JP4882762B2 - Water molecule inclusion coordination polymer metal complex compound - Google Patents

Water molecule inclusion coordination polymer metal complex compound Download PDF

Info

Publication number
JP4882762B2
JP4882762B2 JP2007016749A JP2007016749A JP4882762B2 JP 4882762 B2 JP4882762 B2 JP 4882762B2 JP 2007016749 A JP2007016749 A JP 2007016749A JP 2007016749 A JP2007016749 A JP 2007016749A JP 4882762 B2 JP4882762 B2 JP 4882762B2
Authority
JP
Japan
Prior art keywords
metal complex
complex compound
water molecule
coordination polymer
polymer metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016749A
Other languages
Japanese (ja)
Other versions
JP2008184480A (en
Inventor
智己 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007016749A priority Critical patent/JP4882762B2/en
Publication of JP2008184480A publication Critical patent/JP2008184480A/en
Application granted granted Critical
Publication of JP4882762B2 publication Critical patent/JP4882762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Fuel Cell (AREA)

Description

本発明は、プロトン伝導性の高い水分子内包配位高分子金属錯体化合物に関する。本発明の水分子内包配位高分子金属錯体化合物は、固体高分子燃料電池のプロトン交換膜等に好適である。   The present invention relates to a water molecule inclusion coordination metal-metal complex compound having high proton conductivity. The water molecule inclusion coordination polymer metal complex compound of the present invention is suitable for a proton exchange membrane of a solid polymer fuel cell.

固体高分子燃料電池のプロトン交換膜として、特許文献1に、配位高分子金属錯体RdtoaM(R:アルキル基、dtoa:ジチオオキサミド)の層間に水分子を吸蔵させて室温でプロトン伝導性を有する化合物が開示されている。しかし、更に高いプロトン伝導性を得ることが求められている。特許文献2には更に上記錯体に水素を吸蔵させて室温で電子伝導性を具備させることが示されているが、プロトン伝導性は特に向上しない。 As a proton exchange membrane of a solid polymer fuel cell, Patent Document 1 describes that proton molecules are absorbed at room temperature by interposing water molecules between layers of coordination polymer metal complex R 2 dtoaM (R: alkyl group, dtoa: dithiooxamide). Compounds having are disclosed. However, it is required to obtain higher proton conductivity. Patent Document 2 discloses that the above complex is further allowed to absorb hydrogen and have electron conductivity at room temperature, but proton conductivity is not particularly improved.

これに対して、細孔内の水分子の個数を制御したものとして、非特許文献1には、1ユニットが〔Cu(C(C)〕・2HOで表わされる組成を有し、該Cu元素とピラジン−2,3−ジカルボキシレートとから成る2次元構造同士がピラジンから成る支柱で相互に間隙を置いて接続された3次元構造を有する配位高分子金属錯体を骨格とし、上記間隙が上記支柱で区切られて成る細孔内に上記2個の水分子が内包されている水分子内包配位高分子金属錯体化合物が示されている。この化合物は、Cu(ClO・6HOとNa−2,3−ピラジンジカルボキシレートとをピラジン水溶液中で混合して反応させることで生成されている。細孔内に2個の水分子を内包したことで、常温でのプロトン伝導性を安定して得ることができるが、プロトン伝導性を更に向上させることはできなかった。 In contrast, in Non-Patent Document 1, one unit is [Cu 2 (C 6 H 2 N 2 O 4 ) 2 (C 4 H 4 N 2). 2 ) 2 having a composition represented by 2H 2 O, and a two-dimensional structure composed of the Cu element and pyrazine-2,3-dicarboxylate connected to each other with a pillar composed of pyrazine with a gap therebetween 3 A water molecule-encapsulated coordination polymer metal complex compound in which a coordination polymer metal complex having a dimensional structure is used as a skeleton, and the two water molecules are encapsulated in pores in which the gap is divided by the support columns. It is shown. This compound is produced by mixing and reacting Cu (ClO 4 ) 2 .6H 2 O and Na 2 -2,3-pyrazine dicarboxylate in an aqueous pyrazine solution. By enclosing two water molecules in the pores, proton conductivity at room temperature can be stably obtained, but proton conductivity could not be further improved.

特開2004−31173号公報JP 2004-31173 A 特開2004−31174号公報JP 2004-31174 A Mitsuru Kondo et al., Angew.Chem.Int.Ed. 1999, 38, No. 1/2, pp. 140-143Mitsuru Kondo et al., Angew.Chem.Int.Ed. 1999, 38, No. 1/2, pp. 140-143

本発明は、室温におけるプロトン伝導性を高めた水分子内包配位高分子金属錯体化合物を提供することを目的とする。   An object of the present invention is to provide a water molecule inclusion coordination metal-metal complex compound having improved proton conductivity at room temperature.

上記の目的を達成するために、第1発明によれば、1ユニットが[MA・2{(C)−(COOH)}]・nHOで表わされる組成を有し、平面4配位構造を取る金属イオンMAと、2,3−ピラジンジカルボン酸と、結晶水としての水分子とから成る水分子内包1次元鎖状配位高分子金属錯体化合物が提供される。 In order to achieve the above object, according to the first invention, one unit has a composition represented by [MA · 2 {(C 4 H 2 N 2 ) — (COOH) 2 }] · nH 2 O. There is provided a water molecule-encapsulating one-dimensional chain coordination polymer metal complex compound comprising a metal ion MA having a planar four-coordinate structure, 2,3-pyrazinedicarboxylic acid, and water molecules as crystal water.

更に、第2発明によれば、1ユニットが[MB・2{(C)−(COOH)}・2HO〕・HOで表わされる組成を有し、6配位八面体構造を取る金属イオンMBと、2,3−ピラジンジカルボン酸と、配位子としての水分子および細孔内の水分子とから成る水分子内包3次元配位高分子金属錯体化合物が提供される。 Further, according to the second invention, one unit has a composition represented by [MB · 2 {(C 4 H 2 N 2 ) — (COOH) 2 } · 2H 2 O] · H 2 O, A water molecule-encapsulating three-dimensional coordination polymer metal complex compound comprising a metal ion MB having a octahedral structure, 2,3-pyrazinedicarboxylic acid, a water molecule as a ligand, and a water molecule in a pore. Provided.

第1発明の水分子内包1次元鎖状配位高分子金属錯体化合物は、結晶水として内包する水分子によりプロトン伝導性を有する。   The water molecule-encapsulating one-dimensional chain coordination polymer metal complex compound of the first invention has proton conductivity due to water molecules encapsulated as crystal water.

第2発明の水分子内包3次元配位高分子金属錯体化合物は、配位子としての水分子および細孔内の水分子を内包することにより更に高いプロトン伝導性を有する。   The water molecule-encapsulating three-dimensional coordination polymer metal complex compound of the second invention has higher proton conductivity by encapsulating water molecules as ligands and water molecules in pores.

〔実施形態1〕
図1に、第1発明による1次元鎖状配位高分子金属錯体化合物の構造例を示す。平面4配位金属イオンMAとしてPdを用いた場合を示した。同図は上記化合物の1ユニット分を示したものであり、4配位のPdイオンを中心にして両側に2,3−ピラジンジカルボン酸がイオン結合しており、更に各2,3−ピラジンジカルボン酸の他端にPdイオンが結合する。この結合サイクルを繰返して1次元鎖状構造の配位高分子金属錯体化合物が構成される。金属イオンMA周りはトランス型をとっており、上記の1次元鎖状化合物間に水分子(図示せず)が結晶水として取り込まれており、これがプロトン伝導性が付与される。
Embodiment 1
FIG. 1 shows a structural example of a one-dimensional chain coordination polymer metal complex compound according to the first invention. The case where Pd is used as the planar four-coordinate metal ion MA is shown. This figure shows one unit of the above compound, and 2,3-pyrazinedicarboxylic acid is ion-bonded on both sides around the 4-coordinate Pd ion, and each 2,3-pyrazinedicarboxylic acid is further bonded. Pd ions are bonded to the other end of the acid. This bonding cycle is repeated to form a coordination polymer metal complex compound having a one-dimensional chain structure. Around the metal ion MA is in a trans form, and water molecules (not shown) are taken in as crystal water between the above one-dimensional chain compounds, and this imparts proton conductivity.

平面4配位金属イオンMAは、Co(II)、Ni(II)、Cu(II)、Rh(I)、Pd(II)、Pt(II)から成る群から選択することができる。   The planar four-coordinate metal ion MA can be selected from the group consisting of Co (II), Ni (II), Cu (II), Rh (I), Pd (II), Pt (II).

〔実施形態2〕
図2に、第2発明による3次元配位高分子金属錯体化合物の構造例を示す。6配位八面体構造を取る金属イオンMBとしてCoを用いた場合を示した。同図は上記化合物の1ユニット分を示したものであり、6配位のCoイオンを中心にして、左右両側には2,3−ピラジンジカルボン酸が、上下両側には水分子がそれぞれイオン結合しており、更に下部に示したようにフリーの水分子1個を細孔(図示せず)内に内包している。細孔は、このユニットが多数結合した3次元構造中の各ユニット間の間隙である。
[Embodiment 2]
FIG. 2 shows a structural example of the three-dimensional coordination polymer metal complex compound according to the second invention. The case where Co is used as the metal ion MB having a six-coordinate octahedral structure is shown. The figure shows one unit of the above compound, with 2,3-pyrazinedicarboxylic acid on the left and right sides, and water molecules on the top and bottom sides, centered on the 6-coordinate Co ion. Furthermore, as shown in the lower part, one free water molecule is included in the pores (not shown). A pore is a gap between units in a three-dimensional structure in which a large number of units are bonded.

図3は、図2の3次元配位高分子金属錯体化合物を単結晶X線構造解析して得られた画像である。すなわち解析対象は、1ユニットが[Co・2{(C)−(COOH)}・2HO〕・HOで表わされる組成を有する。Coイオン(図中、斑点模様で示した6配位部分)、O(斜線ハッチング部分)、N(クロスハッチング部分)が表示されている。本図では必ずしも明瞭ではないが、Coイオンの配位子の一部を成す水分子と細孔内の水分子とが水素結合(破線)して3次元構造を形成している。 FIG. 3 is an image obtained by analyzing a single crystal X-ray structure of the three-dimensional coordination polymer metal complex compound of FIG. In other words, the analysis target has a composition in which one unit is represented by [Co · 2 {(C 4 H 2 N 2 ) − (COOH) 2 } · 2H 2 O] · H 2 O. Co ions (six-coordinate portion indicated by a spot pattern in the figure), O (hatched hatched portion), and N (cross-hatched portion) are displayed. Although it is not necessarily clear in this figure, the water molecule which forms a part of the Co ion ligand and the water molecule in the pore form a hydrogen bond (broken line) to form a three-dimensional structure.

このように、配位子としての水分子と細孔内の水分子とが水素結合により3次元構造を形成しているため、Grotthus機構等により更にプロトン伝導性が向上する。Grotthus機構は、電解質溶液中に電流が流れるのは、電場の影響で水分子が正に荷電した水素と負に荷電した酸素とに分解し、直ちに再結合するという現象が電極面を除いて連続的に起きるという機構である。   Thus, since the water molecule as the ligand and the water molecule in the pore form a three-dimensional structure by hydrogen bonding, proton conductivity is further improved by the Grothus mechanism or the like. In the Grotthus mechanism, current flows in the electrolyte solution because the electric field affects the water molecules to decompose into positively charged hydrogen and negatively charged oxygen, and immediately recombine except for the electrode surface. It is a mechanism that happens automatically.

6配位八面体構造を取る金属イオンMBは、Ti(II)、Ti(III)、Ti(IV)、Cr(II)、Cr(III)、Mn(II)、Mn(III)、Mn(IV)、Fe(II)、Fe(III)、Co(II)、Co(III)、Ni(II)、Cu(II)、Ru(II)、Ru(III)、Ru(IV)から成る群から選択することができる。   Metal ions MB having a hexacoordinate octahedral structure are Ti (II), Ti (III), Ti (IV), Cr (II), Cr (III), Mn (II), Mn (III), Mn ( IV), Fe (II), Fe (III), Co (II), Co (III), Ni (II), Cu (II), Ru (II), Ru (III), Ru (IV) You can choose from.

図2、3に示した第2発明による水分子内包3次元配位高分子金属錯体化合物を下記の条件および手順により合成した。6配位八面体構造を取る金属イオンMBとしてコバルトを用いた。   A water molecule-encapsulating three-dimensional coordination polymer metal complex compound according to the second invention shown in FIGS. 2 and 3 was synthesized under the following conditions and procedures. Cobalt was used as a metal ion MB having a six-coordinate octahedral structure.

(1)塩化コバルト(II)六水和物を水5mlに溶解させる(溶液A)。   (1) Cobalt chloride (II) hexahydrate is dissolved in 5 ml of water (solution A).

(2)2,3−ピラジンジカルボン酸水溶液を水5mlに溶解させる(溶液B)。   (2) A 2,3-pyrazinedicarboxylic acid aqueous solution is dissolved in 5 ml of water (solution B).

(3)溶液Aに溶液Bを加えて室温で10分攪拌する。   (3) Add Solution B to Solution A and stir at room temperature for 10 minutes.

(4)室温にて放置し、橙色結晶を得る。   (4) Leave at room temperature to obtain orange crystals.

得られた橙色結晶について単結晶X線構造解析を行なった結果、コバルト、2,3−ピラジンジカルボキシレート、水分子から成る化合物となっていることが分かった(図2)。その結晶内に水分子が取り込まれており、配位子の水分子と結晶水の水分子が水素結合により連結して3次元構造体を形成している(図3)。   As a result of single crystal X-ray structural analysis of the obtained orange crystals, it was found that the orange crystals were a compound composed of cobalt, 2,3-pyrazine dicarboxylate, and water molecules (FIG. 2). Water molecules are taken into the crystals, and the water molecules of the ligand and the water molecules of the crystal water are connected by hydrogen bonds to form a three-dimensional structure (FIG. 3).

この場合、コバルトイオンと配位子2,3−ピラジンジカルボン酸から成る1次元の鎖状化合物が形成されるが、更にコバルトイオンの配位子として2個の水分子が存在しており、これが結晶水として存在する1個の水分子と水素結合していることが分かった。その結果、水素結合ネットワークにより3次元構造体が形成されている。   In this case, a one-dimensional chain compound consisting of cobalt ions and the ligand 2,3-pyrazinedicarboxylic acid is formed, but there are two water molecules as cobalt ion ligands. It was found to be hydrogen-bonded with one water molecule present as crystal water. As a result, a three-dimensional structure is formed by the hydrogen bond network.

本実施例では、上記(1)の操作において6配位八面体構造を取る金属イオンとして用いるコバルト源として塩化コバルト(II)を用いたが、規定の選択範囲内の金属種を用いる場合には、その金属源としてはその金属の塩を用いることができる。   In this example, cobalt (II) chloride was used as a cobalt source used as a metal ion having a six-coordinate octahedral structure in the above operation (1). However, when a metal species within a specified selection range is used. As the metal source, a salt of the metal can be used.

また、上記(1)の操作において平面4配位構造を取る金属イオンの金属塩を用いることにより、第1発明による1次元鎖状配位高分子錯体化合物を合成することができる。   In addition, the one-dimensional chain coordination polymer complex compound according to the first invention can be synthesized by using a metal salt of a metal ion having a planar four-coordinate structure in the operation (1).

本発明によれば、室温におけるプロトン伝導性を高めた水分子内包配位高分子金属錯体化合物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the water molecule inclusion coordination polymer metal complex compound which improved the proton conductivity in room temperature is provided.

第1発明による1次元鎖状配位高分子金属錯体化合物の構造例。平面4配位金属イオンMAがPdである場合。The structural example of the one-dimensional chain coordination polymer metal complex compound by 1st invention. The planar 4-coordinate metal ion MA is Pd. 第2発明による3次元配位高分子金属錯体化合物の構造例。6配位八面体構造を取る金属イオンMBがCoである場合。The structural example of the three-dimensional coordination polymer metal complex compound by 2nd invention. When the metal ion MB having a six-coordinate octahedral structure is Co. 図2の3次元配位高分子金属錯体化合物を単結晶X線構造解析して得られた画像。1ユニットが[Co・2{(C)−(COOH)}・2HO〕・HOで表わされる組成を有する。3 is an image obtained by analyzing a single crystal X-ray structure of the three-dimensional coordination polymer metal complex compound of FIG. 1 unit [Co · 2 - has a composition represented by {(C 4 H 2 N 2 ) (COOH) 2} · 2H 2 O ] · H 2 O.

Claims (1)

1ユニットが[Co(II)・2{(C)−(COOH)}・2HO〕・HOで表わされる組成を有し、6配位八面体構造を取るCo(II)イオンと、2,3−ピラジンジカルボン酸と、配位子としての水分子および細孔内の水分子とから成る水分子内包3次元配位高分子金属錯体化合物。 1 unit [Co (II) · 2 - has a composition represented by {(C 4 H 2 N 2 ) (COOH) 2} · 2H 2 O ] · H 2 O, take six-coordinate octahedral structure A water molecule-encapsulated three-dimensional coordination polymer metal complex compound comprising Co (II) ions , 2,3-pyrazinedicarboxylic acid, a water molecule as a ligand, and a water molecule in a pore.
JP2007016749A 2007-01-26 2007-01-26 Water molecule inclusion coordination polymer metal complex compound Expired - Fee Related JP4882762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016749A JP4882762B2 (en) 2007-01-26 2007-01-26 Water molecule inclusion coordination polymer metal complex compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016749A JP4882762B2 (en) 2007-01-26 2007-01-26 Water molecule inclusion coordination polymer metal complex compound

Publications (2)

Publication Number Publication Date
JP2008184480A JP2008184480A (en) 2008-08-14
JP4882762B2 true JP4882762B2 (en) 2012-02-22

Family

ID=39727735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016749A Expired - Fee Related JP4882762B2 (en) 2007-01-26 2007-01-26 Water molecule inclusion coordination polymer metal complex compound

Country Status (1)

Country Link
JP (1) JP4882762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10376868B2 (en) 2015-02-17 2019-08-13 Lg Chem, Ltd. Linear inorganic coordination polymer, metal complex compound, and metal nanostructure and catalyst composition comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373992B (en) * 2022-01-25 2024-08-30 宁德新能源科技有限公司 Electrolyte, electrochemical device, and electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746321B2 (en) * 1996-02-28 2006-02-15 大阪瓦斯株式会社 Gas storage organometallic complex, method for producing the same, gas storage device, and automobile equipped with gas storage device
JPH09324006A (en) * 1996-06-05 1997-12-16 Osaka Gas Co Ltd Production of highly conductive polymer and organometallic complex for synthesizing the polymer
JP4129763B2 (en) * 2002-06-26 2008-08-06 独立行政法人科学技術振興機構 Anode electrode for fuel cell and manufacturing method thereof
JP4182395B2 (en) * 2002-06-26 2008-11-19 独立行政法人科学技術振興機構 Proton exchange membrane production method
JP4217776B2 (en) * 2002-12-18 2009-02-04 国立大学法人京都大学 Method for maintaining alignment of gas molecules
JP4578063B2 (en) * 2003-04-25 2010-11-10 進 北川 Selective adsorbent for isoprene gas, process for producing the same, and method for separating isoprene gas
JP5099614B2 (en) * 2005-06-09 2012-12-19 公立大学法人横浜市立大学 Novel metal carboxylate complex and gas storage agent comprising the same
JP2007204446A (en) * 2006-02-03 2007-08-16 Showa Denko Kk Metal complex and method for recovering rare gas by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10376868B2 (en) 2015-02-17 2019-08-13 Lg Chem, Ltd. Linear inorganic coordination polymer, metal complex compound, and metal nanostructure and catalyst composition comprising the same

Also Published As

Publication number Publication date
JP2008184480A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
Li et al. Recent progress in metal–organic frameworks (MOFs) for electrocatalysis
Li et al. Metal–organic framework containing planar metal-binding sites: efficiently and cost-effectively enhancing the kinetic separation of C2H2/C2H4
Wang et al. Construction and application of base-stable MOFs: a critical review
Yang et al. Ligand-directed conformational control over porphyrinic zirconium metal–organic frameworks for size-selective catalysis
Gu et al. Iron-based metal–organic framework system as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions
Liang et al. Effective approach to promoting the proton conductivity of metal–organic frameworks by exposure to aqua–ammonia vapor
Oshio et al. Cyanide‐Bridged Fe− Fe and Fe− Co Molecular Squares: Structures and Electrochemistry of [Fe4II (μ‐CN) 4 (bpy) 8](PF6) 4⋅ 4 H2O,[Fe2IICo2II (μ‐CN) 4 (bpy) 8](PF6) 4⋅ 3 CHCl3⋅ 2 CH3CN, and [Fe2IICo2III (μ‐CN) 4 (bpy) 8](PF6) 6⋅ 2 CHCl3⋅ 4 CH3NO2
Badiei et al. Cp* Co (III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media
Eddaoudi et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal− organic carboxylate frameworks
Chen et al. Nanostructured Cobalt‐Based Electrocatalysts for CO2 Reduction: Recent Progress, Challenges, and Perspectives
Qi et al. Single Metal–Organic Cage Decorated with an Ir (III) Complex for CO2 Photoreduction
Thuery et al. Uranyl and uranyl–3d block cation complexes with 1, 3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties
Zhou et al. New metal–organic frameworks based on 2, 5-thiophenedicarboxylate and pyridine-or imidazole-based spacers: syntheses, topological structures, and properties
Wu et al. All roads lead to Rome: An energy-saving integrated electrocatalytic CO2 reduction system for concurrent value-added formate production
Du et al. Two 2D layered P4Mo6 clusters with potential bifunctional properties: proton conduction and CO2 photoreduction
Chen et al. Robust Anionic LnIII–Organic Frameworks: Chemical Fixation of CO2, Tunable Light Emission, and Fluorescence Recognition of Fe3+
Tian et al. A series of organopolymolybdate polymers linked by dual fuses: metal–organic moiety and organic ligand through Mo–N bonds
Kong et al. Vanadium-based trimetallic metal-organic-framework family as extremely high-performing and ultrastable electrocatalysts for water splitting
Konavarapu et al. Isostructural NiII Metal–Organic Frameworks (MOFs) for Efficient Electrocatalysis of Oxygen Evolution Reaction and for Gas Sorption Properties
Banerjee et al. Design and synthesis of mixed valent coordination networks containing pyridine appended terpyridyl, halide, and dicarboxylates
Ibrahim et al. A trinuclear cobalt-based coordination polymer as an efficient oxygen evolution electrocatalyst at neutral pH
Zhu et al. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2
JP4882762B2 (en) Water molecule inclusion coordination polymer metal complex compound
Diyali et al. Coordination-driven electrocatalysts as an evolving wave of enthusiasm for sustainable hydrogen production
Sun et al. {Cu8} cluster-sandwiched polyoxotungstates and their polymers: Syntheses, structures, and properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4882762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees