JP4891747B2 - 信号符号化装置、信号符号化方法、プログラム及び記録媒体 - Google Patents

信号符号化装置、信号符号化方法、プログラム及び記録媒体 Download PDF

Info

Publication number
JP4891747B2
JP4891747B2 JP2006332004A JP2006332004A JP4891747B2 JP 4891747 B2 JP4891747 B2 JP 4891747B2 JP 2006332004 A JP2006332004 A JP 2006332004A JP 2006332004 A JP2006332004 A JP 2006332004A JP 4891747 B2 JP4891747 B2 JP 4891747B2
Authority
JP
Japan
Prior art keywords
code
noise
gain
signal
norm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006332004A
Other languages
English (en)
Other versions
JP2008145682A (ja
Inventor
祐介 日和▲崎▼
仲 大室
岳至 森
章俊 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006332004A priority Critical patent/JP4891747B2/ja
Publication of JP2008145682A publication Critical patent/JP2008145682A/ja
Application granted granted Critical
Publication of JP4891747B2 publication Critical patent/JP4891747B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

本発明は、信号を符号化する技術に関し、特に、波形符号化方式を用いて符号化を行う技術に関する。
従来から用いられている電話帯域の音声信号を符号化する音声符号化方法として、G.711に用いられる非線型波形圧縮符号化(μ則・A則PCM)や、G. 726などに用いられる差分予測波形圧縮符号化波形方式(ADPCM)などの波形符号化方式がある。公衆電話網及びインターネットを用いた音声通信(VoIP)では、ほぼこの符号化方式が用いられている。
一方、音声符号化では、線形予測分析に基づく符号化方式が主流であり、この線形予測分析によって得られる包絡情報を元に雑音を変形して符号化する手法が用いられている。しかし、線形予測分析方式では、符号化処理時間単位毎に演算量の多い自己相関関数を求める必要がある。また、符号選択時には、この包絡情報を符号化処理時間単位毎に反映して符号を選択する必要があり、符号化に要する演算量は上述した波形符号化方式の数十倍となる。
また、符号化方式と波形符号化方式以外にも高音質で圧縮効率の良い符号化方式は多数存在する。しかし、他の符号化方式は実装が一般化されていないため、他の符号化方式を用いた通信では相互接続性が保証されていない。よって他の符号化方式を用いて複数の端末装置と通信を行う場合、自らの通信端末上で複数の符号化器を動作させ、通信相手の端末装置に実装されている符号化方式に応じて符号化方式を使い分ける必要がある。しかし、使用できる演算量が制限される端末装置では、複数の符号化器を同時に動作させることは不可能である。これに対し、波形符号化方式はどのようなVoIP会議端末装置にも実装が一般化されている。
以上より、結局はG.711やG.726のような波形符号化方式を用いざるを得ない。
ここで、G.711やG.726のような波形符号化方式では振幅の非線形圧縮を用いる。例えば、G.711やG.726では、符号化する信号の振幅が大きい場合には量子化幅を大きくして振幅変化に追従させ、振幅が小さい場合には量子化幅を小さくして小さな信号の変化を再現可能とする適応量子化が用いられる。これらの方式では、SN比(入力信号レベルに対する符号化雑音レベルの比率)を入力信号レベルに依存せずに一定にできるという利点がある。
しかし、適応量子化を用いた場合であっても、符号化雑音は全周波数成分に一様なパワーを持つ白色雑音となる。量子化幅は各周波数で同一だからである。そのため、入力信号の周波数成分にパワーの偏りがあった場合、周波数毎のSN比は相違する。例えば、音声信号は低域(〜1kHz程度)にパワーが集中しているため、高域では入力音声に対して符号化雑音が相対的に大きくなり高域側のSN比が悪化する。従来は、G.711やG.726による波形符号化の対象は、高域成分が強調された周波数特性(例えばIRS特性等)を持つ電話機からの出力信号であった。そのため、たとえ音声信号のパワーが低域に偏っていたとしても、符号化対象となる信号の周波数成分の偏りは抑制され、高域側のSN比の悪化も抑制されていた。なお、IRS特性とは図11に示すような緩やかな高域通過フィルタ型の周波数特性を指す。
しかし、VoIPなどの通信において高域成分が強調された周波数特性を持つマイクが使用されることは稀である。そのため、音声信号が持つ低域へのパワーの集中が是正されることなく符号化され(エンコーダミスマッチ)、高域のSN比が悪化させ、復調側で雑音が顕著に知覚されてしまうという問題が生じる。例えば平坦な周波数特性を持つマイクを使用して音声を収音すると、符号化対象の信号も低域(〜1kHz程度)にパワーの集中したものとなり、高域において入力音声レベルに対する符号化雑音レベルが相対的に大きくなり、復調側で雑音が知覚されやすくなる。
なお、このような周波数毎のパワーの偏りに起因する問題は適応量子化を用いた場合に限定されるものではない。このような問題は、量子化幅が一定な一様量子化を用いた場合にはより深刻なものとなる。なぜなら、一様量子化を用いた場合、周波数毎のS/N比の相違に加え、入力信号のパワーによってもS/N比が相違することになるからである。また、このような問題は音声信号に限定されるものではなく、周波数毎のパワーに偏りがある信号すべてに共通する問題である。
このような問題を解決するため、特許文献1には、基本段で音声信号をG.711やG.726のような波形符号化方式によって符号化し、基本段での基本雑音成分を高品質かつ低演算量で符号化可能な2段目の符号化方式で符号化する多段構成の符号化方式が開示されている。なお、この2段目では、例えば、予め演算された高域重み付き形状符号帳と高域重み付きパワーの逆数表とを用い、高域に重み付けされた基本雑音信号を符号化する。このように高域に重み付けされた基本雑音信号を符号化した場合、その2段目の符号化に伴う高域での符号化雑音/基本雑音信号の比率を効果的に低減できる。その結果、低域にパワーが集中する音声信号においてSN比が劣化する高域のSN比を効率的に改善できる。
特開2006−119301号公報
しかし、特許文献1の方式には以下のような課題がある。
第一に、特許文献1の方式では、軽減されているとはいえ、符号帳の探索のための演算量が大きいという問題点がある。具体的には、特許文献1の方式では、基本雑音信号の形状符号探索のために、(1)高域重み付き形状符号帳の要素ベクトルと基本雑音信号を要素とするベクトルとの乗算(内積演算)を1回行い、さらに(4)その演算結果と高域重み付きパワーの逆数表の要素とのスカラ乗算を1回行う演算を、各符号帳の全要素について行う必要がある。すなわち、各符号帳の全要素がnであった場合、1処理単位当り、上記の内積演算とスカラ乗算とをn回づつ実行しなければならない。
第二に、特許文献1の方式では、高域重み付き形状符号帳と高域重み付きパワーの逆数表とによる重み付けが固定であったため、入力信号の周波数に対するパワーの偏りが変動する場合に有効な効果が得られないという問題点もある。例えば、音声信号のスペクトル特性は、有声区間(いわゆる母音区間)と無声区間(いわゆる子音区間)とによって著しく異なり、有声区間では低域にパワーが集中するが、無声区間では低域だけではなく高域にもパワーが存在する。また、音楽ソースなどの信号は平坦な周波数特性を持つ。しかし、例えば、特許文献1の方式において、高域重み付き形状符号帳と高域重み付きパワーの逆数表とによる重み付けが高域に大きな重みを付けるものであった場合、その方式は、有声区間の信号に対しては有効であるが、無声区間の信号や平坦な周波数特性の信号に対してはあまり有効ではない。
本発明はこのような点に鑑みてなされたものである。第1の本発明では、符号帳の探索のための演算量を低減できる技術を提供することを目的とする。また、第2の本発明では、入力信号の周波数に対するパワーの偏りが変動する場合であっても有効にSN比を改善できる技術を提供することを目的とする。
第1の本発明では上記課題を解決するために、周波数成分に特定の重み付けを行う重み付け行列Wを形状符号帳の要素ci(i=1,...,n)に乗じた重み付き形状符号W・ciと、当該重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖と、当該重み付け行列Wと、の積に相当するr(r≧1)次元のベクトルpiを要素とするパワー補正済み重み付き符号帳を第1記憶部に格納しておき、重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖を要素とするノルム逆数表を第2記憶部に格納しておき、利得gj(j=1,...,m)を要素とする利得符号帳を第3記憶部に格納しておく。なお、1次元のベクトル(r=1の場合)は、スカラを意味する。また、重み付け行列Wには1行1列の行列(すなわちスカラ)も含まれる。
そして、基本符号化部が、各時刻の入力信号sを波形符号化方式によって符号化した基本符号Ibを生成し、基本雑音抽出部が、時刻毎に入力信号sと基本符号の復号信号s'との差分に相当する基本雑音信号eを抽出し、第1距離計算部が、各iについて、ベクトルpiと、基本雑音信号eを要素とするr次元のベクトルEと、の内積εiを算出する。なお、r=1の場合における「内積」とはスカラ積を意味する。その後、雑音形状符号選択部が、内積εiを指標として選択したiを雑音形状符号Isとし、理想ゲイン計算部が、パワー補正済み重み付き符号帳のIs番目の要素であるベクトルpIsとノルム逆数表のIs番目の要素1/‖W・cIs‖とベクトルEとの積に相当する値を理想ゲインg'として算出する。さらに、第2距離計算部が、各jについて、利得符号帳の要素である利得gjと理想ゲインg'との距離dj'を算出し、雑音利得符号選択部が、距離dj'を指標として選択したjを雑音利得符号Igとする。そして、符号出力部が、基本符号Ibと雑音形状符号Isと雑音利得符号Igとを出力する。
ここで、本発明では、基本雑音信号の形状符号探索のために、パワー補正済み重み付き符号帳の要素であるr次元のベクトルpiと、基本雑音信号eを要素とするr次元のベクトルEとの内積演算のみを行えばよい。そして、パワー補正済み重み付き符号帳の全要素数はnであるため、本発明では、1処理単位当り、上記の内積演算をn回実行すればよい。その結果、1処理単位当り、内積演算とスカラ乗算とをn回づつ実行しなければならない特許文献1の方法よりも演算量を低減できる。
また、第1の本発明において好ましくは、第1記憶部は、周波数成分への重み付けが相違する2種類以上の重み付け行列Wにそれぞれ対応する2種類以上のパワー補正済み重み付き符号帳を格納し、第2記憶部は、周波数成分への重み付けが相違する2種類以上の重み付け行列Wにそれぞれ対応する2種類以上のノルム逆数表を格納する。そして、重み付け選択部が、入力信号sを用い、使用するパワー補正済み重み付き符号帳及びノルム逆数表を選択し、第1距離計算部が、選択されたパワー補正済み重み付き符号帳の要素であるベクトルpiを用い、内積εiを算出し、理想ゲイン計算部が、選択されたノルム逆数表のIs番目の要素を用い、理想ゲインg'を算出する。この場合、入力信号の周波数に対するパワーの偏りが変動する場合であっても、それぞれの偏りに適した重み付けを行うパワー補正済み重み付き符号帳及びノルム逆数表を選択することができ、効率的にSN比を改善できる。
また、この場合に好ましくは、第1記憶部は、低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列W1を重み付け行列Wとしたパワー補正済み重み付き符号帳と、低域側成分の重みよりも高域側成分の重みが小さいか全周波数成分の重みが等しい重み付けを行う行列W2を重み付け行列Wとしたパワー補正済み重み付き符号帳と、を格納し、第2記憶部は、行列W1を重み付け行列Wとしたノルム逆数表と、行列W2を重み付け行列Wとしたノルム逆数表と、を格納する。この場合、低域にパワーが集中する信号と、低域だけではなく高域にもパワーが存在する信号とが混在する場合の符号化においても効率的にSN比を改善できる。
また、この場合に好ましくは、重み付け選択部は、入力信号sから算出したPARCOR係数を用い、使用するパワー補正済み重み付き符号帳及びノルム逆数表を選択する。この場合、容易に適切なパワー補正済み重み付き符号帳及びノルム逆数表を選択できる。この具体例は後述する。
また、第1の本発明において好ましくは、雑音形状符号選択部は、内積εiを最大にするiを雑音形状符号Isとし、雑音利得符号選択部は、距離dj'を最小にするjを雑音利得符号Igとする。これにより、最適な雑音形状符号Isと雑音利得符号Igが選択できる。
また、第2の本発明では上記課題を解決するために、基本符号化部が、入力信号sを波形符号化方式によって符号化した基本符号Ibを生成し、基本雑音抽出部が、入力信号sと基本符号の復号信号s'との差分に相当する基本雑音信号eを抽出し、重み付け選択部が、入力信号sを用い、基本雑音信号eの周波数成分に対する重み付けを決定し、拡張符号化部が、重み付け選択部で決定された重み付けがなされた基本雑音信号eの符号化を行い、拡張符号Ieを生成する。そして、符号出力部が、基本符号Ibと拡張符号Ieとを出力する。この場合、入力信号の周波数に対するパワーの偏りが変動する場合であっても、それぞれの偏りに適した重み付けを行うパワー補正済み重み付き符号帳及びノルム逆数表を選択することができ、効率的にSN比を改善できる。
以上のように、第1の本発明では、符号帳の探索のための演算量を低減できる。また、第2の本発明では、入力信号の周波数に対するパワーの偏りが変動する場合であっても有効にSN比を改善できる。
以下、本発明を実施するための最良の形態を図面を参照して説明する。
〔第1実施形態〕
<本形態の原理>
まず、本形態の原理について説明する。
本形態では、2段の符号化部によって入力信号を符号化する。1段目の符号化部では、入力信号sを波形符号化方式によって符号化して基本符号Ibを生成する。2段目の符号化部では、符号帳を用い、1段目の符号化において生じた符号化雑音である基本雑音信号eを符号化して拡張符号Ieを生成する。
2段目の符号化部では、単に基本雑音信号eを符号化するのではなく、特定の周波数について重み付けを行った基本雑音信号eを符号化する。具体的には、2段目の符号化部での符号化雑音を特に低減する必要がある周波数成分に大きな重み付けを行う。これにより、大きな重みが付された周波数成分の特徴が符号帳の探索処理(後述の式(9)に示す基本雑音信号と符号帳の要素との距離探索)に強調されて反映される。その結果、符号帳の要素数やその探索演算量を増加させることなく、大きな重みが付された周波数成分でのSN比を効果的に改善することができる。一方、信号復号装置で使用する符号帳には重みは付されていない。これにより、信号復号装置で拡張符号Ieを復号した際には、重みが付されていない基本雑音信号が再現される。
本形態での特定の周波数成分に対する重み付けは、例えば、以下のようなz領域の伝達関数で示されるFIRフィルタを用いて付することができる。
Hw(z)=1/(-b・z-1+b・z-2) …(1)
すなわち、基本雑音信号eのz領域表現をe(z)とした場合、基本雑音信号は、
Hw(z)・e(z)
と重み付けされる。また、一例として式(1)においてb=0.550107181とした場合、このFIRフィルタの周波数特性は、図5(a)のようになる。
なお、式(1)のFIRフィルタはあくまで一例である。入力信号の周波数分布や要求される周波数特性などに応じ、適したFIRフィルタを用いればよい。なお、FIRフィルタの設計は公知のフィルタ設計手法を用いることにより可能である。例えば、式(1)の代わりに
Figure 0004891747
BM={b1,b2,...,bM}
と表現した場合における、
B5={-0.080094310254, -0.339811379491, 0.660188620508, -0.33981137949, -0.080094310254} …(3)
となるFIRフィルタ(図5(b))や、
B7={0.117842217312, -0.046490630559, -0.151513182272, -0.614272875977, 0.614272875977, 0.151513182272, 0.046490630559-0.117842217312} …(4)
となるFIRフィルタ(図5(c))を用いてもよい。
図5(a)〜(c)に例示したように、式(1)(3)(4)のFIRフィルタは、低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う。このようなFIRフィルタは、平坦な周波数特性のマイクロホンで集音された音声信号のように低域にパワーが集中する入力信号の符号化に適する。FIRフィルタの選択は、入力信号の周波数特性に応じて最適なものを選べばよい。また、FIRフィルタは1次のものであってもよいし高次のものであってもよい。
また、式(1)のFIRフィルタは以下のようなToeplitz型の行列で表現できる。
Figure 0004891747
同様に、式(2)で表現されるFIRフィルタをToeplitz型の行列で表現すると、
Figure 0004891747
となる。
以下では、FIRフィルタを式(6),(7)に例示したようなToeplitz型の重み付け行列Wで表現する。なお、本形態では、FIRフィルタが符号帳の各要素に畳み込まれているため、直接、重み付け行列Wを用いた演算を行うことはない。
2段目の符号化部では、
d=‖W・E-gj・W・ci‖ …(9)
で表現される距離dを最小値化するi及びjを選択し、それらをそれぞれ雑音形状符号Is及び雑音利得符号Igとし、雑音形状符号Isと雑音利得符号Igとを多重化したものを拡張符号Ieとする。なお、ciは信号復号装置で使用される形状符号帳の要素であるベクトルであり、gjは信号符号化装置や信号復号装置で使用される利得符号帳のj番目の要素であるスカラである。また、Eは処理単位内の各時刻の基本雑音信号eを要素とするベクトルである。すなわち、Eはr次元のベクトルE=(e(tf),...,e(tf+r-1))(但しe(t)は各時刻t=(tf,...,tf+r-1)の基本雑音信号e)である。
ここで、ciとgjとの取り得る組合せは膨大であるため、最適なiとjとを一度に求めることは演算量の観点から好ましくない。そこで本形態では、まず、最適なi(すなわち雑音形状符号Is)の選択を行い、その次に最適なj(すなわち雑音利得符号Ig)の選択を行う。
具体的には、本形態では、
εi=((W・ci)t・W/‖W・ci‖)・E …(10)
を最大値化するiを最適なi(すなわち雑音形状符号Is)として選択する。なお、式(10)は、式(9)のciについての偏微分値の一部であり、ciの変化に対し、式(10)が最大となるときに式(9)が最小となる。また、αは、α(行列又はベクトル)の転置操作を示す。また、‖β‖は、ベクトルβのノルムである。
式(10)のεiを最大値化するiの探索するためは、各iについて式(10)のεiを算出する必要がある。本形態では、信号符号化装置で使用する符号帳を工夫することにより、式(10)の演算量を低減させる。この点が本形態の特徴である。すなわち、式(10)のうち、((W・ci)t ・W/‖W・ci‖)の部分を予め計算しておき、それを符号帳(「パワー補正済み重み付き形状符号帳」と呼ぶ)の要素として記憶部に格納しておく。式(10)の演算を行う際には、ベクトルEとパワー補正済み重み付き形状符号帳の要素とを被演算子とした演算のみで式(10)が算出できる。これにより、大幅に演算量を削減できる。
その後、本形態では、
dj'=‖g'-gj‖ …(11)
を最小値化するjを最適なj(すなわち雑音利得符号Ig)として選択する。なお、g'は
g'=((W・cIs)t・W/‖W・cIs‖)・(1/‖W・cIs‖)・E …(12)
で示される理想ゲインであり、式(9)においてgj=g'とした場合、d=0となる値である。つまり、式(11)では、式(9)で示される距離dを0に最も近づける利得符号帳の要素gjを選択し、それに対応するjを雑音利得符号Igとして選択する。
<本形態の具体的な構成>
次に、本形態の具体的な構成について説明する。
[信号符号化装置の構成]
図1は、第1実施形態の信号符号化装置10の機能構成を例示したブロック図である。
本形態の例の信号符号化装置10は、CPU(central processing unit)やRAM(random-access memory)等を具備する公知のコンピュータに所定のプログラムを実行させることにより構成される。
図1に例示するように、本形態の信号符号化装置10は、入力信号を符号化した基本符号を生成する1段目の基本符号化部11 と、基本符号を復号して復号信号を生成する基本復号部12と、入力信号と復号信号との差分に相当する基本雑音信号(すなわち基本符号化の符号化雑音)を抽出する基本雑音抽出部13と、基本雑音信号を符号化した拡張符号を生成する2段目の品質拡張符号化部14と、符号を出力する符号出力部15と、信号符号化装置10全体を制御する制御部16と、一時メモリ17とを有する。また、品質拡張符号化部14は、記憶部13a〜13cと、距離計算部13d,13gと、雑音形状符号選択部13eと、理想ゲイン計算部13fと、雑音利得符号選択部13hと、拡張符号多重部13iとを有する。
[信号復号装置の構成]
図2は、第1実施形態の信号復号装置20の機能構成を例示したブロック図である。
本形態の例の信号復号装置20も、公知のコンピュータに所定のプログラムを実行させることにより構成される。
図1に例示するように、本形態の信号復号装置20は、基本符号を復号する基本復号部21と、拡張符号を復号する品質拡張復号部22と、基本符号の復号結果と拡張符号の復号結果とを加算する加算部23と、信号復号装置20全体を制御する制御部24と、一時メモリ25とを有する。また、品質拡張復号部22は、記憶部22a,22bと、拡張符号分解部22cと、雑音形状選択部22dと、雑音利得選択部22eと、乗算部22fとを有する。
<本形態の具体的な処理>
次に、本形態の具体的な処理について説明する。
[前処理]
まず、信号符号化処理及び信号復号処理を行うための前処理について説明する。
本形態では、信号符号化装置10(図1)への前処理として、信号符号化装置10の記憶部13aに、[pi=(W・ci)t・W/‖W・ci‖]i(i=1,...,n)を要素とするパワー補正済み重み付き形状符号帳を格納する。このパワー補正済み重み付き形状符号帳は、周波数成分に特定の重み付けを行う重み付け行列Wを形状符号帳の要素ci(i=1,...,n)に乗じた重み付き形状符号W・ciと、当該重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖と、当該重み付け行列Wと、の積に相当するr(r≧1)次元のベクトルpiを要素とする。また、記憶部13bに[1/‖W・ci‖]i(i=1,...,n)を要素とするノルム逆数表を格納し、記憶部13cに利得gj(j=1,...,m)を要素とする利得符号帳を格納する。
また、信号復号装置20(図2)への前処理として、信号復号装置20の記憶部22aに形状符号ci(i=1,...,n)を要素とする形状符号帳を格納し、記憶部22bに利得gj(j=1,...,m)を要素とする利得符号帳を格納する。
[符号化処理]
次に、信号符号化装置10による符号化処理について説明する。
図3は、第1実施形態の符号化処理を説明するためのフローチャートである。以下、図3に沿って第1実施形態の符号化処理を説明する。なお、以下では明示しないが、信号符号化装置10は、制御部16の制御のもと各処理を実行し、各演算で算出されたデータは逐一一時メモリ17に蓄積され、他の処理に用いられる。
信号符号化装置10は、所定のサンプリング周波数でサンプリングされたデジタル信号s(t)(tは離散時間)を入力信号とする。本形態では、一例として、8kHzでサンプリングされた3.4kHz帯域(電話帯域)の音声デジタル信号を入力信号とする。また、本形態の例では、実時間処理及びメモリ量の削減のため、所定の時間長のフレーム毎に符号化を行う。なお、フレーム幅としては、例えば、8サンプル(1ms)から160サンプル(20ms)程度を例示できる。また、入力信号の符号化処理(1段目の符号化)のフレーム幅と基本雑音信号の符号化処理(2段目の符号化)のフレーム幅(r)とは必ずしも一致する必要はない。また、オフラインで実施するのであれば、メモリの許す限り入力信号s(t)を保存し、それに対応する符号帳を用意して一括して処理を行っても同じ結果が得られる。
以下では、1処理単位の処理のみを示す。すなわち、フレームが処理単位である場合には、以下の処理が各フレームに対して繰り返され、全データが処理単位とする場合には、以下の処理のみを実行する。
まず、制御部16が、f'にf代入し、ηに1を代入する(ステップS0)。なお、fは処理単位の先頭時刻tfに対応するインデックスである。
次に、基本符号化部11が、1処理単位内の各時刻(tf',...,tf'+q-1)の入力信号s(tf'),...,s(tf'+q-1)を波形符号化方式によって符号化した基本符号Ib(tf'),...,Ib(tf'+q-1)を生成して出力する(ステップS1)。なお、波形符号化方式としては、G.711に用いられる非線型波形圧縮符号化(μ則・A則PCM)や、G. 726などに用いられる差分予測波形圧縮符号化波形方式(ADPCM)などを例示できる。
次に、基本復号部12が、基本符号化部11から出力された各時刻(tf',...,tf'+q-1)の基本符号Ib(tf'),...,Ib(tf'+q-1)を復号して復号信号s’(tf'),...,s’(tf'+q-1)を生成する(ステップS2)。
次に、制御部16が、q・η≧rを満たすか否かを判定する(ステップS2a)。ここで、q・η≧rを満たさないと判定された場合、制御部16はf'+qを新たなf'とし、η+qを新たなηとし、処理をステップS1に戻す(ステップS2b)。一方、q・η≧rを満たすと判定された場合、基本復号部12は、それまでに生成した復号信号’(tf),...,s’(tf+r-1)の反転信号-s’(tf),...,-s’(tf+r-1)を出力し、制御部16は処理をステップS3に移す。
ステップS3では、基本雑音抽出部13に、入力信号s(tf),...,s(tf+r-1)と、基本復号部12から出力された復号信号の反転信号-s’(tf),...,-s’(tf+r-1)とが入力される。基本雑音抽出部13は、これらを時刻毎に加算し、入力信号s(tf),...,s(tf+r-1)と復号信号s’(tf),...,s’(tf+r-1)との差分に相当する基本雑音信号e(tf),...,e(tf+r-1)を抽出する(ステップS3)。
次に、距離計算部13dに基本雑音信号e(tf),...,e(tf+r-1)が入力される。距離計算部13dは、記憶部13aに格納されたパワー補正済み重み付き符号帳の要素であるベクトルpi(i=1,...,n)と、入力された基本雑音信号e(tf),...,e(tf+r-1)を要素とするr次元のベクトルE=(e(tf),...,e(tf+r-1))との内積を、以下のように各iについて算出する(ステップS4)。
εi=pi・E (i=1,...,n) …(13)
このように本形態では、パワー補正済み重み付き符号帳の要素としてpi=(W・ci)t ・W/‖W・ci‖を予め計算しておくため、式(13)のような1つの内積演算のみで式(10)の値を算出することができ、その結果、演算量を大幅に削減することができる。
次に、雑音形状符号選択部13eに各内積εi(i=1,...,n)が入力され、雑音形状符号選択部13eは、各内積εiを指標として最適なiを選択し、選択したiを雑音形状符号Isとして出力する(ステップS5)。例えば、雑音形状符号選択部13eは、以下のように内積εiを最大にするiを雑音形状符号Isとして出力する。
Is=argmaxii) (i=1,...,n) …(14)
また、内積εiを最大にするiを雑音形状符号Isとするのではなく、ある程度の数の内積εiを比較した時点で最大であった内積εiに対応するiを雑音形状符号Isとしてもよい。また、ある閾値と内積εiとを比較していき、最初に閾値を超えた内積εiに対応するiを雑音形状符号Isとしてもよい。その他、内積εiを最大にすると擬制できるiを雑音形状符号Isとしてもよい。
次に、理想ゲイン計算部13fに雑音形状符号Isと基本雑音信号e(tf),...,e(tf+r-1)とが入力される。理想ゲイン計算部13fは、記憶部13aに格納されたパワー補正済み重み付き符号帳のIs番目の要素であるベクトルpIsと、記憶部13bに格納されたノルム逆数表のIs番目の要素1/‖W・cIs‖とを読み出す。そして、理想ゲイン計算部13fは、以下のように、ベクトルpIsと1/‖W・cIs‖と入力された基本雑音信号e(tf),...,e(tf+r-1)を要素とするベクトルEとの積に相当する値を理想ゲインg'として算出して出力する。(ステップS6)。
g'=pIs・(1/‖W・cIs‖)・E …(15)
なお、理想ゲイン計算部13fに、雑音形状符号選択部13eで算出された内積εIsと雑音形状符号Isと基本雑音信号e(tf),...,e(tf+r-1)とが入力され、理想ゲイン計算部13fが、記憶部13bに格納されたノルム逆数表のIs番目の要素1/‖W・cIs‖を読み出し、以下のように、理想ゲインg'として算出してもよい。
g'=εIs・(1/‖W・cIs‖) …(16)
ここで、ノルム逆数表の要素として‖W・cIs‖の逆数1/‖W・cIs‖が予め求められているため、ステップS6では除算ではなく乗算のみを行えばよい。計算機上では、乗算は除算よりも演算量が少ない。本形態では、これによっても演算量を低減している。
次に、距離計算部13gに理想ゲインg'が入力される。距離計算部13gは、以下のように、各jについて利得符号帳の要素である利得gjと理想ゲインg'との距離dj'を算出する。
dj’=‖g’-gj2 (j=1,...,m) …(17)
次に、雑音利得符号選択部13hに各jに対応する距離dj'が入力され、雑音利得符号選択部13hは、距離dj'を指標としてjを選択し、選択したjを雑音利得符号Igとして出力する(ステップS8)。なお、例えば、雑音利得符号選択部13hは、以下のように距離dj'を最小にするjを雑音利得符号Igとする。
Ig=argminj(dj’) (j=1,...,m) …(18)
また、距離dj'を最小にするjを雑音利得符号Igとするのではなく、ある程度の数の距離dj'を比較した時点で最小であった距離dj'に対応するjを雑音利得符号Igとしてもよい。また、ある閾値と距離dj'とを比較していき、最初に閾値を超えた距離dj'に対応するjを雑音利得符号Igとしてもよい。その他、距離dj'を最小にすると擬制できるjを雑音利得符号Igとしてもよい。
そして、拡張符号多重部13iに雑音形状符号Isと雑音利得符号Igとが入力され、拡張符号多重部13iをこれらを多重化した拡張符号Ieを生成する。そして、符号出力部15が、基本符号Ib(tf),...,Ib(tf+r-1)と拡張符号Ieとを出力する(ステップS9)。
[復号処理]
次に、信号復号装置20による復号処理について説明する。
図4は、第1実施形態の復号処理を説明するためのフローチャートである。以下、図4に沿って第1実施形態の復号処理を説明する。なお、以下では明示しないが、信号復号装置20は、制御部24の制御のもと各処理を実行し、各演算で算出されたデータは逐一一時メモリ25に蓄積され、他の処理に用いられる。また、以下では、1処理単位の処理のみを示す。
信号復号装置20に基本符号Ib(tf),...,Ib(tf+r-1)と拡張符号Ieとが入力され、基本符号Ib(tf),...,Ib(tf+r-1)は基本復号部21に、拡張符号Ieは拡張符号分解部22cに入力される(ステップS11)。
基本復号部21は、入力された基本符号Ib(tf),...,Ib(tf+r-1)を復号して復号信号s’(tf),...,s’(tf+r-1)を生成して出力する(ステップS12)。また、拡張符号分解部22cは、入力された拡張符号Ieを雑音形状符号Isと雑音利得符号Igとに分割し、それらを出力する(ステップS13)。雑音形状符号Isは雑音形状選択部22dに入力され、雑音形状選択部22dは、これを用い、記憶部22aに格納された形状符号帳のIs番目要素
であるベクトルcIsを抽出して出力する(ステップS14)。また、雑音利得符号Igは雑音利得選択部22eに入力され、雑音利得選択部22eは、これを用い、記憶部22bに格納された利得符号帳の要素であるスカラgIgを抽出して出力する(ステップS15)。
ベクトルcIsとスカラgIgとは乗算部22fに入力され、乗算部22fはこれらの積であるベクトルgIg・cIsを算出して出力する(ステップS16)。さらに、加算部23に復号信号s’(tf),...,s’(tf+r-1)とベクトルgIg・cIsとが入力される。加算部23は、以下のように、s’(tf),...,s’(tf+r-1)を各要素とするベクトルs'とベクトルgIg・cIsとの和を再生ベクトルs''として求めて出力する(ステップS17)。
s''=s'+gIg・cIs …(19)
<本形態の特徴>
以上説明した通り、本形態では、パワー補正済み重み付き符号帳の要素としてpi=(W・ci)t ・W/‖W・ci‖を予め計算しておくため、式(13)のようなパワー補正済み重み付き符号帳の要素であるベクトルpiとベクトルE=(e(tf),...,e(tf+r-1))との内積のみで式(10)の値を算出できる。これにより、本形態では、符号化時の形状符号探索の際、特許文献1の方式で必要であった形状符号帳の要素毎のスカラ乗算と、入力信号からなるベクトルE毎に必要であった行列演算又は畳み込み演算が不要となる。この効果は、特に処理単位が小さい場合(rが小さい場合)に絶大である。
また、本形態の構成は、このように大きなメリットを生むものであるにも拘らず、信号復号装置の符号帳や機能構成は特許文献1と同様でよく、相互接続性が保持されている。
図6にスペクトル解析例を示す。ここで、図6(a)は、原音声(破線)及びその音声をG.711のみを用いて符号化して復号した再生音(実線)のスペクトルを示すグラフである。また、図6(b)は、原音声(破線)及びその音声をG.711を用いた本形態によって符号化して復号した再生音(実線)のスペクトルを示すグラフである。なお、形状符号ciを7ビット、n=128、利得符号gjを9ビット、m=512とし、式(1)のFIRフィルタを用いた。ここで、G.711単体を用いた場合では、現音声に存在する高域の調波構造が量子化雑音に埋もれていることが分かるが、本形態の方法によれば高域(2500KHz以上)の調波構造が再現されていることが分かる。
なお、本形態では、高域側成分の重みよりも低域側成分の重みが小さい重み付けを行うFIRフィルタに対応するパワー補正済み重み付き符号帳及びノルム逆数表を用いる構成を例示した。しかし、低域側成分の重みよりも高域側成分の重みが小さい重み付けを行うFIRフィルタに対応するパワー補正済み重み付き符号帳及びノルム逆数表を用いる構成であってもよい。このようなFIRフィルタとしては例えば、
Hw(z)=1/(b・z-1-b・z-2)
となるFIRフィルタ(図5(d))を例示できる。なお、このFIRフィルタをToeplitz型の行列で表現すると、
Figure 0004891747
となる。
〔第2実施形態〕
次に、本発明の第2実施形態について説明する。
<本形態の原理>
本形態は第1実施形態の変形例である。第1実施形態との相違点は、第2実施形態では、信号符号化装置が、
周波数成分への重み付けが相違する2種類以上の重み付け行列Wにそれぞれ対応する2種類以上のパワー補正済み重み付き符号帳及びノルム逆数表をそれぞれ保持しておき、入力信号を用い、使用するパワー補正済み重み付き符号帳及びノルム逆数表を選択し、選択したパワー補正済み重み付き符号帳の要素であるベクトルpiを用い、内積εiを算出し、重み付け選択部が選択したノルム逆数表のIs番目の要素を用い、理想ゲインg'を算出する点である。その他の処理については第1実施形態と同様である。
これにより、入力信号の周波数特性に応じ、基本雑音信号に適切な重み付けを与えて符号化することが可能となり、例えば、有声区間と無声区間や楽曲ソースとが混在する入力信号ように、周波数に対するパワーの偏りが変動する場合であっても有効にSN比を改善できる。
なお、信号符号化装置が、使用するパワー補正済み重み付き符号帳及びノルム逆数表の種類(すなわち重み付け行列Wの種類)は3種類以上でもよいが、以下では、信号符号化装置は、(a)パワー補正済み重み付き符号帳として、(a-1)低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列W1を重み付け行列Wとしたパワー補正済み重み付き符号帳と、(a-2)低域側成分の重みよりも高域側成分の重みが小さいか全周波数成分の重みが等しい重み付けを行う行列W2を重み付け行列Wとしたパワー補正済み重み付き符号帳と、の2種類を保持し、(b)ノルム逆数表として、(b-1)行列W1を重み付け行列Wとしたノルム逆数表と、(b-2)行列W2を重み付け行列Wとしたノルム逆数表と、の2種類を保持する例を説明する。
また、本形態の例では、行列W1として、例えば式(6)に例示したような、低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列を用い、行列W2として、例えば式(20)に例示したような、低域側成分の重みよりも高域側成分の重みが小さい行列を用いる場合を説明する。もちろん、それ以外の重み付けを行ってもよく、例えば、行列W2として全周波数に平坦な重み付けを行う行列(全く重み付けを行わない行列も含む)を用いてもよい。すなわち、伝達関数Hw(z)=1のFIRフィルタによって重み付けを行う構成であってもよい。
<本形態の具体的な構成>
次に、本形態の具体的な構成について説明する。
[信号符号化装置の構成]
図7は、第2実施形態の信号符号化装置110の機能構成を例示したブロック図である。また、図9は、図7の重み付け選択部113cの一例を示したブロック図である。本形態の例の信号符号化装置110は、CPUやRAM等を具備する公知のコンピュータに所定のプログラムを実行させることにより構成される。なお、図7において第1実施形態と共通する部分については図1と同じ符号を付し、説明を簡略化する。
図7に例示するように、本形態の信号符号化装置110は、基本符号化部11と、基本復号部12と、基本雑音抽出部13と、基本雑音信号を符号化した拡張符号を生成する2段目の品質拡張符号化部114と、符号出力部15と、制御部16と、一時メモリ17とを有する。また、品質拡張符号化部114は、記憶部113a,113b,13cと、距離計算部13d,13gと、雑音形状符号選択部13eと、理想ゲイン計算部13fと、雑音利得符号選択部13hと、拡張符号多重部13iとを有する。また、図9に例示した重み付け選択部113cは、自己相関関数算出部113caと、PARCOR係数算出部113cbと、PARCOR係数判定部113ccとを有する(ステップS9)。
[信号復号装置の構成]
第1実施形態と同じであるため説明を省略する。
<本形態の具体的な処理>
次に、本形態の具体的な処理について説明する。
[前処理]
まず、信号符号化処理及び信号復号処理を行うための前処理について説明する。
本形態では、信号符号化装置110(図7)への前処理として、信号符号化装置110の記憶部113aに、[pi=(W1・ci)t・W1/‖W1・ci‖]i(i=1,...,n)を要素とするパワー補正済み重み付き形状符号帳(W=W1)と、[pi=(W2・ci)t・W2/‖W2・ci‖]i(i=1,...,n)を要素とするパワー補正済み重み付き形状符号帳(W=W2)とを格納する。図8(a)は、このように記憶部113aに格納される2つのパワー補正済み重み付き形状符号帳(W=W1,W=W2)を例示した図である。
また、信号符号化装置110の記憶部113bに、[1/‖W1・ci‖]i(i=1,...,n)を要素とするノルム逆数表(W=W1)と、[1/‖W2・ci‖]i(i=1,...,n)を要素とするノルム逆数表(W=W2)とを格納する。図8(b)は、このように記憶部113bに格納される2つのノルム逆数表(W=W1,W=W2)を例示した図である。
また、記憶部13cに利得gj(j=1,...,m)を要素とする利得符号帳を格納する。なお、信号復号装置の前処理は第1実施形態と同じであるため説明を省略する。
[符号化処理]
次に、信号符号化装置110による符号化処理について説明する。
図10は、第2実施形態の符号化処理を説明するためのフローチャートである。以下、図10に沿って第2実施形態の符号化処理を説明する。なお、以下では明示しないが、信号符号化装置110は、制御部16の制御のもと各処理を実行し、各演算で算出されたデータは逐一一時メモリ17に蓄積され、他の処理に用いられる。なお、第1実施形態と同様、以下では、1処理単位の処理のみを示す。
本形態では、重み付け選択部113cに1処理単位内の各時刻(tf,...,tf+r-1)の入力信号s(tf),...,s(tf+r-1)が入力される。重み付け選択部113cは、入力信号s(tf),...,s(tf+r-1)を用い、その処理単位で使用するパワー補正済み重み付き符号帳とノルム逆数表とを選択する(ステップS21)。選択されたパワー補正済み重み付き符号帳とノルム逆数表とを特定するためのフラグ情報が、一時メモリ17に格納される。
[ステップS21の処理の具体例]
図9に例示した重み付け選択部113cの場合、まず、以下のように、自己相関関数算出部113caが、入力信号s(tf),...,s(tf+r-1)の0次と1次の自己相関関数γ0,γ1を算出して出力する。
Figure 0004891747
次に、PARCOR係数算出部113cbに0次と1次の自己相関関数γ0,γ1が入力され、PARCOR係数算出部113cbは、例えば、以下のように1次のPARCOR係数k1を算出する。
k10 + γ1 …(22)
次に、PARCOR係数判定部113ccに1次のPARCOR係数k1が入力され、PARCOR係数判定部113ccが、k1<0であるかk1≧0であるかを判定する。ここで、k1<0であった場合、PARCOR係数判定部113ccは、低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列W1を用いたパワー補正済み重み付き符号帳(W=W1)とノルム逆数表(W=W1)とを選択する。一方、k1≧0であった場合、PARCOR係数判定部113ccは、低域側成分の重みよりも高域側成分の重みが小さい重み付けを行う行列(又は平坦な重み付けを行う行列)W2を用いたパワー補正済み重み付き符号帳(W=W2)とノルム逆数表(W=W2)とを選択する。
すなわち、k1<0である場合、その処理単位の入力信号s(tf),...,s(tf+r-1)のスペクトルの傾きは左肩上がりであるため、低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列W1を用いたパワー補正済み重み付き符号帳(W=W1)とノルム逆数表(W=W1)とを選択する。一方、k1≧0である場合、その処理単位の入力信号s(tf),...,s(tf+r-1)のスペクトルの傾きは平坦又は右肩上がりであるため、低域側成分の重みよりも高域側成分の重みが小さい重み付けを行う行列(又は平坦な重み付けを行う行列)W2を用いたパワー補正済み重み付き符号帳(W=W2)とノルム逆数表(W=W2)とを選択する。なお、ステップS21の処理はこれに限定されず、PARCOR係数をバーグ(Burg)法等の他のアルゴリズムを用いて算出してもよい。また、実際に入力信号s(tf),...,s(tf+r-1)をフーリエ変換してスペクトラムを求め、その波形情報を用いて行列Wを選択してもよい([ステップS21の処理の具体例]の説明終わり)。
その後実行されるステップS22〜S24の処理は、第1実施形態のステップS1〜S3(図3)と同じであるため説明を省略する。
ステップS24の後、次に、距離計算部13dに基本雑音信号e(tf),...,e(tf+r-1)が入力される。距離計算部13dは、一時メモリ17のフラグ情報を参照し、重み付け選択部113cに選択されたパワー補正済み重み付き符号帳を特定し、そのパワー補正済み重み付き符号帳の要素であるベクトルpi(i=1,...,n)と、入力された基本雑音信号e(tf),...,e(tf+r-1)を要素とするr次元のベクトルE=(e(tf),...,e(tf+r-1))との内積を式(13)のように各iについて算出する(ステップS25)。
次に、第1実施形態と同様、雑音形状符号選択部13eに各内積εi(i=1,...,n)が入力され、雑音形状符号選択部13eは、各内積εiを指標として最適なiを選択し、選択したiを雑音形状符号Isとして出力する(ステップS26)。
次に、理想ゲイン計算部13fに雑音形状符号Isと基本雑音信号e(tf),...,e(tf+r-1)とが入力される。理想ゲイン計算部13fは、一時メモリ17のフラグ情報を参照し、重み付け選択部113cに選択されたパワー補正済み重み付き符号帳とノルム逆数表とを特定し、特定したパワー補正済み重み付き符号帳のIs番目の要素であるベクトルpIs及びノルム逆数表のIs番目の要素1/‖W・cIs‖とを、それぞれ、記憶部113a,113bから読み出す。そして、理想ゲイン計算部13fは、式(15)のように、ベクトルpIsと1/‖W・cIs‖と入力された基本雑音信号e(tf),...,e(tf+r-1)を要素とするベクトルEとの積に相当する値を理想ゲインg'として算出して出力する。(ステップS27)。
なお、理想ゲイン計算部13fに、雑音形状符号選択部13eで算出された内積εIsと雑音形状符号Isと基本雑音信号e(tf),...,e(tf+r-1)とが入力され、理想ゲイン計算部13fが、選択されたノルム逆数表のIs番目の要素1/‖W・cIs‖を読み出し、式(16)のように、理想ゲインg'として算出してもよい。
その後実行されるステップS28〜S30の処理は、第1実施形態のステップS7〜S9と同じであるため説明を省略する。
[復号処理]
第1実施形態と同じであるため説明を省略する。
<本形態の特徴>
以上説明した通り、本形態では重み付けが相違する複数組のパワー補正済み重み付き符号帳とノルム逆数表とを信号符号化装置に保持させ、入力信号に応じ、使用するパワー補正済み重み付き符号帳とノルム逆数表との組を選択する構成とした。これにより、入力信号の周波数に対するパワー分布が変動する場合であっても、その変動に応じて重み付けを変化させて基本雑音信号を符号化でき、復号信号のSN比を改善することができる。
また、本形態の構成は、このように大きなメリットを生むものであるにも拘らず、信号復号装置の符号帳や機能構成は第1実施形態や特許文献1と同様でよく、相互接続性が保持されている。
〔変形例〕
なお、本発明は上述の実施の形態に限定されるものではない。例えば、各実施形態では、入力信号を符号化して基本符号を生成し、その基本符号を復号して得られた復号信号と入力信号との差を基本雑音信号として算出した。しかし、基本雑音信号の算出方法はこれに限定されない。例えば、入力信号の量子化幅で除算し、その商を基本符号とし、余りを基本雑音信号とする構成であってもよい。
また、処理単位を離散時間単位としてもよい(すなわちフレーム幅1)。この場合、上記の各処理における「ベクトル」や「行列」は「スカラ」となり、内積はスカラ積となる。
また、第2実施形態のように重み付けが相違する符号帳を信号符号化装置に保持させ、入力信号の周波数特性に応じて符号帳を選択する構成を特許文献1の符号帳に適用してもよい。すなわち、入力信号を用い、基本雑音信号の周波数成分に対する重み付けを決定し、決定した重み付けがなされた基本雑音信号の符号化を行い、拡張符号を生成する概念は、実施形態2の構成に限定されるものではなく、周波数成分に対する重み付けを行った基本雑音信号を符号化する手法全てに適用可能な概念である。
その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。また、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。
また、上述の構成をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。
この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよいが、具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto-Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。
また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。
本発明の利用分野としては、例えば、インターネットを利用したVoIP電話、VoI P電話を利用した音声会議システム等のほか、音声信号と楽曲ソースとが混在する信号の符号化、動画信号やその他の信号の符号化等を例示できる。
図1は、第1実施形態の信号符号化装置の機能構成を例示したブロック図である。 図2は、第1実施形態の信号復号装置の機能構成を例示したブロック図である。 図3は、第1実施形態の符号化処理を説明するためのフローチャートである。 図4は、第1実施形態の復号処理を説明するためのフローチャートである。 図5(a)〜(d)は、FIRフィルタの周波数特性を示したグラフである。 図6(a)(b)は、復号信号のスペクトル解析例を示したグラフである。 図7は、第2実施形態の信号符号化装置の機能構成を例示したブロック図である。 図8(a)は、2つのパワー補正済み重み付き形状符号帳(W=W1,W=W2)を例示した図、図8(b)は、記憶部に格納される2つのノルム逆数表(W=W1,W=W2)を例示した図である。 図9は、図7の重み付け選択部の一例を示したブロック図である。 図10は、第2実施形態の符号化処理を説明するためのフローチャートである。 IRS特性を示すグラフである。
符号の説明
10,110 信号符号化装置
20 信号復号装置

Claims (7)

  1. 周波数成分に特定の重み付けを行う重み付け行列Wを、対応する復号装置が備える形状符号帳の要素ci(i=1,...,n)に乗じた重み付き形状符号W・ciと、当該重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖と、当該重み付け行列Wと、の積に相当するr(r≧1)次元のベクトルpiを要素とするパワー補正済み重み付き符号帳格納された第1記憶部と、
    上記重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖を要素とするノルム逆数表格納された第2記憶部と、
    利得gj(j=1,...,m)を要素とする利得符号帳格納された第3記憶部と、
    各時刻の入力信号sを波形符号化方式によって符号化した基本符号Ibを生成する基本符号化部と、
    時刻毎に上記入力信号sと上記基本符号の復号信号s'との差分に相当する基本雑音信号eを抽出する基本雑音抽出部と、
    各iについて、上記ベクトルpiと、上記基本雑音信号eを要素とするr次元のベクトルEと、の内積εiを算出する第1距離計算部と、
    上記内積εiを指標として選択したiを雑音形状符号Isとする雑音形状符号選択部と、
    上記パワー補正済み重み付き符号帳のIs番目の要素であるベクトルpIsと上記ノルム逆数表のIs番目の要素1/‖W・cIs‖と上記ベクトルEとの積に相当する値を理想ゲインg'として算出する理想ゲイン計算部と、
    各jについて、上記利得符号帳の要素である利得gjと理想ゲインg'との距離dj'を算出する第2距離計算部と、
    上記距離dj'を指標として選択したjを雑音利得符号Igとする雑音利得符号選択部と、
    上記基本符号Ibと上記雑音形状符号Isと上記雑音利得符号Igとを出力する符号出力部と、
    を有することを特徴とする信号符号化装置。
  2. 請求項1記載の信号符号化装置であって、
    上記第1記憶部は、
    低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列W1を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳と、
    低域側成分の重みよりも高域側成分の重みが小さいか全周波数成分の重みが等しい重み付けを行う行列W2を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳と、が格納され、
    上記第2記憶部は、
    上記行列W1を上記重み付け行列Wとした上記ノルム逆数表と、
    上記行列W2を上記重み付け行列Wとした上記ノルム逆数表と、が格納され
    当該信号符号化装置は、
    上記入力信号sから算出した1次のPARCOR係数が負の場合、上記行列W1を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳及び上記ノルム逆数表を選択し、上記1次のPARCOR係数が負でない場合、上記行列W2を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳及び上記ノルム逆数表を選択する重み付け選択部をさらに有し、
    上記第1距離計算部は、
    上記重み付け選択部が選択した上記パワー補正済み重み付き符号帳の要素である上記ベクトルpiを用い、上記内積εiを算出し、
    上記理想ゲイン計算部は、
    上記重み付け選択部が選択した上記ノルム逆数表のIs番目の要素を用い、上記理想ゲインg'を算出する
    ことを特徴とする信号符号化装置。
  3. 請求項1記載の信号符号化装置であって、
    上記雑音形状符号選択部は、
    上記内積εiを最大にするiを雑音形状符号Isとし、
    上記雑音利得符号選択部は、
    上記距離dj'を最小にするjを雑音利得符号Igとする、
    ことを特徴とする信号符号化装置。
  4. 周波数成分に特定の重み付けを行う重み付け行列Wを、対応する復号方法が用いる形状符号帳の要素ci(i=1,...,n)に乗じた重み付き形状符号W・ciと、当該重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖と、当該重み付け行列Wと、の積に相当するr(r≧1)次元のベクトルpiを要素とするパワー補正済み重み付き符号帳を第1記憶部に格納しておき、
    上記重み付き形状符号W・ciのノルムの逆数1/‖W・ci‖を要素とするノルム逆数表を第2記憶部に格納しておき、
    利得gj(j=1,...,m)を要素とする利得符号帳を第3記憶部に格納しておき、
    基本符号化部が、各時刻の入力信号sを波形符号化方式によって符号化した基本符号Ibを生成する基本符号化ステップと、
    基本雑音抽出部が、時刻毎に上記入力信号sと上記基本符号の復号信号s'との差分に相当する基本雑音信号eを抽出する基本雑音抽出ステップと、
    第1距離計算部が、各iについて、上記ベクトルpiと、上記基本雑音信号eを要素とするr次元のベクトルEと、の内積εiを算出する第1距離計算ステップと、
    雑音形状符号選択部が、上記内積εiを指標として選択したiを雑音形状符号Isとする雑音形状符号選択ステップと、
    理想ゲイン計算部が、上記パワー補正済み重み付き符号帳のIs番目の要素であるベクトルpIsと上記ノルム逆数表のIs番目の要素1/‖W・cIs‖と上記ベクトルEとの積に相当する値を理想ゲインg'として算出する理想ゲイン計算ステップと、
    第2距離計算部が、各jについて、上記利得符号帳の要素である利得gjと理想ゲインg'との距離dj'を算出する第2距離計算ステップと、
    雑音利得符号選択部が、上記距離dj'を指標として選択したjを雑音利得符号Igとする雑音利得符号選択ステップと、
    符号出力部が、上記基本符号Ibと上記雑音形状符号Isと上記雑音利得符号Igとを出力する符号出力ステップと、を実行する、
    ことを特徴とする信号符号化方法。
  5. 請求項4記載の信号符号化方法であって、
    上記第1記憶部には、
    低域側成分の重みよりも高域側成分の重みが大きい重み付けを行う行列W1を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳と、
    低域側成分の重みよりも高域側成分の重みが小さいか全周波数成分の重みが等しい重み付けを行う行列W2を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳と、が格納されており、
    上記第2記憶部には、
    上記行列W1を上記重み付け行列Wとした上記ノルム逆数表と、
    上記行列W2を上記重み付け行列Wとした上記ノルム逆数表と、が格納されており
    上記入力信号sから算出された1次のPARCOR係数が負の場合、重み付け選択部が上記行列W1を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳及び上記ノルム逆数表を選択し、上記1次のPARCOR係数が負でない場合、上記重み付け選択部が上記行列W2を上記重み付け行列Wとした上記パワー補正済み重み付き符号帳及び上記ノルム逆数表を選択する重み付け選択ステップをさらに有し、
    上記第1距離計算ステップは、
    上記重み付け選択部が選択した上記パワー補正済み重み付き符号帳の要素である上記ベクトルp i を用い、上記内積ε i を算出するステップであり、
    上記理想ゲイン計算ステップは、
    上記重み付け選択部が選択した上記ノルム逆数表のI s 番目の要素を用い、上記理想ゲインg'を算出するステップである、
    ことを特徴とする信号符号化方法。
  6. 請求項1からの何れかに記載の信号符号化装置としてコンピュータを機能させるためのプログラム。
  7. 請求項に記載のプログラムを格納したコンピュータ読み取り可能な記録媒体。
JP2006332004A 2006-12-08 2006-12-08 信号符号化装置、信号符号化方法、プログラム及び記録媒体 Expired - Fee Related JP4891747B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332004A JP4891747B2 (ja) 2006-12-08 2006-12-08 信号符号化装置、信号符号化方法、プログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332004A JP4891747B2 (ja) 2006-12-08 2006-12-08 信号符号化装置、信号符号化方法、プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP2008145682A JP2008145682A (ja) 2008-06-26
JP4891747B2 true JP4891747B2 (ja) 2012-03-07

Family

ID=39605939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332004A Expired - Fee Related JP4891747B2 (ja) 2006-12-08 2006-12-08 信号符号化装置、信号符号化方法、プログラム及び記録媒体

Country Status (1)

Country Link
JP (1) JP4891747B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269089B2 (ja) * 1991-05-21 2002-03-25 日本電気株式会社 音声合成装置
JPH0764599A (ja) * 1993-08-24 1995-03-10 Hitachi Ltd 線スペクトル対パラメータのベクトル量子化方法とクラスタリング方法および音声符号化方法並びにそれらの装置
JP2003323199A (ja) * 2002-04-26 2003-11-14 Matsushita Electric Ind Co Ltd 符号化装置、復号化装置及び符号化方法、復号化方法
JP4574320B2 (ja) * 2004-10-20 2010-11-04 日本電信電話株式会社 音声符号化方法、広帯域音声符号化方法、音声符号化装置、広帯域音声符号化装置、音声符号化プログラム、広帯域音声符号化プログラム及びこれらのプログラムを記録した記録媒体

Also Published As

Publication number Publication date
JP2008145682A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
JP3134817B2 (ja) 音声符号化復号装置
JP4903053B2 (ja) 広帯域符号化装置、広帯域lsp予測装置、帯域スケーラブル符号化装置及び広帯域符号化方法
US5819212A (en) Voice encoding method and apparatus using modified discrete cosine transform
EP0770989B1 (en) Speech encoding method and apparatus
KR100535366B1 (ko) 음성신호부호화방법및장치
KR100566713B1 (ko) 음향 파라미터 부호화, 복호화 방법, 장치 및 프로그램, 음성 부호화, 복호화 방법, 장치 및 프로그램
CA2578610A1 (en) Voice encoding device, voice decoding device, and methods therefor
JPH09127991A (ja) 音声符号化方法及び装置、音声復号化方法及び装置
US20060277040A1 (en) Apparatus and method for coding and decoding residual signal
KR19980024631A (ko) 음성 복호화 방법 및 장치
JP2010244078A (ja) スペクトル包絡情報量子化装置、スペクトル包絡情報復号装置、スペクトル包絡情報量子化方法及びスペクトル包絡情報復号方法
WO2010104011A1 (ja) 符号化方法、復号方法、符号化装置、復号装置、プログラム及び記録媒体
JP3541680B2 (ja) 音声音楽信号の符号化装置および復号装置
US20040111257A1 (en) Transcoding apparatus and method between CELP-based codecs using bandwidth extension
JPH10214100A (ja) 音声合成方法
JP3905706B2 (ja) 音声符号化装置、音声処理装置及び音声処理方法
JP4891747B2 (ja) 信号符号化装置、信号符号化方法、プログラム及び記録媒体
JP4574320B2 (ja) 音声符号化方法、広帯域音声符号化方法、音声符号化装置、広帯域音声符号化装置、音声符号化プログラム、広帯域音声符号化プログラム及びこれらのプログラムを記録した記録媒体
US11621010B2 (en) Coding apparatus, coding method, program, and recording medium
JP3268750B2 (ja) 音声合成方法及びシステム
JP3916934B2 (ja) 音響パラメータ符号化、復号化方法、装置及びプログラム、音響信号符号化、復号化方法、装置及びプログラム、音響信号送信装置、音響信号受信装置
JP5395649B2 (ja) 符号化方法、復号方法、符号化装置、復号装置及びプログラム
JP3428595B2 (ja) 音声符号化方式
JP4638895B2 (ja) 復号方法、復号器、復号装置、プログラムおよび記録媒体
JP3252285B2 (ja) 音声帯域信号符号化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent or registration of utility model

Ref document number: 4891747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees