JP4882164B2 - Membrane filtration device - Google Patents

Membrane filtration device Download PDF

Info

Publication number
JP4882164B2
JP4882164B2 JP2001159225A JP2001159225A JP4882164B2 JP 4882164 B2 JP4882164 B2 JP 4882164B2 JP 2001159225 A JP2001159225 A JP 2001159225A JP 2001159225 A JP2001159225 A JP 2001159225A JP 4882164 B2 JP4882164 B2 JP 4882164B2
Authority
JP
Japan
Prior art keywords
membrane
membrane module
raw water
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001159225A
Other languages
Japanese (ja)
Other versions
JP2002346348A (en
Inventor
直樹 松渓
雅文 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001159225A priority Critical patent/JP4882164B2/en
Publication of JP2002346348A publication Critical patent/JP2002346348A/en
Application granted granted Critical
Publication of JP4882164B2 publication Critical patent/JP4882164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複数の膜モジュールを備える膜濾過装置において、膜の逆洗機構を改善した膜濾過装置に関する。
【0002】
【従来の技術】
脱塩用の逆浸透(RO)膜や、微量有機物を除去する用水処理、河川水や工業用水又は排水、或いは生物処理水等の固液分離処理に使用される限外濾過(UF)膜や精密濾過(MF)膜等の膜濾過装置では、原水を通水処理することにより、膜面に濁質等の汚染物が付着して膜の目詰まりによりフラックス(透過水量)が低下してくる。このため、定期的に原水の通水を停止し、膜透過水を膜モジュールの2次側(透過水側)から1次側(原水側)へ逆流させる逆洗を行って、フラックスを回復させる必要がある。
【0003】
従来の膜濾過装置では、この逆洗のための膜透過水を貯留する透過水槽と、この透過水槽内の透過水を膜モジュールの2次側に加圧逆流させるための逆洗ポンプが付設されている。また、これらの透過水槽や逆洗ポンプの管理、運転のための計器、その他の機器も必要とされる。
【0004】
【発明が解決しようとする課題】
従来の膜濾過装置では、膜モジュールの逆洗のために透過水槽及び逆洗ポンプとこれに付随する機器が必要となり、これらの設備に要する設備費、動力費や維持管理費が高くつく。
【0005】
本発明は上記従来の問題点を解決し、膜モジュールの逆洗のための透過水槽及び逆洗ポンプ等の設備が不要であると共に、設備費や動力費、維持管理費が安価な膜濾過装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の膜濾過装置は、複数の膜モジュールを備える膜濾過装置において、逆洗を行う膜モジュールに、他の膜モジュールから得られる膜透過水を直接通液して逆洗するように通液路を切り替える通液路切替機構と、各膜モジュールに加圧空気を供給するためのコンプレッサ及び空気配管とを備え、逆洗を行う膜モジュールへの原水の導入を停止し、代りにコンプレッサからの加圧空気を該逆洗を行う膜モジュールの1次側に導入すると共に、他の膜モジュールの透過水を該逆洗を行う膜モジュールの2次側に導入して逆洗を行うか、或いは、逆洗を行う膜モジュールの2次側に加圧空気を供給し、逆洗水中に混合して気液混合流体で逆洗を行うように構成されている膜濾過装置であって、原水槽(7)に原水主配管(10)が接続され、この原水主配管(10)から原水枝配管が分岐しており、各原水枝配管の末端側が各膜モジュールの原水導入口に接続され、各原水枝配管に開閉バルブが設けられ、各膜モジュールの濃縮水流出口は、配管を介して三方バルブの流入ポートに接続され、該三方バルブはそれぞれ2個の流出ポートを備えており、そのうちの一方の流出ポートにそれぞれ濃縮水循環用の枝配管が接続され、これらの濃縮水枝配管は濃縮水主配管(40)に接続されており、前記三方バルブの他方の流出ポートにはそれぞれ逆洗排水排出用の枝配管の一端が接続され、該枝配管の他端は逆洗排水排出用の主配管(50)に接続されており、前記膜モジュールの透過水流出口には、それぞれ透過水取出用の枝配管の一端が接続されており、該枝配管の他端は透過水取出用の主配管(20)に接続されており、前記原水枝配管の各開閉バルブと各膜モジュールとの間の部分に対し空気枝配管の末端側が接続され、各空気枝配管の上流端側は空気主配管(60)に接続され、この空気主配管(60)はコンプレッサ(8)に接続されていることを特徴とする。
【0007】
かかる本発明の膜濾過装置では、通液路切替機構により、逆洗を行う膜モジュールに、他の膜モジュールから得られる膜透過水を直接通液して逆洗することができるため、逆洗のための透過水槽や逆洗ポンプ等の設備が不要となる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の膜濾過装置の実施の形態を詳細に説明する。
【0009】
図1,2は本発明の膜濾過装置の実施の形態を示す系統図であり、図1は濾過運転状態を示し、図2は逆洗運転状態を示している。
【0010】
なお、図1,2において、各バルブのうち、黒ぬりの部分は通液中(開弁)の部分を示し、白ヌキの部分は非通液中(閉弁)の部分を示す。
【0011】
この膜濾過装置は、原水槽7内の原水をポンプP、原水主配管10及び原水枝配管11〜16を介して並列配置された膜モジュール1〜6に通液し、濃縮水を各濃縮水枝配管41〜46及び濃縮水主配管40を介して原水槽7に循環させ、透過水を透過水枝配管21〜26及び透過水主配管20を介して取り出すようにしたものである。各配管構成を詳細に説明すると次の通りである。
【0012】
原水槽7にポンプP及び開閉バルブV10を介して原水主配管10が接続されている。なお、この原水主配管10内の原水に対し殺菌剤が薬注ポンプPによって添加可能とされている。
【0013】
この原水主配管10から原水枝配管11〜16が分岐しており、各原水枝配管11〜16の末端側が膜モジュール1〜6の原水導入口に接続されている。各原水枝配管11〜16に開閉バルブV11〜V16が設けられている。
【0014】
膜モジュール1〜6の濃縮水流出口は、配管31〜36を介して三方バルブV31〜V36の流入ポートに接続されている。該三方バルブV31〜V36はそれぞれ2個の流出ポートを備えており、そのうちの一方の流出ポートにそれぞれ濃縮水循環用の枝配管41〜46が接続されている。
【0015】
これらの濃縮水枝配管41〜46は濃縮水主配管40に接続されている。この濃縮水主配管40に開閉バルブV40が設けられている。
【0016】
三方バルブV31〜V36の他方の流出ポートにはそれぞれ逆洗排水排出用の枝配管51〜56の一端が接続されている。該枝配管51〜56の他端は逆洗排水排出用の主配管50に接続されている。
【0017】
前記膜モジュール1〜6の透過水流出口には、それぞれ開閉弁V21〜V26を介して透過水取出用の枝配管21〜26の一端が接続されており、該枝配管21〜26の他端は透過水取出用の主配管20に接続されている。この主配管20に開閉バルブV20が設けられている。また、この透過水取出用の主配管20には、透過水中の残留塩素を測定する残留塩素計9Aと、濁度測定用の濁度計9Bとが設けられている。
【0018】
前記原水枝配管11〜16の各開閉バルブV11〜V16と各膜モジュール1〜6との間の部分に対し空気逆洗用の空気枝配管61〜66の末端側が接続されている。各空気枝配管61〜66の上流端側は開閉バルブV61〜V62を介して空気主配管60に接続されている。この空気主配管60は開閉バルブV60を介してコンプレッサ8に接続されている。
【0019】
この膜濾過装置では、各膜モジュール1〜6において原水の濾過を所定時間行った後、逆洗を行い、濾過工程と逆洗工程とを交互に繰り返し行う。逆洗工程においては、1本の膜モジュールに他の5本の膜モジュールの透過水を通液することにより、逆洗を行い、順次逆洗を行う膜モジュールを切り替える。
【0020】
まず、図1を参照して濾過工程を説明する。
【0021】
原水の濾過工程では、原水導入用のバルブV10,V11,V12,V13,V14,V15,V16と、透過水取出用のバルブV20,V21,V22,V23,V24,V25,V26を開とする。また、濃縮水循環用のバルブV40を開とするとともに、三方バルブV31,V32,V33,V34,V35,V36は膜モジュールの濃縮水流出口を濃縮水循環用枝配管41,42,43,44,45,46に連通させるように流路選択している。その他のバルブV60〜V66を閉としている。
【0022】
原水ポンプPにより、原水槽7の原水を原水導入用主配管10から各枝配管11,12,13,14,15,16を経て各膜モジュール1,2,3,4,5,6に導入する。膜モジュール1〜6の透過水は各々枝配管21,22,23,24,25,26から主配管20を経て取り出される。一方、濃縮水は各々配管31,41,配管32,42,配管33,43,配管34,44,配管35,45,配管36,46を経て主配管40より原水槽7へ循環される。なお、この濾過工程において、三方バルブV31,V32,V33,V34,V35,V36の流路選択を調整して濃縮水の一部を各々枝配管51,52,53,54,55,56及び主配管50を経て装置外へ排出しても良い。
【0023】
なお、膜モジュール1〜6に導入される原水には、薬注ポンプPにより次亜塩素酸塩等の殺菌剤が注入されている。
【0024】
次に、図2を参照して膜モジュール1を膜モジュール2〜6の透過水で逆洗する逆洗工程を説明する。
【0025】
膜モジュール1の逆洗を行うには、図2に示す如く、原水ポンプP,薬注ポンプPを作動させたまま、まずバルブV11,V20を閉じ、バルブV60,V61を開とすると共に、三方バルブV31を配管31,51が連通されるように流路選択する。次いで、コンプレッサ8を起動する。
【0026】
これにより、膜モジュール1への原水の導入は停止され、代りにコンプレッサ8からの加圧空気が集合配管60及び枝配管61を経て膜モジュール1の1次側に導入される。
【0027】
膜モジュール2〜6では濾過工程と同様に原水が導入され、濃縮水が原水槽7に循環されるが、枝配管22〜26からの膜モジュール2〜6の透過水は、バルブV20が閉となることにより、各々枝配管22,23,24,25,26から枝配管21を介して膜モジュール1の2次側に導入される。
【0028】
膜モジュール1では、2次側に導入された膜モジュール2〜6の透過水が膜を透過する際に、膜面に付着した汚染物を剥離すると共に、配管61から膜の1次側に導入された加圧空気が膜モジュール内を高速で通過することによる剥離効果が重畳する。即ち、逆洗水と加圧空気とが混ざり合って、気液界面が急激に移動するようになり、付着汚染物に対し強力な剪断力が加えられ、付着汚染物が十分に剥離される。この剥離物を含んだ膜モジュール1の逆洗排水は配管51,50を経て装置外へ排出される。
【0029】
このようにして、膜モジュール1の逆洗後、膜モジュール2に膜モジュール1及び膜モジュール3〜6の透過水を通液して膜モジュール2の逆洗を行う。この場合には、図2の状態からバルブV12,V61を閉じ、バルブV11,V62を開とし、三方バルブV31を配管31,41の連通側へ戻すと共に、三方バルブV32を配管32,52の連通側へ切り替える。このようにして、膜モジュール2への原水の導入を停止し、代りにコンプレッサ8からの加圧空気を膜モジュール2の1次側に導入すると共に、膜モジュール1及び膜モジュール3〜6の透過水を膜モジュール2の2次側に導入して膜モジュール2を逆洗し、逆洗排水を配管52,50を経て装置外に排出する。
【0030】
膜モジュール3〜6についても同様の流路切り替えを行うことにより、順次逆洗を行うことができる。
【0031】
このような逆洗を各膜モジュールについて行った後は、図1の状態に戻して濾過工程を再開する。
【0032】
上記の一連のバルブによる流路切り替えは、人手を要することなく、自動制御により行うことができ、予め設定したタイムスケジュールに従って各膜モジュールの逆洗と濾過工程を行うようにすれば良い。
【0033】
この実施の形態では、各膜モジュールからの膜透過水を集めて取り出す主配管20に開閉バルブV20を設け、逆洗時には、このバルブV20を閉じて逆洗対象の膜モジュールにその他の膜モジュールの透過水を逆流させることにより逆洗を行えるため、逆洗のための透過水槽や逆洗ポンプ等の設備が不要となり、特にポンプについては、原水ポンプと薬注ポンプのみで運転が可能となる。
【0034】
なお、図2においては、膜モジュール1〜6のうちの1本の膜モジュール1についてのみ逆洗を行い、その他の膜モジュール2〜6の透過水を膜モジュール1に逆流させているが、2本或いはそれ以上の膜モジュールについて同時に逆洗を行っても良い。例えば図2において、更にバルブV62を開、バルブV12を閉、三方バルブV32を配管32,52の連通側に流路選択することにより、膜モジュール3〜6の透過水を膜モジュール1,2の2次側に逆流させて、膜モジュール1,2を同時に逆洗しても良い。
【0035】
なお、逆洗を行っていない膜モジュールからの透過水を、逆洗対象の膜モジュールの2次側に十分な逆洗流速で加圧供給するためには、膜濾過装置に設けられた膜モジュールがいずれも同等の仕様の場合、1本当たりの逆洗対象の膜モジュールに対して、2本以上の膜モジュールから透過水を逆流させることが望ましい。ただし、過度に多量の透過水を逆流させることは、膜の破損等を引き起こすおそれがあることから、(逆洗対象の膜モジュールの本数):(逆洗対象の膜モジュールに透過水を供給する膜モジュールの本数)=1:2〜5の範囲であることが好ましい。
【0036】
図1,2の膜濾過装置は本発明の膜濾過装置の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。例えば、図1,2では逆洗効果を高めるために、逆洗時にコンプレッサからの加圧空気を膜の1次側に供給しているが、この加圧空気は、膜の2次側に供給し、逆洗水中に混合して気液混合流体で逆洗を行うようにしても良い。
【0037】
このような本発明の膜濾過装置は、特に各種水処理に用いられる固液分離用のUF膜分離装置又はMF膜分離装置、或いは脱塩用のRO膜分離装置に好適である。
【0038】
【発明の効果】
以上詳述した通り、本発明の膜濾過装置は、通液路切替機構によって通液方向を選択することにより、逆洗を行う膜モジュールに、他の膜モジュールから得られる膜透過水を直接通液して逆洗することができる。このため、逆洗のための透過水槽や逆洗ポンプ等の設備が不要となる。また、逆洗のための設備費、動力費、維持管理費を削減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る膜濾過装置の濾過工程を示す系統図である。
【図2】図1の膜濾過装置の逆洗工程を示す系統図である。
【符号の説明】
1,2,3,4,5,6 膜モジュール
7 原水槽
8 コンプレッサ
9A 残留塩素計
9B 濁度計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane filtration device having a membrane backwash mechanism improved in a membrane filtration device comprising a plurality of membrane modules.
[0002]
[Prior art]
Reverse osmosis (RO) membranes for desalination, ultrafiltration (UF) membranes used for solid-liquid separation treatment such as water treatment for removing trace organics, river water, industrial water or wastewater, or biologically treated water In a membrane filtration device such as a microfiltration (MF) membrane, when raw water is passed through, contaminants such as turbidity adhere to the membrane surface, and the flux (permeate flow rate) decreases due to clogging of the membrane. . For this reason, the flow of the raw water is periodically stopped, and the flux is recovered by performing the backwash that causes the membrane permeate to flow backward from the secondary side (permeate side) of the membrane module to the primary side (raw water side). There is a need.
[0003]
In the conventional membrane filtration apparatus, a permeated water tank for storing the permeated water for backwashing and a backwash pump for causing the permeated water in the permeated water tank to flow under pressure to the secondary side of the membrane module are attached. ing. In addition, management of these permeate tanks and backwash pumps, instruments for operation, and other equipment are also required.
[0004]
[Problems to be solved by the invention]
In the conventional membrane filtration apparatus, a permeated water tank, a backwash pump, and equipment associated therewith are required for backwashing the membrane module, and the equipment cost, power cost, and maintenance cost required for these facilities are high.
[0005]
The present invention solves the above-mentioned conventional problems, eliminates the need for facilities such as a permeate tank and backwash pump for backwashing of the membrane module, and is a membrane filtration device with low equipment, power, and maintenance costs The purpose is to provide.
[0006]
[Means for Solving the Problems]
The membrane filtration device of the present invention is a membrane filtration device comprising a plurality of membrane modules. The membrane permeate obtained from other membrane modules is directly passed through the membrane module to be backwashed so that the membrane is backwashed. It is equipped with a liquid passage switching mechanism for switching the path, a compressor for supplying pressurized air to each membrane module, and an air pipe. The introduction of raw water to the membrane module for backwashing is stopped, and instead from the compressor Introduce pressurized air into the primary side of the membrane module that performs the backwash and introduce permeated water from other membrane modules into the secondary side of the membrane module that performs the backwash, or perform backwashing, or A membrane filtration device configured to supply pressurized air to the secondary side of a membrane module for backwashing, mix in backwash water and backwash with a gas-liquid mixed fluid, and a raw water tank The raw water main pipe (10) is connected to (7). The raw water branch pipe branches off from the raw water main pipe (10), the terminal side of each raw water branch pipe is connected to the raw water inlet of each membrane module, and each raw water branch pipe is provided with an open / close valve to concentrate each membrane module. The water outlet is connected to an inflow port of a three-way valve through a pipe, each of the three-way valves has two outflow ports, and one of the outflow ports is connected to a branch pipe for concentrated water circulation, These concentrated water branch pipes are connected to a concentrated water main pipe (40), and one end of a branch pipe for backwash drainage is connected to the other outflow port of the three-way valve, and the other end of the branch pipe is connected. Is connected to a main pipe (50) for discharging backwash drainage, and one end of a branch pipe for extracting permeate is connected to the permeate outlet of the membrane module, and the other end of the branch pipe Is permeate extraction The end side of the air branch pipe is connected to the portion between each open / close valve and each membrane module of the raw water branch pipe, and the upstream end side of each air branch pipe is air. It is connected to the main pipe (60), and this air main pipe (60) is connected to the compressor (8) .
[0007]
In such a membrane filtration device of the present invention, the membrane passage to be backwashed can be directly passed through the membrane module to be backwashed by the fluid passage switching mechanism and backwashed. Facilities such as a permeate tank and a backwash pump are not required.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a membrane filtration device of the present invention will be described in detail with reference to the drawings.
[0009]
1 and 2 are system diagrams showing an embodiment of the membrane filtration device of the present invention. FIG. 1 shows a filtration operation state, and FIG. 2 shows a backwash operation state.
[0010]
In FIGS. 1 and 2, among the valves, the blackened portion indicates the portion during liquid passage (valve opening), and the white portion indicates the portion during non-liquid passage (valve closing).
[0011]
This membrane filtration device passes the raw water in the raw water tank 7 through the membrane modules 1 to 6 arranged in parallel via the pump P 1 , the raw water main pipe 10 and the raw water branch pipes 11 to 16, and concentrates the concentrated water. The water is circulated to the raw water tank 7 through the water branch pipes 41 to 46 and the concentrated water main pipe 40, and the permeated water is taken out through the permeated water branch pipes 21 to 26 and the permeated water main pipe 20. Each piping configuration will be described in detail as follows.
[0012]
A raw water main pipe 10 is connected to the raw water tank 7 through a pump P 1 and an opening / closing valve V 10 . Incidentally, fungicide to raw water of the raw water main pipe 10 is capable added by chemical feed pump P 2.
[0013]
The raw water branch pipes 11 to 16 branch from the raw water main pipe 10, and the terminal sides of the raw water branch pipes 11 to 16 are connected to the raw water inlets of the membrane modules 1 to 6. Open / close valves V 11 to V 16 are provided in the raw water branch pipes 11 to 16 , respectively.
[0014]
The concentrated water outlets of the membrane modules 1 to 6 are connected to the inflow ports of the three-way valves V 31 to V 36 via the pipes 31 to 36 . Each of the three-way valves V 31 to V 36 includes two outflow ports, and branch pipes 41 to 46 for circulating the concentrated water are respectively connected to one of the outflow ports.
[0015]
These concentrated water branch pipes 41 to 46 are connected to the concentrated water main pipe 40. An open / close valve V 40 is provided in the concentrated water main pipe 40.
[0016]
One ends of branch pipes 51 to 56 for discharging backwash drainage are connected to the other outflow ports of the three-way valves V 31 to V 36 , respectively. The other ends of the branch pipes 51 to 56 are connected to a main pipe 50 for discharging backwash drainage.
[0017]
One ends of branch pipes 21 to 26 for extracting permeate water are connected to the permeate outlets of the membrane modules 1 to 6 through on-off valves V 21 to V 26 , respectively. The end is connected to the main piping 20 for extracting permeate. Close valve V 20 is provided in the main pipe 20. The main pipe 20 for extracting permeated water is provided with a residual chlorine meter 9A for measuring residual chlorine in the permeated water and a turbidity meter 9B for measuring turbidity.
[0018]
End side of the air branch pipes 61 to 66 for the air backwash is connected to the portion between each opening and closing valve V 11 ~V 16 and each membrane module 1-6 of the raw water branch pipes 11-16. The upstream end side of each of the air branch pipes 61 to 66 is connected to the air main pipe 60 via the open / close valves V 61 to V 62 . The air main pipe 60 is connected to the compressor 8 via an on-off valve V 60.
[0019]
In this membrane filtration apparatus, after filtering raw water in each membrane module 1-6 for a predetermined time, backwashing is performed, and a filtration process and a backwashing process are repeated alternately. In the backwashing step, the permeated water of the other five membrane modules is passed through one membrane module to perform backwashing, and the membrane modules to be sequentially backwashed are switched.
[0020]
First, the filtration process will be described with reference to FIG.
[0021]
In the raw water filtration step, the raw water introduction valves V 10 , V 11 , V 12 , V 13 , V 14 , V 15 , V 16 and the permeated water extraction valves V 20 , V 21 , V 22 , V 23 are used. , V 24 , V 25 , V 26 are opened. The concentrated water circulation valve V 40 is opened, and the three-way valves V 31 , V 32 , V 33 , V 34 , V 35 , and V 36 are connected to the concentrated water circulation branch pipes 41 and 42 of the membrane module. , 43, 44, 45, 46 are selected so as to communicate with each other. The other valve V 60 ~V 66 are closed.
[0022]
The raw water in the raw water tank 7 is transferred from the raw water introduction main pipe 10 to the membrane modules 1, 2, 3, 4, 5, 6 via the branch pipes 11, 12, 13, 14, 15 , 16 by the raw water pump P1. Introduce. The permeated water of the membrane modules 1 to 6 is taken out from the branch pipes 21, 22, 23, 24, 25 and 26 through the main pipe 20. On the other hand, the concentrated water is circulated from the main pipe 40 to the raw water tank 7 through the pipes 31 and 41, the pipes 32 and 42, the pipes 33 and 43, the pipes 34 and 44, the pipes 35 and 45, and the pipes 36 and 46, respectively. In this filtration step, the flow path selection of the three-way valves V 31 , V 32 , V 33 , V 34 , V 35 , V 36 is adjusted, and a part of the concentrated water is respectively branched into the branch pipes 51, 52, 53, 54. , 55, 56 and the main pipe 50 may be discharged out of the apparatus.
[0023]
Note that the raw water introduced into the membrane module 1-6, fungicides such as hypochlorite is injected by chemical feed pump P 2.
[0024]
Next, the backwashing process of backwashing the membrane module 1 with the permeated water of the membrane modules 2 to 6 will be described with reference to FIG.
[0025]
In order to perform back washing of the membrane module 1, as shown in FIG. 2, the valves V 11 and V 20 are first closed and the valves V 60 and V 61 are closed while the raw water pump P 1 and the chemical injection pump P 2 are operated. The flow path is selected so that the pipes 31 and 51 are in communication with the three-way valve V31. Next, the compressor 8 is started.
[0026]
Thereby, the introduction of the raw water into the membrane module 1 is stopped, and instead, the pressurized air from the compressor 8 is introduced to the primary side of the membrane module 1 through the collecting pipe 60 and the branch pipe 61.
[0027]
Raw water similarly to the membrane module 2-6 filtration step is introduced, but concentrated water is circulated to the raw water tank 7, the permeate of the membrane module 2-6 from branch pipe 22-26, the valve V 20 is closed As a result, the branched pipes 22, 23, 24, 25, and 26 are introduced into the secondary side of the membrane module 1 through the branched pipe 21.
[0028]
In the membrane module 1, when the permeated water of the membrane modules 2 to 6 introduced to the secondary side permeates the membrane, the contaminants attached to the membrane surface are peeled off and introduced from the pipe 61 to the primary side of the membrane. The peeling effect due to the pressurized air passing through the membrane module at a high speed is superimposed. That is, the backwash water and the pressurized air are mixed and the gas-liquid interface moves rapidly, a strong shearing force is applied to the adhered contaminants, and the adhered contaminants are sufficiently separated. The backwash waste water of the membrane module 1 containing the peeled material is discharged out of the apparatus through the pipes 51 and 50.
[0029]
Thus, after the membrane module 1 is backwashed, the membrane module 2 is backwashed by passing the permeated water of the membrane module 1 and the membrane modules 3 to 6 through the membrane module 2. In this case, the valves V 12 and V 61 are closed from the state shown in FIG. 2, the valves V 11 and V 62 are opened, the three-way valve V 31 is returned to the communication side of the pipes 31 and 41, and the three-way valve V 32 is turned on. Switch to the communication side of the pipes 32 and 52. In this way, the introduction of the raw water into the membrane module 2 is stopped, and instead, the pressurized air from the compressor 8 is introduced into the primary side of the membrane module 2 and the permeation of the membrane module 1 and the membrane modules 3 to 6 Water is introduced into the secondary side of the membrane module 2 to backwash the membrane module 2, and backwash wastewater is discharged out of the apparatus through the pipes 52 and 50.
[0030]
The membrane modules 3 to 6 can be sequentially backwashed by switching the flow paths in the same manner.
[0031]
After performing such backwashing for each membrane module, the filtration process is resumed by returning to the state of FIG.
[0032]
The flow path switching by the series of valves described above can be performed by automatic control without requiring manpower, and the back washing and filtration steps of each membrane module may be performed according to a preset time schedule.
[0033]
In this embodiment, a membrane permeate was collected retrieving main pipe 20 to the opening and closing valve V 20 from the membrane module is provided, at the time of backwashing, other membrane backwash subject of the membrane module close this valve V 20 Since backwashing can be performed by backflowing the permeated water of the module, facilities such as a permeating water tank and backwashing pump for backwashing are unnecessary, and in particular, the pump can be operated with only the raw water pump and the chemical injection pump. Become.
[0034]
In FIG. 2, only one membrane module 1 among the membrane modules 1 to 6 is backwashed, and the permeated water of the other membrane modules 2 to 6 is caused to flow back to the membrane module 1. You may backwash simultaneously about this or more membrane modules. For example, in FIG. 2, the valve V 62 is further opened, the valve V 12 is closed, and the three-way valve V 32 is selected on the communication side of the pipes 32 and 52 so that the permeated water of the membrane modules 3 to 6 is passed through the membrane module 1. , 2 may be made to flow backward to the secondary side, and the membrane modules 1 and 2 may be backwashed simultaneously.
[0035]
In order to pressurize the permeated water from the membrane module that has not been backwashed to the secondary side of the membrane module to be backwashed at a sufficient backwashing flow rate, the membrane module provided in the membrane filtration device However, it is desirable that the permeated water flow back from two or more membrane modules with respect to each membrane module to be backwashed. However, since excessive flow of permeated water may cause damage to the membrane, (number of membrane modules to be backwashed): (Supply permeate to membrane modules to be backwashed) The number of membrane modules) is preferably in the range of 1: 2-5.
[0036]
The membrane filtration device of FIGS. 1 and 2 is an example of an embodiment of the membrane filtration device of the present invention, and the present invention is not limited to the one shown in the drawings unless it exceeds the gist thereof. For example, in order to enhance the backwash effect in FIG. 1 and 2, are supplied to the primary side of the membrane pressurized air from the compressor during backwashing, pressurized air This, on the secondary side of the membrane It may be supplied and mixed in backwash water and backwashed with a gas-liquid mixed fluid.
[0037]
Such a membrane filtration device of the present invention is particularly suitable for a solid-liquid separation UF membrane separation device or MF membrane separation device used for various water treatments, or a desalting RO membrane separation device.
[0038]
【Effect of the invention】
As described above in detail, the membrane filtration device of the present invention directly passes the membrane permeated water obtained from other membrane modules through the membrane module that performs backwashing by selecting the direction of fluid passage by the fluid passage switching mechanism. Liquid can be backwashed. For this reason, facilities, such as a permeate tank and a backwash pump for backwashing, become unnecessary. In addition, equipment costs, power costs, and maintenance costs for backwashing can be reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a filtration process of a membrane filtration device according to an embodiment of the present invention.
FIG. 2 is a system diagram showing a backwashing process of the membrane filtration device of FIG.
[Explanation of symbols]
1, 2, 3, 4, 5, 6 Membrane module 7 Raw water tank 8 Compressor 9A Residual chlorine meter 9B Turbidity meter

Claims (1)

複数の膜モジュールを備える膜濾過装置において、逆洗を行う膜モジュールに、他の膜モジュールから得られる膜透過水を直接通液して逆洗するように通液路を切り替える通液路切替機構と、各膜モジュールに加圧空気を供給するためのコンプレッサ及び空気配管とを備え、
逆洗を行う膜モジュールへの原水の導入を停止し、代りにコンプレッサからの加圧空気を該逆洗を行う膜モジュールの1次側に導入すると共に、他の膜モジュールの透過水を該逆洗を行う膜モジュールの2次側に導入して逆洗を行うか、或いは、逆洗を行う膜モジュールの2次側に加圧空気を供給し、逆洗水中に混合して気液混合流体で逆洗を行うように構成されている膜濾過装置であって、
原水槽(7)に原水主配管(10)が接続され、この原水主配管(10)から原水枝配管が分岐しており、各原水枝配管の末端側が各膜モジュールの原水導入口に接続され、各原水枝配管に開閉バルブが設けられ、各膜モジュールの濃縮水流出口は、配管を介して三方バルブの流入ポートに接続され、該三方バルブはそれぞれ2個の流出ポートを備えており、そのうちの一方の流出ポートにそれぞれ濃縮水循環用の枝配管が接続され、これらの濃縮水枝配管は濃縮水主配管(40)に接続されており、前記三方バルブの他方の流出ポートにはそれぞれ逆洗排水排出用の枝配管の一端が接続され、該枝配管の他端は逆洗排水排出用の主配管(50)に接続されており、前記膜モジュールの透過水流出口には、それぞれ透過水取出用の枝配管の一端が接続されており、該枝配管の他端は透過水取出用の主配管(20)に接続されており、前記原水枝配管の各開閉バルブと各膜モジュールとの間の部分に対し空気枝配管の末端側が接続され、各空気枝配管の上流端側は空気主配管(60)に接続され、この空気主配管(60)はコンプレッサ(8)に接続されていることを特徴とする膜濾過装置。
In a membrane filtration apparatus including a plurality of membrane modules, a fluid passage switching mechanism that switches a fluid passage so that membrane permeated water obtained from other membrane modules is directly passed through a membrane module that performs back washing and backwashed. And a compressor and air piping for supplying pressurized air to each membrane module,
The introduction of raw water into the membrane module to be backwashed is stopped, and instead, pressurized air from the compressor is introduced to the primary side of the membrane module to be backwashed, and the permeated water of other membrane modules is Introduce into the secondary side of the membrane module to be washed and perform backwashing, or supply pressurized air to the secondary side of the membrane module to perform backwashing and mix in backwash water to mix gas-liquid fluid A membrane filtration device configured to perform backwashing at
The raw water main pipe (10) is connected to the raw water tank (7), the raw water branch pipe is branched from the raw water main pipe (10), and the terminal side of each raw water branch pipe is connected to the raw water inlet of each membrane module. In addition, each raw water branch pipe is provided with an open / close valve, and the concentrated water outlet of each membrane module is connected to the inflow port of the three-way valve through the pipe, and each of the three-way valves has two outflow ports, Branch pipes for circulating the concentrated water are connected to one outflow port of each of these, and these concentrated water branch pipes are connected to the concentrated water main pipe (40). One end of a branch pipe for discharge is connected, and the other end of the branch pipe is connected to a main pipe (50) for discharging backwash drainage, and each of the permeate outlets of the membrane module is for permeate discharge. One of the branch piping And the other end of the branch pipe is connected to a main pipe (20) for extracting permeated water, and an air branch is connected to a portion between each open / close valve and each membrane module of the raw water branch pipe. Membrane filtration characterized in that the end side of the pipe is connected, the upstream end side of each air branch pipe is connected to the air main pipe (60), and this air main pipe (60) is connected to the compressor (8). apparatus.
JP2001159225A 2001-05-28 2001-05-28 Membrane filtration device Expired - Fee Related JP4882164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159225A JP4882164B2 (en) 2001-05-28 2001-05-28 Membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159225A JP4882164B2 (en) 2001-05-28 2001-05-28 Membrane filtration device

Publications (2)

Publication Number Publication Date
JP2002346348A JP2002346348A (en) 2002-12-03
JP4882164B2 true JP4882164B2 (en) 2012-02-22

Family

ID=19002843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159225A Expired - Fee Related JP4882164B2 (en) 2001-05-28 2001-05-28 Membrane filtration device

Country Status (1)

Country Link
JP (1) JP4882164B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040930A1 (en) * 2003-10-28 2005-05-06 Toppan Printing Co., Ltd. Development device, development method, and developer circulating method
JP5232393B2 (en) * 2007-02-28 2013-07-10 三菱レイヨン・クリンスイ株式会社 Water purifier
JP5037457B2 (en) * 2007-09-18 2012-09-26 旭化成ケミカルズ株式会社 Drinking water filtration system
TW200927274A (en) * 2007-09-18 2009-07-01 Asahi Kasei Chemicals Corp Hollow yarn film filtering apparatus
DE102009040142A1 (en) * 2009-09-04 2011-03-10 Krones Ag Process and plant for filtering water, in particular ultrafiltration process
WO2011062268A1 (en) * 2009-11-20 2011-05-26 三菱レイヨン・クリンスイ株式会社 Water purification device and method for operating same
JP5420451B2 (en) * 2010-03-01 2014-02-19 旭化成ケミカルズ株式会社 Filtration device
JP5434752B2 (en) * 2010-03-31 2014-03-05 栗田工業株式会社 Filtration device and operation method thereof
JP5830989B2 (en) * 2011-07-08 2015-12-09 宇部興産株式会社 Mixed gas separator
WO2013035928A1 (en) * 2011-09-09 2013-03-14 주식회사 포스코건설 Membrane filtering device without treated water storage and membrane washing method thereof
ES2764806T3 (en) * 2012-04-15 2020-06-04 Ben Gurion Univ Method and apparatus for performing high recovery desalination with pressure actuated membranes
US10245556B2 (en) 2012-04-15 2019-04-02 Ben Gurion University Of The Negev Research And Development Authority Method and apparatus for effecting high recovery desalination with pressure driven membranes
KR101944514B1 (en) 2013-06-10 2019-01-31 코오롱인더스트리 주식회사 System and Method for Filtration
JP6509421B1 (en) * 2018-12-27 2019-05-08 株式会社クボタ Membrane filtration apparatus and cleaning method of membrane filtration apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250831A (en) * 1990-12-28 1992-09-07 Kuraray Co Ltd Method and device for recovering filter device
JP3013646B2 (en) * 1993-02-09 2000-02-28 東レ株式会社 Filtration device
JPH10263539A (en) * 1997-03-28 1998-10-06 Japan Organo Co Ltd Member treating method of water to be treated and membrane treating device

Also Published As

Publication number Publication date
JP2002346348A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP4882164B2 (en) Membrane filtration device
JP4166464B2 (en) Osmotic power generation system with seawater desalination equipment
JP4996067B2 (en) Water treatment apparatus using reverse osmosis membrane and method of using the same
AU2010334047B2 (en) Water production system and operation method therefor
US8795527B2 (en) Filtration system
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
IE902678L (en) Membrane separation system
KR20100127885A (en) Hollow yarn film filtering apparatus
JP2007136273A (en) Pressurized type membrane filtration apparatus
EP1289632B1 (en) Method and device for purifying water
WO2011062268A1 (en) Water purification device and method for operating same
KR101769609B1 (en) Two-way back washing device and reverse osmosis water purification system using the same
WO2007043879A1 (en) Apparatus for the purification of water and a method for its use
JPS61230707A (en) Ultrafiltration method
JP2002248324A (en) Membrane separation apparatus and its backwashing method
JP4360001B2 (en) Membrane filtration device
JP2018158297A (en) Method for operating membrane filtration device and membrane filtration device
US10639590B2 (en) Filtration system and method for chemical rinsing a filtration system
JP5249104B2 (en) Membrane filtration system and cleaning method thereof
KR101256704B1 (en) System and Method for Filtering
CN107686210A (en) The purging method of water treatment system and the water treatment system
WO2017046214A1 (en) Filtration system and method for backwashing a filtration system
JP6029904B2 (en) Membrane filtration system and operation control method thereof
JP2005046762A (en) Water treatment method and water treatment apparatus
WO2012157668A1 (en) Filtration apparatus and method for washing filtration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees