JP4884687B2 - Hot-rolled steel with excellent corrosion resistance and aesthetics after painting - Google Patents
Hot-rolled steel with excellent corrosion resistance and aesthetics after painting Download PDFInfo
- Publication number
- JP4884687B2 JP4884687B2 JP2005081912A JP2005081912A JP4884687B2 JP 4884687 B2 JP4884687 B2 JP 4884687B2 JP 2005081912 A JP2005081912 A JP 2005081912A JP 2005081912 A JP2005081912 A JP 2005081912A JP 4884687 B2 JP4884687 B2 JP 4884687B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel
- steel material
- rolled steel
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、化成処理と塗装を行った後の耐食性と美観に優れた熱延鋼材に関するものである。特に、強化元素として鉄より酸化され易いSi、Mn、Al、Cr等を含有する高張力熱延鋼材であって、熱延、酸洗工程における適切な酸化物制御により、化成、塗装後の耐食性を飛躍的に向上させるものである。 The present invention relates to a hot-rolled steel material excellent in corrosion resistance and aesthetic appearance after chemical conversion treatment and coating. In particular, it is a high-tensile hot-rolled steel material that contains Si, Mn, Al, Cr, etc., which is more easily oxidized than iron as a strengthening element, and it has corrosion resistance after chemical conversion and coating by appropriate oxide control in the hot rolling and pickling processes. Is drastically improved.
近年、地球環境問題から、自動車燃費向上のための車体軽量化の必要性が高まっており、これに適した素材として高張力鋼板が自動車用鋼板の主流になりつつある。ところが、高張力鋼板には、強化元素としてSi、Mn、Al、Cr等の鉄より酸化され易い元素が数%のオーダーで添加されており、熱延や焼鈍と言った熱処理の過程で、これらの元素が鋼板表面に濃化して酸化物を形成し、自動車製造工程での化成処理や電着塗装に際しても除去されず、塗装後の品質に弊害を与えるケースが見受けられる。 In recent years, due to global environmental problems, there is an increasing need for weight reduction for improving the fuel efficiency of automobiles, and high-tensile steel sheets are becoming mainstream automobile steel sheets as suitable materials. However, high-strength steel sheets contain elements that are more easily oxidized than iron such as Si, Mn, Al, Cr, etc. as strengthening elements in the order of a few percent, and these are added during the heat treatment process such as hot rolling and annealing. These elements are concentrated on the surface of the steel sheet to form oxides, which are not removed during chemical conversion treatment or electrodeposition coating in the automobile manufacturing process, and there are cases where the quality after coating is adversely affected.
これまでにも、このような課題を解決すべくさまざまな技術提案がなされている。特許文献1及び2には、鋼板表面に生成した酸化皮膜を除去する目的で、ブラシ研削を行った後に酸洗をする方法が開示されている。特許文献3には、熱延後の酸洗液中にCoイオン、Niイオン、Snイオンの1種又は2種以上を含有させ、鋼板表面にこれらの金属を置換析出させることで、化成処理の結晶核を付与し、化成処理皮膜による被覆率を向上させると言う技術が開示されている。特許文献4には、熱延後に硫黄化合物を含有する酸洗液中で酸洗し、表層のスケールを除去すると共に、硫黄分を鋼板表面に付着させて、自動車製造工程でフォスフォフィライト比率(P比)の高い良質で均一な化成結晶を形成させると言う技術が開示されている。 Various technical proposals have been made so far to solve such problems. Patent Documents 1 and 2 disclose a method of pickling after performing brush grinding for the purpose of removing an oxide film formed on the surface of a steel sheet. Patent Document 3 contains one or more of Co ions, Ni ions, and Sn ions in the pickling solution after hot rolling, and by substituting and depositing these metals on the surface of the steel sheet, chemical conversion treatment is performed. A technique of imparting crystal nuclei and improving the coverage with a chemical conversion coating is disclosed. In Patent Document 4, pickling in a pickling solution containing a sulfur compound after hot rolling, removing the scale of the surface layer and attaching the sulfur content to the steel sheet surface, the phosphophyllite ratio in the automobile manufacturing process A technique of forming a high-quality and uniform chemical conversion crystal having a high (P ratio) is disclosed.
また、特許文献5には、熱延板に黒皮スケールを付着させたまま、実質的に還元が起きない雰囲気で熱処理を行って、鋼板の地鉄表層部に内部酸化層を形成し、次いで、酸洗で黒皮スケールを除去することで、スケの無いりん酸塩皮膜を形成可能であることが開示されている。特許文献6には、内層を高強度成分、表層を良化成処理成分として、鋳造により複層鋼板を製造する技術が開示されている。 Further, in Patent Document 5, heat treatment is performed in an atmosphere in which reduction does not occur substantially with the black scale being adhered to the hot-rolled sheet, and an internal oxide layer is formed on the surface layer portion of the steel sheet, and then In addition, it is disclosed that by removing the black skin scale by pickling, it is possible to form a phosphate film without any scale. Patent Document 6 discloses a technique for producing a multilayer steel sheet by casting using an inner layer as a high strength component and a surface layer as a chemical conversion treatment component.
一方、特にSiを含有する熱延鋼板においては、Siスケール残りによる表面性状悪化や塗装後ムラを無くす観点から、熱延条件の検討が行われてきた。例えば、特許文献7には、スラブ表面温度1170〜1250℃で100〜150分保持することで、Siスケールをスラブ表面に均一に発生させ、その後の熱延工程で生成したスケールとまとめて除去することで、表面性状を改善する技術が開示されている。また、特許文献8には、スラブ表面温度が1175℃以上においてデスケーリングを行い、圧延後に極薄いSiスケールを均一に残存させることにより、表面性状に優れた熱延鋼板を得る技術が開示されている。一方、特許文献9には、最終デスケーリング前温度を1180℃以下とすることで、スケールの除去性が向上し、表面性状に優れた熱延鋼板を製造可能とする技術が開示されている。 On the other hand, in the case of a hot-rolled steel sheet containing Si in particular, examination of hot-rolling conditions has been performed from the viewpoint of eliminating surface property deterioration and post-coating unevenness due to residual Si scale. For example, in Patent Document 7, by maintaining the slab surface temperature at 1170 to 1250 ° C. for 100 to 150 minutes, the Si scale is uniformly generated on the slab surface and removed together with the scale generated in the subsequent hot rolling process. Thus, a technique for improving the surface properties is disclosed. Patent Document 8 discloses a technique for obtaining a hot-rolled steel sheet having excellent surface properties by performing descaling at a slab surface temperature of 1175 ° C. or higher and leaving an ultrathin Si scale uniformly after rolling. Yes. On the other hand, Patent Document 9 discloses a technology that makes it possible to manufacture a hot-rolled steel sheet having improved surface removal properties by improving the scale removability by setting the temperature before final descaling to 1180 ° C. or lower.
しかしながら、これらの従来技術にはいずれも課題がある。特許文献1及び2の技術を適用した場合、易酸化性元素を十分除去するためには、研削、酸洗により鋼板表層のかなりの厚みを除去する必要があり、生産性が悪い。また、易酸化性元素の含有率が高い鋼種に用いると、却って化成処理性を劣化する場合がある。特許文献3及び4の技術は、いずれも鋼板上に均一な化成処理皮膜を形成させるための技術であり、これだけで塗装後の耐食性を改善するものではない。なぜなら後述するように、本発明が対象とする鋼種においては、フォスフォフィライト比率(P比)の高い良質で均一な化成皮膜が形成されてもなお、塗装後耐食性が極めて不良となる例が存在するからである。 However, all of these conventional techniques have problems. When the techniques of Patent Documents 1 and 2 are applied, in order to sufficiently remove easily oxidizable elements, it is necessary to remove a considerable thickness of the steel sheet surface layer by grinding and pickling, and productivity is poor. Moreover, when it uses for the steel kind with a high content rate of an easily oxidizable element, a chemical conversion processability may deteriorate on the contrary. The techniques of Patent Documents 3 and 4 are both techniques for forming a uniform chemical conversion treatment film on a steel sheet, and this alone does not improve the corrosion resistance after painting. Because, as will be described later, in the steel types targeted by the present invention, there is an example in which the corrosion resistance after coating is extremely poor even if a high-quality and uniform chemical conversion film having a high phosphophyllite ratio (P ratio) is formed. Because it exists.
特許文献5の技術は、特許文献3、4と同様、化成処理のスケを無くす効果はあるものの、塗装後耐食性の改善効果は無い。また、工程が増えるため経済的でない。特許文献6の技術は、鋳造工程における制御が困難であり、生産性に乏しい。特許文献7〜9の技術は、元々熱延鋼板の表面性状の改善を目的としたものであり、これらをそのまま適用するだけでは、化成処理性や塗装後耐食性を改善することはできない。 Although the technique of Patent Document 5 has an effect of eliminating the scale of chemical conversion treatment as in Patent Documents 3 and 4, it has no effect of improving the corrosion resistance after coating. Moreover, it is not economical because the number of processes increases. The technique of Patent Document 6 is difficult to control in the casting process and has poor productivity. The techniques of Patent Documents 7 to 9 are originally intended to improve the surface properties of hot-rolled steel sheets, and by simply applying these as they are, it is not possible to improve chemical conversion properties and post-coating corrosion resistance.
本発明は、これらの課題を解決し、鉄より酸化され易い元素を合計0.5mass%以上含有しながらも、化成、塗装後の耐食性を飛躍的に向上させ、塗装後の美観に優れた熱延鋼材を提供するものである。 The present invention solves these problems and drastically improves the corrosion resistance after chemical conversion and coating while containing a total of 0.5 mass% or more elements that are more easily oxidized than iron, and has excellent aesthetics after coating. It provides steel materials.
本発明者らは、上記課題を解決すべく、鉄より酸化され易い元素を合計0.5mass%以上含有する熱延鋼材の化成、塗装後耐食性が不良である原因について、詳細に検討した。特に、フォスフォフィライト比率(P比)の高い良質で均一な化成皮膜が形成されてもなお、塗装後耐食性が極めて不良となるケースに着目して、鋼材側の要因について鋭意検討した。 In order to solve the above-mentioned problems, the present inventors have studied in detail the cause of the poor chemical resistance and post-coating corrosion resistance of hot-rolled steel materials containing a total of 0.5 mass% or more of elements that are more easily oxidized than iron. In particular, we focused on the factors on the steel side, focusing on the case where the corrosion resistance after coating is extremely poor even when a high-quality and uniform chemical conversion film having a high phosphophyllite ratio (P ratio) is formed.
一般に、鋼材の化成、塗装後耐食性は、化成、塗装後の鋼材に地鉄に達するキズを入れた後、腐食環境に暴露し、キズ部周辺におけるブリスター(塗膜ふくれ)の生成や、キズ部周辺をテープ剥離した時の塗膜剥離幅により評価されるのが通例である。この場合の腐食はいわゆる塗膜下腐食であり、キズがアノード、キズ部周辺のブリスターがカソードとなって腐食が進行する。ところが、易酸化性元素を0.5mass%以上含有する熱延鋼材の場合、キズから数mm以上離れた場所にもブリスターが多数発生し、テープ剥離の際、これらの離れたブリスターまでが繋がって剥離されるため、塗膜剥離幅が大きくなり、塗装後耐食性が不良と判定されることに、本発明者らは気付いた。 In general, the chemical resistance of steel materials after coating and corrosion resistance is that the steel material after chemical conversion and painting is exposed to a corrosive environment after scratches that reach the ground iron, and blisters (film blisters) are generated around the scratched part. It is customary to evaluate by the coating film peeling width when the periphery is tape-peeled. The corrosion in this case is so-called under-coating corrosion, and the corrosion proceeds with the scratch being the anode and the blister around the scratch portion being the cathode. However, in the case of hot-rolled steel materials containing 0.5 mass% or more of easily oxidizable elements, many blisters are generated at a location several mm or more away from the scratch, and when the tape is peeled off, these blisters are connected and peeled off. Therefore, the present inventors have noticed that the coating film peeling width is increased and the post-coating corrosion resistance is judged to be poor.
そこで、このキズから離れたブリスターについて、さらに詳細に分析したところ、ブリスター内部では、化成結晶が上側から順次溶解していることが判り、このブリスターも、やはりカソードとなっていることが判った。しかしながら、耐食性試験は、地鉄に達するキズを入れて行っている以上、キズそのもののアノード反応速度、即ち、鉄の溶解速度は、鋼種によって大きくは変わらないと考えられる。にもかかわらず、易酸化性元素を0.5mass%以上含有する熱延鋼材には、カソード・ブリスターが多数生成すること、しかも、それがキズから離れた位置に生成することを考慮すると、これらの鋼材には、キズ以外にもアノードが生成している可能性があると考えた。 Therefore, when the blister away from the scratch was analyzed in more detail, it was found that the chemical conversion crystals were sequentially dissolved from the upper side inside the blister, and this blister was also the cathode. However, since the corrosion resistance test is conducted with scratches reaching the base iron, it is considered that the anode reaction rate of the scratch itself, that is, the dissolution rate of iron, does not vary greatly depending on the steel type. Nevertheless, considering hot-rolled steel materials containing 0.5 mass% or more of easily oxidizable elements, a large number of cathode blisters are generated, and these are generated at positions away from the scratches. It was thought that there was a possibility that an anode was generated in addition to scratches in the steel material.
そこで、キズから離れたブリスターの周囲をさらに詳細に分析した結果、ブリスターのすぐ外側に、化成結晶の下で地鉄が溶解している部分が見られ、これがキズから離れたブリスターに対応する局部アノードであることが明らかになった。つまり、易酸化性元素を0.5mass%以上含有する熱延鋼材の表面には、周囲より鉄が溶解し易く、局部アノードとなり易い部分が多数存在しており、その結果、キズから離れた場所にもカソード・ブリスターが多数発生し、塗膜剥離幅が大きくなると言うメカニズムが明らかになった。 Therefore, as a result of further detailed analysis of the surroundings of the blister away from the scratch, a portion where the base iron is dissolved under the chemical conversion crystal is seen just outside the blister, which corresponds to the blister away from the scratch. It became clear that it was an anode. In other words, on the surface of hot-rolled steel material containing 0.5 mass% or more of an easily oxidizable element, there are many parts where iron easily dissolves from the surroundings and easily becomes a local anode, and as a result, in a place away from scratches. However, the mechanism that a large number of cathode blisters were generated and the coating film peeling width became large was clarified.
さらに、本発明者らは、このように周囲より鉄が溶解し易く、局部アノードとなり易い部分を少なくするためには、従来とは異なる熱延・酸洗条件が必要なこと、この結果得られる塗装後耐食性に優れた熱延鋼材は、特徴的な表面構造を有することを見出し、本発明を完成するに至った。 Furthermore, the present inventors have obtained the result that, as described above, in order to reduce the portion where iron is easily dissolved from the surroundings and easily becomes a local anode, different hot rolling and pickling conditions are required. It has been found that a hot-rolled steel material excellent in corrosion resistance after painting has a characteristic surface structure, and has completed the present invention.
本発明は、以下の(1)〜(4)を要旨とする。 The gist of the present invention is the following (1) to ( 4 ).
(1)鉄より酸化され易い元素のC、Si、Mn、P、S、Al、N、Crの1種又は2種以上を合計0.5mass%以上含有する熱延鋼材であって、鉄より酸化され易い元素の内、最も酸化され易いものの鋼材表面における濃度が鋼中濃度を超えず、かつ、鋼材表面に地鉄の結晶粒を被覆する酸化物層が存在して、該酸化物層による結晶粒の被覆面積率が50%以上であり、更に、該熱延鋼材表面に、浸漬型のりん酸亜鉛処理によりP比が0.9以上のりん酸塩皮膜を形成させた後にカチオン電着塗装を施し、これを55℃の7%NaCl水溶液中に253時間浸漬後、塗装面をテープ剥離することにより生成する長径0.5mm以上の塗装剥離部の個数が、1cm2当り1個未満であることを特徴とする塗装後の耐食性及び美観に優れた熱延鋼材。 (1) A hot rolled steel material containing 0.5 mass% or more of one or more of C, Si, Mn, P, S, Al, N, and Cr, which are more easily oxidized than iron, and oxidized from iron Among the elements that are most likely to be oxidized, the concentration at the surface of the steel material that is most easily oxidized does not exceed the concentration in the steel, and there is an oxide layer that covers the crystal grains of the steel on the surface of the steel material. Cationic electrodeposition coating after forming a phosphate film having a P ratio of 0.9 or more on the surface of the hot-rolled steel material by immersion zinc phosphate treatment on the surface of the hot-rolled steel material. After immersing this in a 7% NaCl aqueous solution at 55 ° C for 253 hours, the number of paint peeling parts with a major axis of 0.5 mm or more generated by tape peeling of the coated surface should be less than 1 per 1 cm 2 Hot rolled steel with excellent corrosion resistance and aesthetics after painting.
(2)鉄より酸化され易い元素のC、Si、Mn、P、S、Al、N、Crの1種又は2種以上を合計0.5mass%以上含有する熱延鋼材であって、鉄より酸化され易い元素の内、最も酸化され易いものの鋼材表面における濃度が鋼中濃度よりも高い領域が存在し、かつ、鋼材表面に地鉄の結晶粒を被覆する酸化物層が存在して、該酸化物層による結晶粒の被覆面積率が70%以上であり、更に、該熱延鋼材表面に、浸漬型のりん酸亜鉛処理によりP比が0.9以上のりん酸塩皮膜を形成させた後にカチオン電着塗装を施し、これを55℃の7%NaCl水溶液中に253時間浸漬後、塗装面をテープ剥離することにより生成する長径0.5mm以上の塗装剥離部の個数が1cm2当り1個未満であることを特徴とする塗装後の耐食性及び美観に優れた熱延鋼材。 (2) A hot-rolled steel material containing 0.5 mass% or more of one or more of elements C, Si, Mn, P, S, Al, N, Cr, which are more easily oxidized than iron, and oxidized from iron Among the elements that are most likely to be oxidized, there is a region where the concentration on the surface of the steel material that is most likely to be oxidized is higher than the concentration in steel, and there is an oxide layer that covers the crystal grains of the steel on the surface of the steel material. After forming a phosphate film having a P ratio of 0.9 or more on the surface of the hot-rolled steel material by dipping-type zinc phosphate treatment on the surface of the hot-rolled steel material. After applying cationic electrodeposition coating, immersing it in a 7% NaCl aqueous solution at 55 ° C for 253 hours and then peeling the coated surface with tape, the number of coating peeling parts with a major axis of 0.5 mm or more is less than 1 per 1 cm 2 A hot-rolled steel material excellent in corrosion resistance and aesthetics after painting.
(3)前記鉄より酸化され易い元素として、Si、Mn、Al、Crの内1種又は2種以上とすることを特徴する前記(1)または(2)に記載の塗装後の耐食性及び美観に優れた熱延鋼材。 (3) as likely element to be oxidized than the iron, corrosion resistance and appearance after coating according to Si, Mn, Al, said that, characterized in that the one or more of Cr (1) or (2) Excellent hot rolled steel material.
(4)前記鉄より酸化され易い元素の合計含有率が1.5mass%以上、4.0mass%以下である前記(1)〜(3)のいずれかに記載の塗装後の耐食性及び美観に優れた熱延鋼材。 (4) heat the total content of the iron from being oxidized easily element 1.5 mass% or more, excellent in corrosion resistance and appearance after coating according to any one of the at most 4.0 mass% (1) ~ (3) Rolled steel.
本発明により、塗装後耐食性に優れた高強度熱延鋼材を提供することができる。特に、ホイール等の自動車足回り部品として適用した場合に、キズ部はもちろん平面部においても、塗膜下腐食によるブリスターの生成が少ないため、実車として走行してからも長く美観を維持することができる。 According to the present invention, a high-strength hot-rolled steel material having excellent post-coating corrosion resistance can be provided. In particular, when applied as an automobile undercarriage part such as a wheel, the generation of blisters due to corrosion under the coating film is small in the flat part as well as the scratch part, so that it can maintain aesthetics for a long time even after running as a real car. it can.
以下、本発明を詳述する。 The present invention is described in detail below.
先ず、前記(1)は、塗装後耐食性を確保するのに必要な、鋼材表面の局部アノード密度の上限を規定したものである。先に述べたように、鋼材表面に、周囲より鉄が溶け易い部分が存在すると局部アノードとなり、カットから離れた位置にもブリスターが生成して、この結果、テープ剥離幅が大きくなる。したがって、テープ剥離幅を小さくするには、鋼材表面の局部アノード密度を少なくすれば良い。局部アノード密度は、鋼材をりん酸亜鉛処理及び電着塗装した後、カットが無い状態で腐食環境に暴露し、この後、塗装面をテープ剥離することで生成する塗装剥離部の密度と相関があり、これを目安とすることができる。鋼材表面が均一で、局部アノードが全く生成しなければ、カットが無い状態で腐食環境に暴露した後、塗装面をテープ剥離しても、塗装剥離部は生成しない。 First, (1) defines the upper limit of the local anode density on the surface of the steel material, which is necessary to ensure the corrosion resistance after coating. As described above, if there is a portion on the steel surface where iron is more likely to melt than the surroundings, a local anode is formed, and blisters are generated at positions away from the cut, resulting in an increase in tape peeling width. Therefore, in order to reduce the tape peeling width, the local anode density on the steel material surface may be reduced. The local anode density is correlated with the density of the paint peeling part produced by exposing the steel material to zinc corrosion treatment and electrodeposition coating, then exposing it to a corrosive environment without cutting, and then peeling the painted surface with tape. Yes, this can be used as a guide. If the surface of the steel material is uniform and no local anode is generated, even if the coated surface is tape-peeled after being exposed to a corrosive environment without being cut, a paint-peeled portion is not generated.
ただし、この方法で局部アノード密度を見積るには、りん酸亜鉛処理及び電着塗装が、健全、均一に形成されていなければならない。これらに欠陥があると、それ自身が局部アノードとして作用するためである。りん酸亜鉛処理としては、浸漬型のトライカチオン(Zn-Ni-Mg)タイプが良い。また、その表面調整液としては、Tiコロイドを含有する従来タイプのものを用いても良いが、より好ましくは、下地鋼材の種類によらず高い結晶微細化効果を有する亜鉛系分散剤を含有した表面調整液が推奨される。りん酸亜鉛処理の付着量は2.0〜2.5g/m2が良い。また、フォスフォフィライト比率(P比)は、0.9以上となるようにすべきである。P比は(フォスフォフィライトのX線回折強度)/(ホパイトのX線回折強度+フォスフォフィライトのX線回折強度)として測定される。電着塗装は、自動車車体用として現状汎用されているカチオンタイプを使用し、膜厚は15〜20μmの範囲とする。塗装焼付け条件は、それぞれの塗料の仕様に従うが、熱延鋼材は板厚の幅が大きいことから、所定焼付け温度までの昇温時間が板厚に依存することに注意すべきである。即ち、全焼付け時間で管理するのではなく、均熱時間で管理すべきである。均熱時間は、仕様で定められた全焼付け時間の7〜8割とすべきである。これより短いと、塗膜の硬化が不足して、健全な電着塗膜ができない。また、これより長いと、塗膜が硬化過多となって、透水性、バリア性が実車の塗膜よりも高くなり、鋼材の耐食性を過小評価する恐れがある。 However, in order to estimate the local anode density by this method, the zinc phosphate treatment and electrodeposition coating must be sound and uniform. This is because if these are defective, they themselves act as local anodes. As the zinc phosphate treatment, an immersion type trication (Zn-Ni-Mg) type is preferable. As the surface conditioning solution, a conventional type containing a Ti colloid may be used, but more preferably, a zinc-based dispersant having a high crystal refining effect is contained regardless of the type of the base steel. Surface conditioning liquid is recommended. Adhesion amount of the zinc phosphate treatment good 2.0~2.5g / m 2. The phosphophyllite ratio (P ratio) should be 0.9 or more. P ratio is measured as (X-ray diffraction intensity of phosphophyllite) / (X-ray diffraction intensity of hopite + X-ray diffraction intensity of phosphophyllite) . Electrodeposition coating uses a cation type that is currently widely used for automobile bodies, and has a film thickness in the range of 15 to 20 μm. The paint baking conditions are in accordance with the specifications of each paint, but it should be noted that the hot-rolled steel material has a large plate thickness width, and therefore the temperature rise time to a predetermined baking temperature depends on the plate thickness. That is, it should be managed not by the total baking time but by the soaking time. The soaking time should be 70-80% of the total baking time specified in the specification. If it is shorter than this, the coating film is insufficiently cured and a sound electrodeposition coating film cannot be obtained. On the other hand, if it is longer than this, the coating film becomes excessively hardened, the water permeability and the barrier property become higher than those of the actual vehicle coating film, and the corrosion resistance of the steel material may be underestimated.
試験に用いる熱延鋼材の寸法は、長手方向12cm、幅方向7cmに切り出した鋼板とする。成型品や鋼管から切り出した場合には、完全に平坦でなく多少湾曲していても、これを試験片とし、かつ、鋼板と呼ぶこととする。これを脱脂、化成処理、電着塗装した後、局部アノード密度を評価する。試験条件は、55℃の7%NaCl水溶液中への連続浸漬であり、253時間後に取り出す。取り出してから6時間以上、24時間以内に、テープ剥離試験を行う。テープは幅25mmの透明感圧付着テープとし、鋼板の左右の端面からそれぞれ1cm内側までの端面近傍の領域を避けて、長手方向に並べて2本付着させる。このあとのテープ剥離試験の方法は、原則としてJIS K5600-5-6の7.2.6の記述に従う。即ち、塗装に正しく接触させるために指先でしっかりテープをこすり、テープを通して見られる塗装の色から、接触がきちんとしていることを確認後、5分以内に、できるだけ60°に近い角度でテープの端をつかみ、0.5〜1秒で、1本ずつ確実に引き離す。テープ剥離後、塗装面に生成した塗装剥離部の評価は、以下のように行う。まず、剥離したテープを透明フィルムのシートに貼り付ける。次に、試験片の長手方向12cmに対応する部分の内、上下の端面から各1cm内側までの領域のテープを切断、除去する。即ち、上下左右の端面から1cm内側まで領域は評価しない。これは、端面近傍ではエッジの影響で電着膜厚が薄くなっており、その影響を排除するためである。以上の結果、評価する領域は2本のテープを合わせると、鋼板の長手方向10cm、幅方向5cmのエリアとなる。この後、テープ表面をルーペ等で観察し、テープに付着した長径0.5mm以上の塗装剥離部の個数を数える。これを面積(50cm2)で割って、局部アノード密度の尺度とする。1鋼種につき3サンプルの試験を行って、平均値を出す。この値が1個/cm2未満であると、鋼板表面に生成した局部アノード密度としては十分少なく、塗装後カットを入れた通常の腐食試験においても、カットから離れた位置に生成するブリスターは少なくなり、この結果、テープ剥離幅は小さくなる。より好適には、0.5個/cm2未満である。 The dimensions of the hot-rolled steel used for the test are steel plates cut into a length of 12 cm and a width of 7 cm. When cut out from a molded product or a steel pipe, even if it is not completely flat but slightly curved, this is used as a test piece and is called a steel plate. After degreasing, chemical conversion and electrodeposition coating, the local anode density is evaluated. The test condition is continuous immersion in a 7% NaCl aqueous solution at 55 ° C., which is taken out after 253 hours. The tape peel test is performed within 6 hours and 24 hours after removal. The tape should be a transparent pressure-sensitive adhesive tape with a width of 25 mm, and the two tapes should be attached side by side in the longitudinal direction, avoiding the area in the vicinity of the end face from the left and right end faces of the steel sheet to 1 cm inside. Subsequent tape peel test methods shall in principle conform to the description in 7.2.6 of JIS K5600-5-6. That is, rub the tape firmly with your fingertips to ensure proper contact with the paint, and within 5 minutes after confirming that the contact is neat from the color of the paint seen through the tape, make sure that the tape is as close to 60 ° as possible. Grasp the edge and pull it apart one by one in 0.5 to 1 second. After the tape is peeled off, the paint peeling portion generated on the painted surface is evaluated as follows. First, the peeled tape is stuck on a sheet of transparent film. Next, in the portion corresponding to 12 cm in the longitudinal direction of the test piece, the tape in the region from the upper and lower end faces to the inside of each 1 cm is cut and removed. In other words, the region from the top, bottom, left, and right end faces to 1 cm inside is not evaluated. This is because the electrodeposition film thickness is thin due to the influence of the edge in the vicinity of the end face, and the influence is eliminated. As a result, when the two tapes are combined, the area to be evaluated becomes an area of 10 cm in the longitudinal direction and 5 cm in the width direction of the steel sheet. Thereafter, the surface of the tape is observed with a magnifying glass or the like, and the number of paint peeling portions having a major axis of 0.5 mm or more attached to the tape is counted. Divide this by the area (50 cm 2 ) to give a measure of the local anode density. Test 3 samples per steel grade and get the average value. If this value is less than 1 piece / cm 2 , the local anode density generated on the steel sheet surface is small enough, and even in normal corrosion tests with cuts after coating, few blisters are generated away from the cuts. As a result, the tape peeling width becomes small. More preferably, it is less than 0.5 pieces / cm 2 .
局部アノード密度が少ないことのもう一つの作用効果として、実車での塗装後美観の維持がある。詳細には、実施例2で述べるが、本発明の用途の一つであるホイールにおいては、構造上、平面部分の面積が広く、塗装後の美観維持が非常に重視されている。 Another effect of having a low local anode density is maintaining the aesthetics after painting in an actual vehicle. Although details will be described in Example 2, the wheel, which is one of the applications of the present invention, has a large area in the plane portion because of the structure, and the aesthetic maintenance after painting is very important.
なお、鉄より酸化され易い元素(易酸化性元素)のC、Si、Mn、P、S、Al、N、Crの1種又は2種以上の合計を0.5mass%以上と規定したのは、0.5mass%未満では、高強度熱延鋼材が得られないためである。 The total of one or more of C, Si, Mn, P, S, Al, N, Cr of elements that are easily oxidized than iron (easily oxidizable elements) is defined as 0.5 mass% or more. This is because if it is less than 0.5 mass%, a high-strength hot-rolled steel material cannot be obtained.
前記(1)は、更に先に述べた性能を有する熱延鋼材の表面構造を規定したものである。本発明者らは、局部アノード形成により塗装後耐食性が劣化するメカニズムを知見した後に、局部アノードが鋼材表面にどのように形成されているかを詳細に分析した。その結果、(a)鋼材表面における易酸化性元素の濃度が鋼中濃度よりも高い領域がある、(b)鋼材表面の地鉄の結晶粒を被覆する表面酸化物層の被覆率が低い、の2つの条件が揃うと、局部アノードを形成し易いことを見出した。鋼材表面に易酸化性元素の濃度が鋼中濃度よりも高い領域があると、その周囲の鉄は溶け易いと考えられる。そして、その表面が酸化物層により被覆されていなければ、局部アノードとなる可能性が高いと思われる。要するに、熱延・酸洗後の鋼材表面が不均一な構造であればあるほど、局部アノードを形成し易い。 The above ( 1 ) further defines the surface structure of a hot-rolled steel material having the performance described above . The present inventors have analyzed in detail how the local anode is formed on the steel surface after finding out the mechanism of deterioration of the corrosion resistance after coating due to the formation of the local anode. Consequently, (a) the concentration of the easily oxidizable element in the steel surface is higher region than steel concentrations, (b) low coverage of the surface oxide layer covering the grain of the base iron of the steel material surface, When these two conditions are met, it has been found that a local anode can be easily formed. If there is a region where the concentration of the easily oxidizable element is higher than the concentration in steel on the surface of the steel material, the surrounding iron is considered to be easily dissolved. And if the surface is not coat | covered with the oxide layer, it will be highly likely to become a local anode. In short, the more uneven the steel surface after hot rolling and pickling, the easier it is to form a local anode.
そこで、局部アノードを減らすための対策について鋭意検討したところ、それには2通りの方法があることを見出した。その1つが前記(1)に規定した表面構造である。前記(1)は、(a)鋼材表面における易酸化性元素の濃度が鋼中濃度を超えない、(b)鋼材表面の地鉄の結晶粒を被覆する表面酸化物層の被覆率を高める、と言う2つの条件により、局部アノードの形成を減少させたものである。以下に、その構造及び製造方法について詳細に説明する。 Therefore, intensive investigations were made on measures to reduce the local anode, and it was found that there are two methods. One of them is the surface structure defined in ( 1 ) above. Wherein (1) the concentration of oxidizable elements in (a) the steel surface density in the steel super Enoi, increasing the coverage of the surface oxide layer covering the grain of the base steel of (b) the steel surface The formation of the local anode is reduced under the two conditions. Below, the structure and manufacturing method are demonstrated in detail.
先ず、(a)鋼材表面における易酸化性元素の濃度が鋼中濃度を超えないことについてであるが、鋼材表面に易酸化性元素の濃化があるかどうかは、グロー放電発光分析(GDS)により判定する。図1に、その例を示す。これは、後述する実施例で示す表1の組成Cのスラブを、異なる熱延・酸洗条件で板厚3.2mmの熱延鋼板としたもののGDS分析結果である。使用した装置は、リガク製のグロー放電発光分析装置である。測定時間は10sec、測定インターバルは10msec、スパッタリング条件は、設定電力20W、Ar流量250mL/minとした。測定元素はFe、O、Si、Mnであるが、この内、最も酸化され易いSiについて見ると、図1(a)は、スパッタリング時間2秒以内の鋼材表面にSi濃度のピークが無く、前記の「鋼材表面における易酸化性元素の濃度が鋼中濃度を超えない」と言う条件を満足している。一方、図2(b)は、スパッタリング時間約0.5秒の鋼材表面にSi濃度のピークが存在し、上記の条件を満足しない。測定は鋼材上の100cm以上離れた5ヶ所で行い、この内、3ヶ所以上が(a)、(b)どちらのタイプであるかにより判定する。なお、ここで言うスパッタリング時間2秒以内の鋼材表面とは、鋼材の最表層から凡そ5μmの深さの領域に対応している。 First, (a) the concentration of oxidizable elements on the steel surface does not exceed the concentration in steel, but whether or not there is concentration of oxidizable elements on the steel surface is determined by glow discharge emission spectrometry (GDS). Judgment by An example is shown in FIG. This is a GDS analysis result of a slab having the composition C shown in Table 1 shown in an example described later as a hot rolled steel sheet having a thickness of 3.2 mm under different hot rolling and pickling conditions. The apparatus used is a glow discharge emission spectrometer manufactured by Rigaku. The measurement time was 10 sec, the measurement interval was 10 msec, the sputtering conditions were set power 20 W, Ar flow rate 250 mL / min. The elements to be measured are Fe, O, Si, and Mn. Among these, when looking at Si that is most easily oxidized, FIG. 1 (a) shows that there is no Si concentration peak on the steel surface within a sputtering time of 2 seconds. "the concentration of oxidizable elements in the surface of the steel material is a concentration in the steel super Enoi" which satisfies the condition say of. On the other hand, in FIG. 2 (b), there is a Si concentration peak on the surface of the steel material having a sputtering time of about 0.5 seconds, and the above conditions are not satisfied. Measurements are made at 5 locations on the steel at a distance of 100 cm or more, and among these, 3 or more locations are judged according to which type (a) or (b). The surface of the steel material with a sputtering time of 2 seconds or less here corresponds to a region having a depth of about 5 μm from the outermost layer of the steel material.
次に、鋼材表面における易酸化性元素の濃度が鋼中濃度を超えないための熱延鋼板の製造方法について述べる。易酸化性元素の濃化を無くすには、例えば、二次スケールが生成すると考えられている仕上げ圧延開始から巻取りまでの間に、内部酸化よりも外部酸化が有利になる条件で製造することが有効である。それには、最終デスケ後のスケール厚を厚くすることにより、鋼板表層近傍への酸素の拡散を起こり難くするのが良い。最終デスケ後のスケール厚を厚くするには、加熱炉から仕上げ圧延までの工程において、例えば、次のような条件を選ぶことが有効である。 (i)スラブ加熱温度を高め、均熱時間を長くすることで、最終デスケ後にも一次スケールを残存させる、(ii)粗圧延後の粗バー厚みを厚くして、スケール厚を確保する、 (iii)最終デスケ圧を低めに設定する、 (iv)粗圧延最終パスから仕上げ圧延までの時間を長くして、二次スケールの生成開始を早める、 (v)仕上げ圧延開始直後の圧下率を抑制することにより、スケール層へのクラック生成を抑制する。 Next, the process for producing the hot rolled steel sheet for the concentration of oxidizable elements exceed not the concentration in the steel at the steel surface. In order to eliminate the concentration of easily oxidizable elements, for example, production should be performed under conditions where external oxidation is more advantageous than internal oxidation during the period from the start of finish rolling, which is considered to generate a secondary scale, to winding. Is effective. For this purpose, it is preferable to prevent oxygen from diffusing near the surface of the steel sheet by increasing the scale thickness after the final deske. In order to increase the scale thickness after the final deske, it is effective to select, for example, the following conditions in the process from the heating furnace to the finish rolling. (i) Increase the slab heating temperature and lengthen the soaking time to leave the primary scale even after the final deske. (ii) Increase the coarse bar thickness after rough rolling to ensure the scale thickness. iii) Set the final deske pressure lower, (iv) Increase the time from the final rough rolling pass to finish rolling to accelerate the start of secondary scale generation, (v) Suppress the rolling reduction immediately after the start of finish rolling By doing so, the generation of cracks in the scale layer is suppressed.
具体的には、先ず、スラブ加熱は1250℃以上の高温で、均熱時間200分以上行うのが良い。粗圧延では、例えば、スラブ厚みが250mmであれば、粗バー厚みは70mm以上とするのが良い。最終デスケのデスケ水吐出圧は9.8MPa未満が良い。粗圧延最終パスから仕上げ圧延開始までの時間は、90秒以上確保するのが良い。また、仕上げ圧延開始直後のF1ロールの圧下率は25%未満とするのが良い。 Specifically, first, slab heating is preferably performed at a high temperature of 1250 ° C. or higher and a soaking time of 200 minutes or longer. In rough rolling, for example, if the slab thickness is 250 mm, the rough bar thickness is preferably 70 mm or more. The final deske water discharge pressure should be less than 9.8MPa. The time from the final rough rolling pass to the start of finish rolling should be 90 seconds or more. Also, the rolling reduction of the F1 roll immediately after the start of finish rolling is preferably less than 25%.
次に、酸洗条件であるが、いわゆるスケール、黒皮を除去するのに必要十分な酸洗条件であれば良い。そのためには、従来の操業よりも塩酸濃度や浴温を低くし、処理時間も短くした上で、過酸洗抑制剤も添加するのが良い。特許文献1、2に見られたような、過剰な酸洗を行うと、むしろ表層構造の不均一化を招き、逆効果である。 Next, the pickling conditions may be any pickling conditions necessary and sufficient for removing so-called scales and black skin. For this purpose, it is preferable to add a peracid washing inhibitor after lowering the hydrochloric acid concentration and bath temperature and shortening the treatment time as compared with the conventional operation. Excess pickling as seen in Patent Documents 1 and 2 leads to non-uniform surface structure, which is counterproductive.
次に、(b)鋼材表面の地鉄の結晶粒を被覆する表面酸化物層の被覆率を高めることについて説明する。図2に、熱延鋼板を60°傾斜して、地鉄の上に生成した表面酸化物層をSEM(走査型電子顕微鏡)により観察した結果を示す。端面に見えているのが地鉄の結晶粒、表面にあるのが酸化物層である。図2(a)は、表面粗度が大きな鋼板を酸化物層が均一に被覆したものの例、図2(b)は、表面粗度が小さい鋼板の上に厚みが場所によって異なる酸化物層を有するものの例である。これらから判るように、表面酸化物層は、厚さが数μm以下の非常に薄い層であり、いわゆるスケールや黒皮とは異なる。なお、表面に存在するのが酸化物層であることを確認するには、XPS(X線光電子分光法)によりサンプルの表面分析を行って、酸素の定性分析及び鉄の状態分析を行い、酸素が表面に存在すること、鉄が酸化物の状態にあることを確認すれば良い。 Next, a description will be given to increase the coverage of the surface oxide layer covering the grain of the base steel of (b) the steel surface. FIG. 2 shows the result of observing the surface oxide layer formed on the ground iron by SEM (scanning electron microscope) with the hot-rolled steel sheet inclined by 60 °. The end face is visible in the crystal grains of the ground iron, and the oxide layer is on the surface. Fig. 2 (a) shows an example of a steel plate with a large surface roughness coated with an oxide layer uniformly, and Fig. 2 (b) shows an oxide layer with a different thickness depending on the location on a steel plate with a small surface roughness. It is an example of what has. As can be seen from these, the surface oxide layer is a very thin layer having a thickness of several μm or less, and is different from a so-called scale or black skin. To confirm that the oxide layer is present on the surface, perform surface analysis of the sample by XPS (X-ray photoelectron spectroscopy), qualitative analysis of oxygen and iron state analysis, Is present on the surface, and it is sufficient to confirm that iron is in an oxide state.
次に、地鉄の結晶粒について説明する。地鉄の結晶粒とは、表面からSEM観察を行った際に、境界のはっきりした粒状に見えるものすべてを指す。結晶粒の大きさは、図2のように、端面と表面の同時観察を行うことで確認でき、鋼種や熱延条件にもよるが、10μm程度以上あるのが通常である。これに加えて、大きさが数μm前後の小さなものも、ここでは結晶粒と定義する。例えば、図3(c)のSEM写真には、中央部付近の大きさが10μm前後の大きな粒と、左上に密集して見える大きさが数μm程度の小さな粒が観察されるが、これらはいずれも地鉄の結晶粒と定義する。大きさが数μm程度の小さな結晶粒は圧延中に表層近傍で(通常サイズの)結晶粒が破壊されたもの、あるいは、酸洗中にエッチング(地鉄の溶解)により形成されたものと思われる。いずれにせよ、これらは表層酸化物層により被覆されない地鉄の結晶粒である。 Next, the crystal grains of the ground iron will be described. The crystal grains of the base steel, when the surface subjected to SEM observation, refers to all those visible to clear particulate boundary. The size of the crystal grain, as in FIG. 2, can be confirmed by performing a simultaneous observation of the end face and the surface, depending on the steel type and the hot rolling conditions, there least about 10μm is usual. In addition to this, a small particle having a size of about several μm is defined as a crystal grain here. For example, in the SEM photograph of FIG. 3 (c), large grains around 10 μm in the vicinity of the central part and small grains about several μm in size that appear densely in the upper left are observed. Both are defined as crystal grains of ground iron. Size of several μm order of small crystal grains in the vicinity of the surface layer during rolling (normal size) as the grain is destroyed, or the one formed by etching (dissolution of the base steel) during pickling think We Ru. In any case, these are crystal grains of the base iron that are not covered by the surface oxide layer.
鋼材表面酸化物層の被覆率は、以下のようにして算出する。先ず、鋼材よりSEM観察が可能な大きさ、例えば、30mm角のサンプルを切り出す。そして、5mm以上離れたランダムな3点を真上から(鋼板を傾斜させずに)SEM観察する。観察は、加速電圧15kV、倍率1000倍の視野で行い、表面酸化物層が地鉄の結晶粒をほぼ被覆していれば評点2、表面酸化物層と地鉄の結晶粒が混在していれば評点1、結晶粒が露出した部位が優勢ならば評点0とする。それぞれの評点に相当する例示写真を図3に示す。これらの中間のものがあれば、より例示写真に近い方の評点とする。同様の評価を、鋼材上の100cm以上離れた位置から採取した合計10サンプルについて行い、評点を合計する。例えば、観察した全視野で、表面酸化物層が地鉄の結晶粒をほぼ被覆していれば、合計評点は60点である。その上で、以下の計算式を用いて、表面被覆率を求める。なお、少数点以下は四捨五入する。 The coverage of the steel surface oxide layer is calculated as follows. First, a sample having a size capable of SEM observation, for example, a 30 mm square is cut out from the steel material. Then, SEM observation is performed on three random points separated by 5 mm or more from directly above (without tilting the steel plate). The observation is performed at an accelerating voltage of 15 kV and a field of view of 1000 times magnification. If the surface oxide layer almost covers the crystal grains of the ground iron, the score is 2, and the surface oxide layer and the ground iron crystal grains may be mixed. If the part where the crystal grains are exposed is dominant, the score is 0. An example photograph corresponding to each score is shown in FIG. If there is an intermediate one, the score closer to the example photograph is taken. The same evaluation is performed on a total of 10 samples collected from a position of 100 cm or more on the steel material, and the scores are totaled. For example, in the entire field of view, if the surface oxide layer substantially covers the crystal grains of the ground iron, the total score is 60 points. Then, the surface coverage is obtained using the following calculation formula. The numbers after the decimal point are rounded off.
表面被覆率(%) = 合計評点 × 100/60
前記(1)には、鋼材表面に易酸化性元素の濃度が鋼中濃度よりも高い領域が無い。この場合には、表面酸化物層の被覆率が50%以上であれば、局部アノードの生成を十分抑制できる。さらに好適には60%以上である。
Surface coverage (%) = total score x 100/60
In ( 1 ), there is no region where the concentration of the easily oxidizable element is higher than the concentration in steel on the surface of the steel material. In this case, if the coverage of the surface oxide layer is 50% or more, the formation of local anodes can be sufficiently suppressed. More preferably, it is 60% or more.
次に、鋼材表面酸化物層の被覆率を制御する方法について説明する。これには、酸洗とリンスが関与している。酸洗条件は、既に述べたように、従来の操業よりも塩酸濃度や浴温を低くし、処理時間も短くした上で、過酸洗抑制剤を添加することが、酸洗時のエッチングによる粒の生成を回避し、鋼材表面酸化物層の被覆率を高める上で、有利である。その上で、酸洗後のリンス水中に、りん酸1〜3mass%とほう酸2〜5mass %を添加し、浴温を60〜80℃として5〜8秒リンスした後、乾燥温度80〜150℃で乾燥することにより、表面酸化物層の被覆率をさらに高めることができる。 Next, a method for controlling the coverage of the steel surface oxide layer will be described. This involves pickling and rinsing. As described above, the pickling condition is that the concentration of hydrochloric acid and the bath temperature are lower than the conventional operation, and the treatment time is shortened. This is advantageous in avoiding the formation of grains and increasing the coverage of the steel surface oxide layer. In addition, after adding 1 to 3 mass% phosphoric acid and 2 to 5 mass% boric acid in the rinse water after pickling, rinsing for 5 to 8 seconds with a bath temperature of 60 to 80 ° C, and a drying temperature of 80 to 150 ° C By drying with, the coverage of the surface oxide layer can be further increased.
前記(2)は、前記(1)の性能を有する熱延鋼材のもう1種類の表面構造を規定したものである。これは、(a)鋼材表面に易酸化性元素の濃度が鋼中濃度よりも高い領域を密に生成させる、(b)鋼材表面の地鉄の結晶粒を被覆する表面酸化物層の被覆率を高める、と言う2つの条件により、鋼材表面の不均一を軽減し、局部アノードの形成を減少させたものである。 The ( 2 ) defines another surface structure of the hot rolled steel material having the performance (1). This, (a) the concentration of the oxidizable element steel surface is densely generate region higher than steel concentrations, (b) the coverage of the surface oxide layer covering the grain of the base iron of the steel surface The two conditions of increasing the resistance of the steel material reduce the unevenness of the steel surface and reduce the formation of local anodes.
この内、先ず、(a)鋼材表面に易酸化性元素の濃度が鋼中濃度よりも高い領域を密に生成させることについて説明する。局部アノードが形成され易いのは、表面構造が不均一な場合である。地鉄中の易酸化性元素の濃化についても、それが所々まばらに存在すると、局部アノードは形成され易いが、表面に密集していれば、これはこれで均一な表面構造と言うことができ、局部アノードの生成を抑制可能である。 Among these, first, (a) the formation of a region where the concentration of the easily oxidizable element is higher than the concentration in steel on the surface of the steel material will be described. The local anode is easily formed when the surface structure is not uniform. Concentration of easily oxidizable elements in the base iron also tends to form a local anode if it is sparsely present, but if it is dense on the surface, this can be said to be a uniform surface structure. And generation of local anodes can be suppressed.
鋼材表面に易酸化性元素の濃化があるかどうかは、既に述べた通り、図1のように、グロー放電発光分析(GDS)により判定する。これにより、易酸化性元素の濃化があると判定された場合には、蛍光X線により易酸化性元素の表面含有率(mass%)を測定し、鋼中含有率(mass%)に対して何倍であるかを求めた上で、以下の式に従って、濃化が密であるか粗であるかの判定を行う。 Whether or not the easily oxidizable element is concentrated on the steel surface is determined by glow discharge emission analysis (GDS) as shown in FIG. Thus, when it is determined that there is a concentration of easily oxidizable elements, the surface content (mass%) of the easily oxidizable elements is measured by fluorescent X-ray, and the content in steel (mass%) is measured. In accordance with the following formula, it is determined whether the concentration is dense or coarse.
(表面含有率/鋼中含有率) ≧ 1.5 ならば、密
(表面含有率/鋼中含有率) < 1.5 ならば、粗
蛍光X線による易酸化性元素の表面含有率(mass%)の測定は、以下のように行う。先ず、易酸化性元素の鋼中含有率が既知の標準サンプルを準備する。易酸化性元素がSiの場合を例に取れば、後述する実施例の表1に示すA、B、D、Eのように、鋼中Si含有率(mass%)が小さいものから大きいものまで、一連の4乃至5サンプルを準備するのが良い。これらは、スラブより切り出したものでも良いし、実験室にて真空溶解により作製したものでも良い。これを、蛍光X線の測定が可能なサイズ、例えば、幅方向33mm 、長手方向33mm 、厚さ50mmに切り出した後、鋼中含有率を正しく測定するため、表面から厚さ10mm以上を切断・除去し、グラインダーで表面研削する。次に、蛍光X線により易酸化性元素の強度を測定して、鋼中含有率(mass%)と強度との関係式、いわゆる検量線を求める。以上の準備が完了したら、供試材である熱延・酸洗後の鋼材を33mm角に切り出した後、表面を研削すること無しに、蛍光X線により易酸化性元素の強度を測定し、これを先に作成した検量線を使って、易酸化性元素の含有率(mass%)に換算する。この値を、熱延・酸洗後の鋼材における易酸化性元素の表面含有率(mass%)と定義する。
(Surface content / content in steel) ≥ 1.5
If (surface content / in-steel content) <1.5, the surface content (mass%) of the easily oxidizable element by crude fluorescent X-ray is measured as follows. First, a standard sample having a known content of easily oxidizable elements in steel is prepared. Taking the case where the easily oxidizable element is Si as an example, A, B, D, and E shown in Table 1 of Examples to be described later, from a low to a high Si content (mass%) in steel A series of 4 to 5 samples should be prepared. These may be cut out from a slab or may be produced by vacuum melting in a laboratory. After cutting this to a size that can measure fluorescent X-rays, for example, 33 mm in the width direction, 33 mm in the longitudinal direction, and 50 mm in thickness, cut the thickness 10 mm or more from the surface to correctly measure the content in steel. Remove and surface grind with a grinder. Next, the strength of the easily oxidizable element is measured by fluorescent X-rays, and a relational expression between the steel content (mass%) and the strength, a so-called calibration curve is obtained. When the above preparation is completed, after cutting the steel material after hot rolling and pickling as a test material into a 33 mm square, the strength of the oxidizable element is measured by fluorescent X-ray without grinding the surface, This is converted into the content of easily oxidizable elements (mass%) using the calibration curve created earlier. This value is defined as the surface content (mass%) of the easily oxidizable element in the steel material after hot rolling and pickling.
次に、鋼材表面に易酸化性元素の濃度が鋼中濃度よりも高い領域を密に生成させるための製造方法について述べる。易酸化性元素の濃化を密に起こさせるには、例えば、二次スケールが生成すると考えられている仕上げ圧延開始から巻取りまでの間に、外部酸化よりも内部酸化が有利になる条件で、熱延鋼板を製造することが有効である。それには、最終デスケ後のスケール厚を薄くすることにより、鋼板表層近傍への酸素の拡散を起こり易くするのが良い。最終デスケ後のスケール厚を薄くするには、加熱炉から仕上げ圧延までの工程において、例えば、以下のような条件を選ぶことが有効である。(I)スラブ加熱温度を低くし、均熱時間を短くすることで、最終デスケ後に一次スケールを残存させない、(II)粗圧延後の粗バー厚みを薄くして、スケール厚を低減する、(III)最終デスケ圧を高めに設定する、(IV)粗圧延の最終パスから仕上げ圧延までの時間を短くして、二次スケールの生成が少ない内に、仕上げ圧延を開始する、(V)仕上げ圧延開始直後に強圧下することにより、スケール層にクラックを生成させる。 Next, a manufacturing method for densely generating a region where the concentration of the easily oxidizable element is higher than the concentration in steel on the steel surface will be described. In order to cause the concentration of easily oxidizable elements to occur densely, for example, on the condition that internal oxidation is more advantageous than external oxidation during the period from the start of finish rolling, which is considered to generate a secondary scale, to winding. It is effective to manufacture a hot-rolled steel sheet. For this purpose, it is preferable to make the diffusion of oxygen easily to the vicinity of the steel sheet surface layer by reducing the scale thickness after the final deske. In order to reduce the scale thickness after the final deske, it is effective to select, for example, the following conditions in the process from the heating furnace to the finish rolling. (I) By reducing the slab heating temperature and shortening the soaking time, the primary scale does not remain after the final deske. (II) The scale bar thickness is reduced by reducing the thickness of the rough bar after rough rolling. (III) Set the final deske pressure higher, (IV) Shorten the time from the final pass of the rough rolling to the finish rolling, and start the finish rolling while generating less secondary scale. (V) Finishing A crack is generated in the scale layer by reducing the pressure immediately after the start of rolling.
具体的には、先ず、スラブ加熱は1170℃以下で、均熱時間100分以内で行うのが良い。粗圧延では、例えば、スラブ厚みが250mmであれば、粗バー厚みは35mm以下が良い。最終デスケのデスケ水吐出圧は24.5MPa以上が良い。粗圧延の最終パスから仕上げ圧延までの時間は50秒未満が良い。仕上げ圧延のF1ロールは、圧下率45%超が良い。 Specifically, first, the slab heating is preferably performed at 1170 ° C. or less and within a soaking time of 100 minutes. In rough rolling, for example, when the slab thickness is 250 mm, the rough bar thickness is preferably 35 mm or less. The final discharge water discharge pressure should be 24.5MPa or more. The time from the final pass of rough rolling to finish rolling should be less than 50 seconds. The finish rolling F1 roll should have a rolling reduction of over 45%.
酸洗条件は、いわゆるスケール、黒皮を除去し、その下の内部酸化層を維持するのに必要十分な酸洗条件であれば良い。そのためには、従来の操業よりも塩酸濃度や浴温を低くし、処理時間も短くした上で、過酸洗抑制剤も添加するのが良い。 The pickling conditions may be any pickling conditions that are necessary and sufficient for removing the so-called scale and black skin and maintaining the underlying internal oxide layer. For this purpose, it is preferable to add a peracid washing inhibitor after lowering the hydrochloric acid concentration and bath temperature and shortening the treatment time as compared with the conventional operation.
次に、(b)鋼材表面の地鉄の結晶粒を被覆する表面酸化物層の被覆率を高めるであるが、これは、既に前記(1)で述べたとおりである。但し、前記(2)では、易酸化性元素の濃化が密な場合と粗な場合とで、必要とされる鋼材表面酸化物層の被覆率が異なる。易酸化性元素の濃化が密であれば、鋼材表面酸化物層の被覆率が70%以上あれば、有効に局部アノードの生成を抑制できる。これに対して、易酸化性元素の濃化が粗であれば、鋼材表面酸化物層の被覆率は80%以上必要である。 Then, although increasing the coverage of the surface oxide layer covering the grain of the base steel of (b) the steel surface, which is as already mentioned above (1). However, in ( 2 ), the required coverage of the steel surface oxide layer differs depending on whether the concentration of the easily oxidizable element is dense or coarse. If the concentration of the easily oxidizable element is dense, the formation of the local anode can be effectively suppressed if the coverage of the steel surface oxide layer is 70% or more. On the other hand, when the concentration of the easily oxidizable element is rough, the coverage of the steel surface oxide layer needs to be 80% or more.
なお、前記(1)及び(2)では、鉄より酸化され易い元素の内、最も酸化され易いものについて規定しているが、酸化され易さの順番はエリンガム図に準じて決定すれば良い。但し、含有率が極端に少ない(例えば0.1mass%以下の)元素については、除いて考えるべきである。後述する実施例の表1に、鋼成分が異なる場合の最も酸化され易い元素を例示した。 In the above ( 1 ) and ( 2 ), among the elements that are more easily oxidized than iron, the elements that are most easily oxidized are defined, but the order of the ease of oxidation may be determined according to the Ellingham diagram. However, elements with extremely low contents (for example, 0.1 mass% or less) should be excluded. Table 1 of Examples described later exemplifies elements that are most easily oxidized when the steel components are different.
前記(3)は、前記の鉄より酸化され易い元素として、Si、Mn、Al、Crの4種類の元素の内、1種類以上とすることを規定したものである。これらの元素は、安価で高性能な高強度鋼材を得るために好適なものである。 Wherein (3), as a likely element to be oxidized than the iron, Si, Mn, Al, among the four kinds of elements of Cr, a definition that one or more. These elements are suitable for obtaining inexpensive and high-performance high-strength steel materials.
前記(4)は、前記(1)〜(3)のいずれかに記載の鉄より酸化され易い元素の合計含有率を規定したもので、特に強度クラスが440MPa以上のものを意図した規定である。合計含有率が1.5mass%未満ではこのクラスの高強度鋼材は得られず、4.0mass%超では加工性、溶接性等が劣化する可能性が高まる。 The above ( 4 ) defines the total content of elements that are more easily oxidized than iron as described in any one of (1) to ( 3 ), and is intended to specifically have a strength class of 440 MPa or more. . If the total content is less than 1.5 mass%, a high-strength steel material of this class cannot be obtained, and if it exceeds 4.0 mass%, the possibility of deterioration in workability, weldability, etc. increases.
以下に、本発明を実施例を用いて、非限定的に説明する。 In the following, the present invention will be described in a non-limiting manner using examples.
(実施例1)
(1) 供試鋼の成分
表1に、供試材として用いた9種類の鋼スラブの成分を示す。
(Example 1)
(1) Composition of test steel Table 1 shows the composition of nine types of steel slabs used as test materials.
(2) 熱延・酸洗条件
表2に、熱延・酸洗工程での製造条件を示す。スラブ厚みは250mmとした。スラブ加熱、粗圧延後、仕上げ圧延前に最終デスケーリングを行った。本発明例においては、酸洗液中に、過酸洗防止剤としてスギムラ化学製のヒビロンAS-20Cを添加し、また、リンス水中にりん酸1.5mass%、ほう酸2.5mass%を添加した。比較例においては、酸洗液中に過酸洗防止剤を添加せず、また、リンス水中にりん酸、ほう酸を添加しなかった。
(2) Hot Rolling / Pickling Conditions Table 2 shows the manufacturing conditions in the hot rolling / pickling process. The slab thickness was 250 mm. Final descaling was performed after slab heating, rough rolling and before finish rolling. In the examples of the present invention, Hibiron AS-20C manufactured by Sugimura Chemical was added as an acid pickling inhibitor to the pickling solution, and 1.5 mass% phosphoric acid and 2.5 mass% boric acid were added to the rinsing water. In the comparative example, no peracid washing inhibitor was added to the pickling solution, and neither phosphoric acid nor boric acid was added to the rinse water.
(3) 酸洗板の性能評価
表1のスラブを表2の製造条件で酸洗板とし、性能評価を行った結果を表3に示す。鋼板表層の元素濃化及びその粗密、酸化物層被覆率は、既に述べたように、GDS(図1)と蛍光X線測定、及び、表面SEM観察(図3)により決定した。
(3) Performance Evaluation of Pickling Plate Table 3 shows the results of performance evaluation using the slab shown in Table 1 as a pickling plate under the manufacturing conditions shown in Table 2. Element concentration of the steel sheet surface layer, its density, and oxide layer coverage were determined by GDS (FIG. 1), fluorescent X-ray measurement, and surface SEM observation (FIG. 3) as described above.
酸洗板を7cm(幅方向)×12cm(長手方向)に切断し、アルカリ脱脂した後、以下の条件で化成処理及び電着塗装を行った。 The pickling plate was cut into 7 cm (width direction) × 12 cm (longitudinal direction), degreased with alkali, and then subjected to chemical conversion treatment and electrodeposition coating under the following conditions.
表面調整:プレパレン-X(日本パーカライジング製)
3g/Lの水溶液を作成し、常温で25秒浸漬した。
Surface adjustment: PREPAREN-X (manufactured by Nihon Parkerizing)
A 3 g / L aqueous solution was prepared and immersed at room temperature for 25 seconds.
化成処理:パルボンド-SX35(日本パーカライジング製)
処方に従い、フリー酸0.8ポイント、全酸24ポイント、
促進剤濃度3.8ポイントになるよう調整し、浴温35℃で
120秒浸漬し、その後、水洗、純水洗、乾燥した。
Chemical treatment: Palbond-SX35 (manufactured by Nihon Parkerizing)
According to the prescription, free acid 0.8 points, total acid 24 points,
Adjust the accelerator concentration to 3.8 points and bath temperature at 35 ℃
It was immersed for 120 seconds, then washed with water, washed with pure water and dried.
電着塗装:パワーニクスPN330グレー(日本ペイント製)
電圧240Vで180秒電着塗装を行い、乾燥板温165℃、
均熱時間15分となるよう焼付けした。膜厚は15〜20
μmであった。また、いずれの水準ともブツの発生等に
よる塗膜欠陥は無かった。
Electrodeposition painting: Powernics PN330 gray (made by Nippon Paint)
Electrodeposition for 180 seconds at a voltage of 240V, drying plate temperature of 165 ℃,
It was baked to have a soaking time of 15 minutes. Film thickness 15-20
μm. In addition, any level
There were no coating film defects.
各水準につき、サンプルは8枚ずつ準備し、内各2枚は、化成処理まで行い、電着塗装は行わなかった。1枚は、化成処理をクロム酸水溶液で溶解し、溶解前後の質量変化から化成処理皮膜の付着量を測定した。もう1枚は、P比及びスケ(スケとは、化成処理皮膜のない部分をいう。)の評価に使用した。P比の測定は定法に従い、X線回折によりホパイト(H)の(100)面とフォスフォフィライト(P)の(110)面の強度を測定し、P比 = (P)/((P)+(H))
により算出した。この結果、いずれのサンプルにおいても、P比は0.9以上と良好であった。また、スケについては、SEMにより倍率1000倍で数箇所観察したが、どのサンプルにもスケは無かった。
For each level, eight samples were prepared, and two of them were processed up to chemical conversion, and no electrodeposition coating was performed. For one sheet, the chemical conversion treatment was dissolved in a chromic acid aqueous solution, and the amount of the chemical conversion treatment film deposited was measured from the mass change before and after dissolution. The other sheet was used for the evaluation of P ratio and scale (the scale is the part without the chemical conversion coating). The P ratio is measured according to a conventional method, and the intensity of the (100) plane of the hopite (H) and the (110) plane of the phosphophyllite (P) is measured by X-ray diffraction, and the P ratio = (P) / ((P ) + (H))
Calculated by As a result, in any sample, the P ratio was as good as 0.9 or more. In addition, the skeins were observed by SEM at a magnification of 1000 times, but none of the samples had skeins.
各水準につき6枚は、化成処理、電着塗装の両方をこの順に行った。この内の3枚は、局部アノードの生成密度を評価するために、前記(1)の説明で述べたように、カット傷を入れずに55℃の7%NaCl水溶液中に253時間連続浸漬後、既に述べた手順で塗装面をテープ剥離し、生成した長径0.5mm以上の塗装剥離部の個数を数え、これを上下左右の端面近傍を除いたサンプル面積(50cm2)で割って、局部アノード密度とした。 Six sheets for each level were subjected to both chemical conversion treatment and electrodeposition coating in this order. In order to evaluate the formation density of the local anode, three of these were immersed in a 7% NaCl aqueous solution at 55 ° C. for 253 hours without cutting as described in the description of (1) above. The coated surface was peeled off using the procedure described above, and the number of paint peeled parts with a major axis of 0.5 mm or more was counted, and this was divided by the sample area (50 cm 2 ) excluding the vicinity of the top, bottom, left and right end faces. Density.
残りの3枚は、化成処理、電着塗装の後、地鉄に達するカット傷を表面長手方向に長さ5cmだけ入れて、55℃の7%NaCl水溶液中に253時間連続浸漬した。浸漬終了後、サンプルを取り出して軽くブロアー乾燥してから、カット部周辺を幅30mmのテープで剥離し、カットからの片側最大剥離幅を測定した。 The remaining three sheets were subjected to chemical conversion treatment and electrodeposition coating, and a cut wound reaching the base iron was inserted in a length of 5 cm in the longitudinal direction of the surface and immersed continuously in a 7% NaCl aqueous solution at 55 ° C. for 253 hours. After completion of the immersion, the sample was taken out and lightly blown dry, and then the periphery of the cut part was peeled off with a tape having a width of 30 mm, and the maximum peel width on one side from the cut was measured.
評価結果を表3にまとめた。本願発明の熱延鋼板は、いずれも局部アノードの生成が抑制されている。また、その結果として、カット板剥離幅は軟鋼冷延鋼板並に小さく、塗装後耐食性に非常に優れていることが判る。一方、比較例の熱延鋼板は、P比の高い良質な化成処理皮膜が均一にスケなく形成され、電着塗装にもブツ等の塗膜欠陥が無いにもかかわらず、局部アノード密度が高い。また、この結果、カット板剥離幅は、本発明に比べて大きく、塗装後耐食性が劣っている。 The evaluation results are summarized in Table 3. In any of the hot-rolled steel sheets of the present invention, the formation of local anodes is suppressed. Further, as a result, the cut plate peeling width is as small as that of a mild steel cold-rolled steel plate, indicating that the post-coating corrosion resistance is very excellent. On the other hand, the hot-rolled steel sheet of the comparative example has a high P ratio high-quality chemical conversion coating formed uniformly without any scale, and the electrodeposition coating has high local anode density even though there are no coating defects such as blisters. . As a result, the cut plate peeling width is larger than that of the present invention, and the post-coating corrosion resistance is inferior.
(実施例2)
実施例1で用いた本発明例2、4、6、10及び比較例14、15、19、20の酸洗板から、実際に自動車用ホイールを製造し、自動車部品メーカーにて化成処理、電着塗装を行った後に、実車走行試験を実施した。実車は2台用意し、1台(1500CCクラス)には、板厚3.2mmのホイール、即ち、表4の番号31、33(本発明例)と番号35、36(比較例)の4つを装着し、もう1台(3000CCクラス、ピックアップトラック)には、板厚6.3mmのホイール、即ち、表4の番号32、34(本発明例)と番号37、38(比較例)の4つを装着した。そして、泥はね区間、塩水区間、石はね区間等からなる自動車メーカーの悪路模擬循環コースで、ホイールをキャップなしで装着して10000kmを走行した。試験後、ホイールの美観を観察し、初期の美観が維持されていたものは○、平面部のブリスター発生により美観が損なわれていたものは×、と評価した。
(Example 2)
Wheels for automobiles are actually manufactured from the pickling plates of Invention Examples 2, 4, 6, 10 and Comparative Examples 14, 15, 19, and 20 used in Example 1, and chemical conversion treatment is performed by an automobile parts manufacturer. After applying the paint, an actual vehicle running test was conducted. Two actual cars are prepared, and one wheel (1500CC class) has a wheel with a thickness of 3.2 mm, i.e., numbers 31, 33 (invention example) and numbers 35, 36 (comparative example) in Table 4. Install the other one (3000CC class, pickup truck) with a wheel with a thickness of 6.3 mm, that is, No. 32, 34 (invention example) and No. 37, 38 (comparative example) in Table 4. Installed. And on a rough road simulation course of a car manufacturer consisting of a mud splash section, a salt water section, a stone splash section, etc., the wheel was attached without a cap and ran for 10,000 km. After the test, the aesthetics of the wheel were observed and evaluated as ◯ when the initial aesthetic was maintained, and x when the aesthetic was impaired due to the occurrence of blisters on the flat surface.
結果を表4に示す。本願発明の熱延鋼板は、局部アノード密度が低いことにより、ホイールに成型し、実車走行試験を行った場合において、塗装面の美観が維持されている。 The results are shown in Table 4. The hot-rolled steel sheet of the present invention has a low local anode density, so that the appearance of the painted surface is maintained when it is molded into a wheel and subjected to an actual vehicle running test.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005081912A JP4884687B2 (en) | 2005-03-22 | 2005-03-22 | Hot-rolled steel with excellent corrosion resistance and aesthetics after painting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005081912A JP4884687B2 (en) | 2005-03-22 | 2005-03-22 | Hot-rolled steel with excellent corrosion resistance and aesthetics after painting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006265586A JP2006265586A (en) | 2006-10-05 |
JP4884687B2 true JP4884687B2 (en) | 2012-02-29 |
Family
ID=37201857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005081912A Active JP4884687B2 (en) | 2005-03-22 | 2005-03-22 | Hot-rolled steel with excellent corrosion resistance and aesthetics after painting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4884687B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5614035B2 (en) * | 2009-12-25 | 2014-10-29 | Jfeスチール株式会社 | Manufacturing method of high-strength cold-rolled steel sheet |
JP6123754B2 (en) * | 2014-08-14 | 2017-05-10 | Jfeスチール株式会社 | Si-containing hot-rolled steel sheet having excellent chemical conversion property and method for producing the same |
-
2005
- 2005-03-22 JP JP2005081912A patent/JP4884687B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006265586A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7433386B2 (en) | Hot rolled and coated steel sheets for hot stamping, hot stamped and coated steel parts and methods for producing them | |
TWI500822B (en) | Hot stamped body and method for producing hot stamped body | |
JP5201535B2 (en) | Magnesium alloy member and manufacturing method thereof | |
JP5478804B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion | |
EP2644736A1 (en) | Al-Zn-BASED HOT-DIP PLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF | |
KR101679159B1 (en) | Hot-dip galvanized steel sheet | |
JPWO2013015110A1 (en) | Aluminum alloy plate and method for producing aluminum alloy plate | |
JP6855678B2 (en) | Steel sheet manufacturing method | |
JP5673708B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion | |
WO2013129295A1 (en) | Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member | |
JP5907324B1 (en) | High strength hot dip galvanized steel sheet | |
JP5168793B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet with excellent corrosion resistance after painting | |
JP4884687B2 (en) | Hot-rolled steel with excellent corrosion resistance and aesthetics after painting | |
JP3990349B2 (en) | Good workability, high strength cold-rolled steel sheet with excellent corrosion resistance after painting | |
JP2007131889A (en) | Al-Mg-Si-BASED ALUMINUM ALLOY SHEET | |
JP2001140021A (en) | Method of manufacturing high strength galvanized steel sheet and galvanized steel sheet excellent in coating stickiness | |
KR101897054B1 (en) | High-strength galvanized steel sheet | |
JP2007162057A (en) | High strength steel sheet having excellent phosphate treatability | |
WO2016031940A1 (en) | Aluminum alloy material, bonded object, and automotive member | |
JP5655717B2 (en) | Method for producing cold-rolled steel sheet with excellent press formability, chemical conversion treatment and post-coating corrosion resistance | |
JP6241462B2 (en) | Si-containing hot-rolled pickled steel sheet and method for producing the same | |
JP6037056B2 (en) | Hot-dip galvanized steel sheet | |
JP3533960B2 (en) | Galvanized steel sheet for automotive exterior materials and method of manufacturing the same | |
CN114561573B (en) | High-durability aluminum alloy plate strip for automobile body and preparation method thereof | |
CN114807688A (en) | 6-series aluminum alloy plate strip with high durability for automobile body and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111027 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4884687 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |