JP2007068342A - Decoupling device for lightning protective device - Google Patents

Decoupling device for lightning protective device Download PDF

Info

Publication number
JP2007068342A
JP2007068342A JP2005251909A JP2005251909A JP2007068342A JP 2007068342 A JP2007068342 A JP 2007068342A JP 2005251909 A JP2005251909 A JP 2005251909A JP 2005251909 A JP2005251909 A JP 2005251909A JP 2007068342 A JP2007068342 A JP 2007068342A
Authority
JP
Japan
Prior art keywords
lightning protection
power line
decoupling device
current
decoupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251909A
Other languages
Japanese (ja)
Inventor
Hirotaka Shimizu
洋隆 清水
Nobukimi Watanabe
信公 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Industrial Science Research Institute
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to JP2005251909A priority Critical patent/JP2007068342A/en
Publication of JP2007068342A publication Critical patent/JP2007068342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decoupling device for a lightning protective device that can simply and properly harmonize current withstand capacity between the first and second lightning protective devices, while suppressing a voltage drop during normal operation. <P>SOLUTION: The decoupling device 15 is connected in series to a power line 11 between the first and second lightning devices 12, 13 connected in parallel to each other between the power line, which is led in from outside and supplies electric power to an electrical apparatus installed indoor, and ground G. In this decoupling device 15, a first element portion 16 having two diodes D1, D2 connected in series, a second element portion 17 having two diode D3, D4 connected in series, and a third element portion 18 made of a reactor L are connected in parallel to each other. The input side between the two diodes D1, D2 of the first element portion 16 and the output side between the two diodes D3, D4 of the second element portion 17 are connected to the power line 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、屋外から導入されて屋内に設けた電気機器に通電する電力線と大地間に並列に接続された2つの雷保護装置間の電流耐量の協調を図るために、両雷保護装置間に接続される雷保護装置用減結合装置に関する。   In order to coordinate the current withstand capability between two lightning protection devices connected in parallel between the power line that is introduced from the outside and is electrically connected to the electrical equipment installed indoors, and the ground, the present invention The present invention relates to a decoupling device for a lightning protection device to be connected.

雷保護装置(SPD)は、屋外から導入された電力線に接続された屋内の電力装置やOA機器等の種々の電気機器の入力側に並列に接続されて、電力線を通してエネルギの非常に大きな落雷によるサージ信号が入力されたとき、サージ信号をアースさせることによりこれら電気機器を保護するものである。雷保護装置は、通常は2つが並列で接続されており、第1及び第2の雷保護装置で電流耐量の協調がとられ、両雷保護装置でサージ信号を分担して処理するようになっている。この場合、第1の雷保護装置を電流耐量の大きな装置としてサージ信号の多くの部分を流して処理することにより、第2の雷保護装置は電流耐量の小さい安価な装置とすることができるので合理的である。しかし、第1の雷保護装置からの残りのサージ信号も急峻な信号であり、そのまま第2の雷保護装置に流して処理することになると、第2の雷保護装置の電流耐量もそれほど小さくすることができず、2つの雷保護装置間の電流耐量を協調させる効果が乏しくなる。   A lightning protection device (SPD) is connected in parallel to the input side of various electric equipment such as indoor power equipment and OA equipment connected to a power line introduced from the outside. When a surge signal is input, these electrical devices are protected by grounding the surge signal. Two lightning protection devices are usually connected in parallel, and the first and second lightning protection devices cooperate in current tolerance, and both lightning protection devices share and process surge signals. ing. In this case, the second lightning protection device can be an inexpensive device with a small current withstand capability by using the first lightning protection device as a device with a large current withstand capability and flowing many parts of the surge signal. Is reasonable. However, the remaining surge signal from the first lightning protection device is also a steep signal, and if it is passed through the second lightning protection device and processed as it is, the current withstand capability of the second lightning protection device is also reduced so much. And the effect of coordinating the current tolerance between the two lightning protection devices becomes poor.

これに対して、従来は、第1及び第2の雷保護装置間の電流耐量の協調をとるために、両雷保護装置間には、減結合素子が接続されている。例えば、電力設備の場合には、非特許文献1に示すように、両雷保護装置間にリアクトルが接続されており、リアクトルのインダクタンスにより急峻な電圧波形の立ち上がりを緩やかにして第2の雷保護装置に電圧が印加されるまでの時間を遅らせることで、第2の雷保護装置へのサージ電流を減少させることができ、第1及び第2の雷保護装置間の電流耐量を協調させるようにしている。
電気設備学会「建築物等の雷保護Q&A−JISA4201:2003対応−」(2005)オーム社
In contrast, conventionally, a decoupling element is connected between the lightning protection devices in order to coordinate the current tolerance between the first and second lightning protection devices. For example, in the case of electric power facilities, as shown in Non-Patent Document 1, a reactor is connected between both lightning protection devices, and the second lightning protection is performed by slowing up the steep voltage waveform due to the inductance of the reactor. By delaying the time until the voltage is applied to the device, the surge current to the second lightning protection device can be reduced, and the current withstand capability between the first and second lightning protection devices can be coordinated. ing.
The Institute of Electrical Engineers “Lightning Protection Q & A for Buildings, etc.-JISA4201: 2003 Compatible” (2005) Ohmsha

ところで、リアクトルを用いた減結合素子の場合、リアクトルのインダクタンスの値が小さいと、第1及び第2の雷保護装置間の電流耐量の協調を十分にとることができないので、大きめに調整されることになるが、インダクタンスの値が大きくなりすぎると平常運転時においてリアクトルでの電圧降下が大きくなる。そのため、電力線に接続された機器への電圧供給が不安定になるという問題がある。   By the way, in the case of a decoupling element using a reactor, if the value of the inductance of the reactor is small, the current withstand capability between the first and second lightning protection devices cannot be sufficiently coordinated, and thus the adjustment is made large. However, if the inductance value becomes too large, the voltage drop at the reactor will increase during normal operation. Therefore, there is a problem that the voltage supply to the device connected to the power line becomes unstable.

本発明は、上記した問題を解決しようとするもので、平常運転時において電圧降下を抑えつつ、第1及び第2の雷保護装置間の電流耐量の協調を簡易且つ適正に行うことができる雷保護装置用減結合装置を提供することを目的とする。   The present invention is intended to solve the above-described problem, and a lightning capable of easily and appropriately coordinating current resistance between the first and second lightning protection devices while suppressing a voltage drop during normal operation. An object is to provide a decoupling device for a protective device.

上記目的を達成するために本発明の構成上の特徴は、屋外から導入されて屋内に設けた電気機器に通電する電力線と大地間に並列に接続された2つの雷保護装置間にて、電力線に直列接続されて2つの雷保護装置に流れる電流を協調させる雷保護装置用減結合装置において、それぞれ2個の整流素子が直列接続されてなる第1及び第2素子部と、リアクトルからなる第3素子部とが互いに並列に接続されてなり、第1素子部及び第2素子部のいずれか一方の2つの整流素子の間が電力線に接続される入力側にされ、他方の2つの整流素子の間が電力線に接続される出力側にされたことにある。なお、整流素子としては、ダイオードが一般的であるが、その他に半導体スイッチング素子であるサイリスタやGTO等を適用することもできる。   In order to achieve the above object, the constitutional feature of the present invention is that a power line between an electric power line introduced from the outside and energized to an electric device provided indoors and two lightning protection devices connected in parallel between the grounds. In the decoupling device for a lightning protection device that is connected in series to coordinate the currents flowing through the two lightning protection devices, the first and second element parts each having two rectifying elements connected in series, and a first comprising a reactor. The three element parts are connected in parallel to each other, and the two rectifying elements are connected to the power line between the two rectifying elements of either the first element part or the second element part. Is between the power line and the output side. A diode is generally used as the rectifying element, but a thyristor or GTO that is a semiconductor switching element can also be applied.

本発明においては、平常運転時には、雷保護装置用減結合装置に加えられる交流電圧の正負に応じて、第1(又は第2)素子部のいずれかの整流素子を通して第3素子部に流れ、さらに第2(又は第1)素子部のいずれかの整流素子を通して出力される。すなわち、交流電圧の正負が変化してもリアクトルからなる第3素子部に流れる電流は常に時間的変化のない直流となるため、第3素子部で電圧降下をほとんど生じない。また、この電圧降下をほとんど生じない結果については、リアクトルのインダクタンスの大小は関係しない。そのため、電圧降下を考慮する必要なくインダクタンスを大きくすることができるため、落雷による急峻な雷サージ電圧が発生しても、第3素子部においてその時間的変化率を小さくすることができる。その結果、本発明においては、平常運転時において電圧降下を低く抑えることができると共に、第1及び第2の雷保護装置間の電流耐量の協調を簡易且つ適正に行うことができる。   In the present invention, during normal operation, depending on whether the AC voltage applied to the lightning decoupling device decoupling device flows through the rectifying element of the first (or second) element part to the third element part, Further, the signal is output through any rectifying element of the second (or first) element unit. That is, even if the positive / negative of the AC voltage changes, the current flowing through the third element portion made of the reactor is always a direct current that does not change with time, so that almost no voltage drop occurs in the third element portion. In addition, the result of almost no voltage drop is not related to the inductance of the reactor. Therefore, since the inductance can be increased without considering the voltage drop, even if a steep lightning surge voltage is generated due to a lightning strike, the temporal change rate can be reduced in the third element portion. As a result, in the present invention, the voltage drop can be kept low during normal operation, and the current withstand capability between the first and second lightning protection devices can be coordinated easily and appropriately.

本発明によれば、リアクトルのインダクタンスを大きくしても、平常運転時において電圧降下を低く抑えることができるため、第1及び第2の雷保護装置間の電流耐量の協調を適正にとるための調整が非常に簡易にされ、煩雑な調整に要するコストが削減される。また、本発明においては、雷保護装置用減結合装置は、電力線に接続された電気機器の側で短絡等の事故が発生した場合に、雷保護装置用減結合装置が限流装置としても機能できることにより、過電流の発生を抑えることができる。さらに、第1の雷保護装置の電流耐量を適正に設定して、減結合装置を設けることにより、第2の雷保護装置を省略することも可能になる。   According to the present invention, even if the inductance of the reactor is increased, the voltage drop can be kept low during normal operation, so that the current withstand capability between the first and second lightning protection devices can be properly coordinated. Adjustment is greatly simplified, and the cost required for complicated adjustment is reduced. In the present invention, the lightning protection device decoupling device functions as a current limiting device when an accident such as a short circuit occurs on the side of the electrical equipment connected to the power line. As a result, the occurrence of overcurrent can be suppressed. Furthermore, it is possible to omit the second lightning protection device by appropriately setting the current withstand capability of the first lightning protection device and providing a decoupling device.

以下、本発明の実施の形態について説明する。図1は、実施例である雷保護装置用減結合装置を適用した建物の雷保護システムの構成をブロック図により示したものであり、図2は、整流型の雷保護装置用減結合装置の概略構成を回路図により示したものである。雷保護システムは、屋外から導入され建物内に設けられた電気機器(図示しない)に接続された電力線11に、建物入り口にて電流耐量の大きい直撃雷用の第1の雷保護装置12が大地Gとの間に接続されており、部屋の内部において保護を受ける電気機器の入力側に電流耐量の小さい第2の雷保護装置13が大地Gとの間に接続されており、さらに両雷保護装置12,13の間において電力線11に雷保護装置用減結合装置15(以下、減結合装置と記す)が直列接続されている。なお、本実施例では、整流素子としてダイオードを適用することを想定している。   Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a configuration of a lightning protection system for a building to which a decoupling device for a lightning protection device according to an embodiment is applied. FIG. 2 shows a decoupling device for a rectification type lightning protection device. A schematic configuration is shown by a circuit diagram. In the lightning protection system, a first lightning protection device 12 for direct lightning with a large current resistance at the entrance of the building is connected to the power line 11 introduced from the outside and connected to an electrical device (not shown) provided in the building. A second lightning protection device 13 having a small current withstand capability is connected to the ground G on the input side of the electrical equipment to be protected inside the room, and further protected against both lightnings. A lightning protection device decoupling device 15 (hereinafter referred to as a decoupling device) is connected in series to the power line 11 between the devices 12 and 13. In this embodiment, it is assumed that a diode is applied as the rectifying element.

減結合装置15は、2個のダイオードD1,D2が直列接続された第1素子部16と、2個のダイオードD3,D4が直列接続された第2素子部17と、リアクトルLからなる第3素子部18とが互いに並列に接続されて構成されている。また、減結合装置15は、第1素子部16の2つのダイオードD1,D2の間が入力側、第2素子部17の2つのダイオードD3,D4の間が出力側になっており、入出力側にて電力線11に接続されている。なお、ダイオードD1〜D4は、ほぼ同一特性を有するものである。したがって、第1素子16と第2素子17を入れ替えることも可能である。   The decoupling device 15 includes a first element portion 16 in which two diodes D1 and D2 are connected in series, a second element portion 17 in which two diodes D3 and D4 are connected in series, and a reactor L. The element part 18 is connected to each other in parallel. The decoupling device 15 has an input side between the two diodes D1 and D2 of the first element unit 16, and an output side between the two diodes D3 and D4 of the second element unit 17. It is connected to the power line 11 on the side. The diodes D1 to D4 have substantially the same characteristics. Therefore, the first element 16 and the second element 17 can be interchanged.

平常運転時には、減結合装置15に加えられる交流電圧の正又は負に応じて、第1素子部16のダイオードD1又はD2を通して第3素子部18に電流が流れ、さらに第2素子部17のダイオードD4又はD3を通して出力される。すなわち、交流電圧の正負が変化してもリアクトルLからなる第3素子部18に流れる電流は常に時間的変化のない直流となるため、第3素子部18で電圧降下をほとんど生じない。この電圧降下をほとんど生じない結果については、リアクトルLのインダクタンスの大小は関係しないため、インダクタンスを大きくすることができる。例えば、負荷電流100A、インダクタンス100μHにおいて、減結合装置15のリアクトルLを流れるインダクタンス電流を図3Aに示し、電圧降下を図3Bに実線で示すと共に比較のためにリアクトルLのみの場合の電圧降下を図3Bに点線で示す。リアクトルLには、負荷電流の波高値にほぼ等しい直流電流が流れ、その結果、本実施例(整流タイプ)ではリアクトルLでの電圧降下はほぼゼロになる。これに対して、減結合装置がリアクトルLのみの場合(インダクタンスタイプ)には3ボルト程度の電圧降下が生じた。   During normal operation, a current flows to the third element unit 18 through the diode D1 or D2 of the first element unit 16 according to whether the AC voltage applied to the decoupling device 15 is positive or negative, and further the diode of the second element unit 17 Output through D4 or D3. In other words, even if the polarity of the AC voltage changes, the current flowing through the third element portion 18 composed of the reactor L is always a direct current that does not change with time, so that almost no voltage drop occurs in the third element portion 18. As for the result in which this voltage drop hardly occurs, since the magnitude of the inductance of the reactor L is not related, the inductance can be increased. For example, when the load current is 100 A and the inductance is 100 μH, the inductance current flowing through the reactor L of the decoupling device 15 is shown in FIG. 3A, the voltage drop is shown by a solid line in FIG. 3B, and the voltage drop in the case of only the reactor L is shown for comparison. This is indicated by a dotted line in FIG. 3B. A direct current substantially equal to the peak value of the load current flows through the reactor L. As a result, in this embodiment (rectification type), the voltage drop at the reactor L becomes almost zero. On the other hand, when the decoupling device is only the reactor L (inductance type), a voltage drop of about 3 volts occurred.

以上に説明したように、本実施例においては、平常運転時には、減結合装置10に加えられる交流電圧の正負に応じて、第1素子部16のいずれか一方のダイオードD1,D2を通して第3素子部18に流れ、さらに第2素子部17のいずれか一方のダイオードD4,D3を通して出力されるため、リアクトルLのインダクタンスの大きさによらず、この部分で電圧降下をほとんど生じない。そのため、本実施例においてはリアクトルLのインダクタンスを大きくすることができるため、落雷による急峻な雷サージ電圧が発生しても、第3素子部18においてその時間的変化率を小さくすることができる。その結果、第2の雷保護装置13に流れる電流を抑えることができる。例えば、第1及び第2の雷保護装置12,13の電圧電流特性が図4に示すようなものについて、雷保護装置12側から10/350μs、波高値50kAのサージ電流iが流入したとき、第1及び第2の雷保護装置12,13に流れる電流i,iは、図5に示すようになると予測される。図5から明らかなように、サージ電流iの立ち上がりの大きい部分ではほとんどが第1の雷保護装置12に流れることが確認された。なお、減結合装置が従来のリアクトルのみの場合も、図5には明確には示されていないが、減結合装置15の場合とほとんど差異のない同様の結果となっている。 As described above, in the present embodiment, during the normal operation, the third element is passed through one of the diodes D1 and D2 of the first element unit 16 according to the positive / negative of the AC voltage applied to the decoupling device 10. Since the current flows to the part 18 and is output through one of the diodes D4 and D3 of the second element part 17, almost no voltage drop occurs in this part regardless of the inductance of the reactor L. Therefore, in the present embodiment, the inductance of the reactor L can be increased, so that even if a steep lightning surge voltage is generated due to a lightning strike, the temporal change rate can be reduced in the third element portion 18. As a result, the current flowing through the second lightning protection device 13 can be suppressed. For example, when the voltage and current characteristics of the first and second lightning protection devices 12 and 13 are as shown in FIG. 4, when a surge current i 0 having a peak value of 50 kA flows from the lightning protection device 12 side at 10/350 μs. The currents i 1 and i 2 flowing through the first and second lightning protection devices 12 and 13 are predicted to be as shown in FIG. As is clear from FIG. 5, it was confirmed that most of the surge current i 0 rises in the first lightning protection device 12 in a large portion. The case where only the conventional reactor is used as the decoupling device is not clearly shown in FIG. 5, but the same result is obtained with almost no difference from the case of the decoupling device 15.

その結果、本実施例によれば、第3素子部18のインダクタンスを大きくしても、平常運転時において電圧降下を低く抑えることができるため、第1及び第2の雷保護装置12,13間の電流耐量の協調を適正にとるための減結合装置15の調整が非常に簡易にされ、煩雑な調整に要するコストが削減される。また、電力線11に接続された電気機器の側で短絡等の事故が発生した場合に、減結合装置15が限流素子として機能することにより、過電流の発生を抑える効果が得られる。さらに、第1の雷保護装置12の電流耐量を適正に設定すると共に減結合装置15を設けることにより、第2の雷保護装置13を省略することも可能になる。   As a result, according to the present embodiment, even if the inductance of the third element portion 18 is increased, the voltage drop can be kept low during normal operation, and therefore, between the first and second lightning protection devices 12 and 13. Therefore, the adjustment of the decoupling device 15 for properly coordinating the current withstand capability is made very simple, and the cost required for complicated adjustment is reduced. Further, when an accident such as a short circuit occurs on the side of the electrical equipment connected to the power line 11, the decoupling device 15 functions as a current limiting element, so that an effect of suppressing the occurrence of overcurrent can be obtained. Furthermore, by setting the current withstand capability of the first lightning protection device 12 appropriately and providing the decoupling device 15, the second lightning protection device 13 can be omitted.

なお、上記実施例においては、第2の雷保護装置13は1つのみ示されているが、これに限らず、減結合装置を介して複数の機器に対して雷保護装置を接続することができる。例えば、室内に配置された多数のOA機器に対して減結合装置を連結することにより個々のOA機器に対して大きな第2の雷保護装置を設ける必要がないので、雷保護装置のコストの低減と共に省スペースを達成することができる。また、上記実施例においては整流素子としてダイオードを適用することを想定したが、半導体スイッチング素子であるサイリスタやGTO等を適用することもできる。その他、上記実施例に示したものは一例であり、本発明の趣旨を逸脱しない範囲で種々変更して実施することも可能である。   In the above embodiment, only one second lightning protection device 13 is shown. However, the present invention is not limited to this, and the lightning protection device may be connected to a plurality of devices via a decoupling device. it can. For example, since it is not necessary to provide a large second lightning protection device for each OA device by connecting a decoupling device to a large number of OA devices arranged indoors, the cost of the lightning protection device can be reduced. In addition, space saving can be achieved. In the above embodiment, it is assumed that a diode is applied as the rectifying element, but a thyristor, a GTO, or the like, which is a semiconductor switching element, can also be applied. In addition, what was shown in the said Example is an example, It is also possible to implement in various changes in the range which does not deviate from the meaning of this invention.

本発明の減結合装置は、リアクトルを大きくしても、平常運転時において電圧降下を低く抑えることができるため、第1及び第2の雷保護装置間の電流耐量の協調を適正にとるための調整が非常に簡易にされ、また、電力線に接続された電気機器の側で短絡等の事故が発生した場合に、雷保護装置用減結合装置により過電流の発生を抑えることができ、さらに、第1の雷保護装置の電流耐量を適正に設定すると共に、減結合装置を設けることにより、第2の雷保護装置を省略することも可能になるので、有用である。   Since the decoupling device of the present invention can keep the voltage drop low during normal operation even if the reactor is enlarged, the current withstand capability between the first and second lightning protection devices can be properly coordinated. Adjustment is very simple, and when an accident such as a short circuit occurs on the side of the electrical equipment connected to the power line, the decoupling device for the lightning protection device can suppress the occurrence of overcurrent, It is useful because the second lightning protection device can be omitted by appropriately setting the current withstand capability of the first lightning protection device and providing a decoupling device.

本発明の一実施例である雷保護装置用減結合装置を適用した建物内における雷保護システムの構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the lightning protection system in the building to which the decoupling device for lightning protection devices which is one Example of this invention is applied. 雷保護装置用減結合装置を概略的に示す回路図である。It is a circuit diagram showing roughly a decoupling device for a lightning protection device. 減結合装置のリアクトルを流れる電流の時間変化を示すグラフである。It is a graph which shows the time change of the electric current which flows through the reactor of a decoupling device. 減結合装置における電圧降下を、リアクトルのみの場合の電圧降下と比較して示すグラフである。It is a graph which shows the voltage drop in a decoupling device compared with the voltage drop in the case of only a reactor. 第1及び第2の雷保護装置の電圧電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic of the 1st and 2nd lightning protection apparatus. 実施例の減結合装置を用いた場合と、従来のリアクトルのみを用いた場合について、サージ電流が流入したときの、第1及び第2の雷保護装置に流れる電流の時間変化を示すグラフである。It is a graph which shows the time change of the electric current which flows into the 1st and 2nd lightning protection apparatus when a surge current flows in about the case where the decoupling device of an Example is used, and the case where only the conventional reactor is used. .

符号の説明Explanation of symbols

11…電力線、12,13…雷保護装置、15…減結合装置、16…第1素子部、17…第2素子部、18…第3素子部。 DESCRIPTION OF SYMBOLS 11 ... Power line, 12, 13 ... Lightning protection device, 15 ... Decoupling device, 16 ... 1st element part, 17 ... 2nd element part, 18 ... 3rd element part

Claims (1)

屋外から導入されて屋内に設けられた電気機器に通電する電力線と大地間に並列に接続された2つの雷保護装置間にて、該電力線に直列接続されて該2つの雷保護装置に流れる電流を協調させる雷保護装置用減結合装置において、それぞれ2個の整流素子が直列接続されてなる第1及び第2素子部と、リアクトルからなる第3素子部とが互いに並列に接続されてなり、前記第1素子部及び第2素子部のいずれか一方の2つの整流素子の間が電力線に接続される入力側にされ、他方の2つの整流素子の間が電力線に接続される出力側にされたことを特徴とする雷保護装置用減結合装置。 A current that flows between the two lightning protection devices connected in series with the power line between a power line that is introduced from outside and energizes an electric device installed indoors and two lightning protection devices connected in parallel between the ground In the lightning protection device decoupling device for coordinating, the first and second element parts each having two rectifying elements connected in series and the third element part comprising a reactor are connected in parallel with each other, Between the two rectifying elements of either the first element part or the second element part is an input side connected to the power line, and between the other two rectifying elements is an output side connected to the power line. A decoupling device for a lightning protection device.
JP2005251909A 2005-08-31 2005-08-31 Decoupling device for lightning protective device Pending JP2007068342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251909A JP2007068342A (en) 2005-08-31 2005-08-31 Decoupling device for lightning protective device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251909A JP2007068342A (en) 2005-08-31 2005-08-31 Decoupling device for lightning protective device

Publications (1)

Publication Number Publication Date
JP2007068342A true JP2007068342A (en) 2007-03-15

Family

ID=37929874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251909A Pending JP2007068342A (en) 2005-08-31 2005-08-31 Decoupling device for lightning protective device

Country Status (1)

Country Link
JP (1) JP2007068342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270135A (en) * 2007-04-25 2008-11-06 Mitsubishi Electric Corp Circuit breaker, and spd protection system using the same
CN102034380A (en) * 2010-12-11 2011-04-27 株洲普天中普防雷科技有限公司 Lightning protection method and device for measurement and control circuit of automobile driving infrared pile test system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270135A (en) * 2007-04-25 2008-11-06 Mitsubishi Electric Corp Circuit breaker, and spd protection system using the same
CN102034380A (en) * 2010-12-11 2011-04-27 株洲普天中普防雷科技有限公司 Lightning protection method and device for measurement and control circuit of automobile driving infrared pile test system

Similar Documents

Publication Publication Date Title
EP2706639B1 (en) Surge protection circuit
US9270170B2 (en) Voltage sag corrector using a variable duty cycle boost converter
US8270129B2 (en) Device arranged for converting an AC input voltage to a DC output voltage
US8971002B1 (en) System and method of providing isolated power to gate driving circuits in solid state fault current limiters
US6587362B1 (en) AC-DC converters with bi-directional thyristor valves
KR101730636B1 (en) Bidirectional non-isolation dc-dc converter with improved in stability
CN103545803B (en) Device power supply (DPS) interface circuit protection device
US20150357906A1 (en) Converter
US9300220B2 (en) Uninterruptible power supply system
US11196338B2 (en) Semiconductor topologies and devices for soft starting and active fault protection of power converters
US9712083B2 (en) Method and device for switching operation mode of a five-level inverter
US8670253B2 (en) Converter protecting components against overvoltages
WO2014192327A1 (en) Power conversion device and control method
US10523011B2 (en) Voltage compensation apparatus for photovoltaic system and photovoltaic system
EP1701424B1 (en) Combined device of electric protection at low voltage against transient and extended over-voltage with automatic reconnection
JP2011139290A (en) Bidirectional switch
JPWO2018193527A1 (en) Overcurrent detection circuit and power conversion device
US20160344284A1 (en) Wide input voltage range dc-dc converter with input surge protection
CN108512442B (en) Switching power supply control system
JP2007068342A (en) Decoupling device for lightning protective device
JP5929424B2 (en) LED lighting device and lighting device using the same
KR20170078547A (en) Safe connection board for solar generator
JP5741199B2 (en) Rectifier snubber circuit
JP2007181287A (en) Semiconductor device
JP2017143607A (en) Shunt device, electric power system, and space structure