes.

より現実的には裕度を考え、定格電流の4倍以下に設定しておくことが好ましい。つまり、汎用の回路遮断器の瞬時引き外し電流値が、それぞれ、
試料1:14倍(3150A/225A)
試料2:10倍(4000A/400A)
であることに対し、電流リレー17の、例えばバネ定数を見直し4倍以下に変更するだけで、「SPD保護用回路遮断器」として機能させることが可能となる。
More realistically, considering the margin, it is preferable to set it to 4 times the rated current or less. In other words, the instantaneous tripping current value of a general-purpose circuit breaker is
Sample 1: 14 times (3150A / 225A)
Sample 2: 10 times (4000A / 400A)
On the other hand, the current relay 17 can be made to function as an “SPD protection circuit breaker” simply by reviewing and changing the spring constant, for example, to 4 times or less.

ここで、瞬時引き外し電流値を下げることは、不要(トリップ)動作を招く恐れが高いことから、一般的には好まれない傾向にあるが、このSPD保護にあっては、図2で示したように、該回路遮断器をSPD専用で設置している(前出のJIS C−60364−5−53の図53Aに相当)ことから、常時は負荷電流が流れないため、不要動作を心配する必要はない。また、言うまでもないが、本発明の本質である、「溶着防止のためのトリップ動作」を仮に行ったとしても、両接点が開極される前に、直撃雷(10/350マイクロ秒)にしろ、誘導雷(8/20マイクロ秒)にしろ、これら雷サージ電流がSPDを介して問題なくアースに放電されるため、負荷機器に対する雷サージ保護に何ら支障を来たすことはない。   Here, decreasing the instantaneous tripping current value tends to cause an unnecessary (trip) operation, and thus generally tends not to be preferred. However, this SPD protection is shown in FIG. As described above, since the circuit breaker is installed exclusively for SPD (corresponding to FIG. 53A of the above-mentioned JIS C-60364-5-53), the load current does not flow at all times. do not have to. Needless to say, even if the "trip operation for preventing welding", which is the essence of the present invention, is performed, it should be a direct lightning strike (10/350 microseconds) before both contacts are opened. However, in the case of induced lightning (8/20 microseconds), these lightning surge currents are discharged to the ground without any problem through the SPD, so that they do not interfere with the lightning surge protection for the load equipment.

なお、前述したように、実験にあたり負荷電流を重畳させたため、該回路遮断器の配設箇所を図2の(ロ)としたが、実際のSPD保護システムで、この設置(JIS C−60364−5−53の図53Bに相当)を行った場合、万が一、SPDが内部短絡などの故障を起こした際、回路遮断器がトリップすることで、SPDを交換するまで負荷機器には電力を供給させない、換言すると、常に負荷機器に対する雷サージ保護を優先させる、という使用目的では合致するものの、瞬時引き外し電流値を下げたことに伴う、例えば、負荷機器の始動突入電流での不要動作の可能性が極めて高くなる。そこで、例えば、図2の(ハ)に別の汎用の回路遮断器を設置し、SPD保護用回路遮断器(イ)がトリップしたら、(ハ)の回路遮断器もトリップするようインターロックを架けておけば、電力供給の継続と雷サージ保護の両立が可能となって好ましい。いずれにしろ、このSPD保護用回路遮断器は、瞬時引き外し電流値を下げたことを鑑み、あくまで「SPD」専用として使用したほうがよい。   As described above, since the load current was superimposed in the experiment, the location of the circuit breaker was set as (b) in FIG. 2, but this installation (JIS C-60364-) was performed in an actual SPD protection system. 5-3 (corresponding to Fig. 53B), if the SPD should fail, such as an internal short circuit, the circuit breaker trips, and the load equipment is not supplied with power until the SPD is replaced. In other words, although the purpose of use is always to give priority to lightning surge protection for the load equipment, there is a possibility of unnecessary operation at the start inrush current of the load equipment, for example, due to the reduction of the instantaneous trip current value Becomes extremely high. Therefore, for example, if another general-purpose circuit breaker is installed in (c) in FIG. 2 and the SPD protection circuit breaker (a) trips, an interlock is built so that the circuit breaker in (c) also trips. If this is the case, it is preferable because both the continuation of power supply and lightning surge protection can be achieved. In any case, it is better to use this SPD protection circuit breaker exclusively for “SPD” in view of reducing the instantaneous tripping current value.

このように、汎用の回路遮断器の瞬時引き外し電流値を下げるだけで、安価なSPD保護用回路遮断器を提供できるので、SPD保護システムの対費用効果が改善される。また、この回路遮断器の溶着を防止できるので、該SPD保護システムの信頼性の向上を図ることができる。なお、溶着を防止するためにトリップさせるという前提を鑑みた場合、該回路遮断器に警報スイッチを内蔵し、この出力接点を活用して、トリップの認知(雷サージ電流の通過)、さらには、この認知を踏まえた再投入作業を行うことが好ましい。また、前述した山頂の無人中継局など、トリップ時の対応が困難な場合は、例えば、該回路遮断器に電気操作装置を併設し、上述した出力接点を含めた、蓄電池によるDC電源で再投入可能な制御回路を構成すればよい。さらにまた、警報スイッチの応動が、上述した雷サージ電流の通過、すなわち、接点浮き上がり以上の雷サージ電流のSPDにおける処理を表していることで、例えば、この応動をカウントすれば、SPDの使用頻度がわかる、といった副次的効果も期待できる。   As described above, since it is possible to provide an inexpensive circuit breaker for SPD protection only by reducing the instantaneous tripping current value of the general-purpose circuit breaker, the cost effectiveness of the SPD protection system is improved. Moreover, since this circuit breaker can be prevented from being welded, the reliability of the SPD protection system can be improved. When considering the premise of tripping to prevent welding, an alarm switch is built in the circuit breaker, and this output contact is used to recognize trip (passing lightning surge current). It is preferable to perform re-input work based on this recognition. If it is difficult to respond to trips such as the above-mentioned unmanned relay station at the top of the mountain, for example, an electric operation device is installed in the circuit breaker, and the DC power source using the storage battery including the output contact described above is used again. A possible control circuit may be configured. Furthermore, the response of the alarm switch represents the above-described lightning surge current passing, that is, the processing in the SPD of the lightning surge current exceeding the contact lift. For example, if this response is counted, the frequency of use of the SPD You can also expect side effects such as

本発明の本質である、引き外し電流値の選定方法は、前述した通りであるが、この選定にあたっての一つの指針でもある「雷サージ電流通過時における瞬時引き外し電流値」は実験に因らず、例えば、該回路遮断器の許容Itから推定することで導き出してもよい。すなわち、図5に示すように、各試料の商用周波数成分における動作ポイントである、
試料1:4000Aを20ミリ秒で遮断
試料2:3150Aを20ミリ秒で遮断
から、許容Itを算出(試料1−(イ)、試料2−(ロ))し、350マイクロ秒で交差する点での電流値、とする考え方である。実際に引き外しに至った25kA(試料1)、および28kA(試料2)とも、それぞれの許容Itに近似していることからも、凡その目安を見極めるうえでも効果的である。
The method of selecting the tripping current value, which is the essence of the present invention, is as described above. However, the “instantaneous tripping current value during lightning surge current passage”, which is one guideline for this selection, is based on experiments. For example, it may be derived by estimating from the allowable I 2 t of the circuit breaker. That is, as shown in FIG. 5, it is an operating point in the commercial frequency component of each sample.
Sample 1: Blocking 4000 A in 20 milliseconds Sample 2: Blocking 3150 A in 20 milliseconds, calculating allowable I 2 t (sample 1- (I), sample 2- (B)), crossing in 350 microseconds This is the idea that the current value at this point is. Since 25 kA (sample 1) and 28 kA (sample 2) that have actually been pulled out are close to their respective allowable I 2 t, it is also effective in determining a rough standard.

この発明の実施の形態1における回路遮断器の断面図である。It is sectional drawing of the circuit breaker in Embodiment 1 of this invention. この発明の実施の形態1におけるSPD保護システムの構成図である。It is a block diagram of the SPD protection system in Embodiment 1 of this invention. 図2において雷サージ電流をSPDに注入させたときの電流波形図である。FIG. 3 is a current waveform diagram when a lightning surge current is injected into an SPD in FIG. 2. 図2において雷サージ電流をSPDに注入させたときの電流波形図である。FIG. 3 is a current waveform diagram when a lightning surge current is injected into an SPD in FIG. 2. 試験結果を示すグラフである。It is a graph which shows a test result.

符号の説明Explanation of symbols

1 カバー、2 ベース、3a 反発接点、4a 可動接点、17 電流リレー、
51 遮断機構、52 トグルリンク機構、53 電流引き外し素子、98 母線、
99 アース、100 負荷機器、101 回路遮断器、102 SPD。
1 cover, 2 base, 3a repulsive contact, 4a movable contact, 17 current relay,
51 interruption mechanism, 52 toggle link mechanism, 53 current tripping element, 98 bus,
99 ground, 100 load equipment, 101 circuit breaker, 102 SPD.

Claims (3)

筐体と、この筐体に収納され電路に流れる電流を開閉する開閉手段と、上記電流が落雷などで発生するサージ電流のときに応動する電流引き外し素子と、この電流引き外し素子の動作に基づいて上記開閉手段を動作させて上記電路を開路させるトグルリンク機構とを備えた回路遮断器において、
上記サージ電流が該回路遮断器を通過する際、このサージ電流によって上記開閉手段を構成する固定接点と可動接点の間が発弧する前に、上記電流引き外し素子を動作させることで、上記電路を開路させるように構成されていることを特徴とする回路遮断器。
A case, an opening / closing means for opening and closing the current flowing in the electric circuit that is housed in the case, a current tripping element that responds to a surge current generated by a lightning strike, and the operation of the current tripping element. In a circuit breaker provided with a toggle link mechanism for operating the switching means to open the electric circuit based on
When the surge current passes through the circuit breaker, the current trip element is operated before the surge current ignites between the fixed contact and the movable contact constituting the switching means. A circuit breaker configured to open the circuit.
請求項1の回路遮断器を、母線に接続された負荷機器の入力側とアース間に配設されたSPDの上位に、かつ、上記母線から分岐させた電路に設置したことを特徴とするSPD保護システム。 An SPD comprising: the circuit breaker according to claim 1 disposed above an SPD disposed between an input side of a load device connected to the busbar and the ground, and in an electric circuit branched from the busbar. Protection system. SPDに注入されるサージが、波頭長が10マイクロ秒で、かつ、波尾長が350マイクロ秒であることを特徴とする請求項2記載のSPD保護システム。 3. The SPD protection system according to claim 2, wherein the surge injected into the SPD has a wavefront length of 10 microseconds and a wavetail length of 350 microseconds.
JP2007115384A 2007-04-25 2007-04-25 Circuit breaker and SPD protection system using the circuit breaker Expired - Fee Related JP4893450B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007115384A JP4893450B2 (en) 2007-04-25 2007-04-25 Circuit breaker and SPD protection system using the circuit breaker
CN2007101631735A CN101295610B (en) 2007-04-25 2007-10-16 Circuit breaker and SPD protection system employing the circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115384A JP4893450B2 (en) 2007-04-25 2007-04-25 Circuit breaker and SPD protection system using the circuit breaker

Publications (2)

Publication Number Publication Date
JP2008270135A JP2008270135A (en) 2008-11-06
JP4893450B2 true JP4893450B2 (en) 2012-03-07

Family

ID=40049357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115384A Expired - Fee Related JP4893450B2 (en) 2007-04-25 2007-04-25 Circuit breaker and SPD protection system using the circuit breaker

Country Status (2)

Country Link
JP (1) JP4893450B2 (en)
CN (1) CN101295610B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078247A (en) * 2009-09-30 2011-04-14 Mikimoto:Kk Surge protection device
FR3051282B1 (en) * 2016-05-16 2021-05-21 Herakles CUTTING DEVICE INTENDED TO BE CONNECTED TO AN ELECTRICAL CIRCUIT
CN107681633B (en) * 2017-11-21 2023-07-14 国网宁夏电力有限公司宁东供电公司 Intelligent secondary voltage protection device for voltage transformer
CN113328423B (en) * 2021-06-01 2022-11-08 国网湖北省电力有限公司超高压公司 Surge protector for high-voltage power
CN114094538B (en) * 2021-11-29 2023-07-28 长沙润迅通信设备有限公司 Power supply lightning protection device degradation protection switch device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461221A (en) * 1977-10-24 1979-05-17 Mitsuyoshi Watanabe Dry concrete working method
JPS60148027A (en) * 1984-01-13 1985-08-05 松下電工株式会社 Breaker
JPH0950743A (en) * 1995-08-08 1997-02-18 Mitsubishi Electric Corp Dc circuit breaker
KR100506477B1 (en) * 2000-08-22 2005-08-03 미쓰비시덴키 가부시키가이샤 Ground fault interrupter
CN1142571C (en) * 2000-12-11 2004-03-17 南京全屋电器开关有限公司 Electronic breaker
JP2006156304A (en) * 2004-12-01 2006-06-15 Otowa Denki Kogyo Kk Earth leakage protection device
JP2007068342A (en) * 2005-08-31 2007-03-15 Nagoya Industrial Science Research Inst Decoupling device for lightning protective device

Also Published As

Publication number Publication date
JP2008270135A (en) 2008-11-06
CN101295610B (en) 2012-07-18
CN101295610A (en) 2008-10-29

Similar Documents

Publication Publication Date Title
EP2561534B1 (en) Circuit interrupter with enhanced arc quenching capabilities
EP2919254B1 (en) Surge protection device having short-circuit current protection function
EP2712463B1 (en) Magnetic circuit interrupter with current limiting capability
JP4893450B2 (en) Circuit breaker and SPD protection system using the circuit breaker
WO1998029930A2 (en) A device and a method for protecting an object against fault-related over-currents
EP3690907A1 (en) Narrow profile circuit breaker with arc interruption
EP3489982B1 (en) High voltage dc circuit breaker with double break contacts
JP2003143749A (en) Inside lightning protective device
JP4172916B2 (en) Short-circuit protection device
JP4223988B2 (en) Power system protection circuit
KR101247274B1 (en) Surge protective device with overcurrent breaking function
KR20060064334A (en) Pressure trip apparatus of the circuit breaker
KR200406795Y1 (en) Circuit breaker
CN213716825U (en) Backup protector for surge protector
KR200377582Y1 (en) A Control Circuit Apparatus for Circuit Braker or LBS
KR20190095024A (en) Surge protection device
JP2006025513A (en) Trip device of circuit breaker
US11764022B2 (en) Slim circuit breaker
EP0462025B1 (en) Disconnectable surge arrester for low-voltage installations
KR100706453B1 (en) PTC current limiting circuit breaker
CN110808197B (en) Circuit breaker with multiple quick acting contacts
JP2012142106A (en) Earth leakage circuit breaker
US20220399713A1 (en) Circuit breaker distribution system configured to provide selective coordination
KR102003328B1 (en) Circuit breaker having improved trip bar structure
JP2023074076A (en) circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R151 Written notification of patent or utility model registration

Ref document number: 4893450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees