JP4889085B2 - Benzodithiophene compounds - Google Patents

Benzodithiophene compounds Download PDF

Info

Publication number
JP4889085B2
JP4889085B2 JP2005294967A JP2005294967A JP4889085B2 JP 4889085 B2 JP4889085 B2 JP 4889085B2 JP 2005294967 A JP2005294967 A JP 2005294967A JP 2005294967 A JP2005294967 A JP 2005294967A JP 4889085 B2 JP4889085 B2 JP 4889085B2
Authority
JP
Japan
Prior art keywords
group
formula
benzodithiophene
compound
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005294967A
Other languages
Japanese (ja)
Other versions
JP2007099736A (en
Inventor
俊也 匂坂
正臣 佐々木
昌史 鳥居
慎一 河村
崇 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005294967A priority Critical patent/JP4889085B2/en
Publication of JP2007099736A publication Critical patent/JP2007099736A/en
Application granted granted Critical
Publication of JP4889085B2 publication Critical patent/JP4889085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、反応性官能基を有する新規な製造中間体(中間原料体)に関するものであり、特に、π共役系高分子製造のための中間体で、得られるπ共役系高分子が有機エレクトロニクス用素材として極めて有用であるベンゾジチオフェン化合物に関する。   The present invention relates to a novel production intermediate (intermediate raw material) having a reactive functional group, and in particular, an intermediate for producing a π-conjugated polymer, and the obtained π-conjugated polymer is an organic electronics. The present invention relates to a benzodithiophene compound that is extremely useful as a raw material.

有機材料の発光特性や電荷輸送特性を利用して、有機エレクトロルミネッセンス素子や、有機トランジスタ素子が提案されている。これらの素子に有機材料を用いることにより、軽量、安価、低製造コスト、フレキシブル等の利点が期待される。   Organic electroluminescence elements and organic transistor elements have been proposed by utilizing the light emission characteristics and charge transport characteristics of organic materials. By using an organic material for these elements, advantages such as light weight, low cost, low manufacturing cost, and flexibility are expected.

従来では、有機薄膜EL素子用の材料として、低分子系および高分子系の様々な材料が報告されている。低分子系においては、種々の積層構造の採用により高効率化の実現が、またドーピング法をうまくコントロールすることにより耐久性の向上が報告されている。しかし、低分子集合体の場合には、長時間における経時による膜状態の変化が生じることが報告されており、膜の安定性に関して本質的な問題点を抱えている。   Conventionally, various materials of low molecular weight and high molecular weight have been reported as materials for organic thin film EL elements. In low molecular weight systems, it has been reported that high efficiency is achieved by employing various laminated structures, and that durability is improved by well controlling the doping method. However, in the case of low molecular aggregates, it has been reported that the film state changes with time over a long period of time, and has an essential problem with respect to the stability of the film.

一方、高分子系材料においては、これまで、主にPPV(poly−p−phenylenevinylene)系列やpoly−thiophene等のπ共役系高分子について精力的に検討が行われてきた。   On the other hand, in the case of polymer materials, energetic studies have been made mainly on π-conjugated polymers such as PPV (poly-p-phenylene vinylene) series and poly-thiophene.

しかしながら、これらの材料系は純度を上げることが困難であることや、本質的に蛍光量子収率が低いことが問題点として挙げられ、高性能なEL素子は得られていないのが現状である。またπ共役高分子主鎖中にベンゾジチオフェン部位を含む高分子材料も提案されている(例えば、特許文献1参照)。   However, it is difficult to increase the purity of these material systems and the intrinsically low fluorescence quantum yield is cited as a problem, and at present, high-performance EL devices have not been obtained. . A polymer material containing a benzodithiophene moiety in the π-conjugated polymer main chain has also been proposed (see, for example, Patent Document 1).

高分子材料は本質的にガラス状態が安定であることを考慮すると、高蛍光量子効率を付与することができれば優れたEL素子の構築が可能となるため、この分野でさらなる改良が行われている。   In consideration of the fact that polymer materials are inherently stable in the glass state, if high fluorescence quantum efficiency can be imparted, an excellent EL device can be constructed, and further improvements have been made in this field. .

一方、有機薄膜トランジスタ素子においても、低分子系および高分子系の様々な材料が報告されている。例えば低分子材料ではペンタセン、フタロシアニン、フラーレン、アントラジチオフェン、チオフェンオリゴマー、ビスジチエノチオフェンなどが、また高分子材料ではポリチオフェン(例えば、非特許文献1参照)、ポリチエニレンビニレン(例えば、非特許文献2参照)などの幾つかの材料が挙げられる。
しかし、上記の材料においても、低分子系では膜の安定性に関する問題が、高分子系では純度に起因する低性能の問題があり、さらなる改良が望まれている。
特開2003−221579号公報 Appl.Phys.Lett.,69,4108,1996. Appl.Phys.Lett.,63,1372,1993.
On the other hand, various materials of low molecular weight and high molecular weight have been reported for organic thin film transistor elements. For example, pentacene, phthalocyanine, fullerene, anthradithiophene, thiophene oligomer, bisdithienothiophene and the like are used for low molecular weight materials, and polythiophene (for example, see Non-Patent Document 1) and polythienylene vinylene (for example, non-patented) for high-molecular materials. There are several materials such as reference 2).
However, even in the above materials, there is a problem regarding the stability of the film in the low molecular system, and there is a problem in the low performance due to the purity in the high molecular system, and further improvement is desired.
JP 2003-221579 A Appl. Phys. Lett. 69, 4108, 1996. Appl. Phys. Lett. 63, 1372, 1993.

本発明は、上記従来技術の実状に鑑みてなされたものであって、有機エレクトロニクス用のπ共役系高分子を製造するための、公知の反応を利用して様々なπ共役系高分子に誘導できる反応性官能基を含有する新規な製造中間体を提供することを目的とする。   The present invention has been made in view of the above-described prior art, and is derived to various π-conjugated polymers using known reactions for producing π-conjugated polymers for organic electronics. It is an object of the present invention to provide a novel production intermediate containing a reactive functional group.

本発明者らは鋭意検討した結果、π共役系高分子を製造するための反応性官能基をもつベンゾジチオフェン構造を有する製造中間体を用いることにより、上記課題が解決されることを見出し本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above problems can be solved by using a production intermediate having a benzodithiophene structure having a reactive functional group for producing a π-conjugated polymer. The invention has been completed.

上記の課題を解決するために、請求項1に記載の発明は、下記式(I)で表されることを特徴とするベンゾジチオフェン化合物を提供する。   In order to solve the above problems, the invention according to claim 1 provides a benzodithiophene compound represented by the following formula (I).

Figure 0004889085


(上記式(I)中、Zは−PO(OR’)2(式中R’は低級アルキル基を表す)を表し、R1〜R8は、それぞれ独立に、水素原子、置換または無置換のアルキル基またはアルコキシ基、置換或いは無置換の芳香族炭化水素基または芳香族複素環基を表す。)
Figure 0004889085


(In the above formula (I), Z represents —PO (OR ′) 2 (wherein R ′ represents a lower alkyl group ), and R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted. An alkyl group or an alkoxy group, a substituted or unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group.)

また、請求項2に記載の発明は、下記式(II)で表されるベンゾジチオフェン化合物であることを特徴とする。   The invention described in claim 2 is a benzodithiophene compound represented by the following formula (II).

Figure 0004889085
(式(II)中、Yはハロゲン原子を表し、R1〜R8は、それぞれ独立に、水素原子、置換または無置換のアルキル基またはアルコキシ基、置換或いは無置換の芳香族炭化水素基または芳香族複素環基を表す。)
Figure 0004889085
(In Formula (II), Y represents a halogen atom, and R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group or an alkoxy group, a substituted or unsubstituted aromatic hydrocarbon group, or Represents an aromatic heterocyclic group.)

本発明によれば、本発明における請求項1または2の構成により、新規なアリレンビニレン型ベンゾジチオフェン重合体の製造やベンゾジチオフェンへの更なる機能性官能基による修飾が可能となる。   According to the present invention, according to the constitution of the first or second aspect of the present invention, it is possible to produce a novel arylene vinylene type benzodithiophene polymer and to modify the benzodithiophene with further functional functional groups.

以下、本発明の化合物を実施形態により、詳細に説明する。
まず本発明のベンゾジチオフェン誘導体の製造方法について説明する。
Hereinafter, the compound of the present invention will be described in detail by embodiments.
First, a method for producing the benzodithiophene derivative of the present invention will be described.

Figure 0004889085
Figure 0004889085

(式(I)中、Zは−PO(OR’)2(式中R’は低級アルキル基を表す)を表し、R1〜R8は、それぞれ独立に、水素原子、置換または無置換のアルキル基またはアルコキシ基、置換或いは無置換の芳香族炭化水素基または芳香族複素環基を表す。)
および、
(In the formula (I), Z represents —PO (OR ′) 2 (wherein R ′ represents a lower alkyl group ), and R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted. Represents an alkyl group or an alkoxy group, a substituted or unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group.)
and,

Figure 0004889085
(式(II)中、Yはハロゲン原子を表し、R1〜R8は、それぞれ独立に、水素原子、置換または無置換のアルキル基またはアルコキシ基、置換或いは無置換の芳香族炭化水素基または芳香族複素環基を表す。)
Figure 0004889085
(In Formula (II), Y represents a halogen atom, and R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group or an alkoxy group, a substituted or unsubstituted aromatic hydrocarbon group, or Represents an aromatic heterocyclic group.)

式(II)で表されるベンゾジチオフェン誘導体は、ベンゾジチオフェンから容易に誘導可能である。例えばJournal of Organic Chemistry,32,3093,1967.等に記載されている下記方法に従って式(1)により、ベンゾジチオフェンを合成した後、   The benzodithiophene derivative represented by the formula (II) can be easily derived from benzodithiophene. For example, after synthesizing benzodithiophene by the formula (1) according to the following method described in Journal of Organic Chemistry, 32, 3093, 1967.

Figure 0004889085
Figure 0004889085

例えば下記式(2)Vilsmeier反応、   For example, the following formula (2) Vilsmeier reaction,

Figure 0004889085
Figure 0004889085

あるいは、アリールリチウム化合物(Ar−H)と、DMF(ジメチルホルムアミド)、N−ホルミルモルホリン、N−ホルミルピペリジン等をはじめとするカルボニル化剤とを、式(3)で示す反応、   Alternatively, an aryllithium compound (Ar—H) and a carbonylating agent such as DMF (dimethylformamide), N-formylmorpholine, N-formylpiperidine and the like are represented by the reaction represented by formula (3):

Figure 0004889085
Figure 0004889085

あるいは、下記式(4)に示すGatterman反応、   Alternatively, a Gatterman reaction represented by the following formula (4):

Figure 0004889085
Figure 0004889085

等の下記式(5)に示す反応を用いて下記のようにジカルボニル化合物を合成する。   A dicarbonyl compound is synthesized as follows using a reaction represented by the following formula (5).

Figure 0004889085
Figure 0004889085

さらにこのジカルボニル化合物を水素化ホウ素ナトリウムや水素化リチウムアルミニウム等をはじめとする還元試薬を用いてアルコールへ誘導する(式(6)参照)。   Furthermore, this dicarbonyl compound is derived into alcohol using a reducing reagent such as sodium borohydride or lithium aluminum hydride (see formula (6)).

Figure 0004889085
Figure 0004889085

さらに該アルコールの水酸基を塩化チオニルや臭化リン等をはじめとするハロゲン化試薬によりハロゲンに置換する(式(7)参照)。   Furthermore, the hydroxyl group of the alcohol is substituted with halogen by a halogenating reagent such as thionyl chloride or phosphorus bromide (see formula (7)).

Figure 0004889085
Figure 0004889085

これにより、式(II)で表されるベンゾジチオフェン誘導体を得る事ができる。或いはパラホルムアルデヒドとハロゲン化水素等を用いて直接ベンゾジチオフェンをハロメチル化する方法などによっても得る事ができる(式(8)参照)。   Thereby, a benzodithiophene derivative represented by the formula (II) can be obtained. Alternatively, it can also be obtained by a method of directly halomethylating benzodithiophene using paraformaldehyde and hydrogen halide or the like (see formula (8)).

Figure 0004889085
Figure 0004889085

または、Journal of Organic Chemistry, 32, 3093, 1967. 等に記載されている下記方法に従ってメチル基を有するベンゾジチオフェンを合成した後(式(9)参照)、   Alternatively, after synthesizing a benzodithiophene having a methyl group according to the following method described in Journal of Organic Chemistry, 32, 3093, 1967., etc. (see formula (9)),

Figure 0004889085
Figure 0004889085

過酸化物と、例えばN−ブロモサクシンイミドやN−クロロサクシンイミドなどのハロゲン化試薬により、ラジカル的にメチル基をハロゲン化する事によっても合成できる(式(10)参照)。   It can also be synthesized by radically halogenating a methyl group with a peroxide and a halogenating reagent such as N-bromosuccinimide or N-chlorosuccinimide (see formula (10)).

Figure 0004889085
Figure 0004889085

次に、式(I)で表されるベンゾジチオフェンのリン化合物について説明する。
式(I)で表されるベンゾジチオフェンのリン化合物は、上記で得られた式(II)で表されるベンゾジチオフェンのハロメチル体から容易に誘導する事が可能である。
例えばMichaelis−Arbuzov反応として知られるトリアルキルホスホン酸エステル(P(OR)3中Rは低級アルキル基を表す)との反応(式(11)参照)
Next, the phosphorus compound of benzodithiophene represented by the formula (I) will be described.
The phosphorus compound of benzodithiophene represented by formula (I) can be easily derived from the halomethyl form of benzodithiophene represented by formula (II) obtained above.
For example, a reaction with a trialkylphosphonic acid ester (R in P (OR) 3 represents a lower alkyl group) known as Michaelis-Arbuzov reaction (see formula (11))

Figure 0004889085
Figure 0004889085

あるいは、前記ヒドロキシメチル化合物からもトリアルキルホスホン酸エステル(式:P(OR)3中、Rは低級アルキル基を表す。)と、ヨウ化物を用いて同様に式(I)で表されるベンゾジチオフェンのリン化合物を合成する事ができる(式(12)参照)。 Alternatively, from the hydroxymethyl compound, a trialkylphosphonic acid ester (in the formula: P (OR) 3 , R represents a lower alkyl group) and an iodide are also used to represent the benzoic acid represented by the formula (I). A phosphorus compound of dithiophene can be synthesized (see formula (12)).

Figure 0004889085
Figure 0004889085

式(I)で示される化合物のうち、Zが−P+R’’3Y−(式中R’’はフェニル基あるいはアルキル基を、Yはハロゲン原子を表す)で示される化合物でも、上記で得られた式(II)で表されるベンゾジチオフェンのハロメチル体から容易に誘導する事が可能である。この場合、上記で得られた式(I)をホスフィン化合物(ホスフィン化合物PR3中、Rはフェニル基またはアルキル基をあらわす。)と反応させればよく、これはいわゆるWitting試薬の調製として知られている(式(13)参照)。 Among the compounds represented by the formula (I), the compound represented by Z is —P + R ″ 3 Y— (wherein R ″ represents a phenyl group or an alkyl group, and Y represents a halogen atom). It can be easily derived from the halomethyl form of benzodithiophene represented by the formula (II). In this case, the formula (I) obtained above may be reacted with a phosphine compound (in the phosphine compound PR 3 , R represents a phenyl group or an alkyl group), which is known as preparation of a so-called Witting reagent. (See formula (13)).

Figure 0004889085
Figure 0004889085

またはホスホン酸エステルの場合同様に、前記ヒドロキシメチル化合物からも合成する事ができる(式(14)参照)。   Alternatively, it can be synthesized from the hydroxymethyl compound as in the case of a phosphonate (see formula (14)).

Figure 0004889085
Figure 0004889085

本発明における式(I)或いは(II)で表される化合物を用いる事により、有機エレクトロニクス用途に有用である新規なπ共役系重合体を容易に得る事ができる。   By using the compound represented by the formula (I) or (II) in the present invention, a novel π-conjugated polymer useful for organic electronics can be easily obtained.

例えば式(II)で表される化合物に、溶媒中、2倍モルの塩基を作用させると容易に重合反応が進行し、アリレンビニレンタイプの重合体を得る事が可能である。これはGILCH重合と呼ばれ、その詳細は例えばMacromolecules,1999,32,4295−4932.等に記載されている(式(15)参照)。   For example, when a 2-fold mole of base is allowed to act on the compound represented by the formula (II) in a solvent, the polymerization reaction easily proceeds, and an arylene vinylene type polymer can be obtained. This is called GILCH polymerization, and details thereof are described in, for example, Macromolecules, 1999, 32, 4295-4932. (See formula (15)).

Figure 0004889085
Figure 0004889085

或いは式(I)で表されるリン化合物を等モルのジカルボニル化合物共存下、塩基を作用させる事によっても重合体が得られる。本反応はWittig−Horner反応として知られ、本法によりアリレンビニレンタイプの共重合体を得る事が可能である。特に式(I)で表されるリン化合物を用いたWittig−Horner反応は反応操作の簡便さから非常に有効である。Wittig−Horner反応を用いた本発明における重合体の製造方法について、さらに詳細に説明する。 Alternatively, the polymer can be obtained by reacting the phosphorus compound represented by the formula (I) with a base in the presence of an equimolar amount of a dicarbonyl compound. This reaction is known as Wittig-Horner reaction, and an arylene vinylene type copolymer can be obtained by this method. Particularly Wittig-Horner reaction with a phosphorus compound represented by the formula (I) are highly effective from ease of reaction operation. The method for producing the polymer in the present invention using the Wittig-Horner reaction will be described in more detail.

Wittig−Horner反応を用いて重合体を合成する場合、下記の式で示されるように、式(I)で示されるホスホン酸エステル化合物と、アルデヒド化合物とが、化学量論的にほぼ等モル量で存在する溶液と、その2倍モル量以上の塩基を混合させることにより重合反応が進行し、重合体を得ることができる(式(16)参照)。   When a polymer is synthesized using the Wittig-Horner reaction, the phosphonic acid ester compound represented by the formula (I) and the aldehyde compound are approximately stoichiometrically equimolar as shown by the following formula. Is mixed with a base at least twice as much as the amount of the base, whereby the polymerization reaction proceeds and a polymer can be obtained (see formula (16)).

Figure 0004889085
Figure 0004889085

得られる重合体はビニレン単位によって結合した共役ポリマーである。このため、得られたポリマーは発光特性、電荷輸送特性等に優れた有機エレクトロニクス材料として非常に有用な材料を得る事ができる。なお、本反応による重合体の製造の詳細は特開2004−18831号公報に記載されている。   The resulting polymer is a conjugated polymer linked by vinylene units. For this reason, the obtained polymer can obtain a very useful material as an organic electronic material excellent in light emission characteristics, charge transport characteristics and the like. Details of the production of the polymer by this reaction are described in JP-A No. 2004-18831.

また本発明により、上記Wittig−Horner反応等を利用して、ベンゾジチオフェンにさらに新たな官能基を導入する事が容易に可能である。
Also the present invention utilizes the above Symbol W ittig-Horner reaction and the like, it is easily possible to further introduce new functional groups benzodithiophenes.

次に本発明の式(I)及び(II)で表される化合物についてさらに詳細に説明する。
本発明において、「芳香族炭素水素あるいは芳香族複素環基」としては単環基、多環基(縮合多環基、非縮合多環基)の何れでもよく、一例としてベンゼン、ナフタレン、ビフェニル、ターフェニル、ピレン、フルオレン、9,9−ジメチルフルオレン、アズレン、アントラセン、トリフェニレン、クリセン、9−ベンジリデンフルオレン、5H−ジベンゾ[a,d]シクロヘプテン、トリフェニルアミン、チオフェン、ベンゾチオフェン、ジチエニルベンゼン、フラン、ベンゾフラン、カルバゾール、等の一価基または二価基が挙げられ、これらは置換もしくは無置換のアルキル基またはアルコキシ基を置換基として有していてもよい。
Next, the compounds represented by formulas (I) and (II) of the present invention will be described in more detail.
In the present invention, the “aromatic carbon hydrogen or aromatic heterocyclic group” may be either a monocyclic group or a polycyclic group (a condensed polycyclic group or a non-condensed polycyclic group), and examples thereof include benzene, naphthalene, biphenyl, Terphenyl, pyrene, fluorene, 9,9-dimethylfluorene, azulene, anthracene, triphenylene, chrysene, 9-benzylidenefluorene, 5H-dibenzo [a, d] cycloheptene, triphenylamine, thiophene, benzothiophene, dithienylbenzene, Examples thereof include monovalent groups or divalent groups such as furan, benzofuran, and carbazole, and these may have a substituted or unsubstituted alkyl group or alkoxy group as a substituent.

本明細書中、置換もしくは無置換のアルキル基とは、炭素数が1〜25の直鎖、分岐鎖又は環状のアルキル基であり、これらのアルキル基は更にハロゲン原子(特にフッ素原子)、シアノ基、フェニル基又は、直鎖あるいは分岐したアルキル基で置換されたフェニル基を含有してもよい。具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、s−ブチル基、n−ブチル基、i−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、3,7−ジメチルオクチル基、2−エチルヘキシル基、トリフルオロメチル基、2−シアノエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
また、置換もしくは無置換のアルコキシ基である場合は、上記アルキル基の結合位に酸素原子を挿入してアルコキシ基としたものが具体例として挙げられる。
In the present specification, a substituted or unsubstituted alkyl group is a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms, and these alkyl groups are further halogen atoms (particularly fluorine atoms), cyano. A phenyl group substituted with a group, a phenyl group, or a linear or branched alkyl group. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, t-butyl group, s-butyl group, n-butyl group, i-butyl group, pentyl group, hexyl group, heptyl group, Octyl, nonyl, decyl, undecyl, dodecyl, 3,7-dimethyloctyl, 2-ethylhexyl, trifluoromethyl, 2-cyanoethyl, benzyl, 4-chlorobenzyl, 4-methyl A benzyl group, a cyclopentyl group, a cyclohexyl group, etc. are mentioned.
In the case of a substituted or unsubstituted alkoxy group, specific examples include an alkoxy group formed by inserting an oxygen atom into the bonding position of the alkyl group.

これら置換基は同一のものを複数導入してもよく、また、異なる複数の基を導入してもよい。また、これらのアルキル基、及びアルコキシ基はさらにハロゲン原子、シアノ基、アリール基、ヒドロキシル基、カルボキシル基または、炭素数1〜12の直鎖、分岐鎖もしくは環状のアルキル基、アルコキシ基あるいはアルキルチオ基で置換されたアリール基を含有していてもよい。   A plurality of the same substituents may be introduced, or a plurality of different groups may be introduced. In addition, these alkyl groups and alkoxy groups are further halogen atoms, cyano groups, aryl groups, hydroxyl groups, carboxyl groups, linear, branched or cyclic alkyl groups having 1 to 12 carbon atoms, alkoxy groups or alkylthio groups. An aryl group substituted with may be contained.

以下に実施例により、本発明を更に具体的に説明するが、本発明は、これら実施例によって制限されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

(化合物1の合成)
ヘキシルベンゾジチオフェン(Journal of Organic Chemistry,32,3093,1967.に従って合成した)11.00g(40.08mmol)を1Lの四つ口フラスコに入れ系内を窒素置換した後、乾燥ジエチルエーテル440mlを入れ、0℃に冷却した。ここにn-ブチルリチウム1.56Minヘキサン 77ml(120.2mmol)をゆっくりと滴下し、滴下終了後室温で1.5時間撹拌した。再び0℃に冷却し、乾燥DMF29.3ml(400mmol)を加えて0.5時間撹拌した。反応溶液を希塩酸、飽和食塩水の順に洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去した。残渣をカラムクロマトグラフィーにより精製し、ジアルデヒドを10.01g(30.28mmol)得た(収率76%、融点82−83℃)。
(Synthesis of Compound 1)
Hexyl benzodithiophene (synthesized according to Journal of Organic Chemistry, 32, 3093, 1967.) 11.00 g (40.08 mmol) was placed in a 1 L four-necked flask and the system was purged with nitrogen, and then 440 ml of dry diethyl ether was added. And cooled to 0 ° C. 77 ml (120.2 mmol) of n-butyllithium 1.56Min hexane was slowly added dropwise thereto, and the mixture was stirred at room temperature for 1.5 hours after the completion of the addition. The mixture was cooled again to 0 ° C., 29.3 ml (400 mmol) of dry DMF was added, and the mixture was stirred for 0.5 hours. The reaction solution was washed with diluted hydrochloric acid and saturated brine in that order and dried over anhydrous sodium sulfate, and then the solvent was distilled off. The residue was purified by column chromatography to obtain 10.1 g (30.28 mmol) of dialdehyde (76% yield, melting point 82-83 ° C.).

上記操作で得られたジアルデヒド7.01g(21.20mmol)を容量500mlの四つ口フラスコに入れ、系内を窒素置換した。エタノール150ml及びTHF70mlを入れた後、0℃に冷却し、水素化ホウ素ナトリウム2.01g(53mmol)を少しずつ加えた。全量を加えた後、室温で20分撹拌した。再び0℃に冷却し、1Mの塩酸およそ60mlをゆっくりと加えた。エタノールを減圧留去した後、酢酸エチルを加え、水、飽和食塩水の順で洗浄した。無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去し、目的のビスヒドロキシメチル体6.96g(20.81mmol)を得た(収率99%、融点125−127℃)。この式を下記式(17)に示す。   7.01 g (21.20 mmol) of dialdehyde obtained by the above operation was placed in a four-necked flask with a capacity of 500 ml, and the system was purged with nitrogen. After adding 150 ml of ethanol and 70 ml of THF, the mixture was cooled to 0 ° C., and 2.01 g (53 mmol) of sodium borohydride was added little by little. After the entire amount was added, the mixture was stirred at room temperature for 20 minutes. It was cooled again to 0 ° C. and approximately 60 ml of 1M hydrochloric acid was slowly added. Ethanol was distilled off under reduced pressure, ethyl acetate was added, and the mixture was washed with water and then saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 6.96 g (20.81 mmol) of the desired bishydroxymethyl compound (yield 99%, melting point 125-127 ° C.). This formula is shown in the following formula (17).

Figure 0004889085
Figure 0004889085

得られたビスヒドロキシメチル体の1H NMRスペクトル(400MHz,CDCl3,TMS)を図1に、IRスペクトル(窓材としてKBr使用)を図2に、それぞれ示す。 FIG. 1 shows the 1 H NMR spectrum (400 MHz, CDCl 3 , TMS) of the obtained bishydroxymethyl compound, and FIG. 2 shows the IR spectrum (using KBr as the window material).

(化合物2の合成)
実施例1で得られたビスヒドロキシメチル体6.95g(20.78mmol)を容量200mlの四つ口フラスコに入れ、系内を窒素置換した。1,4−ジオキサン30ml及び塩化チオニル4.2ml(58.18mmol)を加えた後、50℃に加熱して4.5時間撹拌した。0℃に冷却した後、少量のジエチルエーテルを加えて希釈し、飽和炭酸水素ナトリウム水溶液を発泡しなくなるまでゆっくりと加えた。ジエチルエーテルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、目的のビスクロロメチル体を7.64g(20.57mmol)得た(収率99% 黄色粘稠液体)。この式を(18)に示す。
(Synthesis of Compound 2)
6.95 g (20.78 mmol) of the bishydroxymethyl compound obtained in Example 1 was placed in a 200 ml four-necked flask, and the system was purged with nitrogen. After adding 30 ml of 1,4-dioxane and 4.2 ml (58.18 mmol) of thionyl chloride, the mixture was heated to 50 ° C. and stirred for 4.5 hours. After cooling to 0 ° C., a small amount of diethyl ether was added for dilution, and a saturated aqueous sodium hydrogen carbonate solution was slowly added until no foaming occurred. After extraction with diethyl ether, the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 7.64 g (20.57 mmol) of the desired bischloromethyl compound (yield 99% yellow viscous liquid). This equation is shown in (18).

Figure 0004889085
Figure 0004889085

得られた化合物の1H NMRスペクトル(400MHz,CDCL3,TMS)を図3に、IRスペクトル(KBr)を図4に、それぞれ示す。 The 1 H NMR spectrum (400 MHz, CDCL 3 , TMS) of the obtained compound is shown in FIG. 3, and the IR spectrum (KBr) is shown in FIG.

実施例2で得られたビスクロロメチル体7.00g(18.85mmol)及び、亜リン酸トリエチル14.3mlを300ml四つ口フラスコに入れ、135℃に加熱した。135℃で5時間撹拌した後、亜りん酸トリエチルを減圧留去した。残渣をカラムクロマトグラフィーにより精製し、目的のリン化合物を3.04g(5.29mmol)得た。(収率28%、黄色粘稠液体)。この式を(19))に示す。   7.00 g (18.85 mmol) of the bischloromethyl product obtained in Example 2 and 14.3 ml of triethyl phosphite were placed in a 300 ml four-necked flask and heated to 135 ° C. After stirring at 135 ° C. for 5 hours, triethyl phosphite was distilled off under reduced pressure. The residue was purified by column chromatography to obtain 3.04 g (5.29 mmol) of the target phosphorus compound. (Yield 28%, yellow viscous liquid). This equation is shown in (19).

Figure 0004889085
Figure 0004889085

得られた化合物の1H NMRスペクトル(400MHz,CDCl3,TMS)を図5に、IRスペクトル(neat,NaCl)を図6に、それぞれ示す。 The 1 H NMR spectrum (400 MHz, CDCl 3 , TMS) of the obtained compound is shown in FIG. 5, and the IR spectrum (neat, NaCl) is shown in FIG.

[重合体の合成例]
実施例3で得られたリン化合物1.522g(2.648mmol)及び、上記ジアルデヒド0.848g(2.648mmol)を、容量200mlの四つ口フラスコに入れ、系内を窒素置換した。乾燥THF80ml及び、ベンズアルデヒド14.05mg(0.132mmol)を加えた。この溶液にカリウム−ブトキシドの1M THF溶液8mlを滴下し、滴下終了後2時間攪拌した。さらに、ベンジルホスホン酸ジエチル60.5mg(0.265mmol)を加えて1時間攪拌した。反応溶液を水に注ぎ、析出した固体を濾過し、1.107gの重合体1を得た。粗収量率71%。さらにジクロロメタン及びメタノールから3回再沈精製し、赤色の粉末として0.624gの重合体1を得た(収率40%)。この式を下記式(20)に示す。
[Polymer synthesis example]
1.522 g (2.648 mmol) of the phosphorus compound obtained in Example 3 and 0.848 g (2.648 mmol) of the dialdehyde were placed in a four-necked flask having a capacity of 200 ml, and the system was purged with nitrogen. 80 ml of dry THF and 14.05 mg (0.132 mmol) of benzaldehyde were added. To this solution, 8 ml of 1M THF solution of potassium butoxide was added dropwise, and the mixture was stirred for 2 hours after completion of the addition. Furthermore, 60.5 mg (0.265 mmol) of diethyl benzylphosphonate was added and stirred for 1 hour. The reaction solution was poured into water, and the precipitated solid was filtered to obtain 1.107 g of the polymer 1. Crude yield 71%. Further, the product was purified by reprecipitation from dichloromethane and methanol three times to obtain 0.624 g of polymer 1 as a red powder (yield 40%). This formula is shown in the following formula (20).

Figure 0004889085
Figure 0004889085

得られた重合体の元素分析値を下記表1に示し、またこのIRスペクトル(NaClキャスト膜)を図7に示す。 The elemental analysis values of the obtained polymer are shown in Table 1 below, and the IR spectrum (NaCl cast film) is shown in FIG.

Figure 0004889085
Figure 0004889085

本発明によって、有機重合体型の半導体の原料を提供でき、この原料の提供によって、CVDなどの真空系での重合体の合成の可能性あるいは成膜化による薄膜化の可能性も生まれ、有機EL素子分野など多方面に渡る有機(半導体)デバイス応用研究を加速させる素材を提供可能となった。   According to the present invention, a raw material for an organic polymer type semiconductor can be provided. By providing this raw material, the possibility of synthesizing a polymer in a vacuum system such as CVD or the possibility of forming a thin film by forming a film is obtained. It has become possible to provide materials that accelerate organic (semiconductor) device application research in various fields such as the element field.

本発明のベンゾジチオフェン化合物(実施例1)の1H NMRスペクトルである。この図において、横軸はppmを、縦軸はシグナル強度(arb.)を示す。1 is a 1 H NMR spectrum of a benzodithiophene compound of the present invention (Example 1). In this figure, the horizontal axis indicates ppm, and the vertical axis indicates signal intensity (arb.). 本発明のベンゾジチオフェン化合物(実施例1)の赤外吸収スペクトルである。この図において、横軸は波数(cm-1)を、横軸は吸光度(T%)を示す。It is an infrared absorption spectrum of the benzodithiophene compound (Example 1) of this invention. In this figure, the horizontal axis represents the wave number (cm −1 ), and the horizontal axis represents the absorbance (T%). 本発明のベンゾジチオフェン化合物(実施例2)の1H NMRスペクトルである。この図において、横軸はppmを、縦軸はシグナル強度(arb.)を示す。 1 is a 1 H NMR spectrum of a benzodithiophene compound of the present invention (Example 2). In this figure, the horizontal axis indicates ppm, and the vertical axis indicates signal intensity (arb.). 本発明のベンゾジチオフェン化合物(実施例2)の赤外吸収スペクトルである。この図において、横軸は波数(cm-1)を、横軸は吸光度(T%)を示す。It is an infrared absorption spectrum of the benzodithiophene compound (Example 2) of this invention. In this figure, the horizontal axis represents the wave number (cm −1 ), and the horizontal axis represents the absorbance (T%). 本発明のベンゾジチオフェン化合物(実施例3)の1H NMRスペクトルである。この図において、横軸はppmを、縦軸はシグナル強度(arb.)を示す。 1 is a 1 H NMR spectrum of a benzodithiophene compound of the present invention (Example 3). In this figure, the horizontal axis indicates ppm, and the vertical axis indicates signal intensity (arb.). 本発明のベンゾジチオフェン化合物(実施例3)の赤外吸収スペクトルである。この図において、横軸は波数(cm-1)を、横軸は吸光度(T%)を示す。It is an infrared absorption spectrum of the benzodithiophene compound (Example 3) of this invention. In this figure, the horizontal axis represents the wave number (cm −1 ), and the horizontal axis represents the absorbance (T%). 本発明のベンゾジチオフェン化合物(応用例1)の赤外吸収スペクトルである。この図において、横軸は波数(cm-1)を、横軸は吸光度(T%)を示す。It is an infrared absorption spectrum of the benzodithiophene compound (application example 1) of this invention. In this figure, the horizontal axis represents the wave number (cm −1 ), and the horizontal axis represents the absorbance (T%).

Claims (2)

下記一般式(I)で表されることを特徴とするベンゾジチオフェン化合物。
Figure 0004889085


(但し、式(I)中、Zは−PO(OR')2(式中R'は低級アルキル基を表す)を表し、R1〜R8は、それぞれ独立に、水素原子、置換または無置換のアルキル基またはアルコキシ基、置換或いは無置換の芳香族炭化水素基または芳香族複素環基を表す。)
A benzodithiophene compound represented by the following general formula (I):
Figure 0004889085


(In the formula (I), Z represents —PO (OR ′) 2 (wherein R ′ represents a lower alkyl group ), and R 1 to R 8 each independently represents a hydrogen atom, It represents a substituted alkyl group or alkoxy group, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group.)
下記一般式(II)で表されることを特徴とするベンゾジチオフェン化合物。
Figure 0004889085


(但し、式(II)中、Yはハロゲン原子を表し、R1〜R8は、それぞれ独立に、水素原子、置換または無置換のアルキル基またはアルコキシ基、置換或いは無置換の芳香族炭化水素基または芳香族複素環基を表す。)
A benzodithiophene compound represented by the following general formula (II):
Figure 0004889085


(In the formula (II), Y represents a halogen atom, and R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group or an alkoxy group, a substituted or unsubstituted aromatic hydrocarbon. Represents a group or an aromatic heterocyclic group.)
JP2005294967A 2005-10-07 2005-10-07 Benzodithiophene compounds Expired - Fee Related JP4889085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294967A JP4889085B2 (en) 2005-10-07 2005-10-07 Benzodithiophene compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294967A JP4889085B2 (en) 2005-10-07 2005-10-07 Benzodithiophene compounds

Publications (2)

Publication Number Publication Date
JP2007099736A JP2007099736A (en) 2007-04-19
JP4889085B2 true JP4889085B2 (en) 2012-02-29

Family

ID=38027016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294967A Expired - Fee Related JP4889085B2 (en) 2005-10-07 2005-10-07 Benzodithiophene compounds

Country Status (1)

Country Link
JP (1) JP4889085B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712514B2 (en) * 2005-10-19 2011-06-29 株式会社リコー Benzodithiophene polymer
JP5209996B2 (en) 2007-03-23 2013-06-12 山本化成株式会社 Organic transistor
JP5154826B2 (en) * 2007-04-26 2013-02-27 山本化成株式会社 Organic transistor
JP5101927B2 (en) * 2007-06-04 2012-12-19 山本化成株式会社 Organic transistor
JP2008300753A (en) * 2007-06-04 2008-12-11 Mitsui Chemicals Inc Organic transistor
EP2259355B1 (en) * 2008-03-10 2013-02-20 Yamamoto Chemicals, Inc. Organic transistor
WO2010000669A1 (en) * 2008-07-02 2010-01-07 Basf Se Poly(5,5'bis(thiophen-2-yl)-benzo[2,1-b;3,4-b']dithiophene) and its use as high performance solution processable semiconducting polymer
JP2010126480A (en) * 2008-11-27 2010-06-10 Wakayama Univ Benzodithiophene-based compound, and composition and organic electroluminescent device containing the same compound
JP2013523931A (en) * 2010-03-31 2013-06-17 ビーエーエスエフ ソシエタス・ヨーロピア Fused ring dithiophene copolymer

Also Published As

Publication number Publication date
JP2007099736A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4889085B2 (en) Benzodithiophene compounds
JP5229520B2 (en) Novel benzodithiophene polymers
WO2006109895A1 (en) Thiophene compound having phosphoric ester and process for producing the same
JP5387935B2 (en) π-conjugated polymer
JP2007502251A (en) Monomers, oligomers, and polymers of 2-functionalized and 2,7-difunctionalized carbazoles
CN107151312B (en) A kind of indeno based conjugated polymers laser gain material and preparation method and application
JP4712514B2 (en) Benzodithiophene polymer
US20020041976A1 (en) Novel compounds and their manufacture and use
WO2013108894A1 (en) Fulvalene compound and method for producing same, fulvalene polymer, and solar cell material and organic transistor material
KR101061310B1 (en) Organic compound having a core-shell structure
KR101117775B1 (en) Composition for electron acceptor composition, method for preparing the same, photoelectric film comprising the same, and photoelectric device comprising the same
KR100759818B1 (en) Process for producing dendrimer, building block compound, and process for producing thiophene compound
JP2009215425A (en) pi-CONJUGATED ELECTRONIC POLYARYLENE ETHYNYLENE HAVING DINAPHTHOFURAN UNIT, AND METHOD FOR PRODUCING THE SAME
Wang et al. Synthesis and characterization of a partial-conjugated hyperbranched poly (p-phenylene vinylene)(HPPV)
KR100374018B1 (en) Highly efficient blue and greenish-blue light-emitting polymer, producing method thereof, and EL device using the polymer
JP2005240001A (en) New arylamine polymer
JP5105938B2 (en) Polymer and process for producing the same
JP6319979B2 (en) Boron-containing compound and boron-containing polymer
JP6596109B2 (en) Boron-containing compound and boron-containing polymer
JP2012077293A (en) New carbazole polymer, and method for producing the same
KR100235235B1 (en) Organosilicone and the preparing method thereof
JP4546904B2 (en) Novel arylamine polymer
Ghase et al. Alkyl and allyl substituted polydibenzofluorene: blue emitters for future display applications
JP5770642B2 (en) Compound having trimethylene structure, polymer compound containing unit having trimethylene structure, and reactive compound having trimethylene structure
JP2005213228A (en) New dialdehyde compound and arylamine polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4889085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees