JP4889917B2 - Method and apparatus for adjusting engine torque of a single vehicle - Google Patents

Method and apparatus for adjusting engine torque of a single vehicle Download PDF

Info

Publication number
JP4889917B2
JP4889917B2 JP2003306815A JP2003306815A JP4889917B2 JP 4889917 B2 JP4889917 B2 JP 4889917B2 JP 2003306815 A JP2003306815 A JP 2003306815A JP 2003306815 A JP2003306815 A JP 2003306815A JP 4889917 B2 JP4889917 B2 JP 4889917B2
Authority
JP
Japan
Prior art keywords
single vehicle
acting
force
engine torque
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003306815A
Other languages
Japanese (ja)
Other versions
JP2004099026A (en
Inventor
フォルカー・デンナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2004099026A publication Critical patent/JP2004099026A/en
Application granted granted Critical
Publication of JP4889917B2 publication Critical patent/JP4889917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0066Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature
    • B60K31/0083Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature responsive to centrifugal force acting on vehicle due to the path it is following
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0033Single-track, 2D vehicle model, i.e. two-wheel bicycle model
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、車両、特に単車のエンジントルクを調節する方法及び装置に関する。   The present invention relates to a method and apparatus for adjusting the engine torque of a vehicle, particularly a single vehicle.

ドイツ特許公開第38 39 520号から、単車のためのアンチブロックブレーキシステムが知られている。そこでは、調節プロセスの導入のために決め手となる制動された車輪の回転速度の減速および/またはスリップに関する閾値が、車に横方向加速度が生じているか否かに応じて変化される、ということが提案されている。   From German Patent Publication No. 38 39 520, an anti-block brake system for a single vehicle is known. There, the threshold for deceleration and / or slippage of the braked wheel, which is decisive for the introduction of the adjustment process, is changed depending on whether the vehicle has lateral acceleration or not. Has been proposed.

カーブ走行の間に、単車に対して横方向に働く値を求めて、単車のエンジントルクを調節する方法および装置のメルクマールは、上述のドイツ特許公開第3839 520号から知られている。   A German Patent Publication No. 3839 520 discloses a method and apparatus for adjusting the engine torque of a single vehicle by determining a value acting laterally with respect to the single vehicle during a curve run.

本発明は、カーブ走行の間に、車両、特に単車の安全な走行挙動を達成する、単車のエンジントルクを調節する方法及び装置を提供することを課題にしている。   It is an object of the present invention to provide a method and apparatus for adjusting the engine torque of a single vehicle that achieves safe driving behavior of the vehicle, particularly a single vehicle, during curve driving.

本発明によれば、カーブ走行の間に単車に対して横方向に働く値が求められる、単車のエンジントルクを調節する方法において、単車に対して横方向に働く値の関数として、走行方向に働く加速力または前後方向の加速度に対する最大値が求められる。   According to the present invention, in a method of adjusting the engine torque of a single vehicle, a value that works laterally with respect to the single vehicle during curve traveling is obtained in the traveling direction as a function of the value that works laterally with respect to the single vehicle. The maximum value for the working acceleration force or the longitudinal acceleration is obtained.

また、本発明によれば、カーブ走行の間に、単車に対して横方向に働く値を求めるための測定手段を備えた単車のエンジントルクを調節する装置は、単車に対して横方向に働く値の関数として、走行方向に働く加速力または前後方向の加速度に対する最大値を求める最大値決定手段を備えるている。   Further, according to the present invention, the device for adjusting the engine torque of a single vehicle provided with a measuring means for obtaining a value acting in the lateral direction with respect to the single vehicle during curve driving works in the horizontal direction with respect to the single vehicle. As a function of the value, there is provided maximum value determining means for obtaining a maximum value for the acceleration force acting in the traveling direction or the acceleration in the front-rear direction.

本発明において、車両、特に単車に対して横方向に働く値が求められ、カーブ走行の間にエンジントルクが調節される。その際、単車に対して横方向に働く値の関数として、走行方向に働く加速力または前後方向の加速度のための最大値が求められる。   In the present invention, a value that works in a lateral direction with respect to a vehicle, particularly a single vehicle, is obtained, and the engine torque is adjusted during curve driving. At this time, the maximum value for the acceleration force acting in the traveling direction or the acceleration in the front-rear direction is obtained as a function of the value acting in the lateral direction with respect to the single vehicle.

ここで、“横方向”という表現は、“走行方向に対して横に”または“二輪車の長軸に対して横に”という意味で理解されるものとする。
一つの有利な実施例は、車に対して横方向に働く値が遠心力または横方向加速度であることを特徴としている。これ等の値は(車の質量を介して)互いに密接に結び付いている。それ故、これ等の値を知ることが重要である、何故なら、カーブ走行の際に不安定な走行状態(単車の横滑りまたはサイドスリップ)を避けるためには、遠心力がコーナリングフォース(これは路面からタイヤに対して働く)によって相殺されなければならないからである。
Here, the expression “lateral direction” is understood to mean “transverse to the traveling direction” or “transverse to the long axis of the motorcycle”.
One advantageous embodiment is characterized in that the value acting laterally with respect to the vehicle is centrifugal force or lateral acceleration. These values are closely linked to each other (via the car mass). Therefore, it is important to know these values, because to avoid unstable driving conditions (single car side-slip or side-slip) when driving on a curve, the centrifugal force is the cornering force (this is This is because it has to be offset by (working against the tire from the road surface).

もう一つの有利な実施例は、エンジントルクが、求められた上記の最大値を超えないようにに調節されることを特徴としている。これによって、カーブ走行の間に車の安全な走行挙動が達成される。   Another advantageous embodiment is characterized in that the engine torque is adjusted such that it does not exceed the determined maximum value. This achieves a safe driving behavior of the car during curve driving.

一つの有利な実施例では、エンジントルクの調節がスロットル弁の位置を介して行われると。理論的にはまた、噴射パルス或いは点火パルスの絞り込みによるエンジントルクの調節を考えることができるが、その際には、燃焼の大きな不均一性と、これに結び付いている車の動揺とが生じるので、この可能性がとりわけ限界領域ではタイヤのグリップを失わせてしまう。それ故、スロットル弁の位置を調節する方が好ましく、この方法はエンジン制御装置によってドライバーの意図とは無関係に実現することができる。   In one advantageous embodiment, the engine torque is adjusted via the throttle valve position. Theoretically, you can also consider adjusting the engine torque by narrowing the injection pulse or ignition pulse, but this leads to significant non-uniformity of combustion and the associated vehicle sway. This possibility, especially in the limit area, causes the tire to lose its grip. Therefore, it is preferable to adjust the position of the throttle valve, and this method can be realized by the engine control device regardless of the driver's intention.

もう一つの有利な実施例は、上記の最大値が、その時の走行状態のために必要なタイヤと路面との間のコーナリングフォースがなお存在しているように選択されることを特徴としている。   Another advantageous embodiment is characterized in that the maximum value is selected such that there is still a cornering force between the tire and the road surface that is necessary for the current driving conditions.

単車の場合に、カーブ走行の間にエンジントルクを調節するための装置は、単車に対して横方向に働く値を求めるための測定手段を含んでいる。更に最大値確定手段が備えられており、該手段は、車に対して横方向に働く値の関数として、走行方向に働く加速力または前後方向の加速度のための最大値を求める。   In the case of a single vehicle, the device for adjusting the engine torque during a curve run includes measuring means for determining a value acting laterally with respect to the single vehicle. Further, a maximum value determining means is provided, which determines the maximum value for the acceleration force acting in the running direction or the acceleration in the front-rear direction as a function of the value acting in the lateral direction with respect to the vehicle.

本発明の一つの実施例が図1から図4までに示されている。
カーブでの車両の制動或いは加速の際に、走行方向に路面から車輪に対して伝えられ得る最大の力は、遠心力によって引下げられる。このことは、図1に示されている、いわゆる“カムの円(Kamm’schen Kreis)”の図で表される。ここで、点線で表されている水平と垂直の線は横軸と縦軸である。図において、横座標に沿ってコーナリングフォースFsがプロットされ、縦座標に沿って加速力(又は制動力)Fbがプロットされている。その際、車の安定した走行状態のために可能な力の対(Fs、Fb)は上記の“カムの円”の内側にある。“カムの円”の円周上にある力の対、例えば力の対(Fs1、Fb1)、は安定性の限界を示している。円周上にある力の組み合わせの場合に、次のことが認められる。
− 大きなコーナリングフォースが必要であるときには、車の加速(或いは減速)のために小さな力しか利用することが出来ないということ、および
− コーナリングフォースが全く必要ではないか或いは僅かなコーナリングフォースしか必要ではないとき(例えば、直線走行の際)には、車の加速(或いは減速)のために大きな力が用意されているということ。
One embodiment of the present invention is shown in FIGS.
When braking or accelerating the vehicle on a curve, the maximum force that can be transmitted from the road surface to the wheels in the direction of travel is reduced by the centrifugal force. This is represented by the so-called “Kamm'schen Kreis” diagram shown in FIG. Here, the horizontal and vertical lines represented by dotted lines are the horizontal axis and the vertical axis. In the figure, the cornering force Fs is plotted along the abscissa, and the acceleration force (or braking force) Fb is plotted along the ordinate. In that case, the possible force pair (Fs, Fb) for the stable running state of the vehicle is inside the “cam circle” described above. The force pair on the circumference of the “cam circle”, for example the force pair (Fs1, Fb1), indicates the stability limit. In the case of a combination of forces on the circumference, the following is observed.
-When a large cornering force is needed, only a small force can be used to accelerate (or decelerate) the car; and-No cornering force is needed or only a small cornering force is needed. When there is not (for example, when running straight), a large force is prepared for acceleration (or deceleration) of the car.

コーナリングフォースは、カーブ走行の際に発生する遠心力Fzを相殺するために、必要である。
カーブ走行の間に、車に対して働く力が図2に示されている。図2は、図式的にカーブ走行の際のオートバイの正面図(或いは背面図)を示している。図2において、ライダーを含めたオートバイの車体200、オートバイの車輪201、路面側のタイヤの断面202が示されている。オートバイに対しては、以下の力が働いている。
− 重力G及び
− 外向きの遠心力Fz
図2には更に、これ等の二つの力のベクトル和、並びにオートバイの傾斜角度βが書き加えられている。
The cornering force is necessary to cancel out the centrifugal force Fz generated during the curve running.
The forces acting on the car during a curve run are shown in FIG. FIG. 2 schematically shows a front view (or rear view) of the motorcycle during curve driving. In FIG. 2, a motorcycle body 200 including a rider, a motorcycle wheel 201, and a road surface tire cross section 202 are shown. The following forces are working on motorcycles.
-Gravity G and-outward centrifugal force Fz
FIG. 2 further includes the vector sum of these two forces and the motorcycle tilt angle β.

高速でカーブ走行中のオートバイの強過ぎる加速或いは制動は、タイヤの横滑りを引き起こす。このことは図1に基づいてはっきりと理解することができる。強い加速プロセス、或いは制動プロセスの際には、大きな力Fbが必要である.それ故、発生する遠心力を相殺するために、小さな力Fsしか利用することができない。   Excessive acceleration or braking of motorcycles traveling at high speeds causes tire skidding. This can be clearly understood on the basis of FIG. In the case of a strong acceleration process or braking process, a large force Fb is required. Therefore, only a small force Fs can be used to offset the generated centrifugal force.

タイヤの横滑りは、オートバイの場合には大抵ライダーの転倒をもたらす。そこからしばしば大事故が発生する、何故なら、ライダーは反対車線へ滑って行くか或いは場合によってはガードレール、車道の境界の杭などの物体に衝突したりするからである。   Tire skidding usually results in the rider falling over in the case of a motorcycle. From there, major accidents often occur, because the rider slips into the opposite lane or, in some cases, collides with objects such as guardrails, stakes on the road boundary.

本発明の特徴は、単車に対して働く遠心力を求めることにある。これは例えば、冒頭に引用された文献、ドイツ特許公開第38 39 520号に記載されているように、測定された車輪荷重の評価によって行うことができる。   A feature of the present invention is to obtain a centrifugal force acting on a single vehicle. This can be done, for example, by evaluation of the measured wheel load, as described in the document cited at the outset, German Patent Publication No. 38 39 520.

発生する遠心力または横方向加速度は、例えば傾斜センサを用いて求めることのできる傾斜角度を知ることから得ることもできる。車の傾斜角度はまた、光センサ或いは音響センサを用いて求めることもできる。例えば、車の両側に一つの送信器と受信器とを取付けることができる。送信器はそれぞれ信号を送り出し、それ等の信号が路面に反射されてそれぞれの受信器によって受信される。傾斜角度は信号の所要時間差をによって求められる。   The generated centrifugal force or lateral acceleration can also be obtained from knowing the tilt angle that can be determined using, for example, a tilt sensor. The inclination angle of the car can also be determined using an optical sensor or an acoustic sensor. For example, one transmitter and receiver can be mounted on both sides of the car. Each transmitter sends out a signal, which is reflected by the road surface and received by the respective receiver. The inclination angle is obtained by the difference in required time of signals.

傾斜角度はまた、車の長軸を中心とした車の回転速度を求めることによっても求めることができる。例えば、求められた回転速度の時間積分によって車の傾斜角度を求めることができる。回転速度を求めるためには、例えば、測定軸が車の長軸に対して平行に配位された回転速度センサが用いられる。   The inclination angle can also be determined by determining the rotational speed of the vehicle around the long axis of the vehicle. For example, the vehicle inclination angle can be obtained by time integration of the obtained rotational speed. In order to obtain the rotation speed, for example, a rotation speed sensor in which the measurement axis is arranged in parallel to the long axis of the vehicle is used.

傾斜角度を求めるためのセンサは、マイクロメカニック技術を用いて特に有利に作成することができる。この技術を用いれば、特に積分評価回路によって、信号の増幅、直線化、及び温度補正等の重要な精度向上機能が実現される。   The sensor for determining the tilt angle can be created particularly advantageously using micromechanical technology. If this technique is used, an important accuracy improvement function such as signal amplification, linearization, and temperature correction is realized particularly by the integration evaluation circuit.

発生する遠心力が得られれば、最大可能コーナリングフォースを超えないように、最大許容加速力を引下げることができる。これによって最大可能加速力Fbmaxが、求められた遠心力に応じて得られる。   If the generated centrifugal force is obtained, the maximum allowable acceleration force can be lowered so as not to exceed the maximum possible cornering force. As a result, the maximum possible acceleration force Fbmax is obtained according to the determined centrifugal force.

この計算は、例えば次の式に基づいて行うことができる。
Fbmax=sqrt(Fb・Fb−Fz・Fz)
ここで、記号“sqrt”は平方根を表し、Fbは直線走行の際の最大可能加速力を表している。
This calculation can be performed based on the following equation, for example.
Fbmax = sqrt (Fb · Fb−Fz · Fz)
Here, the symbol “sqrt” represents a square root, and Fb represents the maximum possible acceleration force during straight running.

本発明に基づく方法の流れは図3に従って行われる。ステップ301はこの方法のスタートを示している。その後ステップ302で、車に対して働く遠心力または発生する横方向加速度が求められる。次いでステップ303で、車に対して横方向に働く値の関数として、走行方向に働く加速力Fb或いは前後方向の加速度afに対する最大値が求められる。その際、その最大値は、安定な走行状態が保証されるように、即ちオートバイに対して働く力の対(Fs、Fb)が“カムの円”の上又は内側に来るように選択される。   The flow of the method according to the invention is performed according to FIG. Step 301 shows the start of the method. Thereafter, at step 302, the centrifugal force acting on the car or the lateral acceleration generated is determined. Next, at step 303, the maximum value for the acceleration force Fb acting in the traveling direction or the acceleration af in the front-rear direction is obtained as a function of the value acting laterally with respect to the vehicle. In this case, the maximum value is selected in such a way that a stable driving condition is ensured, i.e. the force pair (Fs, Fb) acting on the motorcycle is above or inside the "cam circle". .

その後は、例えばスロットル弁の位置によって、ステップ304で、エンジントルクが、ステップ303で求められた最大値を超えないように調節される。ステップ304の後はステップ301へ戻され、この方法が改めてスタートされる。   Thereafter, the engine torque is adjusted in step 304 so as not to exceed the maximum value obtained in step 303, for example, depending on the position of the throttle valve. After step 304, the process returns to step 301, and this method is started again.

本発明に基づく装置の構成が図4に示されている。図において、ブロック401は、車に対して働く遠心力或いは発生する横方向加速度を求めるための測定手段を含んでいる。測定手段401の出力信号は最大値確定手段402へ送られる。最大値確定手段402では、車に対して働く遠心力または横方向の加速度に応じて、走行方向に働く加速力または前後方向の加速度に対する最大値が求められる。この最大値がエンジン制御装置403へ送られ、エンジン制御装置403がスロットル弁404を制御する。   The arrangement of the device according to the invention is shown in FIG. In the figure, block 401 includes measuring means for determining the centrifugal force acting on the car or the lateral acceleration generated. The output signal of the measuring means 401 is sent to the maximum value determining means 402. The maximum value determining means 402 obtains the maximum value for the acceleration force acting in the traveling direction or the acceleration in the front-rear direction according to the centrifugal force acting on the vehicle or the lateral acceleration. This maximum value is sent to the engine control device 403, and the engine control device 403 controls the throttle valve 404.

単車に働くコーナリングフォースと前後方向の力との間の関係を示している。It shows the relationship between the cornering force acting on a single vehicle and the force in the front-rear direction. カーブ走行の間に単車に対して働く力を示している。It shows the force acting on a single car during a curve run. 本発明に基づく方法の流れを示している。Fig. 2 shows a method flow according to the invention. 本発明に基づく装置の構成を示している。1 shows the configuration of an apparatus according to the present invention.

符号の説明Explanation of symbols

Fs コーナリングフォース
Fb 加速力(または制動力)
Fb1、Fs1 安定性の限界を示している力の対
200 ライダーを含めたオートバイの車体
201 オートバイの車輪
202 路面側のタイヤの断面
β オートバイの傾斜角度
Fz 遠心力
G 重力、
401 測定手段
402 最大値確定手段
403 エンジン制御装置
404 スロットル弁
Fs Cornering force Fb Acceleration force (or braking force)
Fb1, Fs1 Force pair indicating stability limit 200 Motorcycle body including rider 201 Motorcycle wheel 202 Cross section of roadside tire β Motorcycle inclination angle Fz Centrifugal force G Gravity,
401 Measuring means 402 Maximum value determining means 403 Engine controller 404 Throttle valve

Claims (4)

カーブ走行中に単車のエンジントルク(Mmot)を制御する方法において、
前記単車に対して水平方向に働く遠心力(Fz)を検出するステップであって、前記単車の長軸を中心とした回転速度を積分することによって前記単車の傾斜角度を検出し、該傾斜角度に基づいて前記遠心力(Fz)を検出するステップと、
該検出された水平方向に働く遠心力(Fz)に応じて、前記単車の走行方向に働く加速力(Fb)の最大値(Fb1)を計算するステップと、
前記単車の走行方向に働く前記加速力が前記最大値(Fb1)を超えないように、エンジントルク(Mmot)を制御するエンジントルク制御ステップと
からなることを特徴とする制御方法。
In a method of controlling the engine torque (Mmot) of a single vehicle during a curve run,
A step of detecting a centrifugal force (Fz) acting in a horizontal direction with respect to the single vehicle, wherein an inclination angle of the single vehicle is detected by integrating a rotational speed around a long axis of the single vehicle; Detecting the centrifugal force (Fz) based on:
Calculating a maximum value (Fb1) of an acceleration force (Fb) acting in the traveling direction of the single vehicle according to the detected centrifugal force (Fz) acting in the horizontal direction;
A control method comprising: an engine torque control step for controlling an engine torque (Mmot) so that the acceleration force acting in the traveling direction of the single vehicle does not exceed the maximum value (Fb1).
請求項1記載の制御方法において、前記エンジントルク制御ステップは、スロットル弁の位置を制御することにより実行されることを特徴とする制御方法。 2. The control method according to claim 1, wherein the engine torque control step is executed by controlling a position of a throttle valve. 請求項1又は2記載の制御方法において、前記最大値(Fb1)は、その走行状態で必要なタイヤと路面との間のコーナリングフォース(Fs1)が残るように計算されることを特徴とする制御方法。 3. The control method according to claim 1, wherein the maximum value (Fb1) is calculated so that a cornering force (Fs1) between a tire and a road surface required in the traveling state remains. Method. カーブ走行中に単車のエンジントルク(Mmot)を制御する装置において、
前記単車に対して水平方向に働く遠心力(Fz)を検出する手段であって、前記単車の長軸を中心とした回転速度を積分することによって前記単車の傾斜角度を検出し、該傾斜角度に基づいて前記遠心力(Fz)を検出する手段と、
該検出された水平方向に働く遠心力(Fz)に応じて、前記単車の走行方向に働く加速力(Fb)の最大値(Fb1)を計算する手段と、
前記単車の走行方向に働く前記加速力が前記最大値(Fb1)を超えないように、エンジントルク(Mmot)を制御する手段と
からなることを特徴とする制御装置。
In a device for controlling the engine torque (Mmot) of a single vehicle during a curve run,
A means for detecting a centrifugal force (Fz) acting in a horizontal direction with respect to the single vehicle, wherein an inclination angle of the single vehicle is detected by integrating a rotational speed around a long axis of the single vehicle, and the inclination angle Means for detecting the centrifugal force (Fz) based on:
Means for calculating a maximum value (Fb1) of acceleration force (Fb) acting in the traveling direction of the single vehicle according to the detected centrifugal force (Fz) acting in the horizontal direction;
A control device comprising: means for controlling engine torque (Mmot) so that the acceleration force acting in the traveling direction of the single vehicle does not exceed the maximum value (Fb1).
JP2003306815A 2002-09-11 2003-08-29 Method and apparatus for adjusting engine torque of a single vehicle Expired - Lifetime JP4889917B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10242124.2 2002-09-11
DE10242124A DE10242124B4 (en) 2002-09-11 2002-09-11 Method and device for adjusting the engine torque of a single-track motor vehicle

Publications (2)

Publication Number Publication Date
JP2004099026A JP2004099026A (en) 2004-04-02
JP4889917B2 true JP4889917B2 (en) 2012-03-07

Family

ID=31895827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306815A Expired - Lifetime JP4889917B2 (en) 2002-09-11 2003-08-29 Method and apparatus for adjusting engine torque of a single vehicle

Country Status (2)

Country Link
JP (1) JP4889917B2 (en)
DE (1) DE10242124B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757882B2 (en) 2012-12-29 2017-09-12 Unicharm Corporation Method of producing opened fiber bundle, and method of producing cleaning member, apparatus which opens fiber bundle, and system which produces cleaning member

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060292A1 (en) * 2004-12-15 2006-07-06 Robert Bosch Gmbh Tilt angle determination for a motorcycle
DE102009054756A1 (en) * 2009-12-16 2011-06-22 Robert Bosch GmbH, 70469 Electric bicycle
EP2708457B1 (en) * 2011-05-13 2017-01-18 Kawasaki Jukogyo Kabushiki Kaisha Electric motorcycle, vehicle controller and vehicle control method
EP2537727B1 (en) 2011-06-22 2015-03-11 Volvo Car Corporation Method for estimating a speed profile for a vehicle
EP2738075B1 (en) * 2011-07-28 2018-03-28 Yamaha Hatsudoki Kabushiki Kaisha Posture control device and straddle-type vehicle provided therewith
WO2014017138A1 (en) 2012-07-25 2014-01-30 ボッシュ株式会社 Overturn prevention method and device for two-wheel vehicle
DE102012215100A1 (en) * 2012-08-24 2014-02-27 Continental Teves Ag & Co. Ohg Method and system for promoting a uniform driving style
JP5914448B2 (en) * 2013-11-01 2016-05-11 ヤマハ発動機株式会社 Saddle-type vehicle and wheel force acquisition device
JP5945572B2 (en) 2014-09-03 2016-07-05 ヤマハ発動機株式会社 Driving force control system and saddle riding type vehicle
DE202015002817U1 (en) 2015-04-17 2016-07-19 GM GLOBAL TECHNOLOGY OPERATION LLC (n. d. Ges. d. Staates Delaware) Distance control system, motor vehicle and computer program product
EP3335953B1 (en) * 2015-08-17 2019-11-20 Yamaha Hatsudoki Kabushiki Kaisha Leaning vehicle
DE102017210500A1 (en) 2017-06-22 2018-12-27 Robert Bosch Gmbh Method and device for operating a driver assistance system for a two-wheeler
CN112660109B (en) * 2020-12-25 2022-08-30 浙江吉利控股集团有限公司 Four-wheel drive torque limiting method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839520A1 (en) * 1988-11-23 1990-05-31 Lucas Ind Plc Antilock brake system for single-track motor vehicles
US4989922A (en) * 1988-11-23 1991-02-05 Lucas Industries Public Limited Company Method of anti-lock brake control for motorcycle vehicle
JP2897590B2 (en) * 1993-05-11 1999-05-31 三菱自動車工業株式会社 Vehicle output control device
JPH1159366A (en) * 1997-08-22 1999-03-02 Hino Motors Ltd Driving force and braking force control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757882B2 (en) 2012-12-29 2017-09-12 Unicharm Corporation Method of producing opened fiber bundle, and method of producing cleaning member, apparatus which opens fiber bundle, and system which produces cleaning member

Also Published As

Publication number Publication date
JP2004099026A (en) 2004-04-02
DE10242124A1 (en) 2004-03-25
DE10242124B4 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5538620B2 (en) A method for stabilizing a motorcycle when the rear wheel slips to the side
JP4889917B2 (en) Method and apparatus for adjusting engine torque of a single vehicle
JP4045961B2 (en) Braking control device
US8813898B2 (en) Method for stabilizing a motor vehicle, in particular a two-wheeled motor vehicle
JP5844331B2 (en) Longitudinal force control device and saddle riding type vehicle equipped with the same
JP2008546586A (en) Driving dynamic control method and driving dynamic controller for motorized single track vehicle
US20060276944A1 (en) Vehicle motion stability control apparatus
JP4728550B2 (en) Vehicle traction control (ASR) method and apparatus
KR100511142B1 (en) Kinetic variable control method and device for representing vehicle motion
JP2008537707A (en) Vehicle attitude stabilization control method and apparatus
US10369977B2 (en) Method for determining the lean angle of a two-wheeler
JP2000108872A (en) Automobile overturning preventing device and method in braking process or acceleration process
EP2944526A1 (en) STABILITY CONTROL SYSTEM, SADDLED VEHICLE HAVING STABILITY CONTROL SYSTEM, & xA;METHOD, AND COMPUTER PROGRAM
JP2018197070A (en) Vehicle control device
JP4402379B2 (en) Method and apparatus for stabilizing two-wheeled vehicle
CN111846045A (en) Method for warning a motorcycle driver, and ride assist control and motorcycle implementing such a method
US20080201051A1 (en) Vehicle driving force control device
KR101152296B1 (en) Electronic Stability Program
JP5333245B2 (en) Vehicle behavior control device
JP2002162225A (en) Road surface inclination estimation device
JP4244453B2 (en) Body slip angle estimation method and apparatus
JP5460325B2 (en) A device for correcting the course of an automobile, comprising: first means for selectively braking the wheel; and second means for turning the rear wheel.
JP2707557B2 (en) Vehicle stabilization control device
JP2005231417A (en) Vehicle state quantity estimating device
KR100750854B1 (en) Control method for electronic stability program in a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090407

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090501

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110707

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4889917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term