JP4888252B2 - Seamless pipe cold rolling method - Google Patents

Seamless pipe cold rolling method Download PDF

Info

Publication number
JP4888252B2
JP4888252B2 JP2007171908A JP2007171908A JP4888252B2 JP 4888252 B2 JP4888252 B2 JP 4888252B2 JP 2007171908 A JP2007171908 A JP 2007171908A JP 2007171908 A JP2007171908 A JP 2007171908A JP 4888252 B2 JP4888252 B2 JP 4888252B2
Authority
JP
Japan
Prior art keywords
pipe
cold rolling
wall thickness
rolling
seamless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007171908A
Other languages
Japanese (ja)
Other versions
JP2009006384A (en
Inventor
仁寿 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007171908A priority Critical patent/JP4888252B2/en
Publication of JP2009006384A publication Critical patent/JP2009006384A/en
Application granted granted Critical
Publication of JP4888252B2 publication Critical patent/JP4888252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、継目無管を素管として用いる冷間圧延方法に関し、さらに詳しくは、冷間圧延に用いられる素管の管端部内面に発生する、いわゆる角張り等の肉厚変動を管理し、冷間加工に伴う管端割れの発生を防止する継目無管の冷間圧延方法に関するものである。   The present invention relates to a cold rolling method using a seamless pipe as a raw pipe, and more particularly, to manage wall thickness fluctuations such as so-called square tension occurring on the inner surface of a pipe end of a raw pipe used for cold rolling. The present invention relates to a seamless pipe cold rolling method for preventing the occurrence of cracks at the end of the pipe accompanying cold working.

通常、金属管の冷間加工法として、ドローベンチによる冷間引抜法とピルガーミルによる冷間圧延法とが慣用されている。特に、ピルガーミルによる冷間圧延法は、冷間引抜法に比べ、高加工度で素管を冷間加工できることから、高加工度を必要とする継目無管の製造では、一般的にピルガーミル(ピルガー圧延)による冷間圧延法が用いられる。   Usually, cold drawing methods using a draw bench and cold rolling methods using a pilger mill are commonly used as cold working methods for metal tubes. In particular, the cold rolling method using a pilger mill is capable of cold-working a raw pipe at a high workability compared to the cold drawing method. Therefore, in the production of seamless pipes that require a high workability, the pilger mill (Pilgar mill) is generally used. Cold rolling method by rolling) is used.

図1は、冷間圧延法に用いられる一対のロールダイスの全体構成を説明する斜視図である。冷間圧延法では、周面に孔型2aが形成された上下一対のロールダイス2を配置し、ロールダイス2の間に先端に向かって径が小さくなるテーパーを有するマンドレルが備えられる。ロールダイス2は、軸心に設けられ回転軸により、ロールスタンド4に支持される。回転軸の一端には回転径がロールダイス2の外径とほぼ同等のピニオンギア5が、水平なラックギア6に噛み合った状態で設けられる。   FIG. 1 is a perspective view illustrating the entire configuration of a pair of roll dies used in the cold rolling method. In the cold rolling method, a pair of upper and lower roll dies 2 having a hole mold 2 a formed on the peripheral surface is disposed, and a mandrel having a taper whose diameter decreases toward the tip is provided between the roll dies 2. The roll die 2 is supported on the roll stand 4 by a rotating shaft provided at the shaft center. A pinion gear 5 having a rotation diameter substantially equal to the outer diameter of the roll die 2 is provided at one end of the rotation shaft in mesh with the horizontal rack gear 6.

ロールダイス2は、ピニオンギア5を介して矢印A方向に往復移動するラックギア6の駆動にともない矢印B方向に往復回転する。このとき、ロールダイス2の周面に形成された孔型2aは、ロールダイス2の往復回転にともなって被加工材となる素管を圧延する。   The roll die 2 reciprocates in the direction of arrow B as the rack gear 6 reciprocates in the direction of arrow A through the pinion gear 5. At this time, the hole mold 2 a formed on the peripheral surface of the roll die 2 rolls a raw tube to be processed as the roll die 2 reciprocates.

図2は、冷間圧延法により素管を圧延する加工機構を説明する断面図である。ロールダイス2の周面に形成された孔型2aは、加工開始から加工終了に向かって孔型径が連続的に小さくなる加工部を構成する。一対のロールダイス2の間には、管内面に先端に向かって径が小さくなるテーパを有するマンドレル3が設けられる。管外面側に設けられた、周面に孔型2aを形成された上下一対のロールダイス2が前記マンドレル3に沿って往復移動することによって、被加工材である素管1を圧延する。   FIG. 2 is a cross-sectional view for explaining a processing mechanism for rolling an element pipe by a cold rolling method. The hole die 2a formed on the peripheral surface of the roll die 2 constitutes a processed portion in which the hole diameter decreases continuously from the start of processing to the end of processing. Between the pair of roll dies 2, a mandrel 3 having a taper whose diameter decreases toward the tip is provided on the inner surface of the pipe. A pair of upper and lower roll dies 2 provided on the outer surface side of the pipe and having a hole mold 2 a formed on the peripheral surface thereof reciprocate along the mandrel 3, thereby rolling the raw tube 1 as a workpiece.

一方、素管1は、ロールダイス2が往復回転する工程の間に所定の加工長さだけ送られるとともに、所定角度だけ回転されながら、順次、縮径および減肉しつつ加工される。このとき、冷間圧延された素管1は、圧延伸びと圧延送り量に応じて伸管され、目標の成品寸法に圧延される。   On the other hand, the raw tube 1 is processed while being reduced in diameter and reduced in thickness while being rotated by a predetermined angle while being fed by a predetermined processing length while the roll die 2 is reciprocatingly rotated. At this time, the cold-rolled blank 1 is drawn according to the rolling elongation and the rolling feed amount, and rolled to a target product size.

冷間圧延法は、上記図1、2に示す圧延機構で構成されていることから、被加工材に高加工度を負荷することができ、前述の通り、冷間引抜法に比べ高加工度による冷間加工が可能になる。ところが、継目無管を素管として冷間圧延を行う際に、圧延開始側の管端部に割れが発生する場合がある。   Since the cold rolling method is composed of the rolling mechanism shown in FIGS. 1 and 2 above, a high workability can be applied to the workpiece, and as described above, the high workability is higher than that of the cold drawing method. Can be cold worked. However, when cold rolling is performed using a seamless pipe as a raw pipe, cracks may occur at the end of the pipe on the rolling start side.

通常、冷間圧延用の素管として用いられる継目無管は、マンネスマン製管法が多用されており、穿孔圧延、マンドレルミル圧延等の延伸圧延および絞り圧延機(ストレッチレデューサー、またはサイザー)を用いた定径圧延を行って製造される。このとき、複数のロールスタンドで絞り圧延を行った後の管内面には、いわゆる角張りと呼ばれる肉厚変動が発生する。   Usually, the Mannesmann tube method is often used for the seamless pipes used as cold-rolling blanks, and the drawing and drawing mills (stretch reducer or sizer) such as piercing and mandrel mill rolling are used. It is manufactured by performing constant diameter rolling. At this time, a wall thickness variation called so-called square tension occurs on the inner surface of the tube after the rolling with a plurality of roll stands.

例えば、マンネスマン製管法による継目無管の製造において、3ロール型の絞り圧延機を用いて外径絞り加工を行う場合には、六角形状の内面角張りによる肉厚変動が発生する。このように継目無管の内面に発生する肉厚変動は、微小な局部的な寸法変動や形状変化を構成することから、その肉厚変動による局部的な薄肉部が切り欠きとして作用し、それが起点となって管端割れに進展することが推測される。   For example, in the production of seamless pipes by the Mannesmann pipe manufacturing method, when outer diameter drawing is performed using a three-roll type drawing mill, wall thickness fluctuations occur due to hexagonal inner surface angulation. In this way, the wall thickness variation that occurs on the inner surface of the seamless pipe constitutes a small local dimensional variation and shape variation, and the local thin wall portion due to the wall thickness variation acts as a notch. It is presumed that the cracks start from cracks starting from cracks.

従来から、冷間圧延を行う際に、圧延加工に伴って素管に管端割れが発生するのを防止するため、種々の対策が提案されている。まず、素管として用いられる継目無管に関する対策として、特許文献1、2では、管端割れの要因となる角張りを抑制する絞り圧延機や肉厚制御方法が提案されている。   Conventionally, when performing cold rolling, various measures have been proposed in order to prevent tube end cracks from occurring in the raw pipe accompanying rolling. First, as measures against a seamless pipe used as a raw pipe, Patent Documents 1 and 2 propose a drawing mill and a wall thickness control method for suppressing angular tension that causes pipe end cracking.

特許文献1では、3個の圧延ロールからなるロールスタンドを圧延力向に沿って複数段配置する絞り圧延機を対象とし、1段目2段目の一対のロールスタンドを天地逆に配置すると共に、3段目4段目の他の対のロールスタンドも天地逆に配置し、上記1対のロールスタンドに対し、上記他の対の配置基準線を一定角度だけ変化させる。具体的には、1段目2段目はそれぞれのロールスタンドを天地逆に配設し、3段目は1段目スタンドに対し30°角度を変位して配設し、4段目は3段目のロールスタンドを天地逆にし、3段目4段目を一対として設置する構成を提案している。   In patent document 1, for a drawing rolling mill in which a roll stand including three rolling rolls is arranged in a plurality of stages along the rolling force direction, a pair of roll stands in the first stage and the second stage are arranged upside down. The other pair of roll stands in the third stage and the fourth stage are also arranged upside down, and the other pair of arrangement reference lines are changed by a certain angle with respect to the one pair of roll stands. Specifically, each roll stand is arranged upside down in the first stage, the second stage, the third stage is arranged with an angle of 30 ° relative to the first stage stand, and the fourth stage is 3 A configuration is proposed in which the roll stands of the stages are reversed upside down and the third stage and the fourth stage are installed as a pair.

また、特許文献2の肉厚制御方法では、3ロールマンドレルミルの少なくとも最終2スタンドのロールギャップを変更し、母管中央部に3ロール型絞り圧延機で発生する管中央部の内面六角形状の角張りを相殺する内面六角形状の角張りを付与すると共に、母管管端部に3ロール型絞り圧延機で発生する管端部の負の位相の内面六角形状の角張りを相殺する正の位相の内面六角形状の角張りを付与することを提案している。   Further, in the thickness control method of Patent Document 2, the roll gap of at least the last two stands of the three-roll mandrel mill is changed, and the inner hexagonal shape of the inner surface of the tube center portion generated by the three-roll type drawing mill is changed to the center portion of the mother tube. The internal hexagonal cornering that offsets the squareness is added, and the negative end phase hexagonal squareness of the negative end of the pipe end that occurs in the three-roll type drawing mill is offset at the mother pipe end. It has been proposed to provide an internal hexagonal squareness of the phase.

冷間圧延の開始に伴って発生する管端割れは、素管の微小で、かつ局部的な肉厚変動によっても誘引されるものであることから、特許文献1、2で提案される絞り圧延機や肉厚制御方法で得られた継目無管を素管としても、微小な局部的な肉厚変動まで抑制することができず、有効に管端割れを防止できるまでに至っていない。   The pipe end cracks that occur with the start of cold rolling are attracted by microscopic and local wall thickness fluctuations of the raw pipe, and therefore the drawing rolling proposed in Patent Documents 1 and 2 Even if a seamless pipe obtained by a machine or a wall thickness control method is used as a raw pipe, even a minute local wall thickness fluctuation cannot be suppressed, and it has not yet been possible to effectively prevent a pipe end crack.

さらに、冷間圧延用素管の管端割れの防止方法として、特許文献3には、冷間圧延前に素管端部を加熱することにより、被圧延材の端部に発生する割れを防止する端部割れ防止方法が開示されている。しかし、この割れ防止方法を実施するには、素管端部に加熱装置を設置しなければならず、装置設置によるコストアップや、冷間圧延前の素管端部の温度管理が煩雑であることから、特許文献3の割れ防止方法は冷間圧延の操業において実用的でない。   Furthermore, as a method for preventing pipe end cracking of a cold rolling raw pipe, Patent Document 3 discloses that the end of the rolled material is prevented from being cracked by heating the end of the raw pipe before cold rolling. An end crack prevention method is disclosed. However, in order to carry out this crack prevention method, it is necessary to install a heating device at the end of the raw tube, and the cost increase due to the installation of the device and the temperature control of the end of the raw tube before cold rolling are complicated. Therefore, the crack prevention method of Patent Document 3 is not practical in the cold rolling operation.

特開昭62−199210号公報JP 62-199210 A 特開平07−246415号公報Japanese Patent Application Laid-Open No. 07-246415 特開2006−136937公報JP 2006-136937 A

前述の通り、冷間圧延用の素管として用いられる継目無管の内面に肉厚変動があると、冷間圧延の際にそれを起点として管端割れが発生することから、肉厚変動の要因となる角張りを抑制する絞り圧延機や肉厚制御方法が提案されているが、冷間圧延において充分に管端割れを防止できるまでに至っていない。また、被圧延材の管端割れを防止する方法として、冷間圧延前に素管端部を加熱する防止方法も提案されているが、冷間圧延の実操業において実用的でない。   As described above, if there is a wall thickness fluctuation on the inner surface of a seamless pipe used as a cold rolling raw pipe, a crack at the pipe end will occur starting from that during cold rolling. Although a drawing mill and a wall thickness control method for suppressing the cornering that is a factor have been proposed, pipe end cracking has not been sufficiently prevented in cold rolling. Further, as a method for preventing cracking of the tube end of the material to be rolled, a method for preventing the end of the raw tube from being heated before cold rolling has been proposed, but it is not practical in the actual operation of cold rolling.

本発明は、上述した冷間圧延に伴って発生する素管の管端割れの問題に鑑みてなされたものであり、冷間圧延に用いられる素管の管端部内面に発生する肉厚変動を、後述する図4に示すように、展開角度b(rad)および肉厚差d(mm)で管理し、さらに必要に応じて素管の管端部に面取り加工を施すことにより、冷間加工にともなう管端割れの発生を有効に防止することができる継目無管の冷間圧延方法を提供することを目的としている。   The present invention has been made in view of the above-described problem of pipe end cracking of the raw pipe that occurs with cold rolling, and the wall thickness variation generated on the inner surface of the pipe end of the raw pipe used for cold rolling. As shown in FIG. 4 to be described later, by managing the development angle b (rad) and the wall thickness difference d (mm), and further chamfering the tube end of the raw tube as necessary, It aims at providing the cold rolling method of the seamless pipe which can prevent effectively generation | occurrence | production of the pipe end crack accompanying a process.

本発明者は、上述した課題を解決するため、冷間圧延用の素管として用いられる継目無管の内面には発生する肉厚変動の要因となる、絞り圧延による角張りの発生状況について詳細に検討を加えた。   In order to solve the above-mentioned problems, the present inventor details about the occurrence of squareness due to drawing rolling, which causes the wall thickness variation that occurs on the inner surface of a seamless pipe used as a raw pipe for cold rolling. A study was added.

図3は、3ロール型ストレッチレデューサーを用いて外径絞り加工を行う場合に発生する内面六角角張りの断面形状を模式的に示す図である。3ロール型ストレッチレデューサーの各スタンドでの圧延は、ロール溝底部がエッジ部に比較して圧延方向の伸びが大きく、管周方向の肉厚は不均一な変形を受ける。そのため、連続スタンドでの圧延では、ロール溝底部とエッジ部はスタンド毎に交互に塑性変形が繰返されるため、ほぼ同一肉厚となるが、ロール溝底部とエッジ部の中間位置(すなわち、ロール溝底部を0°位置とした場合に30°回転位置)に肉厚変動を生ずる部位が発生し、六角形状の内面角張りを生ずる。   FIG. 3 is a diagram schematically showing a cross-sectional shape of an inner hexagonal square formed when an outer diameter drawing process is performed using a three-roll type stretch reducer. Rolling at each stand of a three-roll type stretch reducer has a roll groove bottom portion that has a greater elongation in the rolling direction than an edge portion, and the thickness in the pipe circumferential direction is subject to uneven deformation. Therefore, in rolling with a continuous stand, the roll groove bottom part and the edge part are repeatedly plastically deformed alternately for each stand, so that they have almost the same thickness, but the intermediate position between the roll groove bottom part and the edge part (that is, the roll groove) When the bottom is set to the 0 ° position, a portion where the thickness fluctuates occurs at the 30 ° rotation position), and hexagonal inner surface angularity occurs.

図3に示すような六角張り現象は、絞り圧延加工における管長方向の延伸率が大きくなるほど、かつ管が厚肉小径になるほど角張りが増加する傾向にあり、これにともなって肉厚変動が顕著になる。   The hexagonal tension phenomenon as shown in FIG. 3 tends to increase the angular tension as the drawing ratio in the tube length direction in the drawing rolling process increases and the pipe becomes thicker and smaller in diameter, and the wall thickness fluctuation is conspicuous accordingly. become.

図4は、肉厚変動の詳細な構成を示す、前記図3のE部における詳細図である。発明者の検討結果から、素管として用いられる継目無管の内面に発生する肉厚変動の構成は、展開角度b(rad)および肉厚差d(mm)によって整理できること、さらに、肉厚変動が素管の管端割れに及ぼす影響は展開角度b(rad)および肉厚差d(mm)で管理できることが明らかになる。すなわち、展開角度b(rad)が小さいほど、肉厚差d(mm)が大きいほど管端割れが発生し易いことが分かる。   FIG. 4 is a detailed view of the portion E in FIG. 3 showing the detailed configuration of the wall thickness variation. As a result of the inventor's investigation, the structure of the wall thickness variation generated on the inner surface of the seamless pipe used as the raw tube can be arranged by the development angle b (rad) and the wall thickness difference d (mm), and the wall thickness variation It becomes clear that the influence of the pipe on the pipe end crack can be managed by the development angle b (rad) and the wall thickness difference d (mm). That is, it can be understood that the smaller the development angle b (rad) and the larger the wall thickness difference d (mm), the more likely the tube end cracks are generated.

本発明は、上記の知見に基づいて完成されたものであり、下記(1)および(2)の継目無管の冷間圧延方法を要旨としている。
(1)継目無管を素管として冷間圧延を行うに際し、冷間圧延開始側の管端部内面における管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比で表した場合に、管内面全周における肉厚変動の最大値が下記(1)式を満足する素管を用いることを特徴とする継目無管の冷間圧延方法である。
d/b ≦ 0.29 ・・・ (1)
(2)継目無管を素管として冷間圧延を行うに際し、冷間圧延開始側の管端部内面における管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比で表した場合に、当該管端部の内面側に面取り加工を施したのち、管内面全周における肉厚変動の最大値が上記(1)式を満足する素管を用いることを特徴とする継目無管の冷間圧延方法である。
The present invention has been completed on the basis of the above findings, and the gist thereof is the seamless pipe cold rolling method of the following (1) and (2).
(1) When performing cold rolling using a seamless pipe as a raw pipe, the fluctuation in thickness in the pipe circumferential direction on the inner surface of the pipe end on the cold rolling start side is expressed as a development angle b (rad) and a thickness difference d (mm). This is a seamless pipe cold rolling method characterized by using a raw pipe in which the maximum value of the wall thickness fluctuation in the entire circumference of the pipe inner surface satisfies the following formula (1).
d / b ≦ 0.29 (1)
(2) When performing cold rolling using a seamless pipe as a raw pipe, the fluctuation in the pipe circumferential direction on the inner surface of the pipe end on the cold rolling start side is expressed as a development angle b (rad) and a thickness difference d (mm). When the ratio is expressed by the ratio, after performing the chamfering process on the inner surface side of the pipe end portion, a raw pipe whose maximum thickness variation on the entire inner surface of the pipe satisfies the above formula (1) is used. This is a cold rolling method of seamless pipes.

本発明の冷間圧延方法では、被圧延材として用いる素管が穿孔圧延、延伸圧延および絞り圧延機(ストレッチレデューサー、またはサイザー)による定径圧延で製造された継目無管である場合に、優れた効果を発揮し、有効に冷間加工に伴う管端割れを防止することができる。   In the cold rolling method of the present invention, it is excellent when the raw pipe used as a material to be rolled is a seamless pipe manufactured by piercing rolling, stretching rolling and constant diameter rolling by a drawing mill (stretch reducer or sizer). It is possible to effectively prevent cracks in the pipe end caused by cold working.

本発明で規定する「展開角度b(rad)」および「肉厚差d(mm)」は、前記図4に示すように、局部的な肉厚変動の構成を示す数値であるが、本発明を適用する場合には、例えば、3次元形状測定器を用いて、管周方向の肉厚を連続的に測定して把握することができる。なお、展開角度とは、前記図4に示すように、測定結果を管周方向に展開して表示した場合の局部的な薄肉部が形成されている部分の管周方向での幅を、管軸心を中心とした角度(rad)で表した値である。そして、連続した測定値からd/bを算出し、最大のd/b値によって本発明に適用できる冷間圧延用の素管を定める。   The “deployment angle b (rad)” and “thickness difference d (mm)” defined in the present invention are numerical values indicating the configuration of local thickness variation as shown in FIG. In the case of applying, for example, the thickness in the pipe circumferential direction can be continuously measured and grasped using a three-dimensional shape measuring instrument. In addition, as shown in the said FIG. 4, an expansion | deployment angle means the width | variety in the pipe | tube circumferential direction of the part in which the local thin part at the time of developing and displaying a measurement result in the pipe | tube circumferential direction, It is a value represented by an angle (rad) about the axis. Then, d / b is calculated from the continuous measurement values, and a cold rolling blank applicable to the present invention is determined by the maximum d / b value.

本発明の継目無管の冷間圧延方法によれば、素管内面の管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)で把握し、それらの比で表したd/bの管内面全周における最大値を管理することにより、さらに必要に応じて素管の管端部に面取り加工を施しその後の最大値を管理することにより、冷間加工にともなう管端割れの発生を防止でき、製造コストの上昇を招くことなく、歩留まりよく継目無管を製造できる。   According to the cold rolling method of a seamless pipe of the present invention, the fluctuation of the wall thickness in the pipe circumferential direction on the inner surface of the raw pipe is grasped by the development angle b (rad) and the wall thickness difference d (mm), and is represented by the ratio thereof. By controlling the maximum value of the d / b in the entire inner circumference of the pipe, and further chamfering the pipe end of the raw pipe as necessary, and managing the maximum value thereafter, the pipe accompanying cold working Generation of end cracks can be prevented, and seamless pipes can be manufactured with high yield without causing an increase in manufacturing cost.

本発明の冷間圧延方法は、継目無管を素管として冷間圧延を行うに際し、冷間圧延開始側の管端部内面における管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比d/bで表した場合に、管内面全周における肉厚変動の最大値が0.29(mm/rad)以下を満足する素管を用いることを特徴とする。   In the cold rolling method of the present invention, when performing cold rolling using a seamless pipe as a raw pipe, the fluctuation of the wall thickness in the pipe circumferential direction on the inner surface of the pipe end on the cold rolling start side is determined as the development angle b (rad) and the wall thickness. When expressed by a ratio d / b of thickness difference d (mm), a raw tube satisfying a maximum value of wall thickness fluctuation of 0.29 (mm / rad) or less around the entire inner surface of the tube is used. .

本発明の冷間圧延方法に適用できる肉厚変動のd/b値の最大値を検討するため、材質がSUS304で外径が187mmのビレットを用いて、穿孔圧延に引き続いて3ロール型マンドレルミル圧延により中空素管を製管した。その後、再加熱炉にて加熱を行い、3ロール型ストレッチレデューサーにより絞り圧延を行い、2種の管寸法(外径および肉厚)からなる冷間圧延用素管を製造した。   In order to study the maximum value of the d / b value of the wall thickness variation applicable to the cold rolling method of the present invention, using a billet with a material of SUS304 and an outer diameter of 187 mm, a three-roll mandrel mill following piercing and rolling A hollow shell was produced by rolling. Thereafter, heating was performed in a reheating furnace, drawing rolling was performed with a three-roll type stretch reducer, and a cold rolling blank having two types of pipe dimensions (outer diameter and wall thickness) was manufactured.

得られた冷間圧延用素管は、その管端部を3次元形状測定器を用いて連続的に測定を行い、展開角度b(rad)および肉厚差d(mm)を測定した。その後、ピルガーミル圧延機による冷間圧延を行い、所定寸法の冷間継目無管を製造し、そのときの管端割れの発生状況を調査した。それぞれの冷間圧延のスケジュールをSch.AおよびSch.Bとして表1に示す。   The obtained cold rolling blank was continuously measured at its end using a three-dimensional shape measuring instrument, and the development angle b (rad) and the wall thickness difference d (mm) were measured. Thereafter, cold rolling was performed with a Pilger mill to produce a cold seamless pipe having a predetermined size, and the occurrence of cracks at the end of the pipe was investigated. Each cold rolling schedule is set to Sch. A and Sch. B is shown in Table 1.

ただし、表中における断面減少率(%)は、{1−(冷間圧延後の断面積/冷間圧延前の断面積)}×100で示す。   However, the cross-sectional reduction rate (%) in the table is represented by {1- (cross-sectional area after cold rolling / cross-sectional area before cold rolling)} × 100.

Figure 0004888252
Figure 0004888252

図5は、冷間圧延に伴う管端割れの発生状況を、冷間圧延用素管の展開角度b(rad)と肉厚差d(mm)との関係で示す図である。図5に示す結果によれば、前述の通り、素管内面の肉厚変動のうち展開角度b(rad)が小さいほど、また、肉厚差d(mm)が大きいほど管端割れが発生し易いことが分かる。   FIG. 5 is a diagram showing the occurrence of pipe end cracks associated with cold rolling in relation to the development angle b (rad) and the wall thickness difference d (mm) of the cold rolling element pipe. According to the results shown in FIG. 5, as described above, the pipe end crack occurs as the development angle b (rad) is smaller and the thickness difference d (mm) is larger in the wall thickness variation of the inner surface of the raw pipe. It turns out that it is easy.

そして、同図から、冷間圧延に伴う管端割れの発生を防止するには、冷間圧延用素管の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比d/bで表した場合に、管内面全周における肉厚変動の最大値が下記(1)式を満足することが必要であることが分かる。
d/b ≦ 0.29 ・・・ (1)
さらに、本発明の冷間圧延方法は、継目無管を素管として冷間圧延を行うに際し、冷間圧延開始側の管端部内面における管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比で表した場合に、当該管端部の内面側に面取り加工を施したのち、管内面全周における肉厚変動の最大値が上記(1)式を満足する素管を用いることを特徴とする。
From the same figure, in order to prevent the occurrence of cracks at the end of the pipe due to cold rolling, the thickness variation of the cold rolling element pipe is determined by the ratio d of the expansion angle b (rad) and the thickness difference d (mm). When expressed by / b, it is understood that the maximum value of the wall thickness fluctuation around the entire inner surface of the pipe needs to satisfy the following expression (1).
d / b ≦ 0.29 (1)
Furthermore, when the cold rolling method of the present invention performs cold rolling using a seamless pipe as a raw pipe, the fluctuation of the wall thickness in the pipe circumferential direction on the inner surface of the pipe end portion on the cold rolling start side is developed at an angle b (rad). And the ratio of wall thickness difference d (mm), after chamfering the inner surface of the tube end, the maximum value of the wall thickness variation on the entire inner surface of the tube satisfies the above formula (1). It is characterized by using an element tube.

前記図5に示すように、冷間圧延用素管の管端部に存在する局部的な肉厚変動が管端割れの起点になるが、肉厚変動のd/b値を一定値以下に管理すれば、管端割れが発生することがない。したがって、肉厚変動のd/b値が管理値を超える場合であっても、管端部内面における管周方向の肉厚変動を除去し、肉厚変動のd/b値を一定値以下になるように管理すれば、管端割れの発生を防止できる。   As shown in FIG. 5, the local wall thickness variation present at the tube end of the cold rolling blank tube becomes the starting point of the tube end cracking, but the d / b value of the wall thickness variation is kept below a certain value. If managed, pipe end cracks will not occur. Therefore, even when the d / b value of the wall thickness fluctuation exceeds the control value, the wall thickness fluctuation in the pipe circumferential direction on the inner surface of the pipe end portion is removed, and the wall thickness fluctuation d / b value is kept below a certain value. If it manages so that it may become, generation | occurrence | production of a pipe end crack can be prevented.

このため、本発明の冷間圧延方法では、必要がある場合には、冷間圧延用素管の管内面全周における肉厚変動のd/bの最大値が上記(1)式を満足するように、冷間圧延開始側の管端部の内面側に面取り加工を施したのち冷間圧延を行う。   For this reason, in the cold rolling method of the present invention, when necessary, the maximum value of d / b of the wall thickness fluctuation on the entire inner surface of the cold rolling blank satisfies the above formula (1). Thus, cold rolling is performed after chamfering is performed on the inner surface side of the tube end on the cold rolling start side.

本発明に適用できる面取り加工としては、例えば、管端内面側の切削によるベベル加工、円錐コーン挿入による押し潰し加工やグラインダー研磨による加工等が挙げられる。また、面取り加工は管端内面側の全周に行ってもよいが、例えば、グラインダー研磨で肉厚変動のd/bが0.29を超える箇所のみに部分的に面取り加工を行うことでも、管端割れを防止できる。この場合に、冷間圧延の操業安定を勘案して、管端部内面の肉厚変動を十分に除去するため、肉厚で1.0mm以上の面取り加工を施すのが望ましい。   Examples of the chamfering process that can be applied to the present invention include a bevel process by cutting on the inner surface side of the pipe end, a crushing process by inserting a conical cone, and a process by grinder polishing. Further, the chamfering may be performed on the entire circumference on the inner surface side of the pipe end, for example, by chamfering partially only at a location where the thickness variation d / b exceeds 0.29 by grinder polishing, Pipe end cracking can be prevented. In this case, it is desirable to perform chamfering with a thickness of 1.0 mm or more in order to sufficiently remove fluctuations in the thickness of the inner surface of the pipe end portion in consideration of operation stability of cold rolling.

本発明の冷間圧延方法では、肉厚変動の最大値を管理する対象を肉厚が10mm以下の継目無素管とするのが望ましい。例えば、断面減少率が70〜85%程度と大きい加工度の冷間圧延であっても、肉厚Wtが厚い素管を対象にする場合には、肉厚差d/肉厚Wtの比が極めて小さな値となるため、肉厚差dが管端割れを発生させるような有害な切り欠きとして作用せず、前記(1)式を満足しない素管であっても、管端割れを発生しない場合があるからである。   In the cold rolling method of the present invention, it is desirable that a target for managing the maximum value of the wall thickness variation is a seamless tube having a wall thickness of 10 mm or less. For example, even in the case of cold rolling with a workability as large as 70 to 85% in cross-section reduction ratio, the ratio of thickness difference d / thickness Wt is the ratio of the thickness difference d / thickness Wt. Since it is an extremely small value, the wall thickness difference d does not act as a harmful notch that causes pipe end cracking, and pipe end cracking does not occur even if the raw pipe does not satisfy the formula (1). Because there are cases.

本発明の冷間圧延方法では、対象素管として、マンネスマン製管法により、例えば穿孔圧延、延伸圧延および絞り圧延機(ストレッチレデューサー、またはサイザー)による定径圧延で製造された継目無管とするのが望ましい。   In the cold rolling method of the present invention, the target raw pipe is a seamless pipe manufactured by Mannesmann pipe manufacturing method, for example, piercing rolling, stretching rolling, and constant diameter rolling with a drawing mill (stretch reducer or sizer). Is desirable.

この場合に、素管の鋼種は普通鋼、低合金鋼、クロム鋼、ステンレス鋼およびクロム−ニッケル−鉄合金等といずれにも限定するものではないが、特に硫黄(S)入りステンレス鋼を素管とする場合には、鋼中に析出したMnSにより冷間圧延時に管端割れが発生し易いことから、本発明の冷間圧延方法を適用するのが望ましい。   In this case, the steel tube type is not limited to ordinary steel, low alloy steel, chrome steel, stainless steel, chrome-nickel-iron alloy, etc., but especially stainless steel containing sulfur (S) is used. In the case of a pipe, it is desirable to apply the cold rolling method of the present invention because MnS precipitated in the steel tends to cause cracks at the end of the cold rolling.

本発明の冷間圧延方法の効果を確認するため、材質がSUS304で外径が187mmのビレットを用いて、穿孔圧延に引き続いて3ロール型マンドレルミル圧延により中空素管を製管した。その後、再加熱炉にて加熱を行い、3ロール型ストレッチレデューサーにより絞り圧延を行い、2種の管寸法からなる冷間圧延用素管を製造した。   In order to confirm the effect of the cold rolling method of the present invention, a hollow shell was formed by three-roll mandrel mill rolling following piercing rolling using a billet made of SUS304 and having an outer diameter of 187 mm. Then, it heated in the reheating furnace, drawn-rolled with the 3 roll type | mold stretch reducer, and manufactured the raw tube for cold rolling which consists of 2 types of pipe dimensions.

得られた冷間圧延用素管は、その管端部を3次元形状測定器を用い、連続的に肉厚測定を行い、展開角度b(rad)および肉厚差d(mm)を測定した。その後、ピルガーミル圧延機による冷間圧延を行い、所定寸法の冷間継目無管を製造した。このときの冷間圧延のスケジュールは、前記表1に示すスケジュールと同様であり、Sch.AおよびSch.Bで区分した。   The obtained cold rolling blank was continuously subjected to wall thickness measurement using a three-dimensional shape measuring instrument at the end of the tube, and the development angle b (rad) and the wall thickness difference d (mm) were measured. . Thereafter, cold rolling was performed by a pilger mill to produce a cold seamless pipe having a predetermined size. The cold rolling schedule at this time is the same as the schedule shown in Table 1, and Sch. A and Sch. Classified by B.

管端割れに及ぼす影響を観察するため、冷間圧延用素管は面取り加工を行う場合と行わない場合とに区分した。面取り加工を行う場合には、管端内面に切削による面取り加工を施し、面取り加工量を変化させた。これらの冷間圧延用素管は、前記表1に示すスケジュールのSch.AおよびSch.Bにより冷間圧延を実施した。このときの冷間圧延前のd/bが最大値となる肉厚変動および面取り加工状況、並びに冷間圧延後の管端割れ発生状況を表2に示した。   In order to observe the effects on pipe end cracking, the cold rolling blanks were divided into cases with and without chamfering. When chamfering was performed, the chamfering process was performed on the inner surface of the pipe end to change the amount of chamfering. These cold-rolling blanks are manufactured according to Sch. A and Sch. Cold rolling was performed with B. Table 2 shows the wall thickness fluctuation and the chamfering state in which d / b before the cold rolling becomes the maximum value at this time, and the pipe end crack occurrence state after the cold rolling.

ただし、表中において、面取り加工量a(mm)が肉厚変動の肉厚差d(mm)を超える場合は、(d−a)値は「0(ゼロ)」と表記した。   However, in the table, when the chamfering amount a (mm) exceeds the wall thickness difference d (mm) due to the wall thickness variation, the (da) value is expressed as “0 (zero)”.

Figure 0004888252
Figure 0004888252

表2に示すように、面取り加工なしでは、冷間圧延前の肉厚変動を示すd/bの最大値が0.29を超える素管を使用して冷間圧延を行った場合は管端割れが発生し(試験No.1および9)、d/bの最大値が0.29以下の素管を用いた場合には管端割れは発生しなかった(試験No.2および10)。   As shown in Table 2, without chamfering, when cold rolling was performed using a blank tube having a maximum d / b value exceeding 0.29 indicating wall thickness fluctuation before cold rolling, the end of the tube Cracks occurred (Test Nos. 1 and 9), and no pipe end cracks occurred when a raw tube having a maximum d / b value of 0.29 or less was used (Test Nos. 2 and 10).

一方、面取り加工ありでは、面取り加工量が肉厚差dよりも少ない場合はd/b値が0.29を超える薄肉部が残存したため、冷間圧延で管端割れが発生した(試験No.8および14)。しかし、面取り加工量a(mm)が肉厚差dを超える場合にはd/bが0.29を超える薄肉部が除去され、面取り加工後の3次元形状測定器による測定でも、d/bの最大値が0.29を超える箇所がなかったため、冷間圧延で管端割れが発生しなかった(試験No.3〜7および11〜13)。   On the other hand, with chamfering, when the chamfering amount is smaller than the wall thickness difference d, a thin-walled portion with a d / b value exceeding 0.29 remained, so that pipe end cracking occurred during cold rolling (Test No. 1). 8 and 14). However, when the chamfering amount a (mm) exceeds the wall thickness difference d, the thin wall portion where d / b exceeds 0.29 is removed, and d / b is also measured by the three-dimensional shape measuring instrument after chamfering. Since there was no location where the maximum value exceeded 0.29, tube end cracking did not occur during cold rolling (Test Nos. 3 to 7 and 11 to 13).

本発明の継目無管の冷間圧延方法によれば、素管内面の管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)で把握し、それらの比で表したd/bの管内面全周における最大値を管理することにより、さらに必要に応じて素管の管端部に面取り加工を施しその後の最大値を管理することにより、冷間加工にともなう管端割れの発生を防止でき、製造コストの上昇を招くことなく、同時に歩留まりよく継目無管を製造できる。これにより、特に、マンネスマン製管法による継目無素管を用いる冷間圧延方法として、広く適用できる。   According to the cold rolling method of a seamless pipe of the present invention, the fluctuation of the wall thickness in the pipe circumferential direction on the inner surface of the raw pipe is grasped by the development angle b (rad) and the wall thickness difference d (mm), and is represented by the ratio thereof. By controlling the maximum value of the d / b in the entire inner circumference of the pipe, and further chamfering the pipe end of the raw pipe as necessary, and managing the maximum value thereafter, the pipe accompanying cold working The generation of end cracks can be prevented, and a seamless pipe can be manufactured at a high yield without causing an increase in manufacturing cost. Thereby, in particular, it can be widely applied as a cold rolling method using a seamless element tube by the Mannesmann pipe manufacturing method.

冷間圧延法に用いられる一対のロールダイスの全体構成を説明する斜視図である。It is a perspective view explaining the whole structure of a pair of roll die used for the cold rolling method. 冷間圧延法により素管を圧延する加工機構を説明する断面図である。It is sectional drawing explaining the processing mechanism which rolls an element pipe by the cold rolling method. 3ロール型ストレッチレデューサーを用いて外径絞り加工を行う場合に発生する内面六角角張りの断面形状を模式的に示す図である。It is a figure which shows typically the cross-sectional shape of the inner side hexagon square tension which arises when performing outside diameter drawing using a 3 roll type stretch reducer. 肉厚変動の詳細な構成を示す、前記図3のE部における詳細図である。It is a detailed view in the E section of the above-mentioned FIG. 冷間圧延に伴う管端割れの発生状況を、冷間圧延用素管の展開角度b(rad)と肉厚差d(mm)との関係で示す図である。It is a figure which shows the generation | occurrence | production condition of the pipe end crack accompanying cold rolling by the relationship between the expansion | deployment angle b (rad) and the wall thickness difference d (mm) of the cold rolling element tube.

符号の説明Explanation of symbols

1.素管、 2.ロールダイス
2a.孔型、 3.マンドレル
4.ロールスタンド、 5.ピニオンギア
6.ラックギア
1. 1. Tube, Roll die 2a. 2. hole type; 3. Mandrel 4. roll stand; Pinion gear Rack gear

Claims (3)

継目無管を素管として冷間圧延を行うに際し、冷間圧延開始側の管端部内面における管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比で表した場合に、管内面全周における肉厚変動の最大値が下記(1)式を満足する素管を用いることを特徴とする継目無管の冷間圧延方法。
d/b ≦ 0.29 ・・・ (1)
When performing cold rolling using a seamless pipe as a raw pipe, the thickness fluctuation in the pipe circumferential direction on the inner surface of the pipe end on the cold rolling start side is expressed as a ratio of the development angle b (rad) and the thickness difference d (mm). A cold rolling method for seamless pipes, characterized in that, when expressed, a raw pipe is used in which the maximum value of the wall thickness variation in the entire inner circumference of the pipe satisfies the following formula (1).
d / b ≦ 0.29 (1)
継目無管を素管として冷間圧延を行うに際し、冷間圧延開始側の管端部内面における管周方向の肉厚変動を展開角度b(rad)および肉厚差d(mm)の比で表した場合に、当該管端部の内面側に面取り加工を施したのち、管内面全周における肉厚変動の最大値が下記(1)式を満足する素管を用いることを特徴とする継目無管の冷間圧延方法。
d/b ≦ 0.29 ・・・ (1)
When performing cold rolling using a seamless pipe as a raw pipe, the thickness fluctuation in the pipe circumferential direction on the inner surface of the pipe end on the cold rolling start side is expressed as a ratio of the development angle b (rad) and the thickness difference d (mm). In this case, after the chamfering process is performed on the inner surface side of the pipe end portion, a seam pipe in which the maximum value of the wall thickness variation on the entire inner surface of the pipe satisfies the following expression (1) is used. Tubeless cold rolling method.
d / b ≦ 0.29 (1)
前記素管が穿孔圧延、延伸圧延および絞り圧延による定径圧延で製造された継目無管であることを特徴とする請求項1または2に記載の継目無管の冷間圧延方法。   The seamless pipe cold rolling method according to claim 1 or 2, wherein the raw pipe is a seamless pipe manufactured by constant diameter rolling by piercing rolling, drawing rolling and drawing rolling.
JP2007171908A 2007-06-29 2007-06-29 Seamless pipe cold rolling method Expired - Fee Related JP4888252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171908A JP4888252B2 (en) 2007-06-29 2007-06-29 Seamless pipe cold rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171908A JP4888252B2 (en) 2007-06-29 2007-06-29 Seamless pipe cold rolling method

Publications (2)

Publication Number Publication Date
JP2009006384A JP2009006384A (en) 2009-01-15
JP4888252B2 true JP4888252B2 (en) 2012-02-29

Family

ID=40322020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171908A Expired - Fee Related JP4888252B2 (en) 2007-06-29 2007-06-29 Seamless pipe cold rolling method

Country Status (1)

Country Link
JP (1) JP4888252B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716468B2 (en) * 2011-03-14 2015-05-13 新日鐵住金株式会社 Seamless pipe cold rolling method
CN104245169B (en) * 2012-04-12 2015-11-25 新日铁住金株式会社 The cold rolling process of seamless pipe
CN113458176B (en) * 2021-06-30 2023-06-27 浙江久立特材科技股份有限公司 Manufacturing method of high-precision seamless tube with outer hexagonal and inner circular special-shaped cross section for nuclear power

Also Published As

Publication number Publication date
JP2009006384A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP2003311317A (en) Method for manufacturing seamless tube
EP2390016B1 (en) Process for production of seamless metal pipe by cold rolling
US8601844B2 (en) Multi-roll mandrel mill and method of producing seamless tubes
EP2754508B1 (en) Seamless-metal-pipe manufacturing method
JP4888252B2 (en) Seamless pipe cold rolling method
WO2009119245A1 (en) Method for producing seamless pipe
EP1889669A1 (en) Drawing rolling method by mandrel mill
JP4873012B2 (en) Mandrel mill and seamless pipe manufacturing method
JP7180586B2 (en) Method for manufacturing seamless steel pipe
JP5716468B2 (en) Seamless pipe cold rolling method
JP2014166649A (en) Method for manufacturing seamless steel pipe
JP5849895B2 (en) Drawing rolling device and roll for drawing rolling device
JP2019107695A (en) Manufacturing method for seamless steel pipe
JP4314972B2 (en) Method for constant diameter rolling of metal tubes
CN103917307A (en) Seamless-metal-pipe manufacturing method
JP6627825B2 (en) Rolling method of seamless steel pipe
EP3257596A1 (en) Method for manufacturing plug
RU2620204C1 (en) METHOD OF PRODUCING SEAMLESS MACHINED PIPES WITH 530 × 13-18 mm SIZE FROM STEEL OF "08Х18Н10-Ш" GRADE
JPH08187502A (en) Continuous rolling method for tube and 3-roll mandrel mill
JP5408388B1 (en) Seamless pipe cold rolling method
JP5765190B2 (en) Diameter reduction method for seamless steel pipes
JPH11104711A (en) Production method for seamless square shaped steel pipe
JPH06190408A (en) Device for manufacturing seamless steel tube and its manufacture
JPH0924408A (en) Method for controlling elongation rolling of steel tube
JPH06154814A (en) Method for cold rolling steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4888252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees