JP2002162225A - Road surface inclination estimation device - Google Patents

Road surface inclination estimation device

Info

Publication number
JP2002162225A
JP2002162225A JP2000359858A JP2000359858A JP2002162225A JP 2002162225 A JP2002162225 A JP 2002162225A JP 2000359858 A JP2000359858 A JP 2000359858A JP 2000359858 A JP2000359858 A JP 2000359858A JP 2002162225 A JP2002162225 A JP 2002162225A
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
longitudinal acceleration
road surface
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000359858A
Other languages
Japanese (ja)
Other versions
JP3662187B2 (en
Inventor
Yutaka Onuma
豊 大沼
Toshitaka Hamada
敏敬 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2000359858A priority Critical patent/JP3662187B2/en
Publication of JP2002162225A publication Critical patent/JP2002162225A/en
Application granted granted Critical
Publication of JP3662187B2 publication Critical patent/JP3662187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the inclination of a road surface even in the case that a vehicle runs on a slope while the vehicle turns. SOLUTION: The slip angle β of a vehicle body is calculated (S20), the longitudinal acceleration Gx' of the vehicle body is calculated after correction in which the centripetal acceleration of the vehicle body caused by the slip angle βof the vehicle body eliminates influence given to the longitudinal acceleration Gx of the vehicle body (S30), the estimation longitudinal acceleration Vwd is calculated on the basis of a value which is a larger value of the wheel speeds Vwf and Vwfr of right and left wheels when the vehicle is not braked (S40, 50), when the vehicle is in a braked state, the estimation longitudinal acceleration Vwd of the vehicle body is calculated on the basis of a value which is the largest value of four-wheel wheel speeds Vwi (S40, 60), and the inclination θof the road surface is calculated on a difference between the longitudinal acceleration Gx' of the vehicle body after correction and the estimation longitudinal acceleration Vwd of the vehicle body (S100).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、路面勾配推定装置
に係り、更に詳細には検出された車体の前後加速度及び
車輪速度より推定された車体の前後加速度に基づき路面
の勾配を推定する路面勾配推定装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface gradient estimating apparatus, and more particularly, to a road surface gradient estimating a road surface gradient based on a detected longitudinal acceleration of a vehicle body and a longitudinal acceleration of the vehicle body estimated from wheel speeds. It relates to an estimation device.

【0002】[0002]

【従来の技術】自動車等の車輌に於いて路面の勾配を推
定する装置の一つとして、例えば特開平5−27297
4号公報に記載されている如く、車輪速度及び車体の前
後加速度を検出し、車輪速度に基づき車体の前後加速度
を推定し、検出された車体の前後加速度と推定された車
体の前後加速度との差分に基づき路面の勾配を推定する
よう構成された路面勾配推定装置が従来より知られてい
る。
2. Description of the Related Art As one of devices for estimating the gradient of a road surface in a vehicle such as an automobile, for example, Japanese Patent Application Laid-Open No. Hei 5-27297
As described in Japanese Patent Application Publication No. 4 (1999) -2004, wheel speed and longitudinal acceleration of a vehicle body are detected, longitudinal acceleration of the vehicle body is estimated based on the wheel speed, and the longitudinal acceleration of the detected vehicle body and the estimated longitudinal acceleration of the vehicle body are calculated. BACKGROUND ART A road surface gradient estimating device configured to estimate a road surface gradient based on a difference is conventionally known.

【0003】一般に、前後加速度検出センサの如き車体
の前後加速度を検出する前後加速度検出手段は慣性錘を
含み、慣性錘に車輌の前後方向に作用する力を検出する
ことにより車体の前後加速度を検出するようになってい
るので、車輌が坂道を登坂又は降坂する場合には、車体
が水平方向に対し傾斜することにより、慣性錘には重力
の路面に沿う方向の成分が作用し、この成分は路面の勾
配に比例する。またこの成分は車輌の真の前後加速度と
区別されることなく前後加速度検出センサにより検出さ
れるのに対し、車輪速度に基づき推定される車体の前後
加速度は路面の勾配の影響を受けない。従ってこれらの
前後加速度の差分は慣性錘に作用する重力の路面に沿う
方向の成分に相当する。
Generally, a longitudinal acceleration detecting means such as a longitudinal acceleration detecting sensor for detecting the longitudinal acceleration of a vehicle body includes an inertial weight, and detects the longitudinal acceleration of the vehicle body by detecting a force acting on the inertial weight in the longitudinal direction of the vehicle. When the vehicle climbs or descends a slope, the vehicle body is inclined with respect to the horizontal direction, so that the inertial weight acts on the inertial weight in the direction along the road surface of gravity, and this component Is proportional to the slope of the road. This component is detected by the longitudinal acceleration detection sensor without being distinguished from the true longitudinal acceleration of the vehicle, whereas the longitudinal acceleration of the vehicle body estimated based on the wheel speed is not affected by the gradient of the road surface. Therefore, the difference between these longitudinal accelerations corresponds to the component of the gravity acting on the inertial weight in the direction along the road surface.

【0004】上記公開公報に記載された路面勾配推定装
置によれば、検出された車体の前後加速度と推定された
車体の前後加速度との差分に基づき路面の勾配が推定さ
れるので、上記原理により路面の勾配を推定することが
できる。
According to the road surface gradient estimating device described in the above publication, the road surface gradient is estimated based on the difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. The gradient of the road surface can be estimated.

【0005】[0005]

【発明が解決しようとする課題】一般に、車輌が旋回し
ながら坂道を走行するような場合には、車体にはスリッ
プ角が生じ、車輌に作用する遠心力の方向が車輌の上方
より見て車輌横方向に対し傾斜するため、前後加速度検
出手段の慣性錘には遠心力の車輌前後方向の成分が作用
し、そのため前後加速度検出手段の検出値にはこの車輌
前後方向の遠心力成分に対応する求心加速度の車輌前後
方向の成分が含まれる。しかるにこの求心加速度の車輌
前後方向の成分は車輌の加減速や路面の勾配に起因する
ものでもなければ、路面の勾配に応じて変化するもので
もないので、上述の従来の路面勾配推定装置に於いて
は、車輌が旋回しながら坂道を走行するような場合に路
面の勾配を正確に推定することができないという問題が
ある。
Generally, when the vehicle runs on a slope while turning, the vehicle body has a slip angle, and the direction of the centrifugal force acting on the vehicle is viewed from above the vehicle. Since the vehicle is tilted with respect to the lateral direction, a component of the centrifugal force in the longitudinal direction of the vehicle acts on the inertial weight of the longitudinal acceleration detecting means. A component in the vehicle longitudinal direction of the centripetal acceleration is included. However, the component of the centripetal acceleration in the longitudinal direction of the vehicle does not result from acceleration or deceleration of the vehicle or the gradient of the road surface, nor does it change in accordance with the gradient of the road surface. In addition, there is a problem that the gradient of the road surface cannot be accurately estimated when the vehicle runs on a slope while turning.

【0006】また車輌が旋回しながら坂道を走行するよ
うな場合には、操舵輪の回転移動方向は車体の前後方向
と異なり、操舵輪の車輪速度は車体の実際の前後速度と
一致しないので、操舵輪の車輪速度や操舵輪を含む車輪
の車輪速度に基づき推定される車体の前後加速度も実際
の車体の前後加速度と一致せず、そのためこの理由によ
っても路面の勾配を正確に推定することができない。
When the vehicle travels on a slope while turning, the rotational direction of the steered wheels is different from the longitudinal direction of the vehicle body, and the wheel speed of the steered wheels does not match the actual longitudinal speed of the vehicle body. The longitudinal acceleration of the vehicle body, which is estimated based on the wheel speed of the steered wheels and the wheel speed of the wheels including the steered wheels, does not match the actual longitudinal acceleration of the vehicle body. Can not.

【0007】本発明は、車輪速度及び車体の前後加速度
を検出し、車輪速度に基づき車体の前後加速度を推定
し、検出された車体の前後加速度と推定された車体の前
後加速度との差分に基づき路面の勾配を推定するよう構
成された従来の路面勾配推定装置に於ける上述の如き問
題に鑑みてなされたものであり、本発明の主要な課題
は、路面の勾配を推定するための車体の前後加速度より
車輌の旋回に起因する誤差成分を除去することにより、
車輌が旋回しながら坂道を走行するような場合にも路面
の勾配を正確に推定することである。
The present invention detects a wheel speed and a longitudinal acceleration of a vehicle body, estimates a longitudinal acceleration of the vehicle body based on the wheel speed, and calculates a longitudinal acceleration of the vehicle body based on a difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. The present invention has been made in view of the above-described problems in a conventional road surface gradient estimating device configured to estimate a road surface gradient, and a main object of the present invention is to provide a vehicle body for estimating a road surface gradient. By removing the error component due to the turning of the vehicle from the longitudinal acceleration,
Even when the vehicle is traveling on a slope while turning, the gradient of the road surface is accurately estimated.

【0008】[0008]

【課題を解決するための手段】上述の主要な課題は、本
発明によれば、車体の前後加速度を検出する手段と、車
輪速度に基づき車体の前後加速度を推定する手段と、車
体の横加速度を検出する手段と、車体のスリップ角を推
定する手段と、車体の横加速度及び車体のスリップ角に
基づき検出された車体の前後加速度に対する補正量を演
算すると共に検出された車体の前後加速度を前記補正量
にて補正する手段と、補正された車体の前後加速度と推
定された車体の前後加速度との差分に基づき路面の勾配
を推定する手段とを有することを特徴とする路面勾配推
定装置(請求項1の構成)、又は車体の前後加速度を検
出する手段と、車輪速度に基づき車体の前後加速度を推
定する前後加速度推定手段と、検出された車体の前後加
速度と推定された車体の前後加速度との差分に基づき路
面の勾配を推定する手段とを有する路面勾配推定装置に
して、前記前後加速度推定手段は非操舵輪の車輪速度に
基づき車体の前後加速度を推定することを特徴とする路
面勾配推定装置(請求項2の構成)、又は車体の前後加
速度を検出する手段と、車輪速度に基づき車体の前後加
速度を推定する前後加速度推定手段と、検出された車体
の前後加速度と推定された車体の前後加速度との差分に
基づき路面の勾配を推定する手段とを有する路面勾配推
定装置にして、前記前後加速度推定手段は車輪速度に基
づき車輌の重心に於ける車体の前後速度を推定し、該前
後速度に基づき車体の前後加速度を推定することを特徴
とする路面勾配推定装置(請求項3の構成)によって達
成される。
SUMMARY OF THE INVENTION According to the present invention, there are provided means for detecting longitudinal acceleration of a vehicle body, means for estimating longitudinal acceleration of a vehicle body based on wheel speeds, and a method for detecting lateral acceleration of a vehicle body. Means for estimating the slip angle of the vehicle body, calculating a correction amount for the longitudinal acceleration of the vehicle body detected based on the lateral acceleration of the vehicle body and the slip angle of the vehicle body, and calculating the detected longitudinal acceleration of the vehicle body. A road surface gradient estimating device comprising: means for correcting with a correction amount; and means for estimating a road surface gradient based on a difference between the corrected longitudinal acceleration of the vehicle and the estimated longitudinal acceleration of the vehicle. Item 1) or means for detecting the longitudinal acceleration of the vehicle body, longitudinal acceleration estimating means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed, and the detected longitudinal acceleration of the vehicle body is estimated. A road surface gradient estimating device having means for estimating the gradient of the road surface based on the difference from the longitudinal acceleration of the body, wherein the longitudinal acceleration estimating means estimates the longitudinal acceleration of the vehicle body based on the wheel speed of the non-steered wheels. Road surface gradient estimating device (structure of claim 2), or means for detecting the longitudinal acceleration of the vehicle body, longitudinal acceleration estimating means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed, Means for estimating a road gradient based on a difference between the estimated longitudinal acceleration of the vehicle and a road surface gradient estimating device, wherein the longitudinal acceleration estimating means calculates a longitudinal velocity of the vehicle at the center of gravity of the vehicle based on the wheel speed. The present invention is achieved by a road surface gradient estimating device (a third aspect of the present invention) that estimates and estimates the longitudinal acceleration of a vehicle body based on the longitudinal speed.

【0009】上記請求項1の構成によれば、車体の横加
速度及び車体のスリップ角に基づき検出された車体の前
後加速度に対する補正量が演算され、検出された車体の
前後加速度が該補正量にて補正され、補正された車体の
前後加速度と推定された車体の前後加速度との差分に基
づき路面の勾配が推定されるので、車輌が旋回しながら
坂道を走行する場合の如く、車体にスリップ角が生じ車
輌の求心加速度の方向が車輌の上方より見て車輌横方向
に対し傾斜している場合にも、その影響が車体の前後加
速度の検出値より除去され、これにより従来に比して正
確に路面の勾配が推定される。
According to the first aspect of the present invention, a correction amount for the longitudinal acceleration of the vehicle detected based on the lateral acceleration of the vehicle and the slip angle of the vehicle is calculated, and the detected longitudinal acceleration of the vehicle is calculated as the correction amount. The gradient of the road surface is estimated based on the difference between the corrected longitudinal acceleration of the vehicle and the estimated longitudinal acceleration of the vehicle. Therefore, as in the case where the vehicle travels on a slope while turning, the slip angle When the direction of the centripetal acceleration of the vehicle is tilted with respect to the lateral direction of the vehicle when viewed from above the vehicle, the effect is removed from the detected value of the longitudinal acceleration of the vehicle, thereby making it more accurate than in the past. The gradient of the road surface is estimated.

【0010】また後に詳細に説明する如く、車輌が旋回
しながら坂道を走行する場合にも、非操舵輪の車輪速度
は操舵輪の車輪速度よりも車体の前後速度との対応関係
がよいので、非操舵輪の車輪速度に基づき推定される車
体の前後加速度は操舵輪の車輪速度や操舵輪を含む車輪
の車輪速度に基づき推定される車体の前後加速度よりも
車輌の実際の加減速による車体の前後加速度に近い。
As will be described later in detail, even when the vehicle is traveling on a slope while turning, the wheel speed of the non-steered wheels has a better relationship with the front-rear speed of the vehicle body than the wheel speed of the steered wheels. The longitudinal acceleration of the vehicle body estimated based on the wheel speeds of the non-steered wheels is smaller than the longitudinal acceleration of the vehicle body estimated based on the wheel speeds of the steered wheels and the wheel speeds of the wheels including the steered wheels. Close to longitudinal acceleration.

【0011】上記請求項2の構成によれば、非操舵輪の
車輪速度に基づき車体の前後加速度が推定されるので、
車体の前後加速度が操舵輪の車輪速度や操舵輪を含む車
輪の車輪速度に基づき推定される場合に比して正確に路
面の勾配が推定される。
According to the above configuration, the longitudinal acceleration of the vehicle body is estimated based on the wheel speed of the non-steered wheels.
The gradient of the road surface is estimated more accurately than when the longitudinal acceleration of the vehicle body is estimated based on the wheel speeds of the steered wheels or the wheel speeds of the wheels including the steered wheels.

【0012】また上記請求項3の構成によれば、車輪速
度に基づき車輌の重心に於ける車体の前後速度が推定さ
れ、該前後速度に基づき車体の前後加速度が推定される
ので、車体の前後加速度が操舵輪の車輪速度や操舵輪を
含む車輪の車輪速度に基づき推定される場合に比して正
確に路面の勾配が推定される。
According to the third aspect of the invention, the longitudinal speed of the vehicle at the center of gravity of the vehicle is estimated based on the wheel speed, and the longitudinal acceleration of the vehicle is estimated based on the longitudinal speed. The gradient of the road surface is estimated more accurately than when the acceleration is estimated based on the wheel speeds of the steered wheels or the wheel speeds of the wheels including the steered wheels.

【0013】[0013]

【課題解決手段の好ましい態様】本発明の一つの好まし
い態様によれば、上記請求項1の構成に於いて、検出さ
れた車体の前後加速度及び横加速度をそれぞれGx及び
Gyとし、車体のスリップ角をβとして、補正量はGy・
tanβにて演算され、車体の前後加速度Gxは補正量Gy
・tanβが加算されることにより補正されるよう構成さ
れる(好ましい態様1)。
According to a preferred aspect of the present invention, in the configuration of the first aspect, the detected longitudinal acceleration and lateral acceleration of the vehicle body are Gx and Gy, respectively, and the slip angle of the vehicle body is determined. Is β, and the correction amount is Gy ·
The longitudinal acceleration Gx of the vehicle body is calculated by the correction amount Gy
-It is configured to be corrected by adding tanβ (preferred mode 1).

【0014】本発明の他の一つの好ましい態様によれ
ば、上記好ましい態様1の構成に於いて、車輪速度に基
づき車体の前後加速度を推定する手段は車輌の非制動時
には従動輪の車輪速度に基づき車体の前後加速度を推定
し、車輌の制動時には四輪の車輪速度の最大値又は後輪
の車輪速度に基づき車体の前後加速度を推定するよう構
成される(好ましい態様2)。
According to another preferred embodiment of the present invention, in the configuration of the above-described preferred embodiment 1, the means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed is adapted to the wheel speed of the driven wheel when the vehicle is not braking. The longitudinal acceleration of the vehicle body is estimated based on the vehicle speed, and the longitudinal acceleration of the vehicle body is estimated based on the maximum value of the wheel speeds of the four wheels or the wheel speed of the rear wheels during braking of the vehicle (preferred mode 2).

【0015】本発明の他の一つの好ましい態様によれ
ば、上記請求項2の構成に於いて、車輌は前輪操舵の後
輪駆動車であり、前後加速度推定手段は車輌の非制動時
には左右前輪の車輪速度のうち高い方の車輪速度に基づ
き車体の前後加速度を推定し、車輌の制動時には四輪の
車輪速度のうち最も高い車輪速度に基づき車体の前後加
速度を推定するよう構成される(好ましい態様3)。
According to another preferred aspect of the present invention, in the configuration of the second aspect, the vehicle is a front-wheel steering rear-wheel drive vehicle, and the longitudinal acceleration estimating means includes a left-right front wheel when the vehicle is not braking. It is configured to estimate the longitudinal acceleration of the vehicle body based on the higher one of the wheel speeds of the vehicle, and to estimate the longitudinal acceleration of the vehicle body based on the highest wheel speed of the four wheel speeds when braking the vehicle. Aspect 3).

【0016】本発明の他の一つの好ましい態様によれ
ば、上記請求項2の構成に於いて、車輌は前輪操舵の前
輪駆動車であり、前後加速度推定手段は車輌が制動中で
あるか否かに関係なく左右後輪の車輪速度のうち高い方
の車輪速度に基づき車体の前後加速度を推定するよう構
成される(好ましい態様4)。
According to another preferred aspect of the present invention, in the configuration of the second aspect, the vehicle is a front wheel drive vehicle for front wheel steering, and the longitudinal acceleration estimating means determines whether the vehicle is braking. It is configured to estimate the longitudinal acceleration of the vehicle body based on the higher wheel speed of the wheel speeds of the left and right rear wheels regardless of the above (preferred mode 4).

【0017】本発明の他の一つの好ましい態様によれ
ば、上記請求項3の構成に於いて、前後加速度推定手段
は従動輪の車輪速度に基づき車輌の重心に於ける車体の
前後速度を推定し、該前後速度に基づき車体の前後加速
度を推定するよう構成される(好ましい態様5)。
According to another preferred aspect of the present invention, in the configuration of the third aspect, the longitudinal acceleration estimating means estimates the longitudinal velocity of the vehicle body at the center of gravity of the vehicle based on the wheel speed of the driven wheel. Then, it is configured to estimate the longitudinal acceleration of the vehicle body based on the longitudinal speed (preferred mode 5).

【0018】本発明の他の一つの好ましい態様によれ
ば、上記請求項3の構成に於いて、前後加速度推定手段
は四輪の車輪速度に基づき車輌の重心に於ける各車輪に
対応する四つの車体の前後速度を推定し、車輌の非制動
時には四つの前後速度のうち最も低い前後速度に基づき
車体の前後加速度を推定し、車輌の制動時には四つの前
後速度のうち最も高い前後速度に基づき車体の前後加速
度を推定するよう構成される(好ましい態様6)。
According to another preferred aspect of the present invention, in the configuration of the third aspect, the longitudinal acceleration estimating means includes a four-wheel corresponding to each wheel at the center of gravity of the vehicle based on the wheel speed of the four wheels. Estimate the longitudinal speed of one vehicle body, estimate the longitudinal acceleration of the vehicle based on the lowest longitudinal speed of the four longitudinal speeds when the vehicle is not braking, and based on the highest longitudinal speed of the four longitudinal speeds when braking the vehicle It is configured to estimate the longitudinal acceleration of the vehicle body (preferred mode 6).

【0019】[0019]

【発明の実施の形態】以下に添付の図を参照しつつ、本
発明を幾つかの好ましい実施形態について詳細に説明す
る。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described in more detail with reference to the accompanying drawings, in which several preferred embodiments are shown.

【0020】第一の実施形態 図1は後輪駆動車に適用された本発明による路面勾配推
定装置の第一の好ましい実施形態を示す概略構成図であ
る。
First Embodiment FIG. 1 is a schematic diagram showing a first preferred embodiment of a road surface gradient estimating apparatus according to the present invention applied to a rear wheel drive vehicle.

【0021】図1に於て、10FL及び10FRはそれぞれ
車輌12の左右の前輪を示し、10RL及び10RRはそれ
ぞれ車輌の駆動輪である左右の後輪を示している。従動
輪であり操舵輪でもある左右の前輪10FL及び10FRは
運転者によるステアリングホイール14の転舵に応答し
て駆動されるラック・アンド・ピニオン式のパワーステ
アリング装置16によりタイロッド18L 及び18R を
介して操舵される。
In FIG. 1, 10FL and 10FR denote left and right front wheels of the vehicle 12, respectively, and 10RL and 10RR denote left and right rear wheels which are driving wheels of the vehicle, respectively. The left and right front wheels 10FL and 10FR, which are both driven wheels and steered wheels, are driven via tie rods 18L and 18R by a rack-and-pinion type power steering device 16 driven in response to steering of the steering wheel 14 by the driver. Steered.

【0022】各車輪の制動力は制動装置20の油圧回路
22によりホイールシリンダ24FR、24FL、24RR、
24RLの制動圧が制御されることによって制御されるよ
うになっている。図には示されていないが、油圧回路2
2はオイルリザーバ、オイルポンプ、ホイールシリンダ
内の圧力を増減するための増減圧制御弁の如き種々の弁
装置等を含み、各ホイールシリンダの制動圧は通常時に
は運転者によるブレーキペダル26の踏み込み操作に応
じて駆動されるマスタシリンダ28により制御され、ま
た必要に応じて後に詳細に説明する如く電気式制御装置
30により増減圧制御弁が開閉制御されることによって
制御される。
The braking force of each wheel is controlled by the hydraulic circuit 22 of the braking device 20 so that the wheel cylinders 24FR, 24FL, 24RR,
The control is performed by controlling the braking pressure of 24RL. Although not shown in the figure, the hydraulic circuit 2
2 includes various valve devices such as an oil reservoir, an oil pump, and a pressure increasing / decreasing control valve for increasing / decreasing a pressure in a wheel cylinder. Is controlled by a master cylinder 28 that is driven in accordance with the pressure control valve, and is controlled by opening and closing the pressure increasing / decreasing control valve by an electric control device 30 as will be described later in detail, if necessary.

【0023】車輪10FR〜10RLにはそれぞれ対応する
車輪の車輪速度Vwi(i=fr、fl、rr、rl)を周速度と
して検出する車輪速度センサ32FR〜32RLが設けられ
ている。また車輌12にはそれぞれ車速Vを検出する車
速センサ34、車輌のヨーレートγを検出するヨーレー
トセンサ36、前後加速度Gxを検出する前後加速度セ
ンサ38、横加速度Gyを検出する横加速度センサ40
が設けられている。尚ヨーレートセンサ36及び横加速
度センサ40は車輌の右旋回方向を正としてそれぞれヨ
ーレート及び横加速度を検出し、前後加速度センサ38
は車輌の加速方向を正として前後加速度を検出する。
The wheels 10FR to 10RL are provided with wheel speed sensors 32FR to 32RL for detecting the wheel speed Vwi (i = fr, fl, rr, rl) of the corresponding wheel as a peripheral speed. The vehicle 12 has a vehicle speed sensor 34 for detecting a vehicle speed V, a yaw rate sensor 36 for detecting a yaw rate γ of the vehicle, a longitudinal acceleration sensor 38 for detecting a longitudinal acceleration Gx, and a lateral acceleration sensor 40 for detecting a lateral acceleration Gy.
Is provided. The yaw rate sensor 36 and the lateral acceleration sensor 40 detect the yaw rate and the lateral acceleration, respectively, with the right turning direction of the vehicle being positive, and
Detects the longitudinal acceleration with the vehicle acceleration direction being positive.

【0024】図示の如く、車輪速度センサ32FR〜32
RLにより検出された車輪速度Vwiを示す信号、車速セン
サ34により検出された車速Vを示す信号、ヨーレート
センサ36により検出されたヨーレートγを示す信号、
前後加速度センサ38により検出された前後加速度Gx
を示す信号、横加速度センサ40により検出された横加
速度Gyを示す信号は電気式制御装置30に入力され
る。
As shown, wheel speed sensors 32FR-32
A signal indicating the wheel speed Vwi detected by the RL, a signal indicating the vehicle speed V detected by the vehicle speed sensor 34, a signal indicating the yaw rate γ detected by the yaw rate sensor 36,
The longitudinal acceleration Gx detected by the longitudinal acceleration sensor 38
And a signal indicating the lateral acceleration Gy detected by the lateral acceleration sensor 40 are input to the electric control device 30.

【0025】尚図には詳細に示されていないが、電気式
制御装置30は例えばCPUとROMとRAMと入出力
ポート装置とを有し、これらが双方向性のコモンバスに
より互いに接続された一般的な構成のマイクロコンピュ
ータを含んでいる。
Although not shown in detail in FIG. 1, the electric control device 30 has, for example, a CPU, a ROM, a RAM, and an input / output port device, which are generally connected to each other by a bidirectional common bus. Microcomputer with a typical configuration.

【0026】電気式制御装置30は、後述の如く図2に
示されたフローチャートに従い、車速V等に基づき車体
のスリップ角βを演算し、検出された車体の前後加速度
Gxを車体の横加速度Gy及び車体のスリップ角βに基づ
く補正量にて補正することにより補正後の車体の前後加
速度Gx′を演算し、車輪速度Vwiに基づき車体の推定
前後加速度Vwdを演算し、補正後の車体の前後加速度G
x′と車体の推定前後加速度Vwdとの差分に基づき路面
の勾配θを推定演算する。
The electric control device 30 calculates the slip angle β of the vehicle body based on the vehicle speed V and the like according to the flowchart shown in FIG. 2 as described later, and converts the detected longitudinal acceleration Gx of the vehicle body into the lateral acceleration Gy of the vehicle body. Then, the corrected longitudinal acceleration Gx 'of the vehicle body is calculated by the correction based on the correction amount based on the slip angle β of the vehicle body, and the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the wheel speed Vwi. Acceleration G
The gradient θ of the road surface is estimated and calculated based on the difference between x ′ and the estimated longitudinal acceleration Vwd of the vehicle body.

【0027】また電気式制御装置30は、図には示され
ていないが、車輌の走行状態に基づき車輌のスピンの程
度を示すスピン状態量及び車輌のドリフトアウトの程度
を示すドリフトアウト状態量を演算し、スピン状態量及
びドリフトアウト状態量に基づき挙動制御の各車輪の目
標スリップ率を演算し、各車輪のスリップ率が目標スリ
ップ率になるよう各車輪の制動力を制御し、これにより
車輌の挙動を安定化させる。
Although not shown in the figure, the electric control device 30 calculates a spin state quantity indicating the degree of spin of the vehicle and a drift out state quantity indicating the degree of drift out of the vehicle based on the running state of the vehicle. Calculating the target slip ratio of each wheel of the behavior control based on the amount of spin state and the amount of drift-out state, and controlling the braking force of each wheel so that the slip ratio of each wheel becomes the target slip ratio. Stabilizes the behavior of

【0028】尚車輌の挙動制御自体は本発明の要旨をな
すものではなく、挙動制御は当技術分野に於いて公知の
任意の要領にて実行されてよく、また本発明の路面勾配
の推定は挙動制御以外の車輌の任意の制御に適用されて
よい。
The behavior control of the vehicle itself does not form the gist of the present invention, and the behavior control may be performed in any manner known in the art. It may be applied to any control of the vehicle other than the behavior control.

【0029】次に図2に示されたフローチャートを参照
して第一の実施形態に於ける路面勾配推定ルーチンにつ
いて説明する。尚図2に示されたフローチャートによる
制御は図には示されていないイグニッションスイッチの
閉成により開始され、所定の時間毎に繰返し実行され
る。
Next, the road gradient estimation routine in the first embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch (not shown) and is repeatedly executed at predetermined time intervals.

【0030】まずステップ10に於いては車輪速度Vwi
を示す信号等の読み込みが行われ、ステップ20に於い
ては横加速度Gyと車速V及びヨーレートγの積γVと
の偏差Gy−γVとして横加速度の偏差、即ち車輌の横
すべり加速度Vydが演算され、横すべり加速度Vydが積
分されることにより車体の横すべり速度Vyが演算さ
れ、更に車体の前後速度Vx(=車速V)に対する車体
の横すべり速度Vyの比Vy/Vxとして車体のスリップ
角βが演算される。
First, in step 10, the wheel speed Vwi
Is read, and in step 20, the deviation of the lateral acceleration, that is, the vehicle slip acceleration Vyd, is calculated as the deviation Gy-γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ. The vehicle slip speed Vy is calculated by integrating the side slip acceleration Vyd, and the slip angle β of the vehicle body is calculated as the ratio Vy / Vx of the vehicle body slip speed Vy to the vehicle front-rear speed Vx (= vehicle speed V). .

【0031】ステップ30に於いては下記の式1に従っ
て車体のスリップ角βに起因して車体の求心加速度が車
体の前後加速度Gxに与える影響が排除された補正後の
車体の前後加速度Gx′が演算される。 Gx′=Gx+Gy・tanβ ……(1)
In step 30, the corrected longitudinal acceleration Gx 'of the vehicle body in which the influence of the centripetal acceleration of the vehicle body on the longitudinal acceleration Gx of the vehicle body due to the slip angle β of the vehicle body is eliminated according to the following equation 1 is eliminated. Is calculated. Gx ′ = Gx + Gy · tanβ (1)

【0032】ステップ40に於いては例えば図には示さ
れていないストップランプスイッチがオン状態にあるか
否かの判別により車輌が制動状態にあるか否かの判別が
行われ、否定判別が行われたときにはステップ50に於
いて左右前輪の車輪速度Vwfl及びVwfrのうちの大きい
方の値に基づきその微分値として車体の推定前後加速度
Vwdが演算され、肯定判別が行われたときにはステップ
60に於いて四輪の車輪速度Vwiのうちの最も大きい値
に基づきその微分値として車体の推定前後加速度Vwdが
演算される。
In step 40, for example, it is determined whether or not the vehicle is in a braking state by determining whether or not a stop lamp switch (not shown) is on, and a negative determination is made. If so, in step 50, the estimated longitudinal acceleration Vwd of the vehicle body is calculated as a differential value based on the larger one of the wheel speeds Vwfl and Vwfr of the left and right front wheels. The estimated longitudinal acceleration Vwd of the vehicle body is calculated as a differential value based on the largest value among the wheel speeds Vwi of the four wheels.

【0033】ステップ100に於いては補正後の車体の
前後加速度Gx′及び車体の推定前後加速度Vwdに基づ
き下記の式2に従って路面の勾配θが演算される。 θ=arcsin(Gx′−Vwd) ……(2)
In step 100, the gradient θ of the road surface is calculated based on the corrected longitudinal acceleration Gx 'of the vehicle body and the estimated longitudinal acceleration Vwd of the vehicle according to the following equation (2). θ = arcsin (Gx′−Vwd) (2)

【0034】かくして図示の第一の実施形態によれば、
ステップ20に於いて車体のスリップ角βが演算され、
ステップ30に於いて車体のスリップ角βに起因して車
体の求心加速度が車体の前後加速度Gxに与える影響が
排除された補正後の車体の前後加速度Gx′が演算され
る。そして車輌が非制動状態にあるときにはステップ5
0に於いて非駆動輪である左右前輪の車輪速度Vwfl及
びVwfrのうちの大きい方の値に基づき車体の推定前後
加速度Vwdが演算され、車輌が制動状態にあるときには
ステップ60に於いて四輪の車輪速度Vwiのうちの最も
大きい値に基づき車体の推定前後加速度Vwdが演算さ
れ、ステップ100に於いて補正後の車体の前後加速度
Gx′と車体の推定前後加速度Vwdとの差分に基づき路
面の勾配θが演算される。
Thus, according to the illustrated first embodiment,
In step 20, the slip angle β of the vehicle body is calculated,
In step 30, the corrected longitudinal acceleration Gx 'of the vehicle body in which the influence of the centripetal acceleration of the vehicle body on the longitudinal acceleration Gx of the vehicle body due to the slip angle β of the vehicle body is eliminated is calculated. When the vehicle is in the non-braking state, step 5
At 0, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger one of the wheel speeds Vwfl and Vwfr of the left and right front wheels which are the non-driven wheels. The estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the largest value of the wheel speeds Vwi of the vehicle, and the road surface acceleration is calculated based on the difference between the longitudinal acceleration Gx ′ of the vehicle body corrected in step 100 and the estimated longitudinal acceleration Vwd of the vehicle body. Is calculated.

【0035】図5に示されている如く、車輌が旋回する
際には車体速度Vbの方向が車輌の前後方向に対し傾斜
することにより車体にスリップ角βが生じ、車体の求心
加速度Gcは車輌の上方より見て車輌横方向に対し傾斜
するため、前後加速度センサ38の検出値Gxにはこの
求心加速度Gcの車輌前後方向の成分(Gy・tanβ)が
含まれ、車輌の加減速による車体の前後加速度をGbxと
し、路面の傾斜に起因する車体の前後加速度をGixとす
ると、GxはGbx+Gix−Gy・tanβである。従って従
来の路面勾配推定装置に於いては車輌が旋回状態にて坂
道を走行する場合に求心加速度Gcの車輌前後方向の成
分による誤差に起因して路面の勾配を正確に推定するこ
とができない。
As shown in FIG. 5, when the vehicle turns, the slip angle β occurs in the vehicle body due to the direction of the vehicle speed Vb being inclined with respect to the front-back direction of the vehicle, and the centripetal acceleration Gc of the vehicle becomes , The detection value Gx of the longitudinal acceleration sensor 38 includes the component of the centripetal acceleration Gc in the longitudinal direction of the vehicle (Gy · tanβ), and the acceleration of the vehicle due to acceleration and deceleration of the vehicle. Assuming that the longitudinal acceleration is Gbx and the longitudinal acceleration of the vehicle body due to the inclination of the road surface is Gix, Gx is Gbx + Gix−Gy · tanβ. Therefore, the conventional road surface gradient estimating device cannot accurately estimate the road surface gradient due to an error due to the component of the centripetal acceleration Gc in the vehicle front-rear direction when the vehicle runs on a slope while turning.

【0036】これに対し図示の第一の実施形態によれ
ば、求心加速度Gcの車輌前後方向の成分(Gy・tan
β)が除去された補正後の車体の前後加速度Gx′、即
ち車輌の加減速及び路面の傾斜に起因する重力の路面方
向の成分(Gbx+Gix)を示す補正後の車体の前後加速
度が演算され、該補正後の車体の前後加速度Gx′に基
づき路面の勾配が推定されるので、従来に比して車輌が
旋回状態にて坂道を走行する場合にも路面の勾配を高精
度に推定することができる。
On the other hand, according to the first embodiment shown in the drawing, the component (Gy · tan) of the centripetal acceleration Gc in the longitudinal direction of the vehicle.
The corrected longitudinal acceleration Gx ′ of the vehicle body after β) has been removed, that is, the corrected longitudinal acceleration of the vehicle body indicating the road surface component (Gbx + Gix) of gravity caused by acceleration / deceleration of the vehicle and inclination of the road surface is calculated, Since the gradient of the road surface is estimated based on the corrected longitudinal acceleration Gx 'of the vehicle body, it is possible to more accurately estimate the gradient of the road surface even when the vehicle travels on a slope in a turning state as compared with the related art. it can.

【0037】特に図示の第一の実施形態によれば、車輌
が非制動状態にあるときには従動輪である左右前輪の車
輪速度Vwfl及びVwfrのうちの大きい方の値に基づき車
体の推定前後加速度Vwdが演算され、車輌が制動状態に
あるときには四輪の車輪速度Vwiのうちの最も大きい値
に基づき車体の推定前後加速度Vwdが演算されるので、
例えば車輌が制動状態にあるか否かに拘わらず左右前輪
の車輪速度Vwfl及びVwfrのうちの大きい方の値又は四
輪の車輪速度Vwiのうちの最も大きい値に基づき車体の
推定前後加速度Vwdが演算される場合に比して、正確に
車体の推定加速度を演算することができ、このことによ
っても路面勾配を高精度に推定することができる。
In particular, according to the illustrated first embodiment, when the vehicle is in the non-braking state, the estimated longitudinal acceleration Vwd of the vehicle body is determined based on the larger one of the wheel speeds Vwfl and Vwfr of the left and right front wheels that are the driven wheels. Is calculated, and when the vehicle is in the braking state, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the largest value of the wheel speeds Vwi of the four wheels.
For example, regardless of whether the vehicle is in a braking state or not, the estimated longitudinal acceleration Vwd of the vehicle body is determined based on the larger one of the left and right front wheel speeds Vwfl and Vwfr or the largest value of the four wheel speeds Vwi. The estimated acceleration of the vehicle body can be calculated more accurately than in the case where the calculation is performed, whereby the road surface gradient can be estimated with high accuracy.

【0038】尚上述の第一の実施形態に於いては、車輌
が非制動状態にあるときにはステップ50に於いて左右
前輪の車輪速度Vwfl及びVwfrのうちの大きい方の値に
基づき車体の推定前後加速度Vwdが演算され、車輌が制
動状態にあるときにはステップ60に於いて四輪の車輪
速度Vwiのうちの最も大きい値に基づき車体の推定前後
加速度Vwdが演算されるようになっているが、ステップ
50に於いて左右前輪の車輪速度Vwfl及びVwfrに基づ
きそれぞれ車体の推定前後加速度が演算され、車体の推
定前後加速度Vwdがそれらの平均値として演算され、ま
たステップ60に於いて四輪の車輪速度Vwiのうちの最
も大きい値及びその次に大きい値に基づきそれぞれ車体
の推定前後加速度が演算され、車体の推定前後加速度V
wdがそれらの平均値として演算されされるよう修正され
てもよい(修正例1−1)。
In the first embodiment, when the vehicle is in the non-braking state, in step 50, the vehicle speed is estimated before and after the estimation based on the larger one of the left and right front wheel speeds Vwfl and Vwfr. The acceleration Vwd is calculated, and when the vehicle is in the braking state, the estimated longitudinal acceleration Vwd of the vehicle body is calculated in step 60 based on the largest value of the four wheel speeds Vwi. At 50, the estimated longitudinal acceleration of the vehicle body is calculated based on the wheel speeds Vwfl and Vwfr of the left and right front wheels, and the estimated longitudinal acceleration Vwd of the vehicle body is calculated as an average value thereof. The estimated longitudinal acceleration of the vehicle body is calculated based on the largest value and the next largest value of Vwi, and the estimated longitudinal acceleration V
wd may be modified to be calculated as their average (Modification 1-1).

【0039】第二の実施形態 図3は前輪駆動車に適用された本発明による路面勾配推
定装置の第二の実施形態に於ける路面勾配推定ルーチン
を示すフローチャートである。
Second Embodiment FIG. 3 is a flow chart showing a road gradient estimating routine in a second embodiment of the road gradient estimating apparatus according to the present invention applied to a front wheel drive vehicle.

【0040】尚図3に示されたフローチャートによる制
御も図には示されていないイグニッションスイッチの閉
成により開始され、所定の時間毎に繰返し実行される。
また図3に於いて、図2に示されたステップに対応する
ステップには図2に於いて付されたステップ番号と同一
のステップ番号が付されている。これらのことは後述の
第三の実施形態(図4)についても同様である。
The control according to the flowchart shown in FIG. 3 is also started by closing an ignition switch (not shown) and is repeatedly executed at predetermined time intervals.
Also, in FIG. 3, steps corresponding to the steps shown in FIG. 2 are given the same step numbers as those given in FIG. The same applies to a third embodiment (FIG. 4) described later.

【0041】この第二の実施形態に於いては、ステップ
30の次に実行されるステップ70に於いて推定車体速
度Vbwは従動輪である左右後輪の車輪速度Vwrl及びVw
rrのうち大きい方の値に基づき演算され、他の点につい
ては上述の第一の実施形態と同様にして路面の勾配θが
演算される。
In the second embodiment, in step 70 executed after step 30, the estimated vehicle speed Vbw is set to the wheel speeds Vwrl and Vw of the left and right rear wheels that are driven wheels.
Calculation is performed based on the larger value of rr, and for other points, the road surface gradient θ is calculated in the same manner as in the first embodiment.

【0042】図6(A)に示されている如く、車輌の旋
回時には前輪の移動方向は車輌12の重心102の移動
方向と大きく異なり、そのため前輪の車輪速度の微分に
より得られる車体の推定前後加速度は車輌12の重心1
02に於ける車体の前後加速度と一致せず、従ってこの
点からも従来の路面勾配推定装置によっては車輌が旋回
状態にて坂道を走行する場合に路面の勾配を高精度に推
定することができない。
As shown in FIG. 6 (A), when the vehicle turns, the direction of movement of the front wheels is significantly different from the direction of movement of the center of gravity 102 of the vehicle 12, and therefore, before and after the estimation of the vehicle body obtained by differentiating the wheel speed of the front wheels. The acceleration is the center of gravity 1 of the vehicle 12
02 does not match the longitudinal acceleration of the vehicle body, and therefore from this point, the conventional road surface gradient estimating device cannot estimate the road surface gradient with high accuracy when the vehicle travels on a slope in a turning state. .

【0043】図6(B)に示されている如く、非操舵輪
である後輪に着目すると、後輪は車体の前後速度Vxと
同一の速度Vwrxにて車輌前方に移動した後、結果的に
移動速度が後輪の移動速度になるよう横滑りにより速度
Vwryにて車輌横方向に移動すると考えることができ、
車輪速度センサ32RR等はVwrxを検出するので、後輪
の車輪速度に基づき演算される車体の推定前後加速度V
wdは車輌の加減速による加速度を反映する値である。
As shown in FIG. 6 (B), focusing on the rear wheel which is a non-steered wheel, the rear wheel moves forward at the same speed Vwrx as the front-rear speed Vx of the vehicle body. It can be considered that the vehicle moves laterally at the speed Vwry by skidding so that the moving speed becomes the moving speed of the rear wheel,
Since the wheel speed sensors 32RR and the like detect Vwrx, the estimated longitudinal acceleration V of the vehicle body calculated based on the wheel speeds of the rear wheels
wd is a value reflecting the acceleration due to acceleration and deceleration of the vehicle.

【0044】図示の第二の実施形態によれば、上述の第
一の実施形態の場合と同様、求心加速度の車輌前後方向
の成分が除去された補正後の車体の前後加速度Gx′が
演算されると共に、車体の推定前後加速度Vwdは非操舵
輪である左右後輪の車輪速度Vwrl又はVwrrに基づき演
算されるので、車体の推定前後加速度Vwdが操舵輪であ
る前輪の車輪速度に基づき演算される場合に比して正確
に路面の勾配を推定することができる。
According to the illustrated second embodiment, similarly to the first embodiment described above, the corrected longitudinal acceleration Gx 'of the vehicle body after the component of the centripetal acceleration in the longitudinal direction of the vehicle has been removed is calculated. In addition, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the wheel speeds Vwrl or Vwrr of the left and right rear wheels that are non-steered wheels, so the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the wheel speed of the front wheels that are steered wheels. The road gradient can be estimated more accurately than in the case where

【0045】また一般に、車輌の制動時には車輪に制動
スリップが生じて従動輪の車輪速度が車体速度よりも小
さくなり、車輌の非制動時には従動輪の車輪速度が車体
速度よりも高くなることはないので、従動輪である左右
後輪の車輪速度のうち大きい方の値の方が車体の前後速
度との対応性が高い。従って左右後輪の車輪速度のうち
大きい方の値に基づき演算される車体の推定前後加速度
は左右後輪の車輪速度のうち小さい方の値に基づき演算
される車体の推定前後加速度よりも車輌の加減速を良好
に反映する。
In general, when the vehicle is braked, a braking slip occurs on the wheels, so that the wheel speed of the driven wheel becomes lower than the vehicle speed. When the vehicle is not braked, the wheel speed of the driven wheel does not become higher than the vehicle speed. Therefore, the larger value of the wheel speeds of the right and left rear wheels, which are the driven wheels, has higher correspondence with the front-rear speed of the vehicle body. Therefore, the estimated longitudinal acceleration of the vehicle calculated based on the larger value of the left and right rear wheel speeds is greater than the estimated longitudinal acceleration of the vehicle calculated based on the smaller value of the left and right rear wheel speeds. Acceleration and deceleration are reflected well.

【0046】図示の第二の実施形態によれば、車体の推
定前後加速度Vwdは左右後輪の車輪速度Vwrl及びVwrr
のうち大きい方の値に基づき演算されるので、車体の推
定前後加速度Vwdが左右後輪の車輪速度Vwrl及びVwrr
のうち小さい方の値に基づき演算される場合に比して正
確に路面の勾配を推定することができる。
According to the illustrated second embodiment, the estimated longitudinal acceleration Vwd of the vehicle body is determined by the wheel speeds Vwrl and Vwrr of the left and right rear wheels.
, The estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the wheel speeds Vwrl and Vwrr of the left and right rear wheels.
It is possible to accurately estimate the gradient of the road surface as compared with the case where the calculation is performed based on the smaller value of

【0047】尚上述の第二の実施形態に於いては、ステ
ップ70に於いて車体の推定前後加速度Vwdは従動輪で
ある左右後輪の車輪速度Vwrl及びVwrrのうち大きい方
の値に基づき演算されるようになっているが、左右後輪
の車輪速度Vwrl及びVwrrに基づきそれぞれ推定前後加
速度が演算され、車体の推定前後加速度Vwdがそれらの
平均値として演算されるよう修正されてもよい(修正例
2−1)。
In the above-described second embodiment, in step 70, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger one of the wheel speeds Vwrl and Vwrr of the left and right rear wheels as driven wheels. However, the estimated longitudinal acceleration Vwd of the left and right rear wheels may be calculated based on the wheel speeds Vwrl and Vwrr, and the estimated longitudinal acceleration Vwd of the vehicle body may be calculated as an average value thereof ( Correction example 2-1).

【0048】第三の実施形態 図4は前輪駆動車に適用された本発明による路面勾配推
定装置の第三の実施形態に於ける路面勾配推定ルーチン
を示すフローチャートである。
Third Embodiment FIG. 4 is a flowchart showing a road gradient estimation routine in a third embodiment of the road gradient estimation device according to the present invention applied to a front wheel drive vehicle.

【0049】図7に示されている如く、左右の車輪のス
リップ角は等しいと仮定し、操舵角をδとすると、左右
前輪のスリップ角βfl、βfr(前輪100fのスリップ
角βf)及び左右後輪のスリップ角βrl、βrr(後輪1
00rのスリップ角βr)をそれぞれ下記の式3及び4に
より求めることができる。
As shown in FIG. 7, assuming that the slip angles of the left and right wheels are equal and the steering angle is δ, the slip angles βfl and βfr of the left and right front wheels (the slip angle βf of the front wheel 100f) and the rear and right and left Wheel slip angles βrl, βrr (rear wheel 1
00r can be determined by the following equations 3 and 4, respectively.

【0050】[0050]

【数1】 (Equation 1)

【0051】操舵角δ等を使用して各車輪の車輪速度V
wiに基づく車輌の重心102の位置に於ける前後速度V
bwi(i=fr、fl、rr、rl)を演算することができる。
例えば右前輪については図8に示されている如く下記の
式5及び6が成立する。
The wheel speed V of each wheel is calculated using the steering angle δ and the like.
The longitudinal velocity V at the position of the center of gravity 102 of the vehicle based on wi
bwi (i = fr, fl, rr, rl) can be calculated.
For example, for the right front wheel, the following equations 5 and 6 are established as shown in FIG.

【0052】[0052]

【数2】 (Equation 2)

【0053】上記式5及び6より、右前輪の車輪速度に
基づく前後速度Vbwfrは下記の式7により求められ、同
様にして左前輪の車輪速度に基づく前後速度Vbwflは下
記の式8により求められる。
From the above equations 5 and 6, the front-rear speed Vbwfr based on the wheel speed of the right front wheel is obtained by the following equation 7, and similarly, the front-rear speed Vbwfl based on the wheel speed of the left front wheel is obtained by the following equation 8. .

【0054】[0054]

【数3】 (Equation 3)

【0055】また右後輪及び左後輪の車輪速度に基づく
前後速度Vbwfr及びVbwflはそれぞれ下記の式9及び1
0により求められる。
The front-rear speeds Vbwfr and Vbwfl based on the wheel speeds of the right rear wheel and the left rear wheel are given by the following equations 9 and 1 respectively.
It is determined by 0.

【0056】[0056]

【数4】 (Equation 4)

【0057】この第三の実施形態に於いては、ステップ
30の次に実行されるステップ35に於いて各車輪の車
輪速度Vwiに基づき車輌の重心102に於ける車体の前
後速度Vbwiが演算され、車輌の非制動時にはステップ
80に於いて前後速度Vbwiのうち最も小さい値に基づ
き車体の推定前後加速度Vbwdが演算され、車輌の制動
時にはステップ90に於いて前後速度Vbwiのうち最も
大きい値に基づき車体の推定前後加速度Vbwdが演算さ
れ、他の点については上述の第一の実施形態と同様にし
て路面の勾配θが演算される。
In the third embodiment, the longitudinal speed Vbwi of the vehicle body at the center of gravity 102 of the vehicle is calculated based on the wheel speed Vwi of each wheel in step 35 executed after step 30. When the vehicle is not braking, the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the smallest value of the longitudinal speed Vbwi in step 80, and when the vehicle is braked, based on the largest value of the longitudinal speed Vbwi in step 90. The estimated longitudinal acceleration Vbwd of the vehicle body is calculated, and for other points, the gradient θ of the road surface is calculated in the same manner as in the first embodiment.

【0058】かくして図示の第三の実施形態によれば、
各車輪の車輪速度Vwiに基づき車輌の重心102に於け
る車体の前後速度Vbwiが演算され、車輌の非制動時に
は前後速度Vbwiのうち最も小さい値、即ち加速スリッ
プが最も小さい値に基づき車体の推定前後加速度Vbwd
が演算され、車輌の制動時には前後速度Vbwiのうち最
も大きい値、即ち制動スリップが最も小さい値に基づき
車体の推定前後加速度Vbwdが演算されるので、車輌の
旋回時にも車輌の加減速による車体の前後加速度を正確
に演算することができ、これにより従来の勾配推定装置
の場合に比して正確に路面勾配を推定することができ
る。
Thus, according to the illustrated third embodiment,
The front-rear speed Vbwi of the vehicle at the center of gravity 102 of the vehicle is calculated based on the wheel speed Vwi of each wheel. Longitudinal acceleration Vbwd
When the vehicle is braking, the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the largest value of the longitudinal speed Vbwi, that is, the value of the smallest braking slip. The longitudinal acceleration can be accurately calculated, whereby the road surface gradient can be estimated more accurately than in the case of the conventional gradient estimating device.

【0059】尚上述の第三の実施形態に於いては、車輌
の非制動時にはステップ80に於いて前後速度Vbwiの
うち最も小さい値に基づき車体の推定前後加速度Vbwd
が演算され、車輌の制動時にはステップ90に於いて前
後速度Vbwiのうち最も大きい値に基づき車体の推定前
後加速度Vbwdが演算されるようになっているが、ステ
ップ80に於いて前後速度Vbwiのうち最も小さい値及
びその次に小さい値に基づきそれぞれ車体の推定前後加
速度が演算され、車体の推定前後加速度Vbwdがそれら
の平均値として演算され、ステップ90に於いて前後速
度Vbwiのうち最も大きい値及びその次に大きい値に基
づきそれぞれ車体の推定前後加速度が演算され、車体の
推定前後加速度Vbwdがそれらの平均値として演算され
るよう修正されてもよい(修正例3−1)。
In the third embodiment, when the vehicle is not braked, the estimated longitudinal acceleration Vbwd of the vehicle body is determined in step 80 based on the smallest value of the longitudinal speed Vbwi.
When the vehicle is braked, the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the largest value of the longitudinal speed Vbwi in step 90, but in step 80, the estimated longitudinal acceleration Vbwi is calculated. The estimated longitudinal acceleration of the vehicle body is calculated based on the smallest value and the next smallest value, and the estimated longitudinal acceleration Vbwd of the body is calculated as an average value thereof. In step 90, the largest value and the largest value of the longitudinal speed Vbwi are calculated. The estimated longitudinal acceleration of the vehicle body may be calculated based on the next largest value, and the estimated longitudinal acceleration Vbwd of the vehicle body may be corrected to be calculated as an average value thereof (Modification Example 3-1).

【0060】また上述の第三の実施形態に於いては、車
輌は前輪駆動車であるが、この実施形態は後輪駆動車や
四輪駆動車に適用されてもよく(修正例3−2)、また
車体の推定前後加速度Vbwdは前後速度Vbwiに基づき演
算される四つの車体の推定前後加速度の平均値として演
算されてもよく(修正例3−3)、更には前後速度Vbw
iに基づき演算される四つの車体の推定前後加速度のう
ち二番目及び三番目に大きい推定前後加速度の平均値と
して演算されてもよい(修正例3−4)。
In the third embodiment described above, the vehicle is a front wheel drive vehicle, but this embodiment may be applied to a rear wheel drive vehicle or a four wheel drive vehicle (Modification 3-2). ) Further, the estimated longitudinal acceleration Vbwd of the vehicle body may be calculated as an average value of the estimated longitudinal accelerations of the four vehicle bodies calculated based on the longitudinal speed Vbwi (Modification 3-3).
It may be calculated as the average of the second and third largest estimated longitudinal accelerations of the four estimated longitudinal accelerations of the vehicle body calculated based on i (Modification 3-4).

【0061】以上に於いては本発明を特定の実施形態に
ついて詳細に説明したが、本発明は上述の実施形態に限
定されるものではなく、本発明の範囲内にて他の種々の
実施形態が可能であることは当業者にとって明らかであ
ろう。
Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are included within the scope of the present invention. It will be clear to those skilled in the art that is possible.

【0062】例えば図示の各実施形態に於いては、車体
のスリップ角βは車速V等に基づき演算されるようにな
っているが、車体のスリップ角βは検出により求められ
てもよい。
For example, in each of the illustrated embodiments, the slip angle β of the vehicle body is calculated based on the vehicle speed V or the like, but the slip angle β of the vehicle body may be obtained by detection.

【0063】また図示の各実施形態に於いては、車速V
が車速センサ34により検出され、車体のスリップ角β
の演算に際し車体の前後速度Vxとして車速Vが使用さ
れるるようになっているが、車体のスリップ角βの演算
に使用される車体の前後速度Vxは各実施形態に於いて
前回演算された車体の前後速度Vxが使用されるよう修
正されてもよい。
In each of the illustrated embodiments, the vehicle speed V
Is detected by the vehicle speed sensor 34, and the slip angle β of the vehicle body is detected.
The vehicle speed V is used as the vehicle front-rear speed Vx in the calculation of the vehicle body. However, the vehicle front-rear speed Vx used in the calculation of the vehicle body slip angle β is calculated in the previous embodiment in each embodiment. May be modified to use the front-rear speed Vx.

【0064】また図示の各実施形態に於いては、車輌が
登坂状態にあるか降坂状態にあるかは考慮されていない
が、前回の路面勾配の推定値やエンジンの出力トルクと
車輌の前後加速度との関係等に基づき車輌が登坂状態に
あるか降坂状態にあるかが判定され、その判定結果に応
じて車体の推定前後速度Vxの推定に使用される車輪速
度が変更されるよう修正されてもよい。
In each of the illustrated embodiments, whether the vehicle is in an uphill state or in a downhill state is not taken into consideration. However, the previous estimated value of the road surface gradient, the output torque of the engine and the front and rear of the vehicle are not considered. Based on the relationship with acceleration, etc., it is determined whether the vehicle is in an uphill state or a downhill state, and the wheel speed used for estimating the estimated front-rear speed Vx of the vehicle body is changed according to the determination result. May be done.

【0065】[0065]

【発明の効果】以上の説明より明らかである如く、本発
明によれば、路面の勾配を推定するための車体の前後加
速度より車輌の旋回に起因する誤差成分を除去すること
ができ、これにより車輌が旋回しながら坂道を走行する
ような場合にも路面の勾配を正確に推定することができ
る。
As is apparent from the above description, according to the present invention, it is possible to remove an error component caused by turning of the vehicle from the longitudinal acceleration of the vehicle body for estimating the gradient of the road surface. Even when the vehicle runs on a slope while turning, the gradient of the road surface can be accurately estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】後輪駆動車に適用された本発明による路面勾配
推定装置の第一の好ましい実施形態を示す概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a first preferred embodiment of a road surface gradient estimating device according to the present invention applied to a rear wheel drive vehicle.

【図2】第一の実施形態に於ける路面勾配推定ルーチン
を示すフローチャートである。
FIG. 2 is a flowchart illustrating a road gradient estimation routine according to the first embodiment.

【図3】前輪駆動車に適用された本発明による路面勾配
推定装置の第二の好ましい実施形態に於ける路面勾配推
定ルーチンを示すフローチャートである。
FIG. 3 is a flowchart showing a road surface gradient estimating routine in a second preferred embodiment of the road surface gradient estimating device according to the present invention applied to a front wheel drive vehicle.

【図4】後輪駆動車に適用された本発明による路面勾配
推定装置の第三の好ましい実施形態に於ける路面勾配推
定ルーチンを示すフローチャートである。
FIG. 4 is a flowchart showing a road surface gradient estimating routine in a third preferred embodiment of the road surface gradient estimating device according to the present invention applied to a rear wheel drive vehicle.

【図5】車輌の旋回時に車輌の求心加速度が車体の前後
加速度に与える影響を示す説明図である。
FIG. 5 is an explanatory diagram showing the effect of the centripetal acceleration of the vehicle on the longitudinal acceleration of the vehicle body when the vehicle turns.

【図6】車輌の旋回時に於ける車体及び各車輪の移動方
向を示す説明図(A)及び車輌の旋回時に於ける後輪の
移動を示す説明図である。
FIG. 6 is an explanatory diagram (A) showing a moving direction of a vehicle body and each wheel when the vehicle turns, and an explanatory diagram showing a movement of a rear wheel when the vehicle turns.

【図7】車体のスリップ角β等に基づき各車輪のスリッ
プ角βiを演算する要領を示す説明図である。
FIG. 7 is an explanatory diagram showing a procedure for calculating a slip angle βi of each wheel based on a slip angle β of the vehicle body and the like.

【図8】各車輪の車輪速度Vwiに基づき車輌の重心に於
ける前後速度Vbwiを演算する要領を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a procedure for calculating a front-rear speed Vbwi at the center of gravity of the vehicle based on the wheel speed Vwi of each wheel.

【符号の説明】[Explanation of symbols]

10FR〜10RL…車輪 20…制動装置 28…マスタシリンダ 30…電気式制御装置 32FR〜32RL…車輪速度センサ 34……車速センサ 36…ヨーレートセンサ 38…前後加速度センサ 40…横加速度センサ 10FR-10RL ... Wheel 20 ... Brake device 28 ... Master cylinder 30 ... Electrical control device 32FR-32RL ... Wheel speed sensor 34 ... Vehicle speed sensor 36 ... Yaw rate sensor 38 ... Longitudinal acceleration sensor 40 ... Lateral acceleration sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜田 敏敬 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 Fターム(参考) 3D045 BB40 CC01 EE02 EE05 GG25 GG27 GG28  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshitaka Hamada 2-1-1 Asahi-machi, Kariya-shi, Aichi F-term (reference) in Aisin Seiki Co., Ltd. 3D045 BB40 CC01 EE02 EE05 GG25 GG27 GG28

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】車体の前後加速度を検出する手段と、車輪
速度に基づき車体の前後加速度を推定する手段と、車体
の横加速度を検出する手段と、車体のスリップ角を推定
する手段と、車体の横加速度及び車体のスリップ角に基
づき検出された車体の前後加速度に対する補正量を演算
すると共に検出された車体の前後加速度を前記補正量に
て補正する手段と、補正された車体の前後加速度と推定
された車体の前後加速度との差分に基づき路面の勾配を
推定する手段とを有することを特徴とする路面勾配推定
装置。
1. Means for detecting longitudinal acceleration of a vehicle body, means for estimating longitudinal acceleration of the vehicle body based on wheel speed, means for detecting lateral acceleration of the vehicle body, means for estimating a slip angle of the vehicle body, Means for calculating a correction amount for the longitudinal acceleration of the vehicle body detected based on the lateral acceleration and the slip angle of the vehicle body, and correcting the detected longitudinal acceleration of the vehicle body with the correction amount; Means for estimating a road gradient based on a difference from the estimated longitudinal acceleration of the vehicle body.
【請求項2】車体の前後加速度を検出する手段と、車輪
速度に基づき車体の前後加速度を推定する前後加速度推
定手段と、検出された車体の前後加速度と推定された車
体の前後加速度との差分に基づき路面の勾配を推定する
手段とを有する路面勾配推定装置にして、前記前後加速
度推定手段は非操舵輪の車輪速度に基づき車体の前後加
速度を推定することを特徴とする路面勾配推定装置。
Means for detecting the longitudinal acceleration of the vehicle body, means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed, and a difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. A road surface gradient estimating device having means for estimating the road surface gradient based on the road surface gradient estimating device, wherein the longitudinal acceleration estimating device estimates the longitudinal acceleration of the vehicle body based on the wheel speeds of the non-steered wheels.
【請求項3】車体の前後加速度を検出する手段と、車輪
速度に基づき車体の前後加速度を推定する前後加速度推
定手段と、検出された車体の前後加速度と推定された車
体の前後加速度との差分に基づき路面の勾配を推定する
手段とを有する路面勾配推定装置にして、前記前後加速
度推定手段は車輪速度に基づき車輌の重心に於ける車体
の前後速度を推定し、該前後速度に基づき車体の前後加
速度を推定することを特徴とする路面勾配推定装置。
Means for detecting the longitudinal acceleration of the vehicle body; means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed; and a difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. A road surface gradient estimating device having means for estimating a road surface gradient based on the vehicle speed, wherein the longitudinal acceleration estimating means estimates the longitudinal speed of the vehicle body at the center of gravity of the vehicle based on the wheel speed, and based on the longitudinal speed, A road surface gradient estimating device for estimating longitudinal acceleration.
JP2000359858A 2000-11-27 2000-11-27 Road slope estimation device Expired - Fee Related JP3662187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359858A JP3662187B2 (en) 2000-11-27 2000-11-27 Road slope estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359858A JP3662187B2 (en) 2000-11-27 2000-11-27 Road slope estimation device

Publications (2)

Publication Number Publication Date
JP2002162225A true JP2002162225A (en) 2002-06-07
JP3662187B2 JP3662187B2 (en) 2005-06-22

Family

ID=18831559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359858A Expired - Fee Related JP3662187B2 (en) 2000-11-27 2000-11-27 Road slope estimation device

Country Status (1)

Country Link
JP (1) JP3662187B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194341B2 (en) * 2001-11-06 2007-03-20 Volkswagen Ag Method and device for determining the geometric vehicle inclination of a motor vehicle
JP2009053039A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Vehicle attitude estimating apparatus and method
WO2010134304A1 (en) 2009-05-20 2010-11-25 本田技研工業株式会社 Device and method for cruise control of vehicles
JP2015003564A (en) * 2013-06-19 2015-01-08 日信工業株式会社 Vehicular brake hydraulic controller
JP2016190603A (en) * 2015-03-31 2016-11-10 いすゞ自動車株式会社 Road gradient estimation device and method of estimating road gradient
WO2017009237A1 (en) * 2015-07-14 2017-01-19 Hella Kgaa Hueck & Co. Method for ascertaining an inclination of a vehicle body
CN111824165A (en) * 2019-10-23 2020-10-27 长城汽车股份有限公司 Gradient calculation method and device
CN111918806A (en) * 2018-03-28 2020-11-10 五十铃自动车株式会社 Gradient estimation device and vehicle
CN112046487A (en) * 2020-09-21 2020-12-08 清华大学苏州汽车研究院(吴江) Road surface gradient estimation method and system based on vehicle running state

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194341B2 (en) * 2001-11-06 2007-03-20 Volkswagen Ag Method and device for determining the geometric vehicle inclination of a motor vehicle
JP2009053039A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Vehicle attitude estimating apparatus and method
WO2010134304A1 (en) 2009-05-20 2010-11-25 本田技研工業株式会社 Device and method for cruise control of vehicles
US8688328B2 (en) 2009-05-20 2014-04-01 Honda Motor Co., Ltd. Apparatus and method for movement control of a vehicle
JP2015003564A (en) * 2013-06-19 2015-01-08 日信工業株式会社 Vehicular brake hydraulic controller
US9415692B2 (en) 2013-06-19 2016-08-16 Autoliv Nissin Brake Systems Japan Co., Ltd. Vehicle brake hydraulic pressure control apparatus
JP2016190603A (en) * 2015-03-31 2016-11-10 いすゞ自動車株式会社 Road gradient estimation device and method of estimating road gradient
WO2017009237A1 (en) * 2015-07-14 2017-01-19 Hella Kgaa Hueck & Co. Method for ascertaining an inclination of a vehicle body
CN111918806A (en) * 2018-03-28 2020-11-10 五十铃自动车株式会社 Gradient estimation device and vehicle
US11541894B2 (en) 2018-03-28 2023-01-03 Isuzu Motors Limited Road slope estimator and vehicle
CN111918806B (en) * 2018-03-28 2024-01-12 五十铃自动车株式会社 Slope estimation device and vehicle
CN111824165A (en) * 2019-10-23 2020-10-27 长城汽车股份有限公司 Gradient calculation method and device
CN111824165B (en) * 2019-10-23 2021-11-19 长城汽车股份有限公司 Gradient calculation method and device
CN112046487A (en) * 2020-09-21 2020-12-08 清华大学苏州汽车研究院(吴江) Road surface gradient estimation method and system based on vehicle running state

Also Published As

Publication number Publication date
JP3662187B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP3707276B2 (en) Vehicle motion control device
JP3669668B2 (en) Vehicle wheel slip angle detection device
JP3317205B2 (en) Vehicle behavior control device
EP1514754B1 (en) Slip angle estimating method and system for a vehicle
JP4151389B2 (en) Vehicle behavior control device
JP3695164B2 (en) Vehicle behavior control method
JP3946294B2 (en) Braking force control device
JP2002154418A (en) Maximum friction coefficient estimating device of road surface
JP2002114140A (en) Vehicular rolling behavior control system
JPH0976894A (en) Braking force controller
JP3607985B2 (en) Vehicle body speed estimation device and control device
JPH07329750A (en) Method of controlling brake pressure in conjunction with deviation of actual slip of wheel from object slip thereof
JP2019535594A5 (en)
JP3662187B2 (en) Road slope estimation device
JP3747652B2 (en) Vehicle body speed estimation device
JP2000190832A (en) Motion control device for vehicle
KR20020081359A (en) System and Method for Controlling and/or Regulating the Handling Characteristics of a Motor Vehicle
JP2004025996A (en) Motion control device for vehicle
JP4244453B2 (en) Body slip angle estimation method and apparatus
JP3959860B2 (en) Vehicle body slip angle estimation method and estimation apparatus
JP2002173012A (en) Behavior control device for vehicle
JP3456336B2 (en) Vehicle control device
JP3817922B2 (en) Vehicle motion control device
JP2003226236A (en) Yaw rate detecting device for moving body
JP2000085558A (en) Oversteering condition detecting device for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050322

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100401

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110401

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees