JP4889313B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4889313B2
JP4889313B2 JP2006029101A JP2006029101A JP4889313B2 JP 4889313 B2 JP4889313 B2 JP 4889313B2 JP 2006029101 A JP2006029101 A JP 2006029101A JP 2006029101 A JP2006029101 A JP 2006029101A JP 4889313 B2 JP4889313 B2 JP 4889313B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolyte secondary
secondary battery
negative electrode
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006029101A
Other languages
Japanese (ja)
Other versions
JP2007213812A (en
Inventor
克哉 今井
淳 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006029101A priority Critical patent/JP4889313B2/en
Publication of JP2007213812A publication Critical patent/JP2007213812A/en
Application granted granted Critical
Publication of JP4889313B2 publication Critical patent/JP4889313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、偏平状の巻回電極体を有する非水電解質二次電池に関し、特に繰り返して行なわれる充放電サイクルによる内部抵抗の増大が少なく、サイクル特性に優れた偏平状の巻回電極体を有する非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery having a flat wound electrode body, and in particular, a flat wound electrode body excellent in cycle characteristics with little increase in internal resistance due to repeated charge / discharge cycles. The present invention relates to a nonaqueous electrolyte secondary battery.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量なものが要望されており、さらに二次電池においては繰り返して行なわれる充放電サイクルによる劣化が少なく、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウムイオン非水電解質二次電池が注目され、このリチウムイオン非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, there are demands for smaller, thinner and higher capacity. Therefore, there is a demand for stable performance with little deterioration due to the charge / discharge cycle. In the field of secondary batteries, lithium ion non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention. The proportion of lithium ion non-aqueous electrolyte secondary batteries accounts for a significant increase in the secondary battery market. Is shown.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(偏平な箱形)であることが多いことから、発電要素を偏平状の巻回電極体とし、この偏平状の巻回電極体を角形外装缶に収容して形成した角形の非水電解質二次電池が使用されることが多い。このような角形の非水電解質二次電池の一例を図面を用いて説明する。   By the way, in a device in which this type of nonaqueous electrolyte secondary battery is used, the space for housing the battery is often a square (flat box), and therefore the power generating element is a flat wound electrode body. In many cases, a rectangular nonaqueous electrolyte secondary battery formed by accommodating the flat wound electrode body in a rectangular outer can is used. An example of such a rectangular nonaqueous electrolyte secondary battery will be described with reference to the drawings.

図5は、従来から作製されている角形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極板11と負極板12とがセパレータ13を介して巻回された偏平状の巻回電極体14を、角形の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。偏平状の巻回電極体14は、正極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板12は、集電体19によって封口板16の中央に絶縁体17を介して取り付けられた負極端子18に電気的に接続されている。   FIG. 5 is a perspective view showing a conventional non-aqueous electrolyte secondary battery cut in the longitudinal direction. The nonaqueous electrolyte secondary battery 10 accommodates a flat wound electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound via a separator 13 in a rectangular battery outer can 15. The battery outer can 15 is sealed with a sealing plate 16. The flat wound electrode body 14 is wound so that the positive electrode plate 11 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 11 is the inner surface of the battery outer can 15 that also serves as a positive electrode terminal. Is in direct contact and is electrically connected. Further, the negative electrode plate 12 is electrically connected to a negative electrode terminal 18 attached to the center of the sealing plate 16 via an insulator 17 by a current collector 19.

そして、電池外装缶15は、正極板11と電気的に接続されているので、負極板12と電池外装缶15との短絡を防止するために、偏平状の巻回電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極板12と電池外装缶15とを電気的に絶縁状態にしている。この角形の非水電解質二次電池10は、偏平状の巻回電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注入孔21から非水電解質を注液して、この電解液注入孔21を密閉することにより作製される。このような角形の非水電解質二次電池10は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   Since the battery outer can 15 is electrically connected to the positive electrode plate 11, in order to prevent a short circuit between the negative electrode plate 12 and the battery outer can 15, the upper end and the sealing end of the flat wound electrode body 14 are sealed. The insulating spacer 20 is inserted between the plate 16 and the negative electrode plate 12 and the battery outer can 15 are electrically insulated. In this rectangular nonaqueous electrolyte secondary battery 10, after the flat wound electrode body 14 is inserted into the battery outer can 15, the sealing plate 16 is laser welded to the opening of the battery outer can 15, and then the electrolytic solution The non-aqueous electrolyte is injected from the injection hole 21 and the electrolyte injection hole 21 is sealed. Such a rectangular non-aqueous electrolyte secondary battery 10 has an excellent effect that there is little wasted space during use, and the battery performance and battery reliability are high.

なお、このような偏平状の巻回電極体14は、通常は、例えば下記特許文献1に開示されているように、以下に示すような製造方法により作製されている。すなわち、正極活物質を含む正極活物質合剤を細長いシート状のアルミニウム箔等からなる正極芯体の両面に被覆することにより正極板11を作製し、同じく細長いシート状の銅箔等からなる負極芯体の両面に負極用活物質を含む負極活物質合剤を被覆することにより負極板12を作製し、また、セパレータ13としては微多孔性ポリプロピレンフイルム等を用い、正極板11と負極板12とをセパレータ13により互いに絶縁して円柱状又は楕円状に巻回した後、更に押し潰して偏平状に形成することにより製造されている。   In addition, such a flat wound electrode body 14 is normally manufactured by the following manufacturing method as disclosed in, for example, Patent Document 1 below. That is, a positive electrode plate 11 is manufactured by coating a positive electrode active material mixture containing a positive electrode active material on both surfaces of a positive electrode core made of a long and thin sheet-like aluminum foil. A negative electrode plate 12 is produced by coating a negative electrode active material mixture containing a negative electrode active material on both sides of the core, and a microporous polypropylene film or the like is used as the separator 13, and the positive electrode plate 11 and the negative electrode plate 12 are used. Are separated from each other by a separator 13 and wound into a columnar shape or an elliptical shape, and then further crushed to form a flat shape.

ところで、負極集電体としての銅箔は、一般に電解銅箔ないし圧延銅箔が使用されている。しかしながら、電解銅箔は表面の凹凸が粗くなるため負極活物質合剤との間の付着強度が高いが、銅箔の強度が弱いために銅箔の厚さをあまり薄くできないという問題点を有しており、他方、圧延銅箔は強度が強いので厚さを薄くすることができるが、表面が平滑であるために負極活物質合剤の付着強度が弱いという問題点が存在している。そのため、下記特許文献2に示すように、圧延銅箔の表面に微細な銅粒子を電解法により付着させることにより表面を粗面化した銅箔を用いたものも知られている。   By the way, as the copper foil as the negative electrode current collector, an electrolytic copper foil or a rolled copper foil is generally used. However, the electrolytic copper foil has a high adhesion strength with the negative electrode active material mixture due to rough surface irregularities, but has a problem that the thickness of the copper foil cannot be reduced too much because the strength of the copper foil is weak. On the other hand, since the rolled copper foil has a high strength, the thickness can be reduced. However, since the surface is smooth, there is a problem that the adhesion strength of the negative electrode active material mixture is weak. Therefore, as shown in the following Patent Document 2, there is also known one using a copper foil whose surface is roughened by attaching fine copper particles to the surface of the rolled copper foil by an electrolytic method.

特開2004−241182号公報(段落[0004]〜[0005])Japanese Patent Laying-Open No. 2004-241182 (paragraphs [0004] to [0005]) 特開2000−200610号公報(特許請求の範囲、段落[0002]〜[0004]、[0048]〜[0063]、図1)Japanese Unexamined Patent Publication No. 2000-200670 (claims, paragraphs [0002] to [0004], [0048] to [0063], FIG. 1)

しかしながら、従来から使用されている角形の非水電解質二次電池は、充放電サイクルを繰り返すと電極活物質、特に負極活物質が膨張及び収縮を繰り返すことにより巻回電極体にたわみが生じ、巻回電極体の内部抵抗が増大することによって電池の劣化を招いていた。従来から、非水電解質二次電池の充放電サイクル特性を改善すべく、正極活物質合剤組成、負極活物質合剤組成、電解液組成等、主として化学的観点から種々の改良が行われているが、充放電サイクルに起因する巻回電極体のたわみを有効に抑制し、電池の内部抵抗の増加を抑え、サイクル特性を改善させる方法については、現在に至るまで十分に満足するものが知られていなかった。   However, when a charge-discharge cycle is repeated, a rectangular non-aqueous electrolyte secondary battery that has been used conventionally has a deflection in the wound electrode body due to repeated expansion and contraction of the electrode active material, particularly the negative electrode active material. The battery has been deteriorated by increasing the internal resistance of the rotating electrode body. Conventionally, in order to improve the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery, various improvements have been made mainly from a chemical viewpoint, such as a positive electrode active material mixture composition, a negative electrode active material mixture composition, and an electrolyte solution composition. However, a method that effectively suppresses the deflection of the wound electrode body due to the charge / discharge cycle, suppresses an increase in the internal resistance of the battery, and improves the cycle characteristics is known to be satisfactory to date. It was not done.

そこで、本願の発明者は、特に充放電サイクル時の活物質の膨張及び収縮が大きい負極の芯体である銅箔の物性に注目して種々実験を繰り返した結果、この負極芯体の銅箔として所定の反り量(「コンベックス」ということもある)を備えたものを使用するとともにその巻回方向を特定の方向とすることにより、劇的に偏平状巻回電極体のたわみの発生を減少させることができ、非水電解質二次電池のサイクル特性が改善されることを見出し、本発明を完成するに至ったのである。   Accordingly, the inventors of the present application have repeated various experiments paying attention to the physical properties of the copper foil, which is the negative electrode core, which has a large expansion and contraction of the active material during the charge / discharge cycle. Using a device with a specified amount of warping (sometimes called "convex") and making the winding direction a specific direction dramatically reduces the occurrence of deflection of the flat wound electrode body. It was found that the cycle characteristics of the nonaqueous electrolyte secondary battery were improved, and the present invention was completed.

すなわち、本発明は充放電サイクルを繰り返しても偏平状巻回電極体にたわみが生じ難く、充放電サイクル特性が改善された偏平状巻回電極体を備えた非水電解質二次電池を提供することを目的とする。   That is, the present invention provides a non-aqueous electrolyte secondary battery including a flat wound electrode body that is less likely to bend even when the charge / discharge cycle is repeated and has improved charge / discharge cycle characteristics. For the purpose.

本発明の上記目的は以下の構成により達成し得る。すなわち、請求項1に係る非水電解質二次電池の発明は、銅箔からなる負極芯体に負極活物質合剤が設けられた負極板と正極板とをセパレータを介して巻回した偏平状の巻回電極体を有する非水電解質二次電池において、負極芯体として、銅箔を幅30cm、長さ60cmに切断し、水平な台上に静置したときの反りが生じている対向する2辺の反り上がり量の平均値(反り量)が5mm以上の銅箔を用い、巻回電極体製造時の巻回方向を前記銅箔の反り方向に沿って巻回したことを特徴とする。   The above object of the present invention can be achieved by the following configurations. That is, the invention of the nonaqueous electrolyte secondary battery according to claim 1 is a flat shape in which a negative electrode plate having a negative electrode active material mixture provided on a negative electrode core made of copper foil and a positive electrode plate are wound through a separator. In a non-aqueous electrolyte secondary battery having a spirally wound electrode body, a copper foil is cut into a width of 30 cm and a length of 60 cm as a negative electrode core, and warping occurs when left on a horizontal table. A copper foil having an average value (warpage amount) of 5 mm or more on two sides is used, and the winding direction at the time of manufacturing a wound electrode body is wound along the warping direction of the copper foil. .

一般に種々の技術分野にわたって統一された反り量の測定方法は存在しないので、本発明では銅箔の反り量を「銅箔を幅30cm、長さ60cmに切断し、水平な台上に静置したとき反りが生じている対向する2辺の反り上がり量の平均値」として定義して用いる。   In general, there is no method for measuring the amount of warpage that has been standardized over various technical fields. Therefore, in the present invention, the amount of warpage of the copper foil is determined as follows. It is defined and used as “the average value of the amount of warping of two opposing sides where warping has occurred”.

また、本発明の非水電解質二次電池において使用し得る負極活物質としては、天然黒鉛、人造黒鉛、繊維状黒鉛、コークス、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維等、周知の炭素質物を用いることができる。特に黒鉛材料からなる負極活物質は、リチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有しているため好ましい。   Examples of the negative electrode active material that can be used in the nonaqueous electrolyte secondary battery of the present invention include natural graphite, artificial graphite, fibrous graphite, coke, mesocarbon microbeads, mesophase pitch-based carbon fiber, polyacrylonitrile-based carbon fiber, and the like. Well-known carbonaceous materials can be used. In particular, a negative electrode active material made of a graphite material has a discharge potential comparable to that of lithium metal or lithium alloy, but has high safety because dendrite does not grow, and further has excellent initial efficiency and potential flatness. It is preferable because it has excellent properties such as good and high density.

同じく正活物質としては、リチウムを可逆的に吸蔵・放出することが可能なLixMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiyCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)などの一種単独もしくは複数種を混合して用いることができる。 Similarly, as the positive active material, lithium transition metal composite oxide represented by LixMO 2 (wherein M is at least one of Co, Ni, and Mn) capable of reversibly occluding and releasing lithium, That is, LiCoO 2 , LiNiO 2 , LiNiyCo 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1) and the like. These can be used alone or in combination.

更に、本発明の非水電解質二次電池の製造方法において使用し得る非水溶電解質を構成する非水溶媒(有機溶媒)としては、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。本発明においては、充放電効率を高める点からECとDMC、MEC、DEC等の鎖状カーボネート等の混合溶媒が好適に用いられるが、一般に環状カーボネートは高電位において酸化分解されやすいので、非水電解質中のEC含有量を5体積%以上25体積%以下とすることが好ましい。   Furthermore, as the non-aqueous solvent (organic solvent) constituting the non-aqueous electrolyte that can be used in the method for producing the non-aqueous electrolyte secondary battery of the present invention, ethylene carbonate (EC), propylene carbonate, butylene carbonate, cyclopentanone, Sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, Methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, vinylene carbonate, γ-butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetra Hydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dioxane and the like can be mentioned. In the present invention, a mixed solvent such as chain carbonates such as EC and DMC, MEC, and DEC is preferably used from the viewpoint of increasing the charge / discharge efficiency. However, since cyclic carbonates are generally oxidatively decomposed at a high potential, The EC content in the electrolyte is preferably 5% by volume or more and 25% by volume or less.

なお、本発明の非水電解質二次電池の製造方法において使用し得る非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 In addition, as a solute of a nonaqueous electrolyte that can be used in the method for producing a nonaqueous electrolyte secondary battery of the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

また、請求項2に係る発明は、請求項1に記載の非水電解質二次電池において、前記銅箔として、電解銅箔を用いたことを特徴とする。   The invention according to claim 2 is characterized in that, in the nonaqueous electrolyte secondary battery according to claim 1, an electrolytic copper foil is used as the copper foil.

また、請求項3に係る発明は、請求項2に記載の非水電解質二次電池において、前記電解銅箔として、表面を研磨して粗面化した電解銅箔製造用陰極を用いて製造したものを使用したこと特徴とする。   Moreover, the invention which concerns on Claim 3 was manufactured using the cathode for electrolytic copper foil manufacture in which the surface was grind | polished and roughened as said electrolytic copper foil in the nonaqueous electrolyte secondary battery of Claim 2. It is characterized by using things.

また、請求項4に係る発明は、請求項3に記載の非水電解質二次電池において、前記電解銅箔製造用陰極が、#2000以下#500以上の粒度を有する研磨材を用いて粗面化されたものであることを特徴とする。   According to a fourth aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the third aspect, the cathode for producing the electrolytic copper foil is roughened by using an abrasive having a particle size of # 2000 or less and # 500 or more. It is characterized by being made.

また、請求項5に係る発明は、請求項1〜4のいずれかに記載の非水電解質二次電池において、前記銅箔として、ロール状に巻き取られた銅箔を40℃以上60℃以下で、24時間以上100時間以下、エージングしたものを用いたことを特徴とする。   The invention according to claim 5 is the nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the copper foil wound in a roll shape is 40 ° C. or more and 60 ° C. or less as the copper foil. Thus, a material aged from 24 hours to 100 hours is used.

本発明は上記の構成を備えることにより以下に述べるような優れた効果を奏する。すなわち、請求項1に係る発明によれば、充放電サイクルを繰り返すことによって発生する応力が銅箔の反りにより抑制されるので、充放電サイクルを繰り返しても負極板のたわみ量が減り、充放電サイクル特性が良好な非水電解質二次電池が得られる。また、この銅箔には、一定量以上の反り量を与えるだけでよいので、充放電サイクル特性が改善された非水電解質二次電池が簡単にできるようになる。この反り量が5mm未満では充放電サイクルを繰り返した際の偏平状巻回電極体のたわみの発生度合いを抑制できないため、サイクル特性が低下する。この反り量の上限は、銅箔の製造方法によって自ずと定まり、大きい方がよいが臨界的限度はない。   By providing the above configuration, the present invention has the following excellent effects. That is, according to the invention of claim 1, since the stress generated by repeating the charge / discharge cycle is suppressed by the warp of the copper foil, the amount of deflection of the negative electrode plate is reduced even when the charge / discharge cycle is repeated, A nonaqueous electrolyte secondary battery having good cycle characteristics can be obtained. Further, since it is only necessary to give a certain amount of warpage to the copper foil, a nonaqueous electrolyte secondary battery with improved charge / discharge cycle characteristics can be easily obtained. If the amount of warpage is less than 5 mm, the degree of flexure of the flat wound electrode body when the charge / discharge cycle is repeated cannot be suppressed, and the cycle characteristics deteriorate. The upper limit of the warpage amount is naturally determined by the copper foil manufacturing method, and it is better that the warpage amount is larger, but there is no critical limit.

また、請求項2に係る発明によれば、電解銅箔は一般に定速で回転する円筒形の陰極ドラムとそれに対向する陽極との間に硫酸−硫酸銅水溶液を供給し、通電しながら回転する陰極表面上に銅を析出させた後に剥離することにより製造されるため、得られる銅箔には陰極ドラムとは反対方向に反りが発生する。したがって、簡単に所定の反り量を有する銅箔が得られる。   According to the second aspect of the invention, the electrolytic copper foil is generally rotated at a constant speed by supplying a sulfuric acid-copper sulfate aqueous solution between a cylindrical cathode drum that rotates at a constant speed and an anode facing it. Since it is manufactured by depositing copper on the cathode surface and then peeling off, the resulting copper foil warps in the opposite direction to the cathode drum. Therefore, a copper foil having a predetermined warpage amount can be easily obtained.

また、請求項3に係る発明によれば、表面を研磨して粗面化した電解銅箔製造用陰極を用いて製造した銅箔は、陰極との付着強度が大きいため、陰極から剥離するときに大きな力が必要となり、結果として反り量が大きな銅箔が得られる。   According to the invention of claim 3, when the copper foil produced using the electrolytic copper foil production cathode whose surface has been polished and roughened has high adhesion strength with the cathode, Thus, a large force is required, and as a result, a copper foil having a large amount of warpage can be obtained.

また、請求項4に係る発明によれば、電解銅箔製造用陰極が#2000以下#500以上の粒度を有する研磨材、すなわち粒度がある程度大きな研磨材を用いて研磨することによって粗面化されたものを用いたため、容易に反り量が5mm以上の電解銅箔を得ることができるようになる。この研磨材の粒度が#2000を超えるものであると電解銅箔製造用陰極の表面が滑らかすぎて反り量を容易に5mm以上とすることができなくなり、また、研磨材の粒度が#500未満であると、電解銅箔製造用陰極の表面が粗くなりすぎ、得られた電解銅箔を剥離するのに必要な力が大きくなりすぎ、銅箔が切れ易くなるために好ましくない。   According to the invention of claim 4, the cathode for producing electrolytic copper foil is roughened by polishing with an abrasive having a particle size of # 2000 or less and # 500 or more, that is, an abrasive having a particle size that is somewhat large. Therefore, an electrolytic copper foil having a warp amount of 5 mm or more can be easily obtained. If the abrasive particle size exceeds # 2000, the surface of the cathode for producing electrolytic copper foil is too smooth and the amount of warpage cannot be easily increased to 5 mm or more, and the abrasive particle size is less than # 500. If it is, the surface of the cathode for producing an electrolytic copper foil becomes too rough, the force necessary to peel off the obtained electrolytic copper foil becomes too large, and the copper foil is easily cut off.

また、請求項5に係る発明によれば、反り量が小さな銅箔であっても、ロール状に巻き取られた銅箔を40℃以上60℃以下で、24時間以上100時間以下、エージングすることにより容易に反り量が5mm以上の銅箔とすることができる。エージング時の温度が40℃未満では反り量を5mm以上とするために100時間を超える時間が必要となり、また、エージング時の温度が60℃を超える状態とすると焼き鈍しの状態となって却って反り量が減ってしまうので、好ましくない。   Moreover, according to the invention which concerns on Claim 5, even if it is copper foil with small curvature amount, the copper foil wound by roll shape is 40 to 60 degreeC, 24 to 100 hours aged. Thus, it is possible to easily obtain a copper foil having a warp amount of 5 mm or more. If the temperature during aging is less than 40 ° C, it takes more than 100 hours to make the warpage amount 5 mm or more, and if the temperature during aging exceeds 60 ° C, it becomes an annealed state and the amount of warpage. Is not preferable because it decreases.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。なお、本実施例及び比較例において用いた非水電解質二次電池の構成は図1に示した従来例の非水電解質二次電池と実質的に同様となるので、必要に応じて図面を参照しながら説明することとする。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池として角形の非水電解質二次電池の一例を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. The configuration of the nonaqueous electrolyte secondary battery used in this example and the comparative example is substantially the same as that of the conventional nonaqueous electrolyte secondary battery shown in FIG. 1, so refer to the drawings as necessary. I will explain it. However, the examples shown below illustrate an example of a rectangular non-aqueous electrolyte secondary battery as a non-aqueous electrolyte secondary battery for embodying the technical idea of the present invention. The present invention is not intended to be specified by way of example, and the present invention can be equally applied to various modifications without departing from the technical concept shown in the claims.

まず最初に、実施例及び比較例に共通する非水電解質二次電池の具体的製造方法及び各種特性の測定方法について図1を用いて説明する。なお、図1は銅箔の反り量の測定方法を説明するための斜視図である。   First, a specific method for manufacturing a nonaqueous electrolyte secondary battery common to Examples and Comparative Examples and a method for measuring various characteristics will be described with reference to FIG. In addition, FIG. 1 is a perspective view for demonstrating the measuring method of the curvature amount of copper foil.

[銅箔の製法]
一般的に使用されている電解銅箔製造装置に円筒形陰極ドラムの表面を粒度が#1000の研磨材を用いて粗面化し、定常方法にしたがって一定速度で回転する円筒形の陰極ドラムとそれと対向する陽極との間に硫酸−硫酸銅水溶液を供給し、通電しながら回転する陰面である陰極ドラム上に銅を抽出させ、この電解銅箔を剥離してロール状に巻き取った。この電解銅箔の剥離時の銅箔に加わるテンションを3通りに変え、反り量が異なる3種類(A1、A2、B1)の電解銅箔を得た。ついで、このロール状に巻き取った3種類の銅箔をともに40℃で48時間エージングした。得られた銅箔の厚さは3種類とも10μmであった。
[Copper foil manufacturing method]
A cylindrical cathode drum that has a cylindrical cathode drum surface roughened with an abrasive having a particle size of # 1000 in a commonly used electrolytic copper foil manufacturing apparatus and rotates at a constant speed according to a steady method, and A sulfuric acid-copper sulfate aqueous solution was supplied between the anodes facing each other, copper was extracted onto a cathode drum which was a hidden surface rotating while energized, and the electrolytic copper foil was peeled off and wound into a roll. Three types of electrolytic copper foils (A1, A2, B1) having different warpage amounts were obtained by changing the tension applied to the copper foil at the time of peeling of the electrolytic copper foil in three ways. Subsequently, the three types of copper foils wound up in this roll shape were both aged at 40 ° C. for 48 hours. The thickness of the obtained copper foil was 10 μm for all three types.

[反り量の測定方法]
ロール状に巻き取られた3種類の銅箔から、図1で示すように、それぞれ幅Wが30cm、長さLが60cmとなるように切り出し、3種類の反り量測定用銅箔試料を得た。これらの3種類の反り量測定用銅箔試料は、切り出し直後から一方向に反っていた。次いで、切り出した3種類の反り量測定用銅箔試料を平らな台上に銅箔が反る方向が上となるように静置した。この反った方向の面は電解銅箔製造時の陰極ロールと接していない面に相当する。そして、それぞれの試料について室温下で台の表面から四辺の高さH1〜H4を別々に測定し、反りが生じている対向する2辺の高さの平均値((H1+H3)/2又は(H2+H4)/2)をその銅箔試料の反り量Hとして求めた。これらの3種類の試料の反り量Hは、それぞれH=3mm(試料B1)、H=5mm(試料A1)及びH=11mm(試料A2)であった。
[Measurement method of warpage]
As shown in FIG. 1, each of the three types of copper foil wound up in a roll shape is cut out so that the width W is 30 cm and the length L is 60 cm. It was. These three types of copper foil samples for measuring the amount of warpage warped in one direction immediately after cutting. Next, the three types of cut copper foil samples for measuring the amount of warpage were placed on a flat table so that the direction in which the copper foil warps was up. The surface in the warped direction corresponds to the surface that is not in contact with the cathode roll during the production of the electrolytic copper foil. Then, for each sample, the heights H1 to H4 of the four sides are measured separately from the surface of the table at room temperature, and the average value ((H1 + H3) / 2 or (H2 + H4) of the heights of the two opposing sides where warpage occurs. ) / 2) was determined as the amount of warpage H of the copper foil sample. The warpage amounts H of these three types of samples were H = 3 mm (sample B1), H = 5 mm (sample A1), and H = 11 mm (sample A2), respectively.

[負極の作製]
黒鉛粉末を水に分散させ、増粘剤としてのカルボキシメチルセルロース(CMC)を添加し、結着剤としてのスチレンブタジエンゴム(SBR)のディスパージョン(固形分48%)を水に分散させたものを添加し、スラリーを作製した。なお、この場合、負極の乾燥後における質量組成比が、黒鉛:SBR:CMC=100:3:2となるように調製した。このスラリーをドクターブレード法により、前記の3種類の銅箔のそれぞれに、両面に塗布し、110℃で2時間真空乾燥させて銅箔の両面にそれぞれ厚さ100μmの負極活物質合剤層が形成された3種類の負極板12を作製した。
[Production of negative electrode]
Dispersed graphite powder in water, added carboxymethylcellulose (CMC) as a thickener, dispersed styrene butadiene rubber (SBR) dispersion (solid content 48%) as water in water This was added to make a slurry. In this case, the negative electrode was prepared so that the mass composition ratio after drying was graphite: SBR: CMC = 100: 3: 2. This slurry was applied to both sides of the above three types of copper foils by the doctor blade method and vacuum-dried at 110 ° C. for 2 hours to form a negative electrode active material mixture layer having a thickness of 100 μm on both sides of the copper foils. Three types of formed negative electrode plates 12 were produced.

[電解液とセパレータ]
非水電解液としては、ECとDECとの体積比50:50の混合溶媒にLiPFを1mol/Lとなるように溶解したものを使用した。また、セパレータ13としてはポリプロピレン製の微多孔膜を使用した。
[Electrolyte and separator]
As the nonaqueous electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent of EC and DEC in a volume ratio of 50:50 so as to be 1 mol / L was used. As the separator 13, a microporous film made of polypropylene was used.

[正極の作製]
正極活物質合剤として、コバルト酸リチウム(LiCoO)85質量部と、導電剤としての黒鉛粉末5質量部とカーボンブラック5質量部とを充分に混合した。この後、N−メチル−2−ピロリドン(NMP)に溶かした結着剤としてのフツ化ビニリデン系重合体を固形分として5質量部となるように混合して、正極活物質合剤スラリーを作製した。得られた正極活物質合剤スラリーを厚みが15μmの正極集電体(アルミニウム箔またはアルミニウム合金箔)の両面にドクターブレード法により塗布し、正極集電体の両面に正極活物質合剤層を形成した。次いで、乾燥後、所定の厚みになるまでローラプレス機により圧延して正極板11を作製した。
[Production of positive electrode]
As a positive electrode active material mixture, 85 parts by mass of lithium cobaltate (LiCoO 2 ), 5 parts by mass of graphite powder as a conductive agent, and 5 parts by mass of carbon black were sufficiently mixed. Thereafter, a vinylidene fluoride polymer as a binder dissolved in N-methyl-2-pyrrolidone (NMP) is mixed to a solid content of 5 parts by mass to prepare a positive electrode active material mixture slurry. did. The obtained positive electrode active material mixture slurry was applied to both surfaces of a positive electrode current collector (aluminum foil or aluminum alloy foil) having a thickness of 15 μm by the doctor blade method, and a positive electrode active material mixture layer was applied to both surfaces of the positive electrode current collector. Formed. Subsequently, after drying, the positive electrode plate 11 was produced by rolling with a roller press until a predetermined thickness was obtained.

[電池の作製]
そして、上述のようにして作成した正極板11及び負極板12を用い、正極板11及び負極板12との間にセパレータ13を配置し、正極板11及び負極板12をセパレータ13により互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して円筒形の巻回電極体を作製した。次いで、この円筒形の巻回電極体から巻き芯を取り出し、円筒形の巻回電極体をプレス機で押し潰し、角形の電池外装缶15に挿入できるように偏平状に成型することにより、負極板12の種類に対応した3種類の角形の非水電解質二次電池を作製した。すなわち、負極板の芯体として銅箔試料B1を用いた電池を比較例1の電池b1とし、銅箔試料A1を用いた電池を実施例1の電池a1とし、銅箔試料A2を用いた電池を実施例2の電池a2とした。これらの3種類の電池の設計容量は全て1000mAhである。
[Production of battery]
Then, using the positive electrode plate 11 and the negative electrode plate 12 prepared as described above, the separator 13 is disposed between the positive electrode plate 11 and the negative electrode plate 12, and the positive electrode plate 11 and the negative electrode plate 12 are insulated from each other by the separator 13. A cylindrical wound electrode body was produced by spirally winding around a cylindrical winding core. Next, the winding core is taken out from this cylindrical wound electrode body, and the cylindrical wound electrode body is crushed with a press machine and molded into a flat shape so that it can be inserted into the rectangular battery outer can 15. Three types of prismatic nonaqueous electrolyte secondary batteries corresponding to the type of the plate 12 were produced. That is, the battery using the copper foil sample B1 as the core of the negative electrode plate is referred to as the battery b1 of Comparative Example 1, the battery using the copper foil sample A1 is referred to as the battery a1 of Example 1, and the battery using the copper foil sample A2 Was designated as battery a2 of Example 2. The design capacity of these three types of batteries is all 1000 mAh.

次に、上記3種の電池b1、a1、a2について、以下に示した充放電条件下で充放電サイクル試験を行った。なお、充放電サイクル試験は全て25℃に維持された恒温槽中で行なった。まず最初に、各電池について、1It(1C)=1000mAの定電流で充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で電流値が1/50It=20mAになるまで充電し、その後、1Itの定電流で電池電圧が2.75Vに達するまで放電を行い、この時の放電容量を初期容量として求めた。   Next, a charge / discharge cycle test was performed on the above three types of batteries b1, a1, and a2 under the following charge / discharge conditions. All charge / discharge cycle tests were conducted in a thermostatic chamber maintained at 25 ° C. First, each battery is charged at a constant current of 1 It (1 C) = 1000 mA, and after the battery voltage reaches 4.2 V, the current value becomes 1/50 It = 20 mA at a constant voltage of 4.2 V. The battery was charged and then discharged at a constant current of 1 It until the battery voltage reached 2.75 V, and the discharge capacity at this time was determined as the initial capacity.

充放電サイクル特性の測定は、初期容量を測定した各電池について、1Itの定電流で電池電圧が4.2Vに達するまで充電した後に4.2Vの定電圧で電流値が1/50Itになるまで充電し、その後、1Itの定電流で電池電圧が2.75Vに達するまで放電することを1サイクルとし、500サイクルに達するまで繰返してそれぞれのサイクルにおける放電容量を求めた。そして、各電池について以下の計算式に基いて25℃における各サイクル後の容量残存率(%)を求めた。結果を図2のグラフに示した。また、上記3種の電池b1、a1、a2について500サイクル後の容量残存率を求め、反り量とともにまとめて表1に示した。
容量残存率(%)=(各サイクル後の放電容量/初期容量)×100
Charging / discharging cycle characteristics were measured for each battery whose initial capacity was measured until the battery voltage reached 4.2 V at a constant current of 1 It until the current value became 1/50 It at a constant voltage of 4.2 V. The battery was charged and then discharged at a constant current of 1 It until the battery voltage reached 2.75 V as one cycle, and repeated until 500 cycles were reached to determine the discharge capacity in each cycle. And about each battery, the capacity | capacitance residual rate (%) after each cycle in 25 degreeC was calculated | required based on the following formulas. The results are shown in the graph of FIG. Further, the remaining capacity rate after 500 cycles for the above three types of batteries b1, a1, and a2 was determined and shown together with the amount of warpage in Table 1.
Capacity remaining rate (%) = (discharge capacity after each cycle / initial capacity) × 100

Figure 0004889313
Figure 0004889313

3種の電池b1、a1、a2についての図2に示したサイクル数と容量残存率の測定結果から、次のことがわかる。すなわち、200サイクル程度までは実質的に3種の電池b1、a1、a2間に容量残存率の変化傾向に差異は生じないが、300サイクルを超えると比較例の電池b1の容量残存率が実施例1及び2の電池a1及びa2の容量残存率よりも急激に減少していく。一方、実施例1の電池a1と実施例2の電池a2との間の容量残存率の変化傾向は実質的に同等であるが、500サイクル近くなると僅かに実施例2の電池a2の方が実施例1の電池a1よりも容量残存率が大きくなっている。500サイクル後の容量残存率の測定結果は、表1に示したように、比較例1の電池b1が58.5%であるのに対し、実施例1の電池a1では74.0%、実施例2の電池a2では74.2%という結果が得られた。   From the measurement results of the number of cycles and the capacity remaining rate shown in FIG. 2 for the three types of batteries b1, a1, and a2, the following can be understood. That is, until about 200 cycles, there is substantially no difference in the change tendency of the capacity remaining rate between the three types of batteries b1, a1, and a2, but when the cycle exceeds 300 cycles, the capacity remaining rate of the battery b1 of the comparative example is implemented. It decreases more rapidly than the remaining capacity of the batteries a1 and a2 of Examples 1 and 2. On the other hand, the change tendency of the capacity remaining rate between the battery a1 of the example 1 and the battery a2 of the example 2 is substantially the same, but the battery a2 of the example 2 is slightly implemented when the cycle is nearly 500 cycles. The capacity remaining rate is larger than that of the battery a1 of Example 1. As shown in Table 1, the measurement result of the capacity remaining rate after 500 cycles was 58.5% for the battery b1 of Comparative Example 1, whereas it was 74.0% for the battery a1 of Example 1. In the battery a2 of Example 2, a result of 74.2% was obtained.

500サイクル経過後の実施例1及び2の電池a1及びa2、比較例の電池b1をそれぞれ横方向に切断して最外周の正極板11及び負極板12の状態を調べたところ、それぞれ実施例1及び2の電池a1及びa2の場合は図3に示したとおり、比較例の電池b1の場合は図4に示したとおりとなっていた。すなわち、実施例1及び2の電池a1及びa2では、正極板11及び負極板12には実質的に変形が見られなかったのに対し、比較例の電池b1では負極板12に横方向の端部近傍のX点でたわみが生じていた。比較例1の電池b1と実施例1及び2の電池a1及びa2との構成は、負極芯体12の両面に設けられた負極活物質合剤層12の構成には差異はなく、負極板12の芯体12として使用された銅箔の反り量のみに差異があるから、比較例1の電池b1と実施例1及び2の電池a1及びa2との効果の差異は負極板12の芯体12として使用された銅箔の反り量の差異によって生じたものであることは明らかである。したがって、本発明においては、図1に示したような測定方法により測定した反り量Hが5mm以上であり、かつ、巻回電極体製造時の巻回方向を特定すれば、図4に示したようなたわみが生じることがなく、良好な充放電サイクル特性が得られることがわかる。 When the batteries a1 and a2 of Examples 1 and 2 after the elapse of 500 cycles and the battery b1 of the comparative example were cut in the lateral direction, the states of the outermost positive electrode plate 11 and negative electrode plate 12 were examined. In the case of batteries a1 and a2 of 2 and 2, as shown in FIG. 3, the battery b1 of the comparative example was as shown in FIG. That is, in the batteries a1 and a2 of Examples 1 and 2, the positive electrode plate 11 and the negative electrode plate 12 were not substantially deformed, whereas in the battery b1 of the comparative example, the negative electrode plate 12 had a lateral end. Deflection occurred at the point X near the part. Configuration of the battery b1 of Comparative Example 1 and battery a1 and a2 of Example 1 and 2 are not differences in the negative electrode active material mixture layer 12 2 structure provided on both surfaces of the negative electrode substrate 12 1, a negative electrode because there is warpage only the difference of the copper foil used as the core body 12 1 of the plate 12, the difference in the effect of the battery b1 of Comparative example 1 and battery a1 and a2 of examples 1 and 2 of the negative electrode plate 12 it is clear that is caused by warpage of the difference of the copper foil used as the core body 12 1. Therefore, in the present invention, if the amount of warpage H measured by the measuring method as shown in FIG. 1 is 5 mm or more and the winding direction at the time of manufacturing the wound electrode body is specified, it is shown in FIG. It can be seen that such a deflection does not occur and good charge / discharge cycle characteristics can be obtained.

以上のように、本発明の実施例によれば、銅箔として一定の反り量を有するものを使用し、偏平状の巻回電極体製造時にこの銅箔の反りの方向に巻回することにより、充放電サイクルを繰り返すことによって負極活物質が膨張及び収縮を繰り返しても銅箔中に残存していた応力によりたわみを抑制することができ、充放電サイクル特性に優れた長寿命の非水電解質二次電池が得られるようになる。   As described above, according to the embodiment of the present invention, a copper foil having a certain amount of warpage is used, and the copper foil is wound in the warping direction during the production of a flat wound electrode body. By repeating the charge / discharge cycle, even if the negative electrode active material repeatedly expands and contracts, it can suppress deflection due to the stress remaining in the copper foil, and has a long-life nonaqueous electrolyte with excellent charge / discharge cycle characteristics. A secondary battery can be obtained.

負極芯体の銅箔の反り量測定方法を示す斜視図である。It is a perspective view which shows the curvature amount measuring method of the copper foil of a negative electrode core. 実施例1及び2、比較例1で製造した非水電解質二次電池のサイクル数と容量残存率との関係を示すグラフである。4 is a graph showing the relationship between the number of cycles and the capacity remaining rate of the nonaqueous electrolyte secondary batteries manufactured in Examples 1 and 2 and Comparative Example 1. 実施例1及び2の非水電解質二次電池の500サイクル後の横断面図である。It is a cross-sectional view after 500 cycles of the nonaqueous electrolyte secondary battery of Examples 1 and 2. 比較例の非水電解質二次電池の500サイクル後の横断面図である。It is a cross-sectional view after 500 cycles of the nonaqueous electrolyte secondary battery of a comparative example. 従来から作製されている角形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cuts the square nonaqueous electrolyte secondary battery produced conventionally from the lengthwise direction.

符号の説明Explanation of symbols

10 非水電解質二次電池
11 正極板
12 負極板
12 負極芯体(銅箔)
12 負極活物質合剤層
13 セパレータ
14 偏平状の巻回電極体
15 角形の電池外装缶
16 封口板
17 絶縁体
18 負極端子
19 集電体
20 絶縁スペーサ
21 電解液注入孔
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode plate 12 Negative electrode plate 12 1 Negative electrode core (copper foil)
12 2 Negative electrode active material mixture layer 13 Separator 14 Flat wound electrode body 15 Rectangular battery outer can 16 Sealing plate 17 Insulator 18 Negative electrode terminal 19 Current collector 20 Insulating spacer 21 Electrolyte injection hole

Claims (5)

銅箔からなる負極芯体に負極活物質合剤層が設けられた負極板と正極板とをセパレータを介して巻回した偏平状の巻回電極体を有する非水電解質二次電池において、
負極芯体として、銅箔を幅30cm、長さ60cmに切断し、水平な台上に静置したときの反りが生じている対向する2辺の反り上がり量の平均値(以下、「反り量」という。)が5mm以上の銅箔を用い、巻回電極体製造時の巻回方向を前記銅箔の反り方向に沿って巻回したことを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery having a flat wound electrode body in which a negative electrode plate having a negative electrode active material mixture layer provided on a negative electrode core body made of copper foil and a positive electrode plate are wound through a separator,
As the negative electrode core, the copper foil was cut into a width of 30 cm and a length of 60 cm, and the average value of the warping amounts of the two opposing sides where the warpage occurred when left on a horizontal table (hereinafter referred to as “warping amount”). The non-aqueous electrolyte secondary battery is characterized in that a copper foil of 5 mm or more is used and the winding direction at the time of manufacturing the wound electrode body is wound along the warping direction of the copper foil.
前記銅箔として、電解銅箔を用いたことを特徴とする請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein an electrolytic copper foil is used as the copper foil. 前記電解銅箔として、表面を研磨して粗面化した電解銅箔製造用陰極を用いて製造したものを使用したこと特徴とする請求項2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the electrolytic copper foil is manufactured using a cathode for manufacturing an electrolytic copper foil whose surface is roughened by polishing. 前記電解銅箔製造用陰極が、#2000以下#500以上の粒度を有する研磨材を用いて粗面化されたものであることを特徴とする請求項3に記載の非水電解質二次電池。   4. The nonaqueous electrolyte secondary battery according to claim 3, wherein the cathode for producing an electrolytic copper foil is roughened with an abrasive having a particle size of # 2000 or less and # 500 or more. 前記銅箔として、ロール状に巻き取られた銅箔を40℃以上60℃以下で、24時間以上100時間以下、エージングしたものを用いたことを特徴とする請求項1〜4のいずれかに記載の非水電解質二次電池。
The copper foil wound up in a roll shape is used at 40 ° C or more and 60 ° C or less for 24 hours or more and 100 hours or less, and the copper foil is used according to any one of claims 1 to 4. The nonaqueous electrolyte secondary battery as described.
JP2006029101A 2006-02-07 2006-02-07 Nonaqueous electrolyte secondary battery Active JP4889313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029101A JP4889313B2 (en) 2006-02-07 2006-02-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029101A JP4889313B2 (en) 2006-02-07 2006-02-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007213812A JP2007213812A (en) 2007-08-23
JP4889313B2 true JP4889313B2 (en) 2012-03-07

Family

ID=38492072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029101A Active JP4889313B2 (en) 2006-02-07 2006-02-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4889313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318603B1 (en) * 2016-08-23 2021-10-27 에스케이넥실리스 주식회사 Electrolytic Copper Foil Capable of Improving Capacity Maintenance of Secondary Battery, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same

Also Published As

Publication number Publication date
JP2007213812A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP5260838B2 (en) Non-aqueous secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
KR101289974B1 (en) Non-aqueous liquid electrolyte secondary cell
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
JP5465755B2 (en) Non-aqueous secondary battery
JP2008243684A (en) Lithium secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP3997711B2 (en) Initial charging method and manufacturing method of lithium secondary battery
KR20190083304A (en) A method of pre-lithiating anode and Anode manufactured therefrom
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2009081067A (en) Non-aqueous secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP4889313B2 (en) Nonaqueous electrolyte secondary battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP4240960B2 (en) Lithium secondary battery and manufacturing method thereof
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R151 Written notification of patent or utility model registration

Ref document number: 4889313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350