JP4882260B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4882260B2
JP4882260B2 JP2005098737A JP2005098737A JP4882260B2 JP 4882260 B2 JP4882260 B2 JP 4882260B2 JP 2005098737 A JP2005098737 A JP 2005098737A JP 2005098737 A JP2005098737 A JP 2005098737A JP 4882260 B2 JP4882260 B2 JP 4882260B2
Authority
JP
Japan
Prior art keywords
lens group
lens
end state
object side
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005098737A
Other languages
Japanese (ja)
Other versions
JP2006276712A (en
Inventor
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005098737A priority Critical patent/JP4882260B2/en
Priority to US11/220,647 priority patent/US7199940B2/en
Priority to US11/548,927 priority patent/US7502173B2/en
Priority to US11/548,954 priority patent/US7336425B2/en
Priority to US11/548,897 priority patent/US7218456B2/en
Publication of JP2006276712A publication Critical patent/JP2006276712A/en
Application granted granted Critical
Publication of JP4882260B2 publication Critical patent/JP4882260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、固体撮像素子等を撮像素子としたビデオカメラや電子スチルカメラなどに用いられる小型のズームレンズに関する。   The present invention relates to a small zoom lens used for a video camera, an electronic still camera, or the like using a solid-state imaging device or the like as an imaging device.

昨今、固体撮像素子等を撮像素子としたビデオカメラや電子スチルカメラなど高画素化が進み撮影レンズの高い光学性能への要求が高くなり、また撮影の利便性から高変倍比のズーム、携帯の利便性から小型化への要求も高くなっており、それらを同時に満たすことが求められている。また、撮影者の撮影表現の可能性を広げる上で、広角端状態の画角が70度を越えるような広画角を有するズームレンズへの要求も高まっている。その中で、広角端状態の画角が70度を越え、変倍比が4倍程度以上の高変倍比を持つズームレンズとしては、レンズ群数が5群以上で、最も物体側のレンズ群が正屈折力を持つタイプが提案されている(例えば、特許文献1参照。)。
特開2002−98893号公報
Recently, video cameras and electronic still cameras that use solid-state image sensors, etc., have been increasing in pixel count, and the demand for high optical performance of photographic lenses has increased. The demand for miniaturization is also increasing due to the convenience of, and it is required to satisfy them simultaneously. In addition, in order to expand the possibility of photographing expression by a photographer, there is an increasing demand for a zoom lens having a wide field angle such that the field angle in the wide-angle end state exceeds 70 degrees. Among them, as a zoom lens having a high zoom ratio in which the angle of view at the wide angle end exceeds 70 degrees and the zoom ratio is about 4 times or more, the number of lens groups is five or more, and the lens closest to the object side is used. A type in which the group has positive refractive power has been proposed (for example, see Patent Document 1).
JP 2002-98893 A

しかしながら、特許文献1に開示された実施例では、広角端状態の画角が70度を越え、さらに高変倍比は確保されているものの、広角端状態から望遠端状態までの焦点距離全域に亘って光学性能が十分に高いとは言えず、また小型化が十分とは言えなかった。   However, in the embodiment disclosed in Patent Document 1, the angle of view in the wide-angle end state exceeds 70 degrees and a high zoom ratio is ensured, but over the entire focal length from the wide-angle end state to the telephoto end state. Therefore, it cannot be said that the optical performance is sufficiently high, and the miniaturization is not sufficient.

本発明は、上記課題に鑑みて行われたものであり、広角端状態の画角が70度を越え、変倍比が4倍程度以上の高変倍比を持ち、高い光学性能を有する固体撮像素子等を撮像素子としたビデオカメラや電子スチルカメラなどに適した小型のズームレンズを提供することを目的としている。   The present invention has been made in view of the above problems, and has a high zoom ratio with an angle of view in the wide-angle end state exceeding 70 degrees, a zoom ratio of about 4 times or more, and high optical performance. An object of the present invention is to provide a small zoom lens suitable for a video camera, an electronic still camera, or the like that uses an image sensor as an image sensor.

上記目的を達成するために、本発明は、光軸に沿って物体側から順に、正屈折力を有する第1レンズ群と、負屈折力を有する第2レンズ群と、正屈折力を有する第3レンズ群と、正屈折力を有する第4レンズ群と、正屈折力を有する第5レンズ群とからなり、広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、光軸に沿って、前記第1レンズ群と前記第2レンズ群との空気間隔は増加し、前記第2レンズ群と前記第3レンズ群との空気間隔は減少し、前記第3レンズ群と前記第4レンズ群との空気間隔は変化し、前記第4レンズ群と前記第5レンズ群との空気間隔は増加するように、前記第1レンズ群は像面に対して移動し、前記第2レンズ群は像面側に移動した後、物体側に移動するような軌跡で移動し、前記第3レンズ群は物体側に移動し、前記第4レンズ群は物体側に移動し、光軸に沿って物体側から順に、前記第3レンズ群は正屈折力を有する第3aレンズ群と、開口絞りと、第3bレンズ群とを有し、光軸に沿って物体側から順に、前記第3aレンズ群は負屈折力を有するレンズと正屈折力を有するレンズから成る接合レンズのみで構成され、前記第3bレンズ群は正屈折力を有するレンズと負屈折力を有するレンズから成る接合レンズのみで構成され、以下の条件を満足することを特徴とするズームレンズを提供する。
7.93≦f1/fW<12.8
5.8<f1/(−f2)<10.0
3.0<f5/fW<10.0
但し、fWは広角端状態における前記ズームレンズ全系の焦点距離、f1は前記第1レンズ群の焦点距離、f2は前記第2レンズ群の焦点距離、f5は前記第5レンズ群の焦点距離を表す。
In order to achieve the above object, according to the present invention, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a first lens group having a positive refractive power. a third lens group, a fourth lens group having positive refractive power and a fifth lens group having positive refractive power, upon zooming from the wide-angle end state to the telephoto end state, in an infinity in-focus condition, light Along the axis, the air gap between the first lens group and the second lens group increases, the air gap between the second lens group and the third lens group decreases, and the third lens group and the The first lens group moves relative to the image plane so that the air gap between the fourth lens group changes and the air gap between the fourth lens group and the fifth lens group increases, and the second lens group moves toward the image plane. After moving to the image plane side, the lens group moves along a trajectory that moves toward the object side. Third lens unit moves toward the object side, the fourth lens group moves toward the object side, in order from the object side along the optical axis, the third lens group and the 3a lens group having positive refractive power, the aperture A diaphragm and a 3b lens group, and in order from the object side along the optical axis, the 3a lens group is composed of only a cemented lens including a lens having a negative refractive power and a lens having a positive refractive power; The third lens group includes only a cemented lens including a lens having positive refracting power and a lens having negative refracting power, and satisfies the following conditions.
7.93 ≦ f1 / fW <12.8
5.8 <f1 / (− f2) <10.0
3.0 <f5 / fW <10.0
Where fW is the focal length of the entire zoom lens system in the wide-angle end state, f1 is the focal length of the first lens group, f2 is the focal length of the second lens group, and f5 is the focal length of the fifth lens group. To express.

また、本発明にかかるズームレンズでは、無限遠合焦状態において、前記第3レンズ群と前記第4レンズ群の空気間隔は、光軸に沿って少なくとも広角端状態よりも望遠端状態の方が小さくなることが好ましい。   In the zoom lens according to the present invention, in the infinitely focused state, the air distance between the third lens group and the fourth lens group is at least in the telephoto end state along the optical axis than in the wide-angle end state. It is preferable to be smaller.

また、本発明にかかるズームレンズでは、広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、前記第3レンズ群と前記第4レンズ群との空気間隔は、光軸に沿って減少することが好ましい。   In the zoom lens according to the present invention, when zooming from the wide-angle end state to the telephoto end state, the air space between the third lens group and the fourth lens group is in the optical axis in the infinite focus state. It is preferable to decrease along.

また、本発明にかかるズームレンズでは、広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、前記第5レンズ群は、像面に対して光軸に沿って移動することが好ましい。   In the zoom lens according to the present invention, when zooming from the wide-angle end state to the telephoto end state, the fifth lens group moves along the optical axis with respect to the image plane in the infinite focus state. Is preferred.

また、本発明にかかるズームレンズでは、無限遠合焦状態において、前記第5レンズ群は、光軸に沿って少なくとも広角端状態よりも望遠端状態の方が物体側にあることが好ましい。   In the zoom lens according to the present invention, in the infinitely focused state, it is preferable that the fifth lens group is at the telephoto end state at least at the telephoto end state along the optical axis.

また、本発明にかかるズームレンズは、以下の条件を満足することが好ましい。
−0.50<f3a/f3b<0.80
但し、f3aは前記第3aレンズ群の焦点距離、f3bは前記第3bレンズ群の焦点距離を表す。
In addition, the zoom lens according to the present invention preferably satisfies the following conditions.
-0.50 <f3a / f3b <0.80
However, f3a represents the focal length of the 3a lens group, and f3b represents the focal length of the 3b lens group.

また、本発明にかかるズームレンズでは、前記第2レンズ群は非球面レンズを含むことが好ましい。   In the zoom lens according to the present invention, it is preferable that the second lens group includes an aspheric lens.

また、本発明にかかるズームレンズでは、前記第4レンズ群は非球面レンズを含むことが好ましい。   In the zoom lens according to the present invention, it is preferable that the fourth lens group includes an aspheric lens.

本発明によれば、広角端状態の画角が70度を越え、変倍比が4倍程度以上の高変倍比を持ち、高い光学性能を有する固体撮像素子等を撮像素子としたビデオカメラや電子スチルカメラなどに適した小型のズームレンズを提供することができる。   According to the present invention, a video camera using a solid-state imaging device or the like having a high zooming ratio with an angle of view exceeding 70 degrees, a zooming ratio of about 4 times or more, and high optical performance. And a small zoom lens suitable for an electronic still camera or the like.

以下、本発明の実施の形態に関し説明する。   Hereinafter, embodiments of the present invention will be described.

固体撮像素子等を撮像素子としたビデオカメラや電子スチルカメラなどでは、固体撮像素子の特性上の要求として、ズームレンズの射出瞳位置を像面から遠くする必要がある。このため像面側に近いレンズ群は全体として正の屈折力を持つことが好ましい。   In a video camera, an electronic still camera, or the like that uses a solid-state imaging device or the like as an imaging device, the exit pupil position of the zoom lens needs to be far from the image plane as a requirement on the characteristics of the solid-state imaging device. For this reason, it is preferable that the lens group close to the image plane side has a positive refractive power as a whole.

本発明の実施の形態にかかるズームレンズは、光軸に沿って物体側から順に、正屈折力を有する第1レンズ群と、負屈折力を有する第2レンズ群と、正屈折力を有する第3レンズ群と、正屈折力を有する第4レンズ群と、正屈折力を有する第5レンズ群とを有する構成とすることで、射出瞳位置を像面から遠くしている。   The zoom lens according to the embodiment of the present invention includes, in order from the object side along the optical axis, a first lens group having positive refractive power, a second lens group having negative refractive power, and a first lens group having positive refractive power. By adopting a configuration having three lens groups, a fourth lens group having positive refracting power, and a fifth lens group having positive refracting power, the exit pupil position is far from the image plane.

また、広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、光軸に沿って、第1レンズ群と第2レンズ群との空気間隔は増加し、第2レンズ群と第3レンズ群との空気間隔は減少し、第3レンズ群と第4レンズ群との空気間隔は変化し、第4レンズ群と第5レンズ群との空気間隔は増加するように、第1レンズ群は像面に対して移動し、第2レンズ群は像面側に移動した後、物体側に移動するような軌跡で移動し、第3レンズ群は物体側に移動し、第4レンズ群は物体側に移動することによって、効率的に変倍効果を得ることができる。   Further, when zooming from the wide-angle end state to the telephoto end state, in the infinite focus state, the air space between the first lens group and the second lens group increases along the optical axis, and the second lens group The air gap between the third lens group decreases, the air gap between the third lens group and the fourth lens group changes, and the air gap between the fourth lens group and the fifth lens group increases. The lens group moves relative to the image plane, the second lens group moves toward the image plane side, and then moves along a locus that moves toward the object side, the third lens group moves toward the object side, and the fourth lens By moving the group to the object side, a zooming effect can be obtained efficiently.

また、本実施の形態にかかるズームレンズは、以下の条件式(1)〜(3)を満足することによって、さらに高い光学性能を持ちながら、広角端状態の画角が70度を越え、変倍比が4倍程度以上の高変倍比を確保した小型ズームレンズを可能にしている。
(1)7.0<f1/fW<12.8
(2)5.8<f1/(−f2)<10.0
(3)3.0<f5/fW<10.0
但し、fWは広角端状態におけるズームレンズ全系の焦点距離、f1は第1レンズ群の焦点距離、f2は第2レンズ群の焦点距離、f5は第5レンズ群の焦点距離を表す。
In addition, the zoom lens according to the present embodiment satisfies the following conditional expressions (1) to (3), so that the angle of view in the wide-angle end state exceeds 70 degrees while having higher optical performance. This enables a small zoom lens that has a high zoom ratio of about 4 times or more.
(1) 7.0 <f1 / fW <12.8
(2) 5.8 <f1 / (− f2) <10.0
(3) 3.0 <f5 / fW <10.0
However, fW represents the focal length of the entire zoom lens system in the wide-angle end state, f1 represents the focal length of the first lens group, f2 represents the focal length of the second lens group, and f5 represents the focal length of the fifth lens group.

条件式(1)は、第1レンズ群の最適な焦点距離の範囲を規定するための条件式である。   Conditional expression (1) is a conditional expression for defining an optimum focal length range of the first lens group.

条件式(1)の上限値を上回った場合、第1レンズ群の焦点距離が相対的に長くなるため、第1レンズ群が変倍に対し効率的に寄与できなくなり、変倍比が4倍程度以上の高変倍比を確保できない。また、第1レンズ群の移動量が大きくなることによってズーミングの際に第1レンズ群で発生する収差の変動が大きくなり、広角端状態から望遠端状態までの全ズーム範囲において収差を低く抑えることが困難となる。また、第1レンズ群の移動量が大きいために小型化できない。   When the upper limit of conditional expression (1) is exceeded, the focal length of the first lens group becomes relatively long, so the first lens group cannot efficiently contribute to zooming, and the zoom ratio is 4 times. It is not possible to secure a high zoom ratio that is higher than the above. In addition, as the amount of movement of the first lens group increases, the variation in aberration generated in the first lens group during zooming increases, and the aberration is kept low in the entire zoom range from the wide-angle end state to the telephoto end state. It becomes difficult. Moreover, since the movement amount of the first lens group is large, it cannot be reduced in size.

条件式(1)の下限値を下回った場合、第1レンズ群の焦点距離が相対的に短くなるため、広角端状態における第1レンズ群への入射軸外光線と光軸との成す角が小さくなり、広角端状態で70度を越えた画角を実現しようとすると、第1レンズ群の径が過度に大きくなり小型化できない。また、第1レンズ群で発生する収差が大きくなりすぎて高い光学性能を得ることができない。   If the lower limit value of conditional expression (1) is not reached, the focal length of the first lens group becomes relatively short, so that the angle formed by the off-axis light beam on the first lens group and the optical axis in the wide-angle end state is If it becomes small and an angle of view exceeding 70 degrees is realized in the wide-angle end state, the diameter of the first lens group becomes excessively large and cannot be reduced in size. In addition, the aberration generated in the first lens group becomes too large to obtain high optical performance.

なお、本発明の効果をより確実にする為に、条件式(1)の上限値を12.0にすることが好ましい。また、本発明の効果をより確実にする為に、条件式(1)の下限値を7.5にすることが好ましい。   In order to secure the effect of the present invention, it is preferable to set the upper limit of conditional expression (1) to 12.0. In order to secure the effect of the present invention, it is preferable to set the lower limit of conditional expression (1) to 7.5.

条件式(2)は、第1レンズ群と第2レンズ群の最適な焦点距離比を規定するための条件式である。   Conditional expression (2) is a conditional expression for defining an optimum focal length ratio between the first lens group and the second lens group.

条件式(2)の上限値を上回った場合、第1レンズ群の焦点距離が相対的に長くなるため、第1レンズ群が変倍に対し効率的に寄与できなくなり、変倍比が4倍程度以上の高変倍比を確保できない。また、第1レンズ群の移動量が大きくなることによってズーミングの際に第1レンズ群で発生する収差の変動が大きくなり、広角端状態から望遠端状態までの全ズーム範囲において収差を低く抑えることが困難となる。また、第1レンズ群の移動量が大きいために小型化できない。   When the upper limit of conditional expression (2) is exceeded, the focal length of the first lens group becomes relatively long, so the first lens group cannot efficiently contribute to zooming, and the zoom ratio is 4 times. It is not possible to secure a high zoom ratio that is higher than the above. In addition, as the amount of movement of the first lens group increases, the variation in aberration generated in the first lens group during zooming increases, and the aberration is kept low in the entire zoom range from the wide-angle end state to the telephoto end state. It becomes difficult. Moreover, since the movement amount of the first lens group is large, it cannot be reduced in size.

条件式(2)の下限値を下回った場合、第1レンズ群の焦点距離が相対的に短くなるため、広角端状態における第1レンズ群への入射軸外光線と光軸との成す角が小さくなり、広角端状態で70度を越えた画角を実現しようとすると、第1レンズ群の径が過度に大きくなり小型化できない。また、第1レンズ群で発生する収差が大きくなりすぎて高い光学性能を得ることができない。さらに第2レンズ群の焦点距離が相対的に長くなるため、第2レンズ群が変倍に対し効率的に寄与できなくなり、変倍比が4倍程度以上の高変倍比を確保できない。また、第2レンズ群の移動量が大きくなって小型化できない。   When the lower limit value of conditional expression (2) is not reached, the focal length of the first lens group becomes relatively short, so that the angle formed by the off-axis light beam on the first lens group and the optical axis in the wide-angle end state is If it becomes small and an angle of view exceeding 70 degrees is realized in the wide-angle end state, the diameter of the first lens group becomes excessively large and cannot be reduced in size. In addition, the aberration generated in the first lens group becomes too large to obtain high optical performance. Furthermore, since the focal length of the second lens group becomes relatively long, the second lens group cannot efficiently contribute to zooming, and a zoom ratio of about 4 times or more cannot be secured. In addition, the amount of movement of the second lens group becomes large and cannot be reduced in size.

条件式(3)は、第5レンズ群の最適な焦点距離の範囲を規定するための条件式である。   Conditional expression (3) is a conditional expression for defining the optimum focal length range of the fifth lens group.

条件式(3)の上限値を上回った場合、第5レンズ群の焦点距離は相対的に長くなるため、第5レンズ群は効率的に射出瞳位置を像面から遠くすることができなくなり、固体撮像素子の特性上の要求を満たせない。また、第4レンズ群より物体側のレンズ群で発生する収差を第5レンズ群で十分に補正することが困難となり、高い光学性能を得ることができない。   When the upper limit value of conditional expression (3) is exceeded, the focal length of the fifth lens group becomes relatively long, so the fifth lens group cannot efficiently move the exit pupil position away from the image plane, The characteristics of the solid-state image sensor cannot be satisfied. In addition, it is difficult to sufficiently correct the aberration generated in the lens group closer to the object side than the fourth lens group, and high optical performance cannot be obtained.

条件式(3)の下限値を下回った場合、第5レンズ群の屈折力が相対的に強くなりすぎ、固体撮像素子に適した特性範囲の要求を満たすための射出瞳位置の変動を抑えつつ、広角端状態から望遠端状態までの全域に亘って像面湾曲を補正することが困難となり、高い光学性能を得ることができない。   If the lower limit value of conditional expression (3) is not reached, the refractive power of the fifth lens group becomes relatively strong, while suppressing fluctuations in the exit pupil position to satisfy the requirements of the characteristic range suitable for the solid-state imaging device. Further, it becomes difficult to correct curvature of field over the entire region from the wide-angle end state to the telephoto end state, and high optical performance cannot be obtained.

なお、本発明の効果を確実にする為に、条件式(3)上限値を9.0にすることが好ましい。また、本発明の効果をより確実にする為に、条件式(3)の上限値を8.0にすることがさらに好ましい。また、本発明の効果を確実にする為に、条件式(3)の下限値を4.0にすることが好ましい。   In order to secure the effect of the present invention, it is preferable to set the upper limit of conditional expression (3) to 9.0. In order to further secure the effect of the present invention, it is more preferable to set the upper limit of conditional expression (3) to 8.0. In order to secure the effect of the present invention, it is preferable to set the lower limit of conditional expression (3) to 4.0.

また、本実施の形態にかかるズームレンズは、無限遠合焦状態において、第3レンズ群と第4レンズ群の空気間隔は、光軸に沿って少なくとも広角端状態よりも望遠端状態の方が小さくなることが望ましい。   Further, in the zoom lens according to the present embodiment, in the infinitely focused state, the air interval between the third lens group and the fourth lens group is at least in the telephoto end state along the optical axis in the telephoto end state. It is desirable to make it smaller.

第3レンズ群と第4レンズ群をこのように移動することで、第3レンズ群と第4レンズ群の合成主点位置を広角端状態と望遠端状態との間で大きく移動させることが可能となり、効率的に変倍効果を得ることができる。   By moving the third lens group and the fourth lens group in this way, it is possible to greatly move the combined principal point position of the third lens group and the fourth lens group between the wide-angle end state and the telephoto end state. Thus, a zooming effect can be obtained efficiently.

また、本実施の形態にかかるズームレンズでは、広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、第3レンズ群と第4レンズ群との空気間隔は、光軸に沿って減少することが望ましい。   In the zoom lens according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the air space between the third lens group and the fourth lens group is in the optical axis in the infinite focus state. It is desirable to decrease along.

第3レンズ群と第4レンズ群をこのように移動することで、第3レンズ群と第4レンズ群の合成主点位置を大きく移動させることが可能となり、効率的に変倍効果を得ることができる。   By moving the third lens group and the fourth lens group in this way, it is possible to largely move the combined principal point position of the third lens group and the fourth lens group, and to efficiently obtain a zooming effect. Can do.

また、本実施の形態にかかるズームレンズでは、広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、第5レンズ群は、像面に対して光軸に沿って移動することが望ましい。   In the zoom lens according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the fifth lens group moves along the optical axis with respect to the image plane in the infinite focus state. It is desirable.

第5レンズ群をこのように移動することで、効率的な変倍効果を得ることが可能になるばかりでなく、広角端状態から望遠端状態までズーミングする際に第5レンズ群を通る軸外光線の通る位置を最適化することが可能となり、軸外収差をズーム全域に亘って補正することができ、高い光学性能を得ることができる。   By moving the fifth lens group in this way, not only can an efficient zooming effect be obtained, but also off-axis passing through the fifth lens group when zooming from the wide-angle end state to the telephoto end state. It is possible to optimize the position through which the light passes, and off-axis aberrations can be corrected over the entire zoom range, so that high optical performance can be obtained.

また、本実施の形態にかかるズームレンズでは、無限遠合焦状態において、第5レンズ群は、光軸に沿って少なくとも広角端状態よりも望遠端状態の方が物体側にあることが望ましい。   In the zoom lens according to the present embodiment, in the infinitely focused state, it is desirable that the fifth lens group is at the telephoto end state at least on the object side along the optical axis rather than at the wide-angle end state.

本実施の形態では、広角端状態から望遠端状態へのズーミングに際し、効率的な変倍を行うために第4レンズ群と第5レンズ群の間隔が増大している。すると、広角端状態に比べ望遠端状態の方が第5レンズ群を通る軸外光線の光軸からの高さが高くなるため、第5レンズ群の正屈折力のためにレンズ系全体の射出瞳位置が像面に対して急激に遠くなって、射出瞳位置の変動が大きくなって固体撮像素子の特性上の要求を満たすことが難しくなる。そこで、第5レンズ群をこのように構成することで、射出瞳位置の変動を小さくでき固体撮像素子の特性上の要求を満たすことができる。   In the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the distance between the fourth lens group and the fifth lens group is increased in order to perform efficient zooming. Then, since the height from the optical axis of the off-axis light beam passing through the fifth lens group is higher in the telephoto end state than in the wide-angle end state, the entire lens system is emitted due to the positive refractive power of the fifth lens group. As the pupil position becomes abruptly far from the image plane, the variation of the exit pupil position becomes large, and it becomes difficult to satisfy the requirements on the characteristics of the solid-state imaging device. Therefore, by configuring the fifth lens group in this way, the variation of the exit pupil position can be reduced and the requirements on the characteristics of the solid-state imaging device can be satisfied.

また、本実施の形態にかかるズームレンズでは、第3レンズ群は光軸に沿って物体側から順に、正屈折力を有する第3aレンズ群と、開口絞りと、第3bレンズ群とを有することが望ましい。   In the zoom lens according to the present embodiment, the third lens group includes, in order from the object side along the optical axis, a third lens group having positive refractive power, an aperture stop, and a third lens group. Is desirable.

本発明のズームレンズでは、第3レンズ群は変倍への寄与が大きく、ズームレンズ全体の収差補正上重要な役割を持っていおり、正屈折力を有する第3aレンズ群と第3bレンズ群が開口絞りを挟む構成とすることで、軸上収差を効率的に補正することが可能となり、高い光学性能を得ることができる。   In the zoom lens of the present invention, the third lens group greatly contributes to zooming, and has an important role in correcting aberrations of the entire zoom lens. The third a lens group and the third b lens group having positive refractive power are By adopting a configuration in which the aperture stop is sandwiched, it is possible to efficiently correct axial aberrations and to obtain high optical performance.

また、本実施の形態にかかるズームレンズでは、光軸に沿って物体側から順に、第3aレンズ群は負屈折力を有するレンズと正屈折力を有するレンズから成る接合レンズのみで構成され、前記第3bレンズ群は正屈折力を有するレンズと負屈折力を有するレンズから成る接合レンズのみで構成されることが望ましい。   In the zoom lens according to the present embodiment, in order from the object side along the optical axis, the 3a lens group includes only a cemented lens including a lens having negative refractive power and a lens having positive refractive power, It is desirable that the third lens group is constituted only by a cemented lens including a lens having a positive refractive power and a lens having a negative refractive power.

開口絞りの物体側の第3aレンズ群と、開口絞りの像側の第3bレンズ群をこのような構成とすることで、開口絞りを挟んだ所謂対称型の構成となって軸上収差を効果的に補正できるため、ズームレンズ全体として収差補正が良好にでき、高い光学性能を得ることができる。   By configuring the 3a lens group on the object side of the aperture stop and the 3b lens group on the image side of the aperture stop in such a configuration, a so-called symmetrical configuration with the aperture stop interposed therebetween is effective for axial aberration. Therefore, the zoom lens as a whole can be corrected favorably and high optical performance can be obtained.

また、本実施の形態にかかるズームレンズでは、以下の条件式(4)を満足することが望ましい。
(4)−0.50<f3a/f3b<0.80
但し、f3aは第3aレンズ群の焦点距離、f3bは第3bレンズ群の焦点距離を表す。
In the zoom lens according to the present embodiment, it is preferable that the following conditional expression (4) is satisfied.
(4) -0.50 <f3a / f3b <0.80
However, f3a represents the focal length of the 3a lens group, and f3b represents the focal length of the 3b lens group.

条件式(4)は、第3aレンズ群の焦点距離と第3bレンズ群の焦点距離の最適な比を規定するための条件式である。   Conditional expression (4) is a conditional expression for defining an optimum ratio of the focal length of the 3a lens group and the focal length of the 3b lens group.

条件式(4)の上限値を上回った場合、第3aレンズ群の屈折力に対して第3bレンズ群の屈折力が相対的に強くなるため、第3bレンズ群の像側にある正屈折力の第4レンズ群と合わせると、開口絞りの像側の正屈折力が物体側の正屈折力より強くなりすぎて軸外収差の補正が困難となり、高い光学性能を得ることができない。   When the upper limit of conditional expression (4) is exceeded, the refractive power of the 3b lens group becomes relatively stronger than the refractive power of the 3a lens group, so that the positive refractive power on the image side of the 3b lens group is increased. In combination with the fourth lens group, the positive refracting power on the image side of the aperture stop becomes too stronger than the positive refracting power on the object side, making it difficult to correct off-axis aberrations, and high optical performance cannot be obtained.

条件式(4)の下限値を下回った場合、第3レンズ群全体の屈折力が弱くなるため変倍に効率的に寄与できなくなり、4倍程度以上の高変倍比を確保できない。また、第3レンズ群の移動量が大きくなることによって広角端状態から望遠端状態までの全ズーム範囲において収差を低く抑えることが困難となる。また、第3レンズ群の移動量が大きいために小型化できない。   If the lower limit value of conditional expression (4) is not reached, the refractive power of the entire third lens group becomes weak, so that it cannot contribute efficiently to zooming, and a high zoom ratio of about 4 times or more cannot be secured. Further, since the movement amount of the third lens group is increased, it is difficult to suppress aberrations in the entire zoom range from the wide-angle end state to the telephoto end state. Moreover, since the movement amount of the third lens group is large, the size cannot be reduced.

なお、本発明の効果を確実にする為に、条件式(4)の上限値を0.70とすることが好ましい。また、本発明の効果を確実にするために、条件式(4)の下限値を0.00とすることが好ましい。また、本発明の効果をさらに確実にするために、条件式(4)の下限値を0.38とすることがさらに好ましい。   In order to secure the effect of the present invention, it is preferable to set the upper limit of conditional expression (4) to 0.70. In order to secure the effect of the present invention, it is preferable to set the lower limit of conditional expression (4) to 0.00. In order to further secure the effect of the present invention, it is more preferable to set the lower limit of conditional expression (4) to 0.38.

また、本実施の形態にかかるズームレンズでは、第2レンズ群は非球面レンズを含むことが望ましい。   In the zoom lens according to the present embodiment, it is desirable that the second lens group includes an aspheric lens.

第2レンズ群に非球面レンズを含むことで、第2レンズ群で発生する軸外収差を効率的に補正できるため、高い光学性能を得ることができる。   By including an aspherical lens in the second lens group, off-axis aberrations generated in the second lens group can be corrected efficiently, so that high optical performance can be obtained.

また、本実施の形態にかかるズームレンズでは、第4レンズ群は非球面レンズを含むことが望ましい。   In the zoom lens according to the present embodiment, it is desirable that the fourth lens group includes an aspheric lens.

第4レンズ群に非球面レンズを含むことで、第4レンズ群で発生する球面収差を効率的に補正することできるため、高い光学性能を得ることができる。   By including an aspheric lens in the fourth lens group, it is possible to efficiently correct the spherical aberration generated in the fourth lens group, so that high optical performance can be obtained.

(実施例)
以下に、本発明の実施の形態にかかる各実施例について添付図面に基づいて説明する。なお、各実施例において非球面は以下の式で表される。
x=cy/{1+(1−κc1/2
+C4y+C6y+C8y+C10y10
なお、yは光軸からの高さ、xはサグ量、cは基準曲率(頂点曲率)で曲率は曲率半径の逆数、κは円錐定数、C4,C6,C8,C10は非球面係数である。また、{En}は{×10}を表す。
(Example)
Embodiments according to embodiments of the present invention will be described below with reference to the accompanying drawings. In each embodiment, the aspherical surface is expressed by the following equation.
x = cy 2 / {1+ (1-κc 2 y 2 ) 1/2 }
+ C4y 4 + C6y 6 + C8y 8 + C10y 10
Here, y is the height from the optical axis, x is the sag amount, c is the reference curvature (vertical curvature), the curvature is the reciprocal of the radius of curvature, κ is the conic constant, and C4, C6, C8 and C10 are aspheric coefficients. . {En} represents {× 10 n }.

[第1実施例]
図1は、本発明の第1実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。
[First embodiment]
FIG. 1 is a cross-sectional view of a lens configuration of a zoom lens according to a first embodiment of the present invention in an infinitely focused state, where (W) is a wide-angle end state, (M) is an intermediate focal length state, (T) indicates the telephoto end state.

図1において、本第1実施例にかかるズームレンズは、光軸に沿って物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5とから構成され、広角端状態Wから望遠端状態Tまでズーミングする際に、無限遠合焦状態において、第1レンズ群G1と第2レンズ群G2との空気間隔は増加し、第2レンズ群G2と第3レンズ群G3との空気間隔は減少し、第3レンズ群G3と第4レンズ群G4との空気間隔は変化しながら減少し、第4レンズ群G4と第5レンズ群G5との空気間隔は増加するように、第1レンズ群G1は像面Iに対して移動し、第2レンズ群G2は像面I側に移動した後、物体側に移動するような軌跡で移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は像面Iに対して移動し広角端状態Wよりも望遠端状態Tの方が物体側にある。   In FIG. 1, the zoom lens according to the first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens in order from the object side along the optical axis. A third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power are zoomed from the wide-angle end state W to the telephoto end state T. In the infinite focus state, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third The first lens group G1 has an image plane I such that the air gap between the lens group G3 and the fourth lens group G4 decreases while changing, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases. The second lens group G2 has moved to the image plane I side. The third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 moves relative to the image plane I. The telephoto end state T is closer to the object side than the wide-angle end state W.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズと、物体側に凸面を向けた正メニスカスレンズとから構成され、全体として正屈折力を有している。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the convex surface facing the object side. The positive meniscus lens has a positive refractive power as a whole.

第2レンズ群G2は、光軸に沿って物体側から順に、像側の面が非球面の負メニスカスレンズと、像側の面の曲率が強い両凹形状の負レンズと、物体側に凸面を向けた正メニスカスレンズとから構成され、全体として負屈折力を有している。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens having an aspheric image side surface, a biconcave negative lens having a strong curvature on the image side surface, and a convex surface on the object side. And a negative meniscus lens as a whole.

第3レンズ群G3は、光軸に沿って物体側から順に、第3aレンズ群G3aと開口絞りSと第3bレンズ群G3bとから構成され、第3aレンズ群G3aは物体側に凸面を向けた負メニスカスレンズと物体側の面の曲率が強い両凸形状の正レンズとの接合レンズで構成され全体として正屈折力を有し、第3bレンズ群G3bはほぼ同曲率面の両凸形状の正レンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され全体として正屈折力を有している。   The third lens group G3 is composed of a 3a lens group G3a, an aperture stop S, and a 3b lens group G3b in order from the object side along the optical axis. The 3a lens group G3a has a convex surface directed toward the object side. It consists of a cemented lens of a negative meniscus lens and a biconvex positive lens with a strong curvature on the object side surface, and has positive refractive power as a whole, and the third lens group G3b has a biconvex positive shape with substantially the same curvature surface. The lens has a positive refractive power as a whole, and is composed of a cemented lens formed by a lens and a biconcave negative lens having a strong curvature on the object side surface.

第4レンズ群G4は、光軸に沿って物体側から順に、物体側の面が非球面の両凸形状の正レンズと、像側に凸面を向けた正メニスカスレンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され、全体として正屈折力を有している。   The fourth lens group G4 includes, in order from the object side along the optical axis, a biconvex positive lens having an aspheric object side surface, a positive meniscus lens having a convex surface directed to the image side, and the curvature of the object side surface. Is composed of a cemented lens with a strong biconcave negative lens, and has a positive refractive power as a whole.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズで構成され、全体として正屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第5レンズ群G5の像側には、固体撮像素子の略ナイキスト周波数以上の解像力をカットするための光学ローパスフィルタOLPFが配置され、その像側には、撮像素子表面を保護するためのカバーガラスCGが配置されている。   On the image side of the fifth lens group G5, an optical low-pass filter OLPF for cutting the resolving power equal to or higher than the substantially Nyquist frequency of the solid-state image sensor is disposed, and on the image side, a cover glass for protecting the image sensor surface. CG is arranged.

以下の表1に本第1実施例にかかるズームレンズの諸元の値を掲げる。表中、[全体諸元]のfはレンズ系全体の焦点距離(mm)、FNoはFナンバー、2ωは画角(単位:度)、TLは全長(mm)で最も物体側のレンズ面から像面までの距離をそれぞれ表す。[レンズデータ]のndはd線(λ=587.6nm)における屈折率、νはd線(λ=587.6nm)におけるアッベ数、(Bf)はバックフォーカスをそれぞれ表す。なお、空気の屈折率1.00000は記載を省略し、曲率半径の「∞」は平面を表す。[可変間隔データ]には、焦点距離fと、可変間隔の値をそれぞれ示す。[条件式対応値]には、各条件式の値をそれぞれ示す。   Table 1 below shows values of specifications of the zoom lens according to the first example. In the table, f in [Whole specifications] is the focal length (mm) of the entire lens system, FNo is the F number, 2ω is the angle of view (unit: degree), and TL is the total length (mm) from the lens surface closest to the object side. Represents the distance to the image plane. In [lens data], nd represents the refractive index at the d-line (λ = 587.6 nm), ν represents the Abbe number at the d-line (λ = 587.6 nm), and (Bf) represents the back focus. Note that the refractive index of air of 1.0000 is omitted, and the curvature radius “∞” represents a plane. [Variable interval data] indicates the focal length f and the value of the variable interval. [Conditional Expression Corresponding Value] indicates the value of each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径、面間隔その他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。さらに、これらの記号の説明は、以降の他の実施例においても同様とする。   In addition, in all the following specification values, “mm” is generally used as the focal length f, the radius of curvature, the surface interval and other lengths, etc. unless otherwise specified. Even if proportional reduction is performed, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. Furthermore, the description of these symbols is the same in the other examples.

(表1)
[全体諸元]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 7.30 24.00 48.70
FNo 2.9 3.9 4.8
2ω 76.8 25.7 12.8
TL 93.8 103.0 114.0

[レンズデータ]
面番号 曲率半径 面間隔 nd ν
1 57.0839 1.2000 1.85026 32.35
2 31.9927 8.2500 1.49782 82.52
3 229.0922 0.1000
4 32.5008 5.5000 1.62041 60.29
5 180.7580 (D5)
6 348.6512 2.2500 1.79668 45.37
7 8.4204 6.7600
8 -22.6529 0.9000 1.51633 64.14
9 13.9142 0.3000
10 14.8081 3.2000 1.84666 23.78
11 137.4384 (D11)
12 35.9124 0.9000 1.80100 34.96
13 18.8088 2.5000 1.49782 82.52
14 -31.7991 1.2000
15 ∞ 1.2000 (開口絞りS)
16 10.4440 3.6000 1.60562 43.73
17 -10.6282 1.8000 1.72342 37.95
18 15.3008 (D18)
19 40.4812 2.8500 1.79668 45.37
20 -12.7297 0.2000
21 -37.4296 3.0000 1.49782 82.52
22 -8.1540 1.0000 1.80100 34.96
23 63.9580 (D23)
24 19.8524 2.6000 1.51633 64.14
25 1344.6027 (D25)
26 ∞ 2.7600 1.51680 64.20 (OLPF)
27 ∞ 1.4410
28 ∞ 0.5000 1.51680 64.20 (CG)
29 ∞ (Bf)

[非球面データ]
面番号 κ C4 C6 C8 C10
7 0.7000 1.0988E-06 -7.2334E-07 1.1607E-08 -1.2470E-10
19 1.0000 -1.0498E-04 -4.3631E-07 1.7227E-08 -4.4410E-10

[可変間隔データ]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 7.30 24.00 48.70
D5 1.8000 17.8458 25.5276
D11 24.6785 8.2615 3.2000
D18 3.3239 1.5579 1.5000
D23 6.3759 15.2556 24.6538
D25 2.6222 5.0974 4.1067

[条件式対応値]
(1)f1/fW=7.93
(2)f1/(−f2)=5.99
(3)f5/fW=5.34
(4)f3a/f3b=0.443
(Table 1)
[Overall specifications]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 7.30 24.00 48.70
FNo 2.9 3.9 4.8
2ω 76.8 25.7 12.8
TL 93.8 103.0 114.0

[Lens data]
Surface number Curvature radius Surface spacing nd ν
1 57.0839 1.2000 1.85026 32.35
2 31.9927 8.2500 1.49782 82.52
3 229.0922 0.1000
4 32.5008 5.5000 1.62041 60.29
5 180.7580 (D5)
6 348.6512 2.2500 1.79668 45.37
7 8.4204 6.7600
8 -22.6529 0.9000 1.51633 64.14
9 13.9142 0.3000
10 14.8081 3.2000 1.84666 23.78
11 137.4384 (D11)
12 35.9124 0.9000 1.80100 34.96
13 18.8088 2.5000 1.49782 82.52
14 -31.7991 1.2000
15 ∞ 1.2000 (Aperture stop S)
16 10.4440 3.6000 1.60562 43.73
17 -10.6282 1.8000 1.72342 37.95
18 15.3008 (D18)
19 40.4812 2.8500 1.79668 45.37
20 -12.7297 0.2000
21 -37.4296 3.0000 1.49782 82.52
22 -8.1540 1.0000 1.80100 34.96
23 63.9580 (D23)
24 19.8524 2.6000 1.51633 64.14
25 1344.6027 (D25)
26 ∞ 2.7600 1.51680 64.20 (OLPF)
27 ∞ 1.4410
28 ∞ 0.5000 1.51680 64.20 (CG)
29 ∞ (Bf)

[Aspherical data]
Surface number κ C4 C6 C8 C10
7 0.7000 1.0988E-06 -7.2334E-07 1.1607E-08 -1.2470E-10
19 1.0000 -1.0498E-04 -4.3631E-07 1.7227E-08 -4.4410E-10

[Variable interval data]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 7.30 24.00 48.70
D5 1.8000 17.8458 25.5276
D11 24.6785 8.2615 3.2000
D18 3.3239 1.5579 1.5000
D23 6.3759 15.2556 24.6538
D25 2.6222 5.0974 4.1067

[Conditional expression values]
(1) f1 / fW = 7.93
(2) f1 / (− f2) = 5.99
(3) f5 / fW = 5.34
(4) f3a / f3b = 0.443

図2は、本発明の第1実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を表し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ表す。収差図において、FNoはFナンバー、Aは光線入射角(単位:度)を、非点収差図中の実線はサジタル像面、破線はメリディオナル像面を示し、コマ収差図は各光線入射角Aでのコマ収差を表す。なお、これらの記号は以降の他の実施例においても同様とする。   2A and 2B are graphs showing various aberrations with respect to the d-line (λ = 587.6 nm) of the zoom lens according to Example 1 of the present invention. FIG. 2A shows the wide-angle end state (W), and FIG. 2B shows the intermediate focus. The distance state (M) and (c) represent the telephoto end state (T), respectively. In the aberration diagrams, FNo is the F number, A is the ray incident angle (unit: degree), the solid line in the astigmatism diagram is the sagittal image plane, the broken line is the meridional image plane, and the coma aberration diagram is for each ray incident angle A. Represents the coma aberration at. Note that these symbols are the same in other examples.

各収差図から、本第1実施例にかかるズームレンズは高い光学性能を有していることが明らかである。また、ズームレンズ全長が93.8mm〜114.0mmと小型であることが明らかである。   From each aberration diagram, it is clear that the zoom lens according to the first example has high optical performance. In addition, it is clear that the total length of the zoom lens is as small as 93.8 mm to 114.0 mm.

[第2実施例]
図3は、本発明の第2実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。
[Second Embodiment]
FIG. 3 is a sectional view of the lens configuration of the zoom lens according to the second embodiment of the present invention in an infinitely focused state, where (W) is a wide-angle end state, (M) is an intermediate focal length state, (T) indicates the telephoto end state.

図3において、本第2実施例にかかるズームレンズは、光軸に沿って物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5とから構成され、広角端状態Wから望遠端状態Tまでズーミングする際に、無限遠合焦状態において、第1レンズ群G1と第2レンズ群G2との空気間隔は増加し、第2レンズ群G2と第3レンズ群G3との空気間隔は減少し、第3レンズ群G3と第4レンズ群G4との空気間隔は変化しながら減少し、第4レンズ群G4と第5レンズ群G5との空気間隔は増加するように、第1レンズ群G1は像面Iに対して移動し、第2レンズ群G2は像面I側に移動した後、物体側に移動するような軌跡で移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は像面Iに対して移動し広角端状態Wよりも望遠端状態Tの方が物体側にある。   In FIG. 3, the zoom lens according to the second example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens in order from the object side along the optical axis. A third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power are zoomed from the wide-angle end state W to the telephoto end state T. In the infinite focus state, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third The first lens group G1 has an image plane I such that the air gap between the lens group G3 and the fourth lens group G4 decreases while changing, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases. The second lens group G2 has moved to the image plane I side. The third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 moves relative to the image plane I. The telephoto end state T is closer to the object side than the wide-angle end state W.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズと、物体側に凸面を向けた正メニスカスレンズとから構成され、全体として正屈折力を有している。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the convex surface facing the object side. The positive meniscus lens has a positive refractive power as a whole.

第2レンズ群G2は、光軸に沿って物体側から順に、像側の面が非球面の負メニスカスレンズと、像側の面の曲率が強い両凹形状の負レンズと、物体側の面の曲率が強い両凸形状の正レンズと物体側の曲率が強い両凹形状の負レンズとの接合レンズとから構成され、全体として負屈折力を有している。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens having an aspheric image side surface, a biconcave negative lens having a strong curvature on the image side surface, and an object side surface. And a cemented lens composed of a biconvex positive lens having a strong curvature and a biconcave negative lens having a strong curvature on the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、光軸に沿って物体側から順に、第3aレンズ群G3aと開口絞りSと第3bレンズ群G3bとから構成され、第3aレンズ群G3aは物体側に凸面を向けた負メニスカスレンズと物体側の面の曲率が強い両凸形状の正レンズとの接合レンズで構成され全体として正屈折力を有し、第3bレンズ群G3bはほぼ同曲率面の両凸形状の正レンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され全体として正屈折力を有している。   The third lens group G3 is composed of a 3a lens group G3a, an aperture stop S, and a 3b lens group G3b in order from the object side along the optical axis. The 3a lens group G3a has a convex surface directed toward the object side. It consists of a cemented lens of a negative meniscus lens and a biconvex positive lens with a strong curvature on the object side surface, and has positive refractive power as a whole, and the third lens group G3b has a biconvex positive shape with substantially the same curvature surface. The lens has a positive refractive power as a whole, and is composed of a cemented lens formed by a lens and a biconcave negative lens having a strong curvature on the object side surface.

第4レンズ群G4は、光軸に沿って物体側から順に、物体側の面が非球面の両凸形状の正レンズと、像側の面の曲率が強い両凸形状の正レンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され、全体として正屈折力を有している。   The fourth lens group G4 includes, in order from the object side along the optical axis, a biconvex positive lens having an aspheric object side surface, a biconvex positive lens having a strong curvature on the image side surface, and an object side. And has a positive refracting power as a whole.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズで構成され、全体として正屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第5レンズ群G5の像側には、固体撮像素子の略ナイキスト周波数以上の解像力をカットするための光学ローパスフィルタOLPFが配置され、その像側には、撮像素子表面を保護するためのカバーガラスCGが配置されている。   On the image side of the fifth lens group G5, an optical low-pass filter OLPF for cutting the resolving power equal to or higher than the substantially Nyquist frequency of the solid-state image sensor is disposed, and on the image side, a cover glass for protecting the image sensor surface. CG is arranged.

以下の表2に本第2実施例にかかるズームレンズの諸元の値を掲げる。   Table 2 below provides values of specifications of the zoom lens according to the second example.

(表2)
[全体諸元]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 7.30 24.00 48.70
FNo 2.9 4.0 5.0
2ω 76.2 25.3 12.7
TL 89.4 103.2 117.0

[レンズデータ]
面番号 曲率半径 面間隔 nd ν
1 68.7733 1.2000 1.84666 23.78
2 44.6048 6.0000 1.62041 60.29
3 502.6841 0.1000
4 39.2284 4.5500 1.49700 81.61
5 179.0209 (D5)
6 231.9477 2.2500 1.79668 45.37
7 8.1352 6.4000
8 -24.3449 0.9000 1.62041 60.29
9 19.8092 0.1000
10 16.7821 3.4000 1.84666 23.78
11 -112.6407 0.9000 1.67790 55.34
12 129.3558 (D12)
13 45.0022 0.9000 1.80100 34.96
14 22.0792 2.5000 1.49782 82.52
15 -27.9147 1.2000
16 ∞ 1.5000 (開口絞りS)
17 11.6350 3.7000 1.60738 56.82
18 -11.2356 1.6000 1.71700 47.93
19 19.1180 (D19)
20 42.2272 3.5000 1.67790 54.89
21 -13.6179 0.1000
22 104.8201 2.6000 1.48749 70.24
23 -18.2010 1.0000 1.80100 34.96
24 23.5017 (D24)
25 16.0661 2.5000 1.48749 70.24
26 53.8612 (D26)
27 ∞ 1.7200 1.51680 64.20 (OLPF)
28 ∞ 1.4410
29 ∞ 0.5000 1.51680 64.20 (CG)
30 ∞ (Bf)

[非球面データ]
面番号 κ C4 C6 C8 C10
7 0.8300 -1.1807E-05 -2.8221E-07 9.6728E-10 -3.6526E-11
20 1.0000 -1.6050E-04 -4.4980E-07 1.2616E-08 -3.1336E-10

[可変間隔データ]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 7.30 24.00 48.70
D5 2.2068 19.9136 28.5702
D12 21.2565 6.7047 2.4000
D19 4.4227 2.0462 1.6990
D24 5.4752 16.2164 27.1884
D26 4.5105 6.7630 5.5814

[条件式対応値]
(1)f1/fW=8.68
(2)f1/(−f2)=6.92
(3)f5/fW=6.30
(4)f3a/f3b=0.559
(Table 2)
[Overall specifications]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 7.30 24.00 48.70
FNo 2.9 4.0 5.0
2ω 76.2 25.3 12.7
TL 89.4 103.2 117.0

[Lens data]
Surface number Curvature radius Surface spacing nd ν
1 68.7733 1.2000 1.84666 23.78
2 44.6048 6.0000 1.62041 60.29
3 502.6841 0.1000
4 39.2284 4.5500 1.49700 81.61
5 179.0209 (D5)
6 231.9477 2.2500 1.79668 45.37
7 8.1352 6.4000
8 -24.3449 0.9000 1.62041 60.29
9 19.8092 0.1000
10 16.7821 3.4000 1.84666 23.78
11 -112.6407 0.9000 1.67790 55.34
12 129.3558 (D12)
13 45.0022 0.9000 1.80 100 34.96
14 22.0792 2.5000 1.49782 82.52
15 -27.9147 1.2000
16 ∞ 1.5000 (Aperture stop S)
17 11.6350 3.7000 1.60738 56.82
18 -11.2356 1.6000 1.71700 47.93
19 19.1180 (D19)
20 42.2272 3.5000 1.67790 54.89
21 -13.6179 0.1000
22 104.8201 2.6000 1.48749 70.24
23 -18.2010 1.0000 1.80100 34.96
24 23.5017 (D24)
25 16.0661 2.5000 1.48749 70.24
26 53.8612 (D26)
27 ∞ 1.7200 1.51680 64.20 (OLPF)
28 ∞ 1.4410
29 ∞ 0.5000 1.51680 64.20 (CG)
30 ∞ (Bf)

[Aspherical data]
Surface number κ C4 C6 C8 C10
7 0.8300 -1.1807E-05 -2.8221E-07 9.6728E-10 -3.6526E-11
20 1.0000 -1.6050E-04 -4.4980E-07 1.2616E-08 -3.1336E-10

[Variable interval data]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 7.30 24.00 48.70
D5 2.2068 19.9136 28.5702
D12 21.2565 6.7047 2.4000
D19 4.4227 2.0462 1.6990
D24 5.4752 16.2164 27.1884
D26 4.5105 6.7630 5.5814

[Conditional expression values]
(1) f1 / fW = 8.68
(2) f1 / (− f2) = 6.92
(3) f5 / fW = 6.30
(4) f3a / f3b = 0.559

図4は、本発明の第2実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を表し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ表す。   4A and 4B are graphs showing various aberrations with respect to the d-line (λ = 587.6 nm) of the zoom lens according to the second example of the present invention. FIG. 4A shows the wide-angle end state (W), and FIG. The distance state (M) and (c) represent the telephoto end state (T), respectively.

各収差図から、本第2実施例にかかるズームレンズは高い光学性能を有していることが明らかである。また、ズームレンズ全長が89.4mm〜117.0mmと小型であることが明らかである。   From each aberration diagram, it is clear that the zoom lens according to the second example has high optical performance. In addition, it is clear that the total length of the zoom lens is as small as 89.4 mm to 117.0 mm.

[第3実施例]
図5は、本発明の第3実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。
[Third embodiment]
FIG. 5 is a cross-sectional view of the lens configuration of the zoom lens according to the third embodiment of the present invention in the infinitely focused state, (W) is the wide-angle end state, (M) is the intermediate focal length state, (T) indicates the telephoto end state.

図5において、本第3実施例にかかるズームレンズは、光軸に沿って物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5とから構成され、広角端状態Wから望遠端状態Tまでズーミングする際に、無限遠合焦状態において、第1レンズ群G1と第2レンズ群G2との空気間隔は増加し、第2レンズ群G2と第3レンズ群G3との空気間隔は減少し、第3レンズ群G3と第4レンズ群G4との空気間隔は変化しながら減少し、第4レンズ群G4と第5レンズ群G5との空気間隔は増加するように、第1レンズ群G1は像面Iに対して移動し、第2レンズ群G2は像面I側に移動した後、物体側に移動するような軌跡で移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は像面Iに対して移動し広角端状態Wよりも望遠端状態Tの方が物体側にある。   In FIG. 5, the zoom lens according to the third example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens in order from the object side along the optical axis. A third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power are zoomed from the wide-angle end state W to the telephoto end state T. In the infinite focus state, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third The first lens group G1 has an image plane I such that the air gap between the lens group G3 and the fourth lens group G4 decreases while changing, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases. The second lens group G2 has moved to the image plane I side. The third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 moves relative to the image plane I. The telephoto end state T is closer to the object side than the wide-angle end state W.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズと、物体側に凸面を向けた正メニスカスレンズとから構成され、全体として正屈折力を有している。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the convex surface facing the object side. The positive meniscus lens has a positive refractive power as a whole.

第2レンズ群G2は、光軸に沿って物体側から順に、像側の面が非球面の負メニスカスレンズと、像側の面の曲率が強い両凹形状の負レンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズと、物体側の面の曲率が強い両凸形状の正レンズとから構成され、全体として負屈折力を有している。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens having an aspheric image side surface, a biconcave negative lens having a strong curvature on the image side surface, and a convex surface on the object side. It is composed of a cemented lens with a directed positive meniscus lens and a biconvex positive lens with a strong curvature on the object side surface, and has a negative refractive power as a whole.

第3レンズ群G3は、光軸に沿って物体側から順に、第3aレンズ群G3aと開口絞りSと第3bレンズ群G3bとから構成され、第3aレンズ群G3aは物体側に凸面を向けた負メニスカスレンズと物体側の面の曲率が強い両凸形状の正レンズとの接合レンズで構成され全体として正屈折力を有し、第3bレンズ群G3bは物体側の面の曲率が強い両凸形状の正レンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され全体として正屈折力を有している。   The third lens group G3 is composed of a 3a lens group G3a, an aperture stop S, and a 3b lens group G3b in order from the object side along the optical axis. The 3a lens group G3a has a convex surface directed toward the object side. It is composed of a cemented lens of a negative meniscus lens and a biconvex positive lens having a strong curvature on the object side surface, and has a positive refractive power as a whole. The third lens group G3b has a biconvex shape with a strong curvature on the object side surface. The lens is composed of a positive lens having a shape and a cemented lens of a negative lens having a biconcave shape having a strong curvature on the object side surface, and has a positive refractive power as a whole.

第4レンズ群G4は、光軸に沿って物体側から順に、物体側の面が非球面の両凸形状の正レンズと、像側の面の曲率が強い両凸形状の正レンズと像側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され、全体として正屈折力を有している。   The fourth lens group G4 includes, in order from the object side along the optical axis, a biconvex positive lens having an aspheric object side surface, a biconvex positive lens having a strong curvature on the image side surface, and an image side. And has a positive refracting power as a whole.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズで構成され、全体として正屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第5レンズ群G5の像側には、固体撮像素子の略ナイキスト周波数以上の解像力をカットするための光学ローパスフィルタOLPFが配置され、その像側には、撮像素子表面を保護するためのカバーガラスCGが配置されている。   On the image side of the fifth lens group G5, an optical low-pass filter OLPF for cutting the resolving power equal to or higher than the substantially Nyquist frequency of the solid-state image sensor is disposed, and on the image side, a cover glass for protecting the image sensor surface. CG is arranged.

以下の表3に本第3実施例にかかるズームレンズの諸元の値を掲げる。   Table 3 below provides values of specifications of the zoom lens according to the third example.

(表3)
[全体諸元]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 6.28 20.00 33.30
FNo 2.9 4.1 4.7
2ω 85.1 30.5 18.4
TL 89.1 101.7 115.0

[レンズデータ]
面番号 曲率半径 面間隔 nd ν
1 94.9248 1.2000 1.84666 23.78
2 50.5101 6.0000 1.81600 46.63
3 181.5798 0.1000
4 40.5566 5.0000 1.49700 81.61
5 187.2247 (D5)
6 154.5189 2.3000 1.79668 45.37
7 7.7128 6.5500
8 -27.8647 0.9000 1.80400 46.58
9 13.4648 2.3000 1.84666 23.78
10 21.8957 0.2000
11 19.3217 3.1000 1.84666 23.78
12 -133.2414 (D12)
13 55.5404 1.3000 1.80100 34.96
14 24.2673 2.3000 1.49700 81.61
15 -25.0156 1.2000
16 ∞ 1.2000 (開口絞りS)
17 10.7357 4.1000 1.56384 60.69
18 -11.8874 1.1000 1.72000 50.24
19 19.9745 (D19)
20 35.0436 3.8000 1.67790 54.89
21 -13.3593 0.1000
22 29.1998 2.3000 1.48749 70.24
23 -23.6547 0.9000 1.80100 34.96
24 15.3609 (D24)
25 15.0119 2.5000 1.48749 70.24
26 46.5577 (D26)
27 ∞ 1.7200 1.51680 64.20 (OLPF)
28 ∞ 1.4410
29 ∞ 0.5000 1.51680 64.20 (CG)
30 ∞ (Bf)

[非球面データ]
面番号 κ C4 C6 C8 C10
7 0.7000 -7.4797E-06 -1.3581E-07 -4.3349E-09 4.8790E-11
20 1.0000 -1.9526E-04 -3.6202E-07 2.1862E-09 -1.5049E-10

[可変間隔データ]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 6.28 20.00 33.30
D5 2.2000 20.0116 30.1865
D12 20.7197 4.6820 2.4000
D19 3.8511 1.4736 1.3000
D24 7.2599 16.5136 23.1922
D26 2.0000 5.9210 4.7838

[条件式対応値]
(1)f1/fW=11.89
(2)f1/(−f2)=8.52
(3)f5/fW=7.05
(4)f3a/f3b=0.511
(Table 3)
[Overall specifications]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 6.28 20.00 33.30
FNo 2.9 4.1 4.7
2ω 85.1 30.5 18.4
TL 89.1 101.7 115.0

[Lens data]
Surface number Curvature radius Surface spacing nd ν
1 94.9248 1.2000 1.84666 23.78
2 50.5101 6.0000 1.81600 46.63
3 181.5798 0.1000
4 40.5566 5.0000 1.49700 81.61
5 187.2247 (D5)
6 154.5189 2.3000 1.79668 45.37
7 7.7128 6.5500
8 -27.8647 0.9000 1.80400 46.58
9 13.4648 2.3000 1.84666 23.78
10 21.8957 0.2000
11 19.3217 3.1000 1.84666 23.78
12 -133.2414 (D12)
13 55.5404 1.3000 1.80100 34.96
14 24.2673 2.3000 1.49700 81.61
15 -25.0156 1.2000
16 ∞ 1.2000 (Aperture stop S)
17 10.7357 4.1000 1.56384 60.69
18 -11.8874 1.1000 1.72000 50.24
19 19.9745 (D19)
20 35.0436 3.8000 1.67790 54.89
21 -13.3593 0.1000
22 29.1998 2.3000 1.48749 70.24
23 -23.6547 0.9000 1.80100 34.96
24 15.3609 (D24)
25 15.0119 2.5000 1.48749 70.24
26 46.5577 (D26)
27 ∞ 1.7200 1.51680 64.20 (OLPF)
28 ∞ 1.4410
29 ∞ 0.5000 1.51680 64.20 (CG)
30 ∞ (Bf)

[Aspherical data]
Surface number κ C4 C6 C8 C10
7 0.7000 -7.4797E-06 -1.3581E-07 -4.3349E-09 4.8790E-11
20 1.0000 -1.9526E-04 -3.6202E-07 2.1862E-09 -1.5049E-10

[Variable interval data]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 6.28 20.00 33.30
D5 2.2000 20.0116 30.1865
D12 20.7197 4.6820 2.4000
D19 3.8511 1.4736 1.3000
D24 7.2599 16.5136 23.1922
D26 2.0000 5.9210 4.7838

[Conditional expression values]
(1) f1 / fW = 11.89
(2) f1 / (− f2) = 8.52
(3) f5 / fW = 7.05
(4) f3a / f3b = 0.511

図6は、本発明の第3実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を表し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ表す。   6A and 6B are graphs showing various aberrations with respect to the d-line (λ = 587.6 nm) of the zoom lens according to the third example of the present invention. FIG. 6A shows the wide-angle end state (W), and FIG. 6B shows the intermediate focus. The distance state (M) and (c) represent the telephoto end state (T), respectively.

各収差図から、本第3実施例にかかるズームレンズは高い光学性能を有していることが明らかである。また、ズームレンズ全長が89.1mm〜115.0mmと小型であることが明らかである。   From each aberration diagram, it is clear that the zoom lens according to the third example has high optical performance. Also, it is clear that the overall zoom lens length is as small as 89.1 mm to 115.0 mm.

[第4実施例]
図7は、本発明の第4実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。
[Fourth embodiment]
FIG. 7 is a cross-sectional view of the lens configuration of the zoom lens according to the fourth embodiment of the present invention in the infinitely focused state, (W) is the wide-angle end state, (M) is the intermediate focal length state, (T) indicates the telephoto end state.

図7において、本第4実施例にかかるズームレンズは、光軸に沿って物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5とから構成され、広角端状態Wから望遠端状態Tまでズーミングする際に、無限遠合焦状態において、第1レンズ群G1と第2レンズ群G2との空気間隔は増加し、第2レンズ群G2と第3レンズ群G3との空気間隔は減少し、第3レンズ群G3と第4レンズ群G4との空気間隔は変化しながら減少し、第4レンズ群G4と第5レンズ群G5との空気間隔は増加するように、第1レンズ群G1は像面Iに対して移動し、第2レンズ群G2は像面I側に移動した後、物体側に移動するような軌跡で移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は像面Iに対して移動し広角端状態Wよりも望遠端状態Tの方が物体側にある。   In FIG. 7, the zoom lens according to the fourth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens in order from the object side along the optical axis. A third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power are zoomed from the wide-angle end state W to the telephoto end state T. In the infinite focus state, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third The first lens group G1 has an image plane I such that the air gap between the lens group G3 and the fourth lens group G4 decreases while changing, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases. The second lens group G2 has moved to the image plane I side. The third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 moves relative to the image plane I. The telephoto end state T is closer to the object side than the wide-angle end state W.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズと、物体側に凸面を向けた正メニスカスレンズとから構成され、全体として正屈折力を有している。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the convex surface facing the object side. The positive meniscus lens has a positive refractive power as a whole.

第2レンズ群G2は、光軸に沿って物体側から順に、像側の面が非球面の両凹形状の負レンズと、像側の面の曲率が強い両凹形状の負レンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズと、物体側の曲率が強い両凸形状の正レンズとから構成され、全体として負屈折力を有している。   The second lens group G2 includes, in order from the object side along the optical axis, a biconcave negative lens with an aspheric image side surface, a biconcave negative lens with a strong curvature on the image side surface, and an object side. The lens is composed of a cemented lens with a positive meniscus lens having a convex surface facing the surface, and a biconvex positive lens having a strong curvature on the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、光軸に沿って物体側から順に、第3aレンズ群G3aと開口絞りSと第3bレンズ群G3bとから構成され、第3aレンズ群G3aは物体側に凸面を向けた負メニスカスレンズと物体側の面の曲率が強い両凸形状の正レンズとの接合レンズで構成され全体として正屈折力を有し、第3bレンズ群G3bは物体側の面の曲率が強い両凸形状の正レンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され全体として正屈折力を有している。   The third lens group G3 is composed of a 3a lens group G3a, an aperture stop S, and a 3b lens group G3b in order from the object side along the optical axis. The 3a lens group G3a has a convex surface directed toward the object side. It is composed of a cemented lens of a negative meniscus lens and a biconvex positive lens having a strong curvature on the object side surface, and has a positive refractive power as a whole. The third lens group G3b has a biconvex shape with a strong curvature on the object side surface. The lens is composed of a positive lens having a shape and a cemented lens of a negative lens having a biconcave shape having a strong curvature on the object side surface, and has a positive refractive power as a whole.

第4レンズ群G4は、光軸に沿って物体側から順に、物体側の面が非球面の両凸形状の正レンズと、像側の面の曲率が強い両凸形状の正レンズと物体側の面の曲率が強い両凹形状の負レンズとの接合レンズとから構成され、全体として正屈折力を有している。   The fourth lens group G4 includes, in order from the object side along the optical axis, a biconvex positive lens having an aspheric object side surface, a biconvex positive lens having a strong curvature on the image side surface, and an object side. And has a positive refracting power as a whole.

第5レンズ群G5は、物体側の面の曲率が強い両凸形状の正レンズと像側の面の曲率が強い両凹形状の負レンズとの接合レンズで構成され、全体として正屈折力を有している。   The fifth lens group G5 is composed of a cemented lens of a biconvex positive lens having a strong curvature on the object side surface and a biconcave negative lens having a strong curvature on the image side surface, and has a positive refracting power as a whole. Have.

第5レンズ群G5の像側には、固体撮像素子の略ナイキスト周波数以上の解像力をカットするための光学ローパスフィルタOLPFが配置され、その像側には、撮像素子表面を保護するためのカバーガラスCGが配置されている。   On the image side of the fifth lens group G5, an optical low-pass filter OLPF for cutting the resolving power equal to or higher than the substantially Nyquist frequency of the solid-state image sensor is disposed, and on the image side, a cover glass for protecting the image sensor surface. CG is arranged.

以下の表4に本第4実施例にかかるズームレンズの諸元の値を掲げる。   Table 4 below provides values of specifications of the zoom lens according to the fourth example.

(表4)
[全体諸元]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 7.30 32.00 74.00
FNo 2.9 4.4 5.8
2ω 76.6 19.3 8.3
TL 98.7 111.2 128.0

[レンズデータ]
面番号 曲率半径 面間隔 nd ν
1 91.6356 1.2000 1.84666 23.78
2 43.7716 7.1000 1.78800 47.38
3 747.0564 0.1000
4 38.7003 4.3000 1.49700 81.61
5 157.8453 (D5)
6 -18910.9160 2.2000 1.77377 47.18
7 9.0966 6.1000
8 -25.1060 0.9000 1.77250 49.61
9 14.6234 2.5000 1.75520 27.51
10 42.2604 0.1000
11 25.5677 2.9000 1.84666 23.78
12 -321.7062 (D12)
13 41.3021 0.9000 1.85026 32.35
14 21.8613 2.5500 1.49700 81.61
15 -27.2167 1.200
16 ∞ 1.2000 (開口絞りS)
17 12.2623 3.7000 1.60738 56.82
18 -14.9954 0.9000 1.74320 49.32
19 19.6395 (D19)
20 22.6189 3.5000 1.60602 57.44
21 -18.2518 0.6000
22 28.7503 2.9000 1.48749 70.24
23 -26.2714 1.0000 1.80440 39.59
24 12.5700 (D24)
25 18.6304 3.4000 1.75500 52.32
26 -181.4509 0.9000 1.84666 23.78
27 66.4720 (D27)
28 ∞ 1.7200 1.51680 64.20 (OLPF)
29 ∞ 1.4410
30 ∞ 0.5000 1.51680 64.20 (CG)
31 ∞ (Bf)

[非球面データ]
面番号 κ C4 C6 C8 C10
7 0.9000 -2.0162E-05 -4.4138E-07 5.9139E-09 -1.1983E-10
20 1.0000 -1.1033E-04 -3.3050E-07 6.1431E-09 -1.0856E-10

[可変間隔データ]
レンズ状態 広角端状態 中間焦点距離状態 望遠端状態
f 7.30 32.00 74.00
D5 2.2000 22.0532 30.5865
D12 27.4585 6.9401 2.4000
D19 6.3397 1.5162 1.3000
D24 5.5885 18.4195 34.5624
D27 2.2607 7.5000 4.3401

[条件式対応値]
(1)f1/fW=8.36
(2)f1/(−f2)=6.16
(3)f5/fW=4.79
(4)f3a/f3b=0.390
(Table 4)
[Overall specifications]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 7.30 32.00 74.00
FNo 2.9 4.4 5.8
2ω 76.6 19.3 8.3
TL 98.7 111.2 128.0

[Lens data]
Surface number Curvature radius Surface spacing nd ν
1 91.6356 1.2000 1.84666 23.78
2 43.7716 7.1000 1.78800 47.38
3 747.0564 0.1000
4 38.7003 4.3000 1.49700 81.61
5 157.8453 (D5)
6 -18910.9160 2.2000 1.77377 47.18
7 9.0966 6.1000
8 -25.1060 0.9000 1.77250 49.61
9 14.6234 2.5000 1.75520 27.51
10 42.2604 0.1000
11 25.5677 2.9000 1.84666 23.78
12 -321.7062 (D12)
13 41.3021 0.9000 1.85026 32.35
14 21.8613 2.5500 1.49700 81.61
15 -27.2167 1.200
16 ∞ 1.2000 (Aperture stop S)
17 12.2623 3.7000 1.60738 56.82
18 -14.9954 0.9000 1.74320 49.32
19 19.6395 (D19)
20 22.6189 3.5000 1.60602 57.44
21 -18.2518 0.6000
22 28.7503 2.9000 1.48749 70.24
23 -26.2714 1.0000 1.80440 39.59
24 12.5700 (D24)
25 18.6304 3.4000 1.75500 52.32
26 -181.4509 0.9000 1.84666 23.78
27 66.4720 (D27)
28 ∞ 1.7200 1.51680 64.20 (OLPF)
29 ∞ 1.4410
30 ∞ 0.5000 1.51680 64.20 (CG)
31 ∞ (Bf)

[Aspherical data]
Surface number κ C4 C6 C8 C10
7 0.9000 -2.0162E-05 -4.4138E-07 5.9139E-09 -1.1983E-10
20 1.0000 -1.1033E-04 -3.3050E-07 6.1431E-09 -1.0856E-10

[Variable interval data]
Lens state Wide-angle end state Intermediate focal length state Telephoto end state
f 7.30 32.00 74.00
D5 2.2000 22.0532 30.5865
D12 27.4585 6.9401 2.4000
D19 6.3397 1.5162 1.3000
D24 5.5885 18.4195 34.5624
D27 2.2607 7.5000 4.3401

[Conditional expression values]
(1) f1 / fW = 8.36
(2) f1 / (− f2) = 6.16
(3) f5 / fW = 4.79
(4) f3a / f3b = 0.390

図8は、本発明の第4実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を表し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ表す。   8A and 8B are graphs showing various aberrations with respect to the d-line (λ = 587.6 nm) of the zoom lens according to Example 4 of the present invention. FIG. 8A shows the wide-angle end state (W), and FIG. 8B shows the intermediate focus. The distance state (M) and (c) represent the telephoto end state (T), respectively.

各収差図から、本第4実施例にかかるズームレンズは高い光学性能を有していることが明らかである。また、ズームレンズ全長が98.7mm〜128.0mmと小型であることが明らかである。   From each aberration diagram, it is clear that the zoom lens according to the fourth example has high optical performance. In addition, it is clear that the overall length of the zoom lens is as small as 98.7 mm to 128.0 mm.

なお、本発明の実施例として、5群構成のレンズ系を示したが、該5群に付加レンズ群を加えただけのレンズ系も本発明の効果を内在した同等のレンズ系であることは言うまでもない。また、各レンズ群内の構成においても、実施例の構成に付加レンズを加えただけのレンズ群も本発明の効果を内在した同等のレンズ群であることは言うまでもない。   As an example of the present invention, a lens system having a five-group configuration is shown. However, a lens system in which an additional lens group is added to the five groups is also an equivalent lens system in which the effects of the present invention are inherent. Needless to say. In addition, in the configuration within each lens group, it goes without saying that a lens group in which an additional lens is added to the configuration of the embodiment is an equivalent lens group in which the effects of the present invention are inherent.

また、上述の実施の形態は例に過ぎず、上述の構成や形状に限定されるものではなく、本発明の範囲内において適宜修正、変更が可能である。   Further, the above-described embodiment is merely an example, and is not limited to the above-described configuration or shape, and can be appropriately modified and changed within the scope of the present invention.

本発明の第1実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。2A and 2B are cross-sectional views of the lens configuration of the zoom lens according to the first embodiment of the present invention in an infinitely focused state, in which (W) is a wide-angle end state, (M) is an intermediate focal length state, and (T) is Each telephoto end state is shown. 本発明の第1実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を示し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ示す。FIG. 4A shows various aberration diagrams for the d-line (λ = 587.6 nm) of the zoom lens according to Example 1 of the present invention, where (a) shows the wide-angle end state (W) and (b) shows the intermediate focal length state (M ) And (c) show the telephoto end state (T), respectively. 本発明の第2実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。FIG. 4 is a cross-sectional view of a lens configuration of a zoom lens according to a second embodiment of the present invention in an infinitely focused state, where (W) is a wide-angle end state, (M) is an intermediate focal length state, and (T) is Each telephoto end state is shown. 本発明の第2実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を示し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ示す。FIG. 6A shows various aberration diagrams of the zoom lens according to Example 2 of the present invention with respect to d-line (λ = 587.6 nm), where (a) shows the wide-angle end state (W) and (b) shows the intermediate focal length state (M). ) And (c) show the telephoto end state (T), respectively. 本発明の第3実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。FIG. 6 is a sectional view of a lens configuration of a zoom lens according to a third embodiment of the present invention in an infinitely focused state, where (W) is a wide-angle end state, (M) is an intermediate focal length state, and (T) is Each telephoto end state is shown. 本発明の第3実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を示し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ示す。FIG. 6A shows various aberration diagrams for the d-line (λ = 587.6 nm) of the zoom lens according to Example 3 of the present invention, where (a) shows the wide-angle end state (W) and (b) shows the intermediate focal length state (M). ) And (c) show the telephoto end state (T), respectively. 本発明の第4実施例にかかるズームレンズの無限遠合焦状態でのレンズ構成の断面図を示し、(W)は広角端状態を、(M)は中間焦点距離状態を、(T)は望遠端状態をそれぞれ示す。FIG. 4 is a cross-sectional view of a lens configuration of a zoom lens according to a fourth embodiment of the present invention in an infinitely focused state, where (W) is a wide-angle end state, (M) is an intermediate focal length state, and (T) is Each telephoto end state is shown. 本発明の第4実施例にかかるズームレンズのd線(λ=587.6nm)に対する諸収差図を示し、(a)は広角端状態(W)を、(b)は中間焦点距離状態(M)を、(c)は望遠端状態(T)をそれぞれ示す。FIG. 6A shows various aberration diagrams for the d-line (λ = 587.6 nm) of the zoom lens according to Example 4 of the present invention, where (a) shows the wide-angle end state (W) and (b) shows the intermediate focal length state (M ) And (c) show the telephoto end state (T), respectively.

符号の説明Explanation of symbols

W ・・・ 広角端状態
M ・・・ 中間状態
T ・・・ 望遠端状態
G1 ・・・ 第1レンズ群
G2 ・・・ 第2レンズ群
G3 ・・・ 第3レンズ群
G4 ・・・ 第4レンズ群
G5 ・・・ 第5レンズ群
S ・・・ 開口絞りS
I ・・・ 像面
G3a ・・・ 第3aレンズ群
G3b ・・・ 第3bレンズ群
OLPF・・・ 光学ローパスフィルタ
CG ・・・ カバーガラス
W: Wide-angle end state M ... Intermediate state T ... Telephoto end state G1 ... First lens group G2 ... Second lens group G3 ... Third lens group G4 ... Fourth Lens group G5: Fifth lens group S: Aperture stop S
I ... Image plane G3a ... 3a lens group G3b ... 3b lens group OLPF ... Optical low-pass filter CG ... Cover glass

Claims (8)

光軸に沿って物体側から順に、正屈折力を有する第1レンズ群と、負屈折力を有する第2レンズ群と、正屈折力を有する第3レンズ群と、正屈折力を有する第4レンズ群と、正屈折力を有する第5レンズ群とからなり
広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、光軸に沿って、前記第1レンズ群と前記第2レンズ群との空気間隔は増加し、前記第2レンズ群と前記第3レンズ群との空気間隔は減少し、前記第3レンズ群と前記第4レンズ群との空気間隔は変化し、前記第4レンズ群と前記第5レンズ群との空気間隔は増加するように、前記第1レンズ群は像面に対して移動し、前記第2レンズ群は像面側に移動した後、物体側に移動するような軌跡で移動し、前記第3レンズ群は物体側に移動し、前記第4レンズ群は物体側に移動し、
光軸に沿って物体側から順に、前記第3レンズ群は正屈折力を有する第3aレンズ群と、開口絞りと、第3bレンズ群とを有し、
光軸に沿って物体側から順に、前記第3aレンズ群は負屈折力を有するレンズと正屈折力を有するレンズから成る接合レンズのみで構成され、前記第3bレンズ群は正屈折力を有するレンズと負屈折力を有するレンズから成る接合レンズのみで構成され、
以下の条件を満足することを特徴とするズームレンズ。
7.93≦f1/fW<12.8
5.8<f1/(−f2)<10.0
3.0<f5/fW<10.0
但し、
fWは広角端状態における前記ズームレンズ全系の焦点距離、
f1は前記第1レンズ群の焦点距離、
f2は前記第2レンズ群の焦点距離、
f5は前記第5レンズ群の焦点距離を表す。
A first lens group having positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power, and a fourth lens having positive refractive power in order from the object side along the optical axis. consists of a lens group, and the fifth lens group having positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the air space between the first lens group and the second lens group increases along the optical axis in the infinite focus state, and the second lens group And the third lens group are reduced, the air gap between the third lens group and the fourth lens group is changed, and the air gap between the fourth lens group and the fifth lens group is increased. The first lens group moves relative to the image plane, the second lens group moves toward the image plane side, and then moves along a trajectory that moves toward the object side. Moving to the object side, the fourth lens group moving to the object side,
In order from the object side along the optical axis, the third lens group includes a 3a lens group having positive refractive power, an aperture stop, and a 3b lens group.
In order from the object side along the optical axis, the 3a lens group includes only a cemented lens including a lens having negative refracting power and a lens having positive refracting power, and the 3b lens group has a lens having positive refracting power. And composed only of cemented lenses consisting of lenses with negative refractive power,
A zoom lens satisfying the following conditions:
7.93 ≦ f1 / fW <12.8
5.8 <f1 / (− f2) <10.0
3.0 <f5 / fW <10.0
However,
fW is the focal length of the entire zoom lens system in the wide-angle end state;
f1 is the focal length of the first lens group,
f2 is the focal length of the second lens group,
f5 represents the focal length of the fifth lens group.
無限遠合焦状態において、前記第3レンズ群と前記第4レンズ群の空気間隔は、光軸に沿って少なくとも広角端状態よりも望遠端状態の方が小さくなることを特徴とする請求項1に記載のズームレンズ。   2. The air gap between the third lens unit and the fourth lens unit in the infinite focus state is smaller in the telephoto end state than in the wide-angle end state along the optical axis. Zoom lens described in 1. 広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、前記第3レンズ群と前記第4レンズ群との空気間隔は、光軸に沿って減少することを特徴とする請求項1に記載のズームレンズ。   When zooming from the wide-angle end state to the telephoto end state, the air space between the third lens group and the fourth lens group decreases along the optical axis in the infinite focus state. Item 4. The zoom lens according to Item 1. 広角端状態から望遠端状態までズーミングする際に、無限遠合焦状態において、前記第5レンズ群は、像面に対して光軸に沿って移動することを特徴とする請求項1から3のいずれか1項に記載のズームレンズ。   4. The zoom lens according to claim 1, wherein when zooming from the wide-angle end state to the telephoto end state, the fifth lens group moves along the optical axis with respect to the image plane in the infinitely focused state. The zoom lens according to any one of the above. 無限遠合焦状態において、前記第5レンズ群は、光軸に沿って少なくとも広角端状態よりも望遠端状態の方が物体側にあることを特徴とする請求項4に記載のズームレンズ。   5. The zoom lens according to claim 4, wherein, in the infinitely focused state, the fifth lens group is at least at the telephoto end state on the object side along the optical axis than at the wide-angle end state. 以下の条件を満足することを特徴とする請求項1から5のいずれか1項に記載のズームレンズ。
−0.50<f3a/f3b<0.80
但し、
f3aは前記第3aレンズ群の焦点距離、
f3bは前記第3bレンズ群の焦点距離を表す。
The zoom lens according to any one of claims 1 5, characterized in that the following condition is satisfied.
-0.50 <f3a / f3b <0.80
However,
f3a is the focal length of the 3a lens group,
f3b represents the focal length of the third b lens group.
前記第2レンズ群は非球面レンズを含むことを特徴とする請求項1からのいずれか1項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 6 , wherein the second lens group includes an aspherical lens. 前記第4レンズ群は非球面レンズを含むことを特徴とする請求項1からのいずれか1項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 7 , wherein the fourth lens group includes an aspherical lens.
JP2005098737A 2004-09-15 2005-03-30 Zoom lens Expired - Fee Related JP4882260B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005098737A JP4882260B2 (en) 2005-03-30 2005-03-30 Zoom lens
US11/220,647 US7199940B2 (en) 2004-09-15 2005-09-08 Zoom lens system
US11/548,927 US7502173B2 (en) 2004-09-15 2006-10-12 Zoom lens system
US11/548,954 US7336425B2 (en) 2004-09-15 2006-10-12 Zoom lens system
US11/548,897 US7218456B2 (en) 2004-09-15 2006-10-12 Zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098737A JP4882260B2 (en) 2005-03-30 2005-03-30 Zoom lens

Publications (2)

Publication Number Publication Date
JP2006276712A JP2006276712A (en) 2006-10-12
JP4882260B2 true JP4882260B2 (en) 2012-02-22

Family

ID=37211510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098737A Expired - Fee Related JP4882260B2 (en) 2004-09-15 2005-03-30 Zoom lens

Country Status (1)

Country Link
JP (1) JP4882260B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098893A (en) * 2000-09-26 2002-04-05 Minolta Co Ltd Imaging lens device
JP2004117826A (en) * 2002-09-26 2004-04-15 Minolta Co Ltd Imaging apparatus
JP4288408B2 (en) * 2003-02-20 2009-07-01 株式会社ニコン Zoom lens with image shift
JP2004286960A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Zoom lens and camera
JP2005017915A (en) * 2003-06-27 2005-01-20 Ricoh Co Ltd Zoom lens, zoom lens unit and camera apparatus
JP2005043607A (en) * 2003-07-28 2005-02-17 Ricoh Co Ltd Zoom lens, camera, portable information terminal device and projector
JP4630577B2 (en) * 2004-06-07 2011-02-09 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP3960334B2 (en) * 2004-12-20 2007-08-15 コニカミノルタフォトイメージング株式会社 Imaging optical system and imaging apparatus
JP2006184413A (en) * 2004-12-27 2006-07-13 Konica Minolta Photo Imaging Inc Photographing optical system and imaging apparatus
JP2006184416A (en) * 2004-12-27 2006-07-13 Konica Minolta Photo Imaging Inc Photographic optical system and imaging apparatus

Also Published As

Publication number Publication date
JP2006276712A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US9134512B2 (en) Zoom lens and image pickup apparatus having the same
US20140055659A1 (en) Zoom lens and image pickup apparatus
JP4325209B2 (en) Variable focal length lens system
JP4882326B2 (en) Zoom lens
JP5617884B2 (en) Zoom lens system and electronic imaging apparatus including the same
JP6025440B2 (en) Zoom lens and imaging apparatus having the same
JP6367707B2 (en) Zoom lens
JP5303310B2 (en) Zoom lens
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JP2014098794A (en) Variable power optical system, optical device, and method for manufacturing the variable power optical system
JP6598147B2 (en) Zoom lens
JP2004093917A (en) Zoom lens
JP2011085654A (en) Zoom lens system, imaging apparatus and camera
JP4770007B2 (en) Zoom lens
JP4742645B2 (en) Zoom lens
JP4904676B2 (en) Zoom lens
JP5078498B2 (en) Zoom lens and imaging apparatus having the same
JP4799210B2 (en) Zoom lens system and camera system including the same
JP2004258511A (en) Zoom lens
JP2007093977A (en) Zoom lens
JP4333151B2 (en) Zoom lens
JP6549762B2 (en) Zoom lens
JP5271090B2 (en) Zoom lens system, imaging device and camera
JP2009192556A (en) Zoom lens, optical equipment equipped therewith and method of variable power
JP4882260B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4882260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees