JP4883394B2 - Case storage type blower and gas circulation purification device - Google Patents

Case storage type blower and gas circulation purification device Download PDF

Info

Publication number
JP4883394B2
JP4883394B2 JP2006039933A JP2006039933A JP4883394B2 JP 4883394 B2 JP4883394 B2 JP 4883394B2 JP 2006039933 A JP2006039933 A JP 2006039933A JP 2006039933 A JP2006039933 A JP 2006039933A JP 4883394 B2 JP4883394 B2 JP 4883394B2
Authority
JP
Japan
Prior art keywords
gas
case
blower
motor
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006039933A
Other languages
Japanese (ja)
Other versions
JP2007198364A (en
Inventor
崇 冨江
洋一 中田
浩平 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diavac Ltd
Original Assignee
Diavac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diavac Ltd filed Critical Diavac Ltd
Priority to JP2006039933A priority Critical patent/JP4883394B2/en
Publication of JP2007198364A publication Critical patent/JP2007198364A/en
Application granted granted Critical
Publication of JP4883394B2 publication Critical patent/JP4883394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は電動送風機を密閉性の良いケースに収納した事を特徴とするケース収納型送風機であり、特に窒素ガスやアルゴンガスなどの不活性ガス中の酸素と水分を除去するガス循環精製装置に好適に用いられる送風機構に関するものである。  The present invention is a case storage type blower characterized in that the electric blower is housed in a case with good airtightness, and particularly in a gas circulation purification device for removing oxygen and moisture in an inert gas such as nitrogen gas or argon gas. It is related with the ventilation mechanism used suitably.

酸素又は水分と激しく反応する活性な金属を不活性ガス中で取扱いたいという要望や水分により激しく経時劣化する有機EL(有機発光ダイオード)ディスプレイパネルを水分のない雰囲気で組立てたいという要望がある。かかる目的にはグローブボックスのような密閉性が確保された作業場所となる密閉ボックスにガス循環精製装置が接続されて使用される。ガス循環精製装置とは該密閉ボックスから送り込まれる不活性ガス中の不純成分を除去し、精製された不活性ガスを該密閉ボックスに戻す、という機能を有する装置である。「ガス循環」とは該密閉ボックスと該ガス循環精製装置の間を不活性ガスが循環することより付けられた名称である。ここに云う不活性ガスとは該密閉ボックス内に存在してはいけないガスを含有しない気体を云うが通常はアルゴンや窒素やヘリウムが用いられる。該不活性ガス中の不純成分とは該密閉ボックス内の作業の妨げとなる気体またはその作業により製造される物の特性を劣化させる気体を云うが通常は酸素と水分が対象となる。また、場合により有機物質の蒸気も不純成分とされる事がある。  There is a desire to handle an active metal that reacts violently with oxygen or moisture in an inert gas and a desire to assemble an organic EL (organic light emitting diode) display panel that deteriorates with time due to moisture in an atmosphere without moisture. For this purpose, a gas circulation purification apparatus is connected to a closed box which is a work place where a tight seal is ensured, such as a glove box. The gas circulation purification apparatus is an apparatus having a function of removing impure components in the inert gas fed from the sealed box and returning the purified inert gas to the sealed box. “Gas circulation” is a name given by circulating an inert gas between the closed box and the gas circulation purification apparatus. The inert gas mentioned here refers to a gas that does not contain a gas that should not be present in the sealed box, but usually argon, nitrogen, or helium is used. The impure component in the inert gas refers to a gas that hinders the work in the sealed box or a gas that deteriorates the properties of the product produced by the work, but usually includes oxygen and moisture. In some cases, vapors of organic substances may be impure components.

図3にガス循環精製装置の主要構成部分を示した。図3の19はガス循環精製装置であり、ガス入口20とガス出口21があり、両方とも配管で前記の密閉ボックスと接続される。ガス入口20から入った不活性ガスは精製塔13に入り、精製塔の中に収納された水分吸着剤14で水分が除去され、酸素吸着剤15で酸素が除去される。水分吸着剤の代表例はモレキュラーシーブであり、酸素吸着剤の代表例は還元銅である。図の4は電動機(モータ)、5は送風機構、6は回転軸、12はモータを冷却するファンである。モータにより送風機構5が駆動され不活性ガスが送風される。送風機構によりガスは繰返し加圧、撹拌されるので熱力学の原理によりガス温度が上昇する。特に吐出圧が高い場合は温度上昇が大きく、時には50℃以上になる事もある。そこで不活性ガスを冷却する機能をもつ冷却塔16が設置される。図の17、18は冷却水の出入口である。冷却機構を例示すると、流れる冷却水中に配置された複数本のチューブの中をガスが通過する時に冷却される構造の熱交換器として知られるシェルアンドチューブ構造をあげる事ができる。以上の構成により、入口20からガス循環精製装置19に入った不活性ガスは、不純物が除去された後に出口21から送出され密閉ボックスへ戻る事になる。  FIG. 3 shows the main components of the gas circulation purification apparatus. Reference numeral 19 in FIG. 3 denotes a gas circulation purification apparatus, which has a gas inlet 20 and a gas outlet 21, both of which are connected to the above-mentioned sealed box by piping. The inert gas entering from the gas inlet 20 enters the purification tower 13, moisture is removed by the moisture adsorbent 14 accommodated in the purification tower, and oxygen is removed by the oxygen adsorbent 15. A typical example of the moisture adsorbent is molecular sieve, and a typical example of the oxygen adsorbent is reduced copper. In the figure, 4 is an electric motor (motor), 5 is a blower mechanism, 6 is a rotating shaft, and 12 is a fan for cooling the motor. The blower mechanism 5 is driven by the motor to blow the inert gas. Since the gas is repeatedly pressurized and stirred by the blowing mechanism, the gas temperature rises due to the thermodynamic principle. In particular, when the discharge pressure is high, the temperature rises greatly and sometimes exceeds 50 ° C. Therefore, a cooling tower 16 having a function of cooling the inert gas is installed. 17 and 18 in the figure are cooling water entrances and exits. As an example of the cooling mechanism, a shell and tube structure known as a heat exchanger having a structure that is cooled when a gas passes through a plurality of tubes disposed in flowing cooling water can be given. With the above configuration, the inert gas that has entered the gas circulation purification device 19 from the inlet 20 is delivered from the outlet 21 and returned to the sealed box after impurities are removed.

図3の例では不活性ガスは精製塔13を通過した後に電動送風機に入る構造となっている。この構成では該電動送風機で送出される温度上昇した気体によりモレキュラーシーブが加温される事がない。ゆえに、ガス循環精製装置から出て行く気体の温度が室温より少々高くても問題ない場合は冷却塔を省略できるメリットがある。逆に電動送風機を通過した後に精製塔に入る構造とする事もできる。この構成では電動送風機で混入する微小な油分をモレキュラーシーブで吸着除去できる、また仮に電動送風機のところで微小な空気の混入があってもその後に配置された精製塔で酸素、水分を除去できるというメリットがある。しかし、この構成ではガス温度の上昇がモレキュラーシーブの温度上昇を招き、水分吸着性能の劣化をもたらすのでより厳密に不活性ガスを冷却する必要がある。  In the example of FIG. 3, the inert gas enters the electric blower after passing through the purification tower 13. In this configuration, the molecular sieve is not heated by the gas whose temperature has been raised by the electric blower. Therefore, there is an advantage that the cooling tower can be omitted if there is no problem even if the temperature of the gas exiting the gas circulation purification apparatus is slightly higher than room temperature. On the contrary, it can also be set as the structure which enters a refinement tower after passing an electric blower. In this configuration, minute oils mixed with the electric blower can be adsorbed and removed with a molecular sieve, and even if minute air is mixed in the electric blower, oxygen and moisture can be removed with a purification tower placed after that. There is. However, in this configuration, an increase in gas temperature causes an increase in the temperature of the molecular sieve, leading to deterioration of moisture adsorption performance, so it is necessary to cool the inert gas more strictly.

使用される電動送風機としては、モータで送風機構が回転駆動されるあらゆる種類の電動送風機が使用できる。これらの電動送風機はブロワ、ファン、ドライポンプなどと称される事が多い。1対の3葉ロータが微小間隙を保ちながら回転するルーツブロワは吐出圧の風量依存性が小さく、圧損の大きい循環ガス系において安定したガス循環風量を確保する場合に有効な電動送風機である。リングブロワやサイドチャネルブロワは比較的小型で吐出圧の高い大風量のブロワである。その他、ターボファンやシロッコファンなども使用され得る。  As the electric blower used, any type of electric blower in which the blower mechanism is rotationally driven by a motor can be used. These electric blowers are often called blowers, fans, dry pumps and the like. A Roots blower in which a pair of three-leaf rotors rotate while maintaining a minute gap is an electric blower that has a small dependency on the air volume of the discharge pressure and is effective in securing a stable gas circulation air volume in a circulating gas system with a large pressure loss. A ring blower and a side channel blower are relatively small and have a high discharge pressure and a large air volume. In addition, a turbo fan or a sirocco fan may be used.

循環される不活性ガス中の酸素濃度や水分濃度の要求レベルは1ppm以下である事が多く、場合によってはppb(10億分の1単位)レベルの要求がある事により、電動送風機の送風機構は大気の混入のない完全な密閉構造が要求される。ところが、従来の大量生産される廉価な電動送風機ではかかる要求仕様を満足するものは皆無である。送風機構(図3の5)の密閉性が悪い、モータ(図3の4)と送風機構(図3の5)を連結する回転軸(図3の6)が送風機構に入る部分がベアリングと該ベアリングへの埃の付着を防止するシール部材のみであったりしてシール性が良くない、という欠点がある。そこで、廉価な大量生産品を使わないで特別な設計・製作で送風機構を作製するか、または前記のルーツブロワのような高価であるが密閉性のいい送風機構を有するブロワにおいて軸シール部分のオイルシールを2重に設けるなどの改造を行ってから実用に供する、といった手段が行われている。このような手段で密閉性、シール性を良くする事は可能であったが、オイルシールなどは徐々に摩耗する事が知られているように1年から数年間隔で分解点検が必要であり、故障し易い、またはメンテナンス費用が嵩むという欠点は解決されていない。さらに、電動送風機のモータは冷却する必要があり、通常は小型送風機(ファン、図3の12)が付いているが、このファンがホコリを舞い上げる、または空気流を乱すことより、クリーンルームに設置できない場合が多い。  The required level of oxygen concentration and moisture concentration in the circulated inert gas is often 1 ppm or less, and in some cases, there is a requirement of ppb (parts per billion) level. Requires a completely sealed structure free from atmospheric contamination. However, none of the conventional inexpensive electric blowers that are mass-produced satisfy the required specifications. The airtightness of the blower mechanism (5 in FIG. 3) is poor. The part where the rotating shaft (6 in FIG. 3) connecting the motor (4 in FIG. 3) and the blower mechanism (5 in FIG. 3) enters the blower mechanism is a bearing. There is a drawback that only the sealing member for preventing the dust from adhering to the bearing is used and the sealing performance is not good. Therefore, the blower mechanism is manufactured by special design and production without using low-priced mass-produced products, or the oil in the shaft seal part in the blower having an expensive but good airtightness such as the Roots blower. Means have been taken, such as providing a double-use seal before making it practical. Although it was possible to improve the sealing and sealing properties by such means, it is necessary to disassemble and inspect every 1 to several years so that oil seals etc. are gradually worn out. However, the drawbacks of being prone to failure or high maintenance costs have not been solved. In addition, the motor of the electric blower needs to be cooled, usually with a small blower (fan, 12 in FIG. 3), but this fan soars dust or disturbs the air flow to install in a clean room There are many cases where this is not possible.

本発明は前記の電動送風機に関する問題を全て解決する事を目的になされたケース収納型送風機である。さらに、該ケース収納型送風機を用いたガス循環精製装置である。  The present invention is a case storage type blower that aims to solve all the problems related to the electric blower. Furthermore, it is the gas circulation refinement | purification apparatus using this case accommodation type air blower.

すなわち、本発明は、大気の混入を嫌う系に用いられる電動送風機を密閉性の良いケースに収納し、ケースには気体の入口と出口を設け、入口から入った気体が該電動送風機のモータを冷却するように流れた後に該電動送風機の送風機構部分に入り、該送風機構により送風され、該送風機構部分から送り出された気体が、該送風機構の気体出口と該ケースの気体出口がつながっていることにより、該ケース内に放出される事なく該ケースの出口から送出される構造としたケース収納型送風機である。または、気体の出入り口を逆にした構成、すなわち、入口から入った気体が、該ケースの入口と該電動送風機の送風機構部分の入口がつながっていることにより、該ケース内に放出される事なく該送風機構部分に入り、該送風機構により送風され、該送風機構部分から送り出された気体が該電動送風機のモータを冷却するように流れた後に該ケースの出口から送出される構造としたケース収納型送風機である。前者の構成、すなわち入口から入った気体が電動送風機のモータを冷却するように流れる場合は、モータに当たる気体の温度はほぼ常温であり、モータの冷却にとっては好都合である。後者の構成、すなわち送風機構部分から送り出された気体がモータを冷却するように流れた後に該ケースの出口から送出される構造の場合は、送風機構で暖められた気体でモータを冷却する事になりモータ冷却の観点からはデメリットであるが、送風機構の回転部分で発生する微量の油分などが、直接にガス出口から送出される事なく、いったんケース内に放出される事でケース壁などに付着除去されるという副次的な効果を有する。また、この後者の構成では、後述の冷却機構をケース内部に設ける場合に好都合である。前者と後者のどちらの構成を選ぶかは使用されるグローブボックスなどの密閉ボックスでの作業の要求で決定される。  That is, the present invention accommodates an electric blower used in a system that is apt to be mixed with the atmosphere in a case with good airtightness, and the case is provided with a gas inlet and outlet, and the gas from the inlet controls the motor of the electric blower. After flowing so as to cool, the air enters into the air blowing mechanism part of the electric blower, the air blown by the air blowing mechanism, and the gas sent out from the air blowing mechanism part is connected to the gas outlet of the air blowing mechanism and the gas outlet of the case Thus, the case-accommodating blower is structured to be delivered from the outlet of the case without being discharged into the case. Or, the configuration in which the gas inlet / outlet is reversed, that is, the gas entering from the inlet is not released into the case by connecting the inlet of the case and the inlet of the blowing mechanism portion of the electric blower. Case housing with a structure in which the gas that enters the air blowing mechanism, is blown by the air blowing mechanism, and flows out from the air blowing mechanism flows to cool the motor of the electric blower, and then is sent out from the outlet of the case Type blower. In the former configuration, that is, when the gas entering from the inlet flows so as to cool the motor of the electric blower, the temperature of the gas striking the motor is almost normal temperature, which is convenient for cooling the motor. In the case of the latter structure, that is, a structure in which the gas sent out from the air blowing mechanism flows to cool the motor and then sent out from the outlet of the case, the motor is cooled with the gas warmed by the air blowing mechanism. Although it is a demerit from the viewpoint of motor cooling, a small amount of oil generated in the rotating part of the blower mechanism is not sent directly from the gas outlet, but is discharged into the case once and then into the case wall. It has a secondary effect of being removed. Further, this latter configuration is convenient when a cooling mechanism described later is provided inside the case. The choice between the former and the latter is determined by the requirements of the work in a closed box such as a glove box used.

本発明のケース収納型送風機は大気の混入をきらう全ての送風システムに利用できるが、とりわけ極めて低濃度の水分含有量および、または低濃度の酸素含有量を要求されるグローブボックスなどの密閉ボックス内に気体を循環供給し、その途中でガス精製を行うガス循環精製装置において好適に用いられる。なお、上記の大気の混入を嫌う、とは大気中の1成分以上の混入を嫌う、という意味であり、通常は酸素、窒素、水分のいずれか、または複数の混入を嫌う、という意味である。ゆえに、本発明のケース収納型送風機により送風される気体は大気中の1成分以上を嫌うガスであればどのようなガス、または混合ガスでもよいが、とりわけ不活性ガスが用いられる。不活性ガスとしては、価格と入手し易さの観点から窒素、アルゴンが好ましく用いられる。  Although the case storage type blower of the present invention can be used for all air blowing systems that do not allow air to be mixed, it is particularly useful in a sealed box such as a glove box that requires a very low moisture content and / or a low oxygen content. It is preferably used in a gas circulation purification apparatus that circulates and supplies gas to the gas and performs gas purification in the middle of the gas. In addition, the above-mentioned objection to air mixing means to dislike mixing one or more components in the air, and usually means to dissociate one or more of oxygen, nitrogen and moisture. . Therefore, the gas blown by the case storage type blower of the present invention may be any gas or mixed gas as long as it is a gas that dislikes one or more components in the atmosphere, but in particular, an inert gas is used. As the inert gas, nitrogen and argon are preferably used from the viewpoints of price and availability.

以下に図面を用いて詳細に本発明を説明する。図1の1は本発明のケース収納型送風機のケースである。該ケース1は密閉性よく製作される必要あり、通常はステンレスで製作され、製作されたケースはヘリウムリークディテクタで漏れ検査され漏れのない事が確認された後に製品として使用される。図示省略したが、モータ4を駆動するための電気ケーブルがケースの壁をシール性の良い電流導入機構(ハーメチックシールなど)を介してケース内に導入され、モータに接続される。図1の2は気体の入口、図1の3は気体の出口である。入口から入ったガスは電動送風機のモータ4を冷却し、送風機構5の入口7に入り、加圧送風され送風機構の出口8から送出される。送風機構の出口8から送出された気体は該ケース内に漏れ出ることなく該ケースの出口3から出て行く。なお、本図の破線矢印は気体の流れを模式的に示したものである。  Hereinafter, the present invention will be described in detail with reference to the drawings. Reference numeral 1 in FIG. 1 denotes a case of the case storage type blower of the present invention. The case 1 needs to be manufactured with good airtightness. Usually, the case 1 is made of stainless steel, and the manufactured case is used as a product after being inspected for leaks by a helium leak detector and confirmed that there is no leakage. Although not shown, an electric cable for driving the motor 4 is introduced into the case through a current introduction mechanism (hermetic seal or the like) having a good sealing property through the case wall and connected to the motor. 1 is a gas inlet, and 3 in FIG. 1 is a gas outlet. The gas that has entered from the inlet cools the motor 4 of the electric blower, enters the inlet 7 of the blower mechanism 5, is pressurized and blown, and is sent out from the outlet 8 of the blower mechanism. The gas delivered from the outlet 8 of the blower mechanism goes out from the outlet 3 of the case without leaking into the case. In addition, the broken line arrow of this figure shows the gas flow typically.

この構成においては、前述の従来の問題点を一気に全て解決できることになる。まず、本発明においては電動送風機自体の密閉性は問題とならない。ケース(図1の1)を密閉性よく製作する事で送風される気体に空気が混入する事はない。次に、本発明ではモータを冷却する小型ファンは必要ない。ケース入口2から送風機構の入口7に流れる気体がモータ4を冷却する構成となっている。この冷却効果が有効な構成とするには、ケース入口2とモータ4と送風機構5の気体入口7が略この順序に空間に配置されていればよい。気体の単位時間あたりの流量は、市販のガス循環精製装置では約20立方メートル/時間から約120立方メートル/時間であり、モータを冷却するに十分な流量であり、気体の流れは必ず乱流となる。この理由により、ケース入口2とモータ4と送風機構5の気体入口7の配置には厳密な条件は必要なく、モータ4の周囲に気体が流れ、モータ4を冷却する構造であれば十分である。さらに冷却効果を有効とするには、ケース1をコンパクトに作製するのがよい。すなわち、ケース入口2から入った気体が淀むことなくケース内部で常に流れ続ける、または撹拌され続けるように考案される必要がある。具体的には、ケース(図1の1)の内容積は電動送風機(図1の4〜8)の外寸で計算される該電動送風機の容積の1.2倍から3倍以内の大きさとするのが良い。以上の構成から明らかなように本発明のケース収納型送風機ではケース外に風を吹き出す事なくクリーンルームに設置してもクリーンルーム内のクリーンエアーの流れを妨害する事はない。  In this configuration, all the above-mentioned conventional problems can be solved at once. First, in the present invention, the airtightness of the electric blower itself is not a problem. By manufacturing the case (1 in FIG. 1) with good airtightness, air does not enter the blown gas. Next, the present invention does not require a small fan for cooling the motor. The gas flowing from the case inlet 2 to the inlet 7 of the blower mechanism cools the motor 4. In order to obtain a configuration in which this cooling effect is effective, the case inlet 2, the motor 4, and the gas inlet 7 of the blower mechanism 5 need only be arranged in this order in the space. The flow rate of gas per unit time is about 20 cubic meters / hour to about 120 cubic meters / hour in a commercially available gas circulation purification apparatus, which is a flow rate sufficient to cool the motor, and the gas flow is always turbulent. . For this reason, strict conditions are not necessary for the arrangement of the case inlet 2, the motor 4, and the gas inlet 7 of the blower mechanism 5, and a structure in which gas flows around the motor 4 and cools the motor 4 is sufficient. . Furthermore, in order to make the cooling effect effective, the case 1 is preferably made compact. That is, it is necessary to devise so that the gas that has entered from the case inlet 2 continues to flow inside the case without being stagnated or continuously stirred. Specifically, the inner volume of the case (1 in FIG. 1) is a size within 1.2 to 3 times the volume of the electric blower calculated by the outer dimensions of the electric blower (4 to 8 in FIG. 1). Good to do. As is apparent from the above configuration, the case storage type blower of the present invention does not disturb the flow of clean air in the clean room even if it is installed in a clean room without blowing air out of the case.

図2に本発明のさらに発展した形態を図示した。本図の1から7は図1と同じである。図の9、10、11はガス冷却機構である。本例では、冷却水が入口10から出口11に流れる水冷パイプに熱伝導良く接続された冷却板9を模式的に示した。気体が複数の冷却板9に当たりながら流れる事により気体温度が低下する。かかる構造はエロフィンチューブ式熱交換器やプレートフィンチューブ式熱交換器として公知のものであり、その他の公知のガス冷却機構が利用可能である。従来の図3のような個別に冷却塔を設置する方式に比べて、本発明では、ガス循環精製装置本体をコンパクトにかつ廉価に製作できるようになった。  FIG. 2 illustrates a further development of the present invention. 1 to 7 in the figure are the same as those in FIG. Reference numerals 9, 10, and 11 denote gas cooling mechanisms. In this example, the cooling plate 9 is schematically shown in which cooling water is connected to a water cooling pipe in which cooling water flows from the inlet 10 to the outlet 11 with good heat conduction. The gas temperature decreases as the gas flows while hitting the plurality of cooling plates 9. Such a structure is known as an erotic fin tube heat exchanger or a plate fin tube heat exchanger, and other known gas cooling mechanisms can be used. Compared with the conventional system in which cooling towers are individually installed as shown in FIG. 3, the present invention makes it possible to manufacture the gas circulation purification apparatus main body in a compact and inexpensive manner.

本図2では、ケース入口2から入った気体は送風機構5により加圧、送風されて送風機構出口8から出て、モータ4を冷却した後に冷却機構9で冷却された後にケース出口3から出ていく構成を図示した。この構成では十分に冷却したガスを出口3から送出する事ができるので好都合である。逆に、気体の流れを図1と同様の方向とする事も可能である。すなわち、ケース入口から入った気体が冷却機構を通過した後にモータを冷却してから送風機構に入る構成、またはケース入口から入った気体がモータを冷却してから冷却機構を通過し、最後に送風機構に入る構成、とする事もできる。これらの気体の流れが図1と同様の方向となる構成では、送風機構で気体が暖められる前にモータを冷却するのでモータ冷却の観点からは好都合である。なお、前記のように、これらの要素部品の配置は厳密でなくてよく、ケースの出入口と送風機構の出入口の間のケース内を流れる気体の通路にモータと冷却機構が配置されていれば十分である。  In FIG. 2, the gas that has entered from the case inlet 2 is pressurized and blown by the blower mechanism 5, exits from the blower mechanism outlet 8, cools by the cooling mechanism 9 after cooling the motor 4, and exits from the case outlet 3. The configuration is shown. This configuration is advantageous because a sufficiently cooled gas can be delivered from the outlet 3. Conversely, the gas flow can be in the same direction as in FIG. That is, the configuration is such that the gas entered from the case inlet passes through the cooling mechanism and then cools the motor before entering the blower mechanism, or the gas entered from the case inlet cools the motor and then passes through the cooling mechanism, and finally blows. It can also be set as the structure which enters into a mechanism. The configuration in which these gas flows are in the same direction as in FIG. 1 is advantageous from the viewpoint of motor cooling because the motor is cooled before the gas is heated by the blower mechanism. As described above, the arrangement of these component parts does not have to be exact, and it is sufficient if the motor and the cooling mechanism are arranged in the passage of the gas flowing in the case between the entrance and exit of the case and the entrance and exit of the blower mechanism. It is.

気体の単位時間あたりの流量は、モータを冷却するに十分な量でなくてはならない。前述のように、市販のガス循環精製装置では約20立方メートル/時間から約120立方メートル/時間であり、モータを冷却するに十分な流量である。電動モータの回転速度が大きい場合は消費電力も大きくモータの発熱も大きいが、気体流量も同時に大きくなり十分な冷却が可能となる。逆にインバータなどで回転速度を落として気体流量を低下させる場合は、モータの発熱も少なくなり、少ない気体流量でも十分にモータを冷却する事が可能となる。  The flow rate of gas per unit time must be sufficient to cool the motor. As described above, in a commercially available gas circulation purification apparatus, the flow rate is about 20 cubic meters / hour to about 120 cubic meters / hour, which is a flow rate sufficient to cool the motor. When the rotational speed of the electric motor is high, the power consumption is large and the motor generates a large amount of heat, but the gas flow rate is also increased at the same time and sufficient cooling is possible. On the other hand, when the gas flow rate is reduced by reducing the rotation speed with an inverter or the like, the motor generates less heat, and the motor can be sufficiently cooled even with a small gas flow rate.

本発明のケース収納型送風機は高純度不活性ガス雰囲気を作り出すガス循環精製装置に好適に用いられる。本発明をガス循環精製装置に用いた場合、循環ガス純度が向上し、ガス循環精製装置の小型化、高寿命、低価格化が達成された。さらに、容易にクリーンルームに設置できるようになった。  The case storage type blower of the present invention is suitably used in a gas circulation purification device that creates a high purity inert gas atmosphere. When the present invention is used in a gas circulation purification apparatus, the purity of the circulation gas is improved, and the gas circulation purification apparatus is reduced in size, has a long service life, and is low in price. In addition, it can be easily installed in a clean room.

図1の構造のケース収納型送風機を作製した。電動送風機はサイドチャネル型ブロワ(モータ最大出力0.4kW、吐出圧力13kPa、最大風量70立法メートル/時間)を用いた。該ブロワの外形寸法は、市販品からモータ冷却用のファンを取り去った状態で、直径250mm、長さ23mmであった。ケース(図1の1)は円筒型とし、直径300mm、高さ270mmである。このケース収納型送風機を用いて、図3の構成の、ただし送風機は本発明のケース収納型送風機としたガス循環精製装置を製作した。モレキュラーシーブは仏アクセンス社製の型番13Xを7kg用い、酸素吸着剤は日揮化学株式会社製の耐硫黄性Ni触媒を4kg用いた。冷却塔(図3の16)は外径9.53mm、内径7.53mm、長さ250mmのステンレス管12本を気体通路とするシェルアンドチューブ構造とした。なお、モレキュラーシーブが水分を飽和に吸着した時、またはNi触媒が酸素と飽和に化合した時は加熱下で脱水および、または還元処理を行う目的でヒータが精製塔(図3の13)に設置されるが、図示省略した。  A case housing type blower having the structure of FIG. 1 was produced. The electric blower used was a side channel blower (motor maximum output 0.4 kW, discharge pressure 13 kPa, maximum air volume 70 cubic meters / hour). External dimensions of the blower were 250 mm in diameter and 23 mm in length with the motor cooling fan removed from a commercially available product. The case (1 in FIG. 1) is cylindrical and has a diameter of 300 mm and a height of 270 mm. Using this case storage type blower, a gas circulation purification apparatus having the configuration shown in FIG. 3 except that the blower is a case storage type blower of the present invention was manufactured. The molecular sieve used 7 kg of model No. 13X manufactured by France AXENS Co., Ltd., and the oxygen adsorbent used 4 kg of sulfur-resistant Ni catalyst manufactured by JGC Chemical Co., Ltd. The cooling tower (16 in FIG. 3) has a shell-and-tube structure in which 12 stainless tubes having an outer diameter of 9.53 mm, an inner diameter of 7.53 mm, and a length of 250 mm are used as a gas passage. When the molecular sieve adsorbs moisture to saturation or when the Ni catalyst combines with oxygen, a heater is installed in the purification tower (13 in FIG. 3) for the purpose of dehydration and reduction treatment under heating. Although not shown in the figure.

この本発明のケース収納型送風機を有するガス循環精製装置を内容積720リットルのグローブボックスに接続した。グローブボックスには薄膜酸化アルミセンサーの露点計とジルコニア起電力方式の酸素濃度計が装備されている。グローブボックス内の大気をアルゴンガスで置換した後に、該ガス循環精製装置を起動した。循環ガス流量は48立方メートル/時間が得られ、グローブボックスに流入するガス温度は29℃の問題ないガス温度だった。酸素濃度は該ガス循環精製装置を起動後4分で1ppm濃度まで低下し、2日後には0.3ppmとなり、1週間後には0.1ppmとなった。水分濃度は、グローブボックス内を含むガス循環系統内の吸着水の影響が大きく露点低下速度が遅く、かつ測定日毎のバラツキあるが、平均して2日後には−76℃(1ppm)となり、1週間後には−86℃となった。グローブボックスと接続した状態でガス循環精製装置の連続運転を1年間行ったが問題、トラブルの発生なく本ガス循環精製装置は良好な耐久性を示した。  The gas circulation purification apparatus having the case storage type blower of the present invention was connected to a glove box having an internal volume of 720 liters. The glove box is equipped with a thin film aluminum oxide sensor dew point meter and a zirconia electromotive force type oxygen concentration meter. After the atmosphere in the glove box was replaced with argon gas, the gas circulation purification apparatus was started. The circulating gas flow rate was 48 cubic meters / hour, and the gas temperature flowing into the glove box was a problem gas temperature of 29 ° C. The oxygen concentration decreased to 1 ppm in 4 minutes after the gas circulation purification apparatus was started up, became 0.3 ppm after 2 days, and became 0.1 ppm after 1 week. The moisture concentration is greatly influenced by the adsorbed water in the gas circulation system including the inside of the glove box, and the dew point lowering rate is slow, and there are variations from measurement day to day, but on average, it becomes −76 ° C. (1 ppm) after 2 days. It became -86 degreeC after a week. Although the gas circulation purification apparatus was continuously operated for one year in a state where it was connected to the glove box, the gas circulation purification apparatus showed good durability without problems and troubles.

比較例1Comparative Example 1

実施例と同じグローブボックスとガス循環精製装置の組合せで、ただし、本発明のケース収納型送風機に替えて、株式会社アンレット製の3葉ルーツ式水中ブロワBWF4015型(直結モータ、モータ最大出力1.5kW、吐出圧力10kPa、消費電力0.54kW、風量71立法メートル/時間)を用いた。該ブロワは水中での使用を目的に開発されたものであるが、別途に空冷ファン(プロペラファン)でモータを冷却する事で大気中でも使用できる。ただし、ファンでモータに向けて送風された空気はガス循環精製機内部のみでなく装置外部へも流れ、外部の大気を撹乱した。実施例と同様にグローブボックス内の大気をアルゴンガスで置換した後に、該ガス循環精製装置を起動した。循環ガス流量は約60立方メートル/時間が得られ、グローブボックスに流入するガス温度は35℃とやや高かったが、冷却塔に約20℃の冷却水を流す限りはガス温度35℃を保持し、問題ないガス温度だった。酸素濃度は該ガス循環精製装置を起動後4分で1.3ppm濃度まで低下し、2日後には0.8ppmとなったが、その後の酸素濃度の低下は見られなかった。1週間後でも0.8ppmだった。水分濃度は、前述のように吸着水の影響が大きく露点低下速度が遅く、かつ測定日毎のバラツキあるが、平均して2日後には−76℃(1ppm)となり、1週間後には−80℃となったが、前記の実施例ほどの低露点とはならず、この−80℃の状態を継続した。略この状態での10カ月の連続運転では問題、トラブルの発生なかったが、10カ月以降は酸素濃度と露点の上昇が見られ、連続1年運転後に検査した結果、オイルシールの摩耗が見つかった。  A combination of the same glove box and gas circulation purification apparatus as in the embodiment, but instead of the case storage type blower of the present invention, a three-leaf roots type submersible blower BWF4015 type (direct motor, motor maximum output 1. 5 kW, discharge pressure 10 kPa, power consumption 0.54 kW, air volume 71 cubic meters / hour) were used. The blower was developed for use in water, but can also be used in the air by cooling the motor with an air cooling fan (propeller fan). However, the air blown toward the motor by the fan flowed not only inside the gas circulation purifier but also outside the apparatus, disturbing the outside atmosphere. Similarly to the example, the atmosphere in the glove box was replaced with argon gas, and then the gas circulation purification device was started. The circulation gas flow rate was about 60 cubic meters / hour, and the gas temperature flowing into the glove box was slightly high at 35 ° C. However, as long as cooling water of about 20 ° C was allowed to flow through the cooling tower, the gas temperature was maintained at 35 ° C. There was no problem gas temperature. The oxygen concentration decreased to 1.3 ppm in 4 minutes after the gas circulation purification apparatus was started up and became 0.8 ppm after 2 days, but no subsequent decrease in oxygen concentration was observed. Even after one week, it was 0.8 ppm. As described above, the moisture concentration is greatly influenced by adsorbed water and has a slow dew point reduction rate, and varies from measurement day to day. On average, the water concentration becomes −76 ° C. (1 ppm) after 2 days, and −80 ° C. after 1 week. However, it was not as low as the dew point as in the previous examples, and this -80 ° C state was continued. There was no problem or trouble during 10 months of continuous operation in this state, but after 10 months, the oxygen concentration and dew point increased. As a result of inspection after continuous operation for 1 year, oil seal wear was found. .

図2の構造のケース収納型送風機を作製した。電動送風機は実施例1と同じサイドチャネル型ブロワを用い、ケース内にフィンチューブ式熱交換器構造のガス冷却機構(図2の9,10,11)を組み込んだ。ケースサイズは直径300mm、高さ350mmである。実施例1の場合よりやや大きい高さとなったが、このケース収納型送風機を用いたガス循環精製装置では冷却塔が省略できたので、全体の装置サイズは実施例1よりコンパクトに製作する事ができた。  A case storage type blower having the structure of FIG. 2 was produced. As the electric blower, the same side channel blower as in Example 1 was used, and a gas cooling mechanism (9, 10, 11 in FIG. 2) having a fin tube heat exchanger structure was incorporated in the case. The case size is 300 mm in diameter and 350 mm in height. Although the height was slightly larger than in the case of the first embodiment, the cooling tower could be omitted in the gas circulation purification apparatus using this case-accommodating blower, so that the overall apparatus size could be made more compact than in the first embodiment. did it.

該ケース収納型送風機を実施例1と同じガス循環精製装置に組み込み、グローブボックスに接続し、ガス循環精製運転を行い、同様に評価した。循環ガス流量は47立方メートル/時間、グローブボックスに流入するガス温度は31℃の問題ないガス温度だった。酸素濃度は該ガス循環精製装置を起動後4分で0.8ppm濃度まで低下し、2日後には0.3ppmとなり、1週間後には0.1ppmとなった。水分濃度は、グローブボックス内を含むガス循環系統内の吸着水の影響が大きく露点低下速度が遅く、かつ測定日毎のバラツキあるが、平均して2日後には−78℃(1ppm)となり、1週間後には−88℃となった。さらに、1年間の連続運転を行ったが問題、トラブルの発生なく良好な耐久性を示した。  The case storage type blower was incorporated in the same gas circulation purification apparatus as in Example 1, connected to a glove box, gas circulation purification operation was performed, and the same evaluation was performed. The circulation gas flow rate was 47 cubic meters / hour, and the gas temperature flowing into the glove box was 31 ° C., which was no problem. The oxygen concentration decreased to 0.8 ppm in 4 minutes after starting the gas circulation purification apparatus, became 0.3 ppm after 2 days, and became 0.1 ppm after 1 week. The moisture concentration is greatly influenced by the adsorbed water in the gas circulation system including the inside of the glove box, and the dew point lowering rate is slow and varies from measurement day to day. On average, it becomes −78 ° C. (1 ppm) after 2 days. It became -88 degreeC after a week. Furthermore, although continuous operation was conducted for one year, it showed good durability without problems and troubles.

実施例1と比較例1のガス循環精製装置では冷却塔を用いて、ガス循環精製装置を出てグローブボックスに流入するアルゴンガス温度は前記のように、それぞれ29℃と35℃だった。それぞれの場合で、冷却水を停止した時のガス温度は39℃と51℃だった。実施例2では、ケース収納型送風機のケース内に設置したガス冷却機構により、ガス温度は31℃にする事ができ、冷却機構の有効性が証明された。  In the gas circulation purification apparatuses of Example 1 and Comparative Example 1, using the cooling tower, the argon gas temperatures exiting the gas circulation purification apparatus and flowing into the glove box were 29 ° C. and 35 ° C., respectively, as described above. In each case, the gas temperatures when the cooling water was stopped were 39 ° C. and 51 ° C. In Example 2, the gas temperature could be set to 31 ° C. by the gas cooling mechanism installed in the case of the case storage type blower, and the effectiveness of the cooling mechanism was proved.

本発明のケース収納型送風機の模式図である。1はケース、2,3は気体の出入り口、4は電動送風機の電動機(モータ)、5は送風機構部分、6はモータと送風機構を連結する回転軸である。7,8は送風機構のガス出入り口である。  It is a schematic diagram of the case storage type blower of the present invention. 1 is a case, 2 and 3 are gas inlets and outlets, 4 is an electric motor (motor) of an electric blower, 5 is a blower mechanism portion, and 6 is a rotating shaft connecting the motor and the blower mechanism. 7 and 8 are gas inlets and outlets of the blower mechanism. 本発明のケース収納型送風機のケース内部にガス冷却機構9を設けた実施例2を説明する模式図である。10、11は冷却水の入側と出側である。  It is a schematic diagram explaining Example 2 which provided the gas cooling mechanism 9 inside the case of the case storage type air blower of this invention. Reference numerals 10 and 11 denote an inlet side and an outlet side of the cooling water. 比較例1のガス循環精製装置を示した。19はガス循環精製装置であり、20は該装置に入ってくるガスの入口であり、21は該装置から送出される精製されたガスの出口である。この比較例の電動送風機にはモータを冷却する小型ファン12が装備される。16は送風機構で温度上昇したガスを冷却する冷却機構であり、17、18は冷却水の入側と出側を示したのものである。13が精製塔であり、14は水分吸着剤、15は酸素吸着剤である。  The gas circulation purification apparatus of the comparative example 1 was shown. 19 is a gas circulation purification device, 20 is an inlet for gas entering the device, and 21 is an outlet for purified gas delivered from the device. The electric blower of this comparative example is equipped with a small fan 12 that cools the motor. Reference numeral 16 denotes a cooling mechanism that cools the gas whose temperature has been increased by the blower mechanism, and reference numerals 17 and 18 denote an inlet side and an outlet side of the cooling water. 13 is a purification tower, 14 is a moisture adsorbent, and 15 is an oxygen adsorbent.

Claims (6)

大気の混入を嫌うガス循環精製装置に用いられる電動送風機を密閉性の良いケースに収納し、ケースには気体の入口と出口を設け、入口から入った気体が該電動送風機のモータを冷却するように流れた後に該電動送風機の送風機構部分に入り、該送風機構により送風され、該送風機構部分から送り出された気体が、該送風機構の気体出口と該ケースの気体出口がつながっていることにより、該ケース内に放出される事なく該ケースの出口から送出される構造としたケース収納型送風機。An electric blower used in a gas circulation purification device that dislikes air mixing is housed in a case with good airtightness, and a gas inlet and outlet are provided in the case so that the gas entering from the inlet cools the motor of the electric blower. The gas blown into the blower mechanism part of the electric blower after flowing into the air, blown by the blower mechanism, and sent out from the blower mechanism part by connecting the gas outlet of the blower mechanism and the gas outlet of the case A case-accommodating blower structured to be delivered from the outlet of the case without being discharged into the case. 大気の混入を嫌う系に用いられる電動送風機を密閉性の良いケースに収納し、ケースには気体の入口と出口を設け、入口から入った気体が、該ケースの入口と該電動送風機の送風機構部分の入口がつながっていることにより、該ケース内に放出される事なく該送風機構部分に入り、該送風機構により送風され、該送風機構部分から送り出された気体が該電動送風機のモータを冷却するように流れた後に該ケースの出口から送出される構造としたケース収納型送風機。  An electric blower used in a system that does not want to be mixed in the atmosphere is housed in a case with good airtightness. The case has a gas inlet and outlet, and the gas entering from the inlet is the inlet of the case and the blowing mechanism of the electric blower By connecting the inlets of the portions, the gas enters the air blowing mechanism portion without being released into the case, is blown by the air blowing mechanism, and the gas sent from the air blowing mechanism portion cools the motor of the electric blower. A case-accommodating blower having a structure that is sent out from the outlet of the case after flowing in such a manner. 該ケースの中に気体を冷却する機構を設けた事を特徴とする請求項1または請求項2のケース収納型送風機。  The case storage type blower according to claim 1 or 2, wherein a mechanism for cooling the gas is provided in the case. 前記の大気の混入を嫌う系がガス循環精製装置である事を特徴とする請求項2または請求項3のケース収納型送風機。 Motomeko 2 or claim 3 in case receiving-type blower system dislike contamination of the atmosphere is you characterized by a gas circulation purifier. 前記の気体が不活性ガスである事を特徴とする請求項1、請求項2、請求項3または請求項4のケース収納型送風機。  The case-housing fan according to claim 1, 2, 3, or 4, wherein the gas is an inert gas. 請求項1、請求項2、請求項3、請求項4、または請求項5のケース収納型送風機を用いたガス循環精製装置。  A gas circulation purification apparatus using the case housing type blower according to claim 1, 2, 3, 4, or 5.
JP2006039933A 2006-01-23 2006-01-23 Case storage type blower and gas circulation purification device Active JP4883394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039933A JP4883394B2 (en) 2006-01-23 2006-01-23 Case storage type blower and gas circulation purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039933A JP4883394B2 (en) 2006-01-23 2006-01-23 Case storage type blower and gas circulation purification device

Publications (2)

Publication Number Publication Date
JP2007198364A JP2007198364A (en) 2007-08-09
JP4883394B2 true JP4883394B2 (en) 2012-02-22

Family

ID=38453187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039933A Active JP4883394B2 (en) 2006-01-23 2006-01-23 Case storage type blower and gas circulation purification device

Country Status (1)

Country Link
JP (1) JP4883394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179323A (en) * 2015-10-14 2015-12-23 新乡西玛鼓风机有限公司 Air cooling type cooling system of heavy-duty fan

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896452B2 (en) * 2011-10-20 2016-03-30 ヒューグル開発株式会社 Gas purification device
KR101969545B1 (en) 2012-10-02 2019-04-17 휴글엘렉트로닉스가부시키가이샤 Gas purifying facility
KR102093801B1 (en) * 2018-04-03 2020-05-27 (주)에이치케이티 apparatus of gas purifying for vacuum chamber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202889A (en) * 1992-01-29 1993-08-10 Mitsubishi Electric Corp Motor-driven pump
JP2002006049A (en) * 2000-06-26 2002-01-09 Canon Inc X-ray digital imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179323A (en) * 2015-10-14 2015-12-23 新乡西玛鼓风机有限公司 Air cooling type cooling system of heavy-duty fan

Also Published As

Publication number Publication date
JP2007198364A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US3229896A (en) Vaneaxial fan
JP4883394B2 (en) Case storage type blower and gas circulation purification device
KR101303173B1 (en) Vacuum pump unit
JP5756097B2 (en) Vacuum pump
CN103415984B (en) For increasing the system and method for air-flow in motor
JP5007877B2 (en) Gas circulation purification equipment
CN115765278B (en) Explosion-proof motor
US3840067A (en) Air-cooled heat exchanger with reduced noise level
JPH0893685A (en) Turbo-compressor
JP5325566B2 (en) Rotating electric machine
JP5690884B2 (en) Rotating electric machine
JPH01267392A (en) Turbo vacuum pump
CN114333268B (en) Alarm method and device for power on-line monitoring system
CN200999736Y (en) Belt transmission high-temperature axial-flow draught fan
JP2005171957A (en) Package type compressor
CN1030440C (en) Electric automobile
JP2004211568A (en) Compressed-air supplying system of fuel cell vehicle
CN212132499U (en) Air inlet and return pipeline with waste gas cooling function for waste gas purification
JP2009077611A (en) Motor device
JP2005171958A (en) Package type compressor
JP2009018281A (en) Compressed air dehumidifying system
JP3682110B2 (en) Blower and pressure control system
CN118669907A (en) Limited space ventilation device
JPS63297799A (en) Electric axial flow air blower
CN219922518U (en) Quick cooling device of zeolite runner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250