JP4881180B2 - Spot welding inspection method and inspection apparatus - Google Patents

Spot welding inspection method and inspection apparatus Download PDF

Info

Publication number
JP4881180B2
JP4881180B2 JP2007031795A JP2007031795A JP4881180B2 JP 4881180 B2 JP4881180 B2 JP 4881180B2 JP 2007031795 A JP2007031795 A JP 2007031795A JP 2007031795 A JP2007031795 A JP 2007031795A JP 4881180 B2 JP4881180 B2 JP 4881180B2
Authority
JP
Japan
Prior art keywords
time
workpiece
wave
melted
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007031795A
Other languages
Japanese (ja)
Other versions
JP2007248457A (en
Inventor
薫 柴田
光隆 伊賀上
徳昭 重松
典子 栗本
健策 金安
仁 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007031795A priority Critical patent/JP4881180B2/en
Publication of JP2007248457A publication Critical patent/JP2007248457A/en
Application granted granted Critical
Publication of JP4881180B2 publication Critical patent/JP4881180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スポット溶接中のワークに横波の超音波を入射して溶融部の大きさを推定する検査方法及び検査装置に関する。   The present invention relates to an inspection method and an inspection apparatus for estimating the size of a melted portion by making a transverse wave ultrasonic wave incident on a workpiece during spot welding.

この種の検査方法として反射法と透過法が知られている。   A reflection method and a transmission method are known as this type of inspection method.

反射法は、予め、反射波の強度の最大値と溶融部の大きさに関する相関データを取っておき、溶融部からの反射波の強度をモニターしながら溶接を行なう。反射波の強度は、溶融部が成長するのにともなって増加し、溶融部が凝固するのにともなって減少するので、反射波強度の最大値を相関データと対応させて溶融部の大きさを求める。   In the reflection method, correlation data relating to the maximum value of the intensity of the reflected wave and the size of the melted part is collected in advance, and welding is performed while monitoring the intensity of the reflected wave from the melted part. The intensity of the reflected wave increases as the melted part grows and decreases as the melted part solidifies, so the maximum value of the reflected wave intensity is correlated with the correlation data to increase the size of the melted part. Ask.

なお、反射波強度の最大値からではなく、超音波のワーク中の伝播時間から溶融部の大きさを求める方法も提案されている。この方法では、まず、超音波が溶融部で反射してセンサに戻って来るまでの時間を計測する。一方、溶接電流値や通電時間などからワークの温度を推定し、ワーク中の音速を求める。そして、音速と伝播時間の関係よりセンサから溶融部までの距離を求め、ワークの肉厚から溶融部の厚さを求める。   In addition, a method has been proposed in which the size of the melted part is determined not from the maximum value of the reflected wave intensity but from the propagation time of the ultrasonic wave in the workpiece. In this method, first, the time until the ultrasonic wave is reflected by the melted portion and returns to the sensor is measured. On the other hand, the temperature of the workpiece is estimated from the welding current value, energization time, etc., and the speed of sound in the workpiece is obtained. And the distance from a sensor to a fusion | melting part is calculated | required from the relationship between a sound speed and propagation time, and the thickness of a fusion | melting part is calculated | required from the thickness of a workpiece | work.

透過法は、予め、透過波強度の最小値と溶融部の大きさに関する相関データを取っておく。そして、ワークを透過する超音波の強度をモニターしながら溶接を行なう。透過波の強度は、溶融部が成長するのにともなって減少し、溶融部が凝固するのにともなって増加するので、透過波強度の最小値を相関データと対応させて溶融部の大きさを求める。   In the transmission method, correlation data relating to the minimum value of the transmitted wave intensity and the size of the melted portion is collected in advance. Then, welding is performed while monitoring the intensity of ultrasonic waves that pass through the workpiece. The intensity of the transmitted wave decreases as the melted portion grows and increases as the melted portion solidifies, so the minimum value of the transmitted wave intensity is correlated with the correlation data to increase the size of the melted portion. Ask.

なお、透過波の減衰量から溶融部の大きさを求める方法も提案されている(特許文献1参照)。この方法は、超音波の透過率からワーク中の音速を求め、その値からワークの温度を求め、その値からワークの融点に達した時刻を求める。そして、融点到達時からの透過率の減衰量を求め、その値と対応する溶融部の大きさを相関データより求める。   A method for obtaining the size of the melted part from the attenuation of the transmitted wave has also been proposed (see Patent Document 1). In this method, the speed of sound in the work is obtained from the transmittance of ultrasonic waves, the temperature of the work is obtained from the value, and the time when the melting point of the work is reached is obtained from the value. Then, the attenuation amount of the transmittance after reaching the melting point is obtained, and the size of the melted portion corresponding to the value is obtained from the correlation data.

特許第3644958号公報Japanese Patent No. 3644958

しかし、いずれの方法でも、電極チップの傾きによって、超音波がワークに垂直に入射しなくなると、反射波と透過波の強度が低下してしまい、溶融部容積の判定精度が悪くなる。また、超音波の伝播時間から溶融部の厚さを求める場合、ワークの温度や伝播時間の測定誤差が溶融部容積の判定精度に大きな影響を及ぼすという問題がある。   However, in any method, if the ultrasonic wave does not enter the workpiece perpendicularly due to the inclination of the electrode tip, the intensity of the reflected wave and the transmitted wave is lowered, and the accuracy of determination of the melted part volume is deteriorated. Further, when the thickness of the melted part is obtained from the propagation time of the ultrasonic wave, there is a problem that measurement accuracy of the workpiece temperature and propagation time has a great influence on the determination accuracy of the melted part volume.

なお、ワークが亜鉛メッキ鋼板の場合、亜鉛の融点は鉄の融点よりも低いため、鉄の溶融が始まった時には、亜鉛は既に溶融している。つまり、溶融したメッキ層で超音波が反射してしまうため、透過波も母材溶融部からの反射波も検出できなくなり、いずれの方法による検査も不可能になる。   When the workpiece is a galvanized steel sheet, the melting point of zinc is lower than the melting point of iron. Therefore, when the melting of iron starts, the zinc is already melted. That is, since the ultrasonic wave is reflected by the molten plating layer, neither the transmitted wave nor the reflected wave from the base material melting portion can be detected, and the inspection by any method becomes impossible.

本発明は、このような事情に鑑み、ワークに対する超音波の入射角やワーク温度の変化による影響を受けることなく、溶融部の大きさを正確に推定することができるスポット溶接の検査方法及び検査装置を提供することを目的とする。   In view of such circumstances, the present invention is a spot welding inspection method and inspection capable of accurately estimating the size of the melted part without being affected by the change in the incident angle of the ultrasonic wave or the workpiece temperature on the workpiece. An object is to provide an apparatus.

上記課題を解決するための本発明のスポット溶接の検査方法として、溶融部の大きさの推定に、溶融部からの反射波を利用する第1検査方法および溶融部からの透過波を利用する第2検査方法がある。   As a spot welding inspection method of the present invention for solving the above-mentioned problems, a first inspection method using a reflected wave from a molten part and a transmitted wave from a molten part are used to estimate the size of the molten part. There are two inspection methods.

本発明のスポット溶接の第1検査方法は、スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法であって、ワークに横波の超音波を入射して溶融部からの反射波を検出する工程と、ワークへの溶接電流の通電を停止する第1の時刻を検出する工程と、溶融部からの反射波の強度が所定値まで低下する第2の時刻を検出する工程と、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより溶融部の大きさを推定する工程とを備えたことを特徴としている。   The first inspection method for spot welding according to the present invention is a method for estimating the size of a melted portion by injecting ultrasonic waves into a workpiece being spot welded. A step of detecting the reflected wave, a step of detecting a first time at which energization of the welding current to the workpiece is stopped, and a second time at which the intensity of the reflected wave from the melted portion is reduced to a predetermined value. The difference between the process and the first time and the second time is set as the solidification time of the molten portion, and the solidification time is compared with correlation data regarding the size of the molten portion and the solidification time. And an estimating step.

かかる構成によれば、溶融部の大きさが大きくなると、それに応じて反射波の強度が大きくなる。溶接電流の通電を停止した時には、溶融部の大きさが最大となる。溶接電流の通電を停止した後、溶融部の凝固が進行すると、それに応じて反射波の強度が小さくなる。溶融部の凝固が終了した時には、反射波の強度は所定値まで低下している。ワークに対し超音波が斜めに入射すると、溶融部からの反射波の強度が低下するが、溶融部の凝固に要する時間は変化しない。つまり、ワークへの溶接電流の通電を停止する第1の時刻と溶融部からの反射波の強度が所定値まで低下する第2の時刻とを検出し、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を相関データと照合して溶融部の大きさを推定することにより、ワークに対する超音波の入射角変化の影響を受けることなく、溶融部の大きさを正確に求めることができる。   According to this configuration, when the size of the melted portion increases, the intensity of the reflected wave increases accordingly. When the energization of the welding current is stopped, the size of the melted portion is maximized. After the energization of the welding current is stopped, when the solidification of the melted portion proceeds, the intensity of the reflected wave decreases accordingly. When the solidification of the molten part is completed, the intensity of the reflected wave is reduced to a predetermined value. When the ultrasonic wave is incident obliquely on the workpiece, the intensity of the reflected wave from the melted portion decreases, but the time required for solidification of the melted portion does not change. In other words, the first time when the welding current is not supplied to the workpiece and the second time when the intensity of the reflected wave from the melted portion is reduced to a predetermined value are detected, and the first time and the second time are detected. Is the solidification time of the melted part, and the solidification time is compared with the correlation data to estimate the size of the melted part. Can be obtained accurately.

亜鉛メッキ鋼板を溶接する際には、超音波が溶融メッキ層で反射し、母材溶融部からの反射波を検出できなくなる。また、反射波の検出に用いるセンサの径が溶融部の最大径より小さい場合、溶融部におけるセンサ径を超える端部からの反射波を検出できなくなる。したがって、これらの場合、上記のようにワークへの溶接電流の通電を停止するときを第1の時刻として用いることが有効である。   When welding a galvanized steel sheet, ultrasonic waves are reflected by the hot-dip plating layer, and the reflected wave from the base metal melting portion cannot be detected. Further, when the diameter of the sensor used for detecting the reflected wave is smaller than the maximum diameter of the melted part, it is impossible to detect the reflected wave from the end part exceeding the sensor diameter in the melted part. Therefore, in these cases, it is effective to use the time when the energization of the welding current to the workpiece is stopped as described above as the first time.

第1検査方法では、溶融部からの反射波の強度が最大になる時を第1の時刻として用いることができる。すなわち、本発明のスポット溶接の他の第1検査方法は、スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法であって、ワークに横波の超音波を入射して溶融部からの反射波を検出する工程と、溶融部からの反射波の強度が最大になる第1の時刻を検出する工程と、溶融部からの反射波の強度が所定値まで低下する第2の時刻を検出する工程と、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより溶融部の大きさを推定する工程とを備えたことを特徴としている。   In the first inspection method, the time when the intensity of the reflected wave from the melted portion becomes maximum can be used as the first time. That is, another first inspection method for spot welding according to the present invention is a method for estimating the size of a melted portion by injecting ultrasonic waves into a workpiece during spot welding, and applying ultrasonic waves of transverse waves to the workpiece. Detecting the reflected wave from the melting part, detecting the first time at which the intensity of the reflected wave from the melting part becomes maximum, and reducing the intensity of the reflected wave from the melting part to a predetermined value. By detecting the time of 2 and the difference between the first time and the second time as the solidification time of the melted portion, and comparing the solidification time with correlation data relating to the size of the melted portion and the solidification time And a step of estimating the size of the melting part.

かかる構成によれば、溶融部の大きさが最大になると、反射波の強度が最大値に達する。ワークに超音波が斜めに入射すると、反射波の強度は低下するが、その値が最大値に達する時刻は変化しない。つまり、反射波の強度が最大値に達する時刻を始期として凝固時間を求めればよい。かかる構成は、亜鉛メッキ鋼板を用いない場合やセンサの径が溶融部の最大径以上の場合に有効である。   According to such a configuration, when the size of the melted portion is maximized, the intensity of the reflected wave reaches the maximum value. When the ultrasonic wave is incident obliquely on the workpiece, the intensity of the reflected wave decreases, but the time when the value reaches the maximum value does not change. That is, the coagulation time may be obtained starting from the time when the intensity of the reflected wave reaches the maximum value. Such a configuration is effective when a galvanized steel sheet is not used or when the diameter of the sensor is equal to or larger than the maximum diameter of the melted part.

本発明のスポット溶接の第2検査方法は、スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法であって、ワークに横波の超音波を入射して溶融部からの透過波を検出する工程と、ワークへの溶接電流の通電を停止する第1の時刻を検出する工程と、溶融部からの透過波の強度が所定値まで増加する第2の時刻を検出する工程と、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより溶融部の大きさを推定する工程とを備えたことを特徴としている。   The second inspection method for spot welding according to the present invention is a method for estimating the size of the melted part by injecting ultrasonic waves into the workpiece during spot welding, and injecting the ultrasonic wave of the transverse wave into the work from the melted part. A step of detecting a transmitted wave, a step of detecting a first time at which energization of the welding current to the workpiece is stopped, and a second time at which the intensity of the transmitted wave from the melting portion increases to a predetermined value. The difference between the process and the first time and the second time is set as the solidification time of the molten portion, and the solidification time is compared with correlation data regarding the size of the molten portion and the solidification time. And an estimating step.

かかる構成によれば、溶融部の大きさが大きくなると、それに応じて透過波の強度が小さくなる。溶接電流の通電を停止した時には、溶融部の大きさが最大となる。溶接電流の通電を停止した後、溶融部の凝固が進行すると、それに応じて透過波の強度が大きくなる。溶融部の凝固が終了した時には、透過波の強度は所定値まで増加している。ワークに対し超音波が斜めに入射すると、溶融部からの透過波の強度が低下するが、溶融部の凝固に要する時間は変化しない。つまり、ワークへの溶接電流の通電を停止する第1の時刻と溶融部からの透過波の強度が所定値まで増加する第2の時刻とを検出し、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を相関データと照合して溶融部の大きさを推定することにより、ワークに対する超音波の入射角変化の影響を受けることなく、溶融部の大きさを正確に求めることができる。   According to this configuration, when the size of the melted portion increases, the intensity of the transmitted wave decreases accordingly. When the energization of the welding current is stopped, the size of the melted portion is maximized. After the energization of the welding current is stopped, as the solidification of the molten portion proceeds, the intensity of the transmitted wave increases accordingly. When the solidification of the molten part is completed, the intensity of the transmitted wave has increased to a predetermined value. When the ultrasonic wave is incident obliquely on the workpiece, the intensity of the transmitted wave from the melted portion decreases, but the time required for solidification of the melted portion does not change. That is, the first time at which the energization of the welding current to the workpiece is stopped and the second time at which the intensity of the transmitted wave from the molten portion increases to a predetermined value are detected, and the first time and the second time are detected. Is the solidification time of the melted part, and the solidification time is compared with the correlation data to estimate the size of the melted part. Can be obtained accurately.

亜鉛メッキ鋼板を溶接する際には、超音波が溶融メッキ層で反射し、母材溶融部からの透過波を検出できなくなる。また、透過波の検出に用いるセンサの径が溶融部の最大径より小さい場合、ワークの溶融部に対応する部分におけるセンサ径を超える端部からの透過波を検出できなくなる。したがって、これらの場合、上記のようにワークへの溶接電流の通電を停止するときを第1の時刻として用いることが有効である。   When welding a galvanized steel sheet, the ultrasonic wave is reflected by the hot-dip plating layer, and the transmitted wave from the base metal melting portion cannot be detected. Further, when the diameter of the sensor used for detecting the transmitted wave is smaller than the maximum diameter of the melted portion, the transmitted wave from the end portion exceeding the sensor diameter in the portion corresponding to the melted portion of the workpiece cannot be detected. Therefore, in these cases, it is effective to use the time when the energization of the welding current to the workpiece is stopped as described above as the first time.

第2検査方法では、溶融部からの透過波の強度が最小になる時を第1の時刻として用いることができる。すなわち、本発明のスポット溶接の他の第2検査方法は、スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法であって、ワークに横波の超音波を入射して溶融部からの透過波を検出する工程と、溶融部からの透過波の強度が最小になる第1の時刻を検出する工程と、溶融部からの透過波の強度が所定値まで増加する第2の時刻を検出する工程と、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより溶融部の大きさを推定する工程とを備えたことを特徴としている。   In the second inspection method, the time when the intensity of the transmitted wave from the melted portion is minimized can be used as the first time. That is, another second inspection method for spot welding according to the present invention is a method for estimating the size of a melted portion by injecting ultrasonic waves into a workpiece during spot welding, and injecting ultrasonic waves of transverse waves into the workpiece. Detecting the transmitted wave from the melting part, detecting the first time at which the intensity of the transmitted wave from the melting part is minimized, and increasing the intensity of the transmitted wave from the melting part to a predetermined value. By detecting the time of 2 and the difference between the first time and the second time as the solidification time of the melted portion, and comparing the solidification time with correlation data relating to the size of the melted portion and the solidification time And a step of estimating the size of the melting part.

かかる構成によれば、溶融部の大きさが最大になると、透過波の強度が最小値に達する。ワークに超音波が斜めに入射すると、透過波の強度は低下するが、その値が最小値に達する時刻は変化しない。つまり、透過波の強度が最小値に達する時刻を始期として凝固時間を求めればよい。かかる構成は、亜鉛メッキ鋼板を用いない場合やセンサの径が溶融部の最大径以上の場合に有効である。   According to this configuration, when the size of the melted portion is maximized, the intensity of the transmitted wave reaches the minimum value. When the ultrasonic wave is incident obliquely on the workpiece, the intensity of the transmitted wave is reduced, but the time when the value reaches the minimum value does not change. That is, the coagulation time may be obtained starting from the time when the intensity of the transmitted wave reaches the minimum value. Such a configuration is effective when a galvanized steel sheet is not used or when the diameter of the sensor is equal to or larger than the maximum diameter of the melted part.

本発明のスポット溶接の検査装置として、本発明の第1検査方法を用いる第1検査装置および本発明の第2検査方法を用いる第2検査装置がある。   As the spot welding inspection apparatus of the present invention, there are a first inspection apparatus using the first inspection method of the present invention and a second inspection apparatus using the second inspection method of the present invention.

本発明のスポット溶接の第1検査装置は、スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する装置であって、溶融部の大きさと凝固時間とに関する相関データを記憶する記憶手段と、ワークに横波の超音波を入射して溶融部からの反射波を検出するセンサと、ワークへの溶接電流の通電を停止する第1の時刻と、溶融部からの反射波の強度が所定値まで低下する第2の時刻とを検出する検出手段と、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を相関データと照合することにより溶融部の大きさを推定する判定手段とを備えたことを特徴としている。かかる構成では、本発明の第1検査方法と同様な作用・効果を得ることができる。   The first inspection apparatus for spot welding according to the present invention is an apparatus for estimating the size of a molten part by injecting ultrasonic waves into a workpiece during spot welding, and stores correlation data regarding the size of the molten part and the solidification time. Storage means, a sensor for detecting a reflected wave from the melted part by injecting a transverse wave ultrasonic wave into the work, a first time at which energization of the welding current to the work is stopped, and a reflected wave from the melted part By detecting the second time when the intensity decreases to a predetermined value, the difference between the first time and the second time is set as the solidification time of the melted portion, and the solidification time is collated with correlation data And a judging means for estimating the size of the melted portion. With such a configuration, the same operation and effect as the first inspection method of the present invention can be obtained.

本発明のスポット溶接の第2検査装置は、スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する装置であって、溶融部の大きさと凝固時間に関する相関データを記憶する記憶手段と、ワークに横波の超音波を入射する超音波発生手段と、溶融部からの透過波を検出するセンサと、ワークへの溶接電流の通電を停止する第1の時刻と、溶融部からの透過波の強度が所定値まで増加する第2の時刻とを検出する検出手段と、第1の時刻と第2の時刻との差を溶融部の凝固時間とし、その凝固時間を相関データと照合することにより溶融部の大きさを推定する判定手段とを備えたことを特徴としている。かかる構成では、本発明の第2検査方法と同様な作用・効果を得ることができる。   The second inspection apparatus for spot welding according to the present invention is an apparatus for estimating the size of a melted portion by injecting ultrasonic waves into a workpiece during spot welding, and stores correlation data relating to the size of the melted portion and the solidification time. Storage means, ultrasonic wave generating means for injecting ultrasonic waves of a transverse wave into the work, a sensor for detecting a transmitted wave from the melting part, a first time at which energization of the welding current to the work is stopped, and from the melting part Detecting means for detecting the second time at which the intensity of the transmitted wave increases to a predetermined value, and the difference between the first time and the second time as the solidification time of the melted portion, and the solidification time as the correlation data And a judging means for estimating the size of the melted part by collation. With such a configuration, it is possible to obtain the same operation and effect as the second inspection method of the present invention.

本発明によれば、反射波や透過波の強度からではなく、溶融部の凝固時間から溶融部の大きさを推定しているので、ワークに対する超音波の入射角の変化や、ワーク温度の変化による影響を受けることなく、溶融部の大きさを正確に推定することができる。   According to the present invention, since the size of the melted portion is estimated not from the intensity of the reflected wave or the transmitted wave but from the solidification time of the melted portion, the change in the incident angle of the ultrasonic wave to the workpiece or the change in the workpiece temperature The size of the melted part can be accurately estimated without being affected by the above.

(1)第1実施形態
以下、本発明の第1実施形態を添付図面に基づいて詳細に説明する。図1は本発明に係る第1実施形態の検査装置のブロック図を示している。図1において、符号1はスポット溶接ガンの電極チップで、ワークWに超音波を入射するセンサ2を内蔵している。電極チップ1からワークWへの溶接電流およびその通電時間は、溶接タイマ(図示略)により制御される。センサ2は超音波送受信器3からのパルス信号を受けて横波の超音波を発生し、その反射波を電気信号に変換して超音波送受信器3に戻す。反射波の信号は超音波送受信器3で増幅されて検出手段4に送られる。
(1) 1st Embodiment Hereinafter, 1st Embodiment of this invention is described in detail based on an accompanying drawing. FIG. 1 shows a block diagram of an inspection apparatus according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an electrode tip of a spot welding gun, which incorporates a sensor 2 that makes ultrasonic waves incident on a workpiece W. The welding current from the electrode tip 1 to the workpiece W and the energization time thereof are controlled by a welding timer (not shown). The sensor 2 receives a pulse signal from the ultrasonic transmitter / receiver 3, generates a transverse ultrasonic wave, converts the reflected wave into an electric signal, and returns it to the ultrasonic transmitter / receiver 3. The reflected wave signal is amplified by the ultrasonic transmitter / receiver 3 and sent to the detecting means 4.

検出手段4は、反射波の強度が最大になる第1の時刻と、反射波の強度が所定値まで低下する第2の時刻とを検出し、その信号を判定手段5に送る。判定手段5は、第1及び第2の時刻の差から溶融部の凝固時間を求め、これを記憶手段6の相関データと照合し、凝固時間と対応する溶融部の大きさを求める。記憶手段6には、溶融部の大きさと凝固時間に関する相関データが記憶されている。なお、溶融部の大きさとは、溶融部の直径や容積のことをいう。   The detection means 4 detects the first time when the intensity of the reflected wave becomes maximum and the second time when the intensity of the reflected wave decreases to a predetermined value, and sends the signal to the determination means 5. The determination means 5 obtains the solidification time of the melted part from the difference between the first and second times, compares this with the correlation data in the storage means 6 and obtains the size of the melted part corresponding to the solidification time. The storage means 6 stores correlation data regarding the size of the melted portion and the solidification time. The size of the melted part means the diameter or volume of the melted part.

次に、反射波の強度から溶融部の大きさを推定する方法について、図2,9を参照しながら詳細に説明する。図2は、反射波強度と溶接電流の経時変化を示す図である。図9(a)〜(d)は、スポット溶接中のワークに横波の超音波を入射している状態の遷移を示す概略図である。   Next, a method for estimating the size of the melted part from the intensity of the reflected wave will be described in detail with reference to FIGS. FIG. 2 is a diagram showing changes with time in reflected wave intensity and welding current. FIGS. 9A to 9D are schematic views showing transition of a state in which a transverse ultrasonic wave is incident on a workpiece during spot welding.

まず、図1に示すように、ワークWを電極チップ1,1で挟んで加圧し、時刻tで溶接電流の通電を開始する。図2において、実線Aは溶接電流の変化を示している。ワークWでの溶融部発生前には反射波は観察されないが(図9(a))、溶接電流の通電によってワークWが発熱溶融すると、時刻tで溶融部Lからの反射波が観察される。溶融部Lの大きさが大きくなると、それに応じて反射波の強度が大きくなる。図2において、実線Bは反射波の強度変化を示している。溶融が進むと、センサ2から溶融部Lまでの距離が小さくなり、反射波の出現時間は短くなる。図2において、点線Cは反射波の出現時間を示している。なお、反射波の出現時間とは、センサ2から発信された超音波が溶融部Lで反射し、センサ2に戻って来るまでの時間をいい、図2上段の反射波形図でtで示されている。図2では、時間tを、各入射波に対応する反射波の立ち上がりまでの時間としているが、これに限定されるものではない。たとえば、各反射波の強度のピーク時や、各反射波の立ち上がりとその消失との中間の時点までの時間を時間tとしてもよい。図2下段の反射波強度と溶接電流の経時変化を示す図では、反射波の観測時刻を、反射波の送信時刻に時間tを足し合わせたものとしている。 First, as shown in FIG. 1, to start the energization of the welding current pressed across the workpiece W at the electrode tip 1,1, at time t s. In FIG. 2, a solid line A indicates a change in welding current. Although the reflected wave before fusion zone generated in the workpiece W is not observed (FIG. 9 (a)), the workpiece W is heated melted by energization of the welding current, the reflected wave from the melting portion L at time t 0 is observed The As the size of the melted portion L increases, the intensity of the reflected wave increases accordingly. In FIG. 2, a solid line B indicates a change in the intensity of the reflected wave. As the melting progresses, the distance from the sensor 2 to the melting portion L decreases, and the appearance time of the reflected wave decreases. In FIG. 2, a dotted line C indicates the appearance time of the reflected wave. Incidentally, shows the appearance time of the reflected wave, the ultrasonic wave transmitted from the sensor 2 is reflected by the melt portion L, refers to a time to come back to the sensor 2, in t a in reflection waveform diagram of FIG. 2 upper Has been. In Figure 2, the time t a, although the time until the rise of the reflected wave corresponding to each incident wave, but is not limited thereto. For example, at the peak of the intensity of the reflected wave, the time until the middle point of the rising of the reflected wave and its disappearance may be time t a. In the graph showing the time course of the reflected wave intensity and the welding current in FIG. 2 lower part, it is assumed that the observation time of the reflected wave, the sum of the time t a the transmission time of the reflected wave.

時刻tで溶接電流の通電を停止すると、溶融部Lの凝固が始まり凝固部Mが生成され、反射波の強度は減少に転じる。つまり、通電停止の時刻tで溶融部Lの大きさと反射波の強度が最大になる(図9(b))。溶融部の凝固が進行すると(図9(c))、それに応じて反射波の強度が小さくなる一方、反射波の出現時間は長くなる。溶融部の凝固が終了する時刻tでは、反射波が消失し、その強度がゼロになる(図9(d))。 If you stop the energization of the welding current at time t 1, the solidification section M is generated begin solidification of the molten portion L, the intensity of the reflected wave starts to decrease. In other words, the strength of the size and the reflected wave of the molten portion L at time t 1 of energization stop is maximized (Fig. 9 (b)). When solidification of the melted portion proceeds (FIG. 9C), the intensity of the reflected wave decreases correspondingly, and the appearance time of the reflected wave increases. At time t 3 the solidification of the molten portion is completed, the reflected wave is disappeared, the intensity becomes zero (FIG. 9 (d)).

溶融部Lの凝固時間は、反射波の強度が最大になる時刻tを始期(第1の時刻)とし、反射波の強度がゼロになる時刻tを終期(第2の時刻)として算出すればよい。ただし、時刻tを終期とすると、ノイズの影響により計測誤差を生じ易くなる。そこで、ゼロよりも若干大きい閾値を設定し、反射波の強度が閾値まで達した時刻t(第2の時刻)を凝固時間の終期としてもよい。 The solidification time of the melted part L is calculated with the time t 1 when the intensity of the reflected wave becomes maximum as the start (first time) and the time t 3 when the intensity of the reflected wave becomes zero as the end (second time). do it. However, when the time t 3 to the end, tends to occur a measurement error due to noise. Therefore, a threshold value slightly larger than zero may be set, and the time t 2 (second time) when the intensity of the reflected wave reaches the threshold value may be the end of the coagulation time.

この場合、凝固時間Tは真の値(t−t)よりも若干短くなるが、相関データの作成に際し、以上の値(t−t)を凝固時間として採用しておけば、溶融部の判定精度に対する影響は殆どない。 In this case, the coagulation time T is slightly shorter than the true value (t 3 -t 1 ). However, if the above value (t 2 -t 1 ) is used as the coagulation time when creating the correlation data, There is almost no influence on the determination accuracy of the molten part.

なお、センサ2は、ワークWにおけるセンサ径を超える部分からの反射波を検出することができないから、溶融部Lからの反射波強度の検出限界はセンサ2のセンサ径に規定される。すなわち、図9(a)〜9(d)に示すように、センサ径が溶融部Lの最大径以上の場合、センサ2は、溶融部Lの全ての部分からの反射波を検出することができるので、センサ2は反射波強度の最大値を検出することができる(図2の実線B、図3の破線B)。したがって、この場合、上記のように反射波の強度が最大になる時刻tを始期(第1の時刻)として用いることができる。 Since the sensor 2 cannot detect a reflected wave from a portion of the workpiece W exceeding the sensor diameter, the detection limit of the reflected wave intensity from the melted portion L is defined by the sensor diameter of the sensor 2. That is, as shown in FIGS. 9A to 9D, when the sensor diameter is equal to or larger than the maximum diameter of the melted part L, the sensor 2 can detect the reflected wave from all parts of the melted part L. Therefore, the sensor 2 can detect the maximum value of the reflected wave intensity (the solid line B in FIG. 2 and the broken line B in FIG. 3). Therefore, in this case, the time t 1 at which the intensity of the reflected wave becomes maximum as described above can be used as the start (first time).

一方、図10(a),10(b)に示すように、センサ径が溶融部Lの最大径より小さい場合、センサ2は、溶融部Lにおけるセンサ径を超える両端部からの反射波を検出することができない。この場合、通電時に溶融部Lの径がセンサ径に一致する前と通電終了後の冷却中に溶融部Lの径がセンサ径に一致した後では、センサ径が溶融部Lの最大径以上の図3の破線Bに示す場合と同じ変化を示すが、通電時に溶融部Lの径がセンサ径に一致してから通電終了後の冷却中に溶融部Lの径がセンサ径に一致するまでは、図3の実線B’に示すように反射波の強度が一定となる。このように反射波の強度には、センサ径を超える溶融部の径の変化が反映されない。したがって、この場合、溶接電流の通電を停止する時刻tを凝固時間Tの始期としている。溶接電流の通電停止時には溶融部Lの大きさが最大に達しているので、この時を凝固時間Tの始期として用いることができる。この場合、通電終了後の冷却中に溶融部Lの径がセンサ径に一致する時刻tを用い、凝固時間Tを(t−t)としてもよい。 On the other hand, as shown in FIGS. 10A and 10B, when the sensor diameter is smaller than the maximum diameter of the melted portion L, the sensor 2 detects reflected waves from both ends exceeding the sensor diameter in the melted portion L. Can not do it. In this case, the sensor diameter is equal to or greater than the maximum diameter of the melted part L before the diameter of the melted part L matches the sensor diameter during energization and after the diameter of the melted part L matches the sensor diameter during cooling after the end of energization. Although the same change as the case shown by the broken line B in FIG. 3 is shown, until the diameter of the melted portion L matches the sensor diameter during energization until the diameter of the melted portion L matches the sensor diameter during cooling after the end of energization. As shown by the solid line B ′ in FIG. 3, the intensity of the reflected wave is constant. As described above, the intensity of the reflected wave does not reflect a change in the diameter of the melted portion exceeding the sensor diameter. Therefore, in this case, the time t 1 when the energization of the welding current is stopped is the start of the solidification time T. Since the size of the melted portion L reaches the maximum when the welding current is stopped, this time can be used as the start of the solidification time T. In this case, using the time t 5 the diameter of the melted portion L is equal to the sensor size during cooling after application end may be a (t 5 -t 1) clotting time T.

そして、凝固時間Tを相関データと照合して溶融部の大きさを推定する(図5参照)。   Then, the size of the melted portion is estimated by comparing the solidification time T with the correlation data (see FIG. 5).

溶融部の大きさと凝固時間に関する相関データは、次のようにして作成する。   Correlation data relating to the size of the melted part and the solidification time is prepared as follows.

多数のワークに対し溶接条件(電流値や通電時間など)を変えてスポット溶接を行い、その都度、溶融部の凝固時間Tを計測し記録しておく。溶接されたワークの破壊検査を行い、溶融部の垂直及び水平断面から溶融部の大きさVを求める。そして、溶融部の大きさと凝固時間Tを対応させて相関データを作成する。   Spot welding is performed on a large number of workpieces by changing the welding conditions (current value, energization time, etc.), and the solidification time T of the molten part is measured and recorded each time. Destructive inspection of the welded workpiece is performed, and the size V of the molten part is obtained from the vertical and horizontal cross sections of the molten part. Then, correlation data is created by associating the size of the melted portion with the solidification time T.

いま、電極チップ1の傾きによって、超音波がワークに対して斜めに入射すると、反射波の強度が低下するが、反射波の強度が最大になる第1の時刻tは変化しない。一方、閾値の付近では反射波の強度差は殆ど生じないため、反射波の強度が閾値に達する第2の時刻tの差は無視できるほど小さくなる。図6において、超音波が斜めに入射した場合の反射波強度を一点鎖線で示してある。つまり、溶融部の凝固に要する時間Tは変化しないので、ワークに対する超音波の入射角変化の影響を受けることなく、溶融部の大きさを正確に推定できる。また、ワークの温度変化の影響を受けることもない。 Now, the slope of the electrode tip 1, the ultrasonic wave is obliquely incident on the workpiece, the intensity of the reflected wave decreases, the first time t 1 the intensity of the reflected wave is maximum does not change. Meanwhile, since in the vicinity of the threshold value hardly occurs the intensity difference of the reflected wave, a second difference between the time t 2 when the intensity of the reflected wave reaches the threshold becomes negligibly small. In FIG. 6, the intensity of the reflected wave when the ultrasonic wave is incident obliquely is indicated by a one-dot chain line. That is, since the time T required for solidification of the melted portion does not change, the size of the melted portion can be accurately estimated without being affected by the change in the incident angle of the ultrasonic wave on the workpiece. Also, it is not affected by the temperature change of the workpiece.

ところで、ワークが亜鉛メッキ鋼板の場合、亜鉛の融点は鉄の融点よりも低いため、まず、ワーク間のメッキ層が溶融し、次いで、母材の溶融が始まる。このため、図4(a)に示すように、溶接電流の通電を開始すると、まず、ワーク間の溶融メッキ層からの反射波Dが生じる。   By the way, when the workpiece is a galvanized steel sheet, since the melting point of zinc is lower than the melting point of iron, the plating layer between the workpieces first melts, and then the base material begins to melt. For this reason, as shown in FIG. 4 (a), when energization of the welding current is started, a reflected wave D is first generated from the hot dipped layer between the workpieces.

ワーク間のメッキ層はやがて蒸発してなくなるが、それと前後して母材の溶融が始まる。通電電流値が高く、溶融部が大きいと、電極チップ1側へ熱が伝わり、電極チップ1側のメッキ層が溶けることがある。この場合、図4(b)に示すように電極チップ1側のメッキ層からの反射波Eが発生し、母材へ超音波が入射しなくなってしまう。このため、母材溶融部から反射するはずの反射波Bの強度のピークを検出することが不可能になる。   The plating layer between the workpieces will eventually evaporate, but the base material will begin to melt around that time. When the energization current value is high and the melting portion is large, heat is transferred to the electrode tip 1 side, and the plating layer on the electrode tip 1 side may melt. In this case, as shown in FIG. 4B, a reflected wave E from the plating layer on the electrode chip 1 side is generated, and the ultrasonic wave does not enter the base material. For this reason, it becomes impossible to detect the peak of the intensity of the reflected wave B that should be reflected from the base metal melting portion.

そこで、溶接電流の通電を停止する時刻tを凝固時間Tの始期としている。つまり、溶接電流の通電停止時には溶融部の大きさが最大に達しているので、この時を凝固時間Tの始期として用いることができる。 Therefore, the time t 1 at which the welding current is stopped is set as the start of the solidification time T. That is, when the welding current is stopped, the size of the melted portion reaches the maximum, and this time can be used as the start of the solidification time T.

時刻tで電極チップ1側のメッキ層からの反射がなくなると、母材溶融部からの反射波Bが現れるので、凝固時間Tの終期は、通常のワークの場合と同様、反射波Bの強度が閾値まで低下する時刻tにすればよい。凝固時間Tから溶融部の大きさを推定する方法は上述のとおりである。 When reflected from the plating layer of the electrode chip 1 side is eliminated at time t 4, since appears reflected waves B from the base metal molten portion, the end of the clotting time T, as in the normal work, the reflected wave B strength may be set to a time t 2 to decrease to the threshold. The method for estimating the size of the melted part from the solidification time T is as described above.

(2)第2実施形態
第2実施形態は、溶融部の大きさの推定に溶融部からの反射波の代わりに溶融部からの透過波を利用する以外は、第1実施形態と同様である。図7は、本発明に係る第2実施形態の検査装置のブロック図を示している。なお、第2実施形態では、第1実施形態と同様な構成要素には同符号を付し、その構成・作用の説明は省略する。
(2) Second Embodiment The second embodiment is the same as the first embodiment, except that a transmitted wave from the melted part is used instead of a reflected wave from the melted part to estimate the size of the melted part. . FIG. 7 shows a block diagram of an inspection apparatus according to the second embodiment of the present invention. Note that, in the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description of the configuration and operation thereof is omitted.

第2実施形態では、図7に示すように、ワークWの下側の電極チップ1に、溶融部からの透過波を受信するセンサ7を設ける。センサ7は、たとえばセンサ2と同一径を有するとともに、ワークWに対してセンサ2とは対称な位置に配置されている。センサ2(超音波発生手段)は、超音波送受信器3からのパルス信号を受けて横波の超音波を発生する。センサ7では、溶融部からの透過波を受信し、その透過波を電気信号に変換して超音波送受信器3に戻す。透過波の信号は超音波送受信器3で増幅されて検出手段4に送られる。   In the second embodiment, as shown in FIG. 7, the sensor 7 that receives the transmitted wave from the melting portion is provided on the electrode tip 1 on the lower side of the work W. The sensor 7 has, for example, the same diameter as the sensor 2 and is disposed at a position symmetrical to the sensor 2 with respect to the workpiece W. The sensor 2 (ultrasonic wave generating means) receives the pulse signal from the ultrasonic wave transmitter / receiver 3 and generates a transverse ultrasonic wave. The sensor 7 receives the transmitted wave from the melting part, converts the transmitted wave into an electric signal, and returns it to the ultrasonic transceiver 3. The transmitted wave signal is amplified by the ultrasonic transmitter / receiver 3 and sent to the detection means 4.

検出手段4は、透過波の強度が最小になる第1の時刻と、透過波の強度が所定値まで増加する第2の時刻とを検出し、その信号を判定手段5に送る。判定手段5は、第1及び第2の時刻の差から溶融部の凝固時間を求め、これを記憶手段6の相関データと照合し、凝固時間と対応する溶融部の大きさを求める。   The detection means 4 detects a first time when the intensity of the transmitted wave is minimum and a second time when the intensity of the transmitted wave increases to a predetermined value, and sends the signal to the determination means 5. The determination means 5 obtains the solidification time of the melted part from the difference between the first and second times, compares this with the correlation data in the storage means 6 and obtains the size of the melted part corresponding to the solidification time.

次に、透過波の強度から溶融部の大きさを推定する方法について、おもに図7,8,9(a)〜(d)を参照しながら詳細に説明する。図8は、透過波強度と溶接電流の経時変化を示す図である。なお、図9(a)〜(d)では、センサ7の図示を省略している。   Next, a method for estimating the size of the melted part from the intensity of the transmitted wave will be described in detail with reference to FIGS. 7, 8, 9 (a) to (d). FIG. 8 is a diagram showing temporal changes in transmitted wave intensity and welding current. In addition, illustration of the sensor 7 is abbreviate | omitted in Fig.9 (a)-(d).

まず、第1実施形態と同様にワークWを電極チップ1,1で挟んで加圧し、時刻tで溶接電流の通電を開始する。図8において、実線Aは溶接電流の変化を示している。ワークWでの溶融部L発生前は、超音波はワークWにより反射されないから、この時の透過波の強度は最大である(図9(a))。溶接電流の通電によってワークWが発熱溶融すると、溶融部Lで超音波が反射されるから、時刻tで溶融部Lからの透過波が減少する。溶融部Lの大きさが大きくなると、それに応じて透過波の強度が小さくなる。図8において、破線Fは透過波の強度変化を示している。 First, pressurized by sandwiching the first embodiment similarly to the workpiece W of the electrode tip 1,1, it starts energization of the welding current at time t s. In FIG. 8, a solid line A indicates a change in welding current. Since the ultrasonic wave is not reflected by the workpiece W before the melted portion L is generated in the workpiece W, the intensity of the transmitted wave at this time is the maximum (FIG. 9A). When the workpiece W by energizing the welding current generates heat melt, because ultrasound is reflected by the melt portion L, the transmitted wave from the melting portion L at time t 0 is reduced. As the size of the melted portion L increases, the intensity of the transmitted wave decreases accordingly. In FIG. 8, a broken line F indicates a change in the intensity of the transmitted wave.

時刻tで溶接電流の通電を停止すると、溶融部Lの凝固が始まり凝固部Mが生成され、透過波の強度は増加に転じる。つまり、通電停止の時刻tで溶融部の大きさが最大、透過波の強度が最小になる(図9(b))。溶融部Lの凝固が進行すると(図9(c))、それに応じて透過波の強度が大きくなる。溶融部Lの凝固が終了する時刻tでは、透過波の強度が再び最大となる((図9(d))。 If you stop the energization of the welding current at time t 1, the solidified portion M begins solidification of the molten portion L is produced, the intensity of the transmitted wave changes to increase. In other words, the size of the fused portion at the time t 1 of energization stopping up the intensity of the transmitted wave is minimized (FIG. 9 (b)). As the solidification of the melted portion L proceeds (FIG. 9C), the intensity of the transmitted wave increases accordingly. At time t 3 the solidification of the molten portion L is completed, the intensity of the transmitted wave is maximized again ((FIG. 9 (d)).

溶融部Lの凝固時間は、透過波の強度が最小になる時刻tを始期(第1の時刻)とし、透過波の強度が最大になる時刻tを終期(第2の時刻)として算出すればよい。ただし、時刻tを終期とすると、ノイズの影響により計測誤差を生じ易くなる。そこで、透過波の最大強度よりも若干小さい閾値を設定し、透過波の強度が閾値まで達した時刻t(第2の時刻)を凝固時間の終期としてもよい。 The solidification time of the melted portion L is calculated with the time t 1 when the intensity of the transmitted wave is minimized as the start (first time) and the time t 3 when the intensity of the transmitted wave is maximized as the end (second time). do it. However, when the time t 3 to the end, tends to occur a measurement error due to noise. Therefore, a threshold value slightly smaller than the maximum intensity of the transmitted wave may be set, and the time t 2 (second time) when the intensity of the transmitted wave reaches the threshold value may be set as the end of the coagulation time.

この場合、凝固時間Tは真の値(t−t)よりも若干短くなるが、相関データの作成に際し、以上の値(t−t)を凝固時間として採用しておけば、溶融部の判定精度に対する影響は殆どない。 In this case, the coagulation time T is slightly shorter than the true value (t 3 -t 1 ). However, if the above value (t 2 -t 1 ) is used as the coagulation time when creating the correlation data, There is almost no influence on the determination accuracy of the molten part.

なお、センサ7は、ワークWにおけるセンサ径を超える部分からの透過波を検出することができないから、溶融部Lからの透過波強度の検出限界は、第1実施形態の反射波の場合と同様に、センサ7のセンサ径に規定される。すなわち、センサ径が溶融部Lの最大径以上の場合、センサ7は、ワークWにおける溶融部Lに対応する全ての部分からの透過波を検出することができるので、センサ7は透過波強度の最小値を検出することができる(図8の破線F)。したがって、この場合、上記のように透過波の強度が最小になる時刻tを始期(第1の時刻)として用いることができる。 In addition, since the sensor 7 cannot detect the transmitted wave from the part exceeding the sensor diameter in the workpiece | work W, the detection limit of the transmitted wave intensity from the fusion | melting part L is the same as that of the case of the reflected wave of 1st Embodiment. Further, it is defined by the sensor diameter of the sensor 7. That is, when the sensor diameter is equal to or larger than the maximum diameter of the melted part L, the sensor 7 can detect transmitted waves from all parts corresponding to the melted part L in the workpiece W. The minimum value can be detected (broken line F in FIG. 8). Therefore, in this case, the time t 1 at which the intensity of the transmitted wave is minimized as described above can be used as the start (first time).

一方、センサ径が溶融部Lの最大径より小さい場合、センサ7は、ワークWにおけるセンサ径を超える溶融部Lの両端部に対応する部分からの透過波を検出することができない。この場合の透過波強度の曲線は、センサ径が溶融部Lの最大径以上の場合の図8の破線Fに示す曲線を時間軸方向に向けて下方に平行移動したような曲線となり(図8の実線F’)、通電時に溶融部Lの径がセンサ径に一致してから通電終了後の冷却中に溶融部Lの径がセンサ径に一致するまで、透過波の強度がゼロとなる。このように透過波の強度には、センサ径を超える溶融部の径の変化が反映されない。したがって、この場合、溶接電流の通電を停止する時刻tを凝固時間Tの始期としている。溶接電流の通電停止時には溶融部Lの大きさが最大に達しているので、この時を凝固時間Tの始期として用いることができる。この場合、通電終了後の冷却中に溶融部Lの径がセンサ径に一致する時刻tを用い、凝固時間Tを(t−t)としてもよい。 On the other hand, when the sensor diameter is smaller than the maximum diameter of the melted part L, the sensor 7 cannot detect transmitted waves from the portions corresponding to both ends of the melted part L exceeding the sensor diameter in the workpiece W. The transmitted wave intensity curve in this case is a curve obtained by translating the curve shown by the broken line F in FIG. 8 in the case where the sensor diameter is equal to or larger than the maximum diameter of the melted portion L downward in the time axis direction (FIG. 8 The solid line F ′), the intensity of the transmitted wave becomes zero until the diameter of the melted portion L coincides with the sensor diameter during cooling after the energization ends after the diameter of the melted portion L coincides with the sensor diameter. As described above, the intensity of the transmitted wave does not reflect the change in the diameter of the melted portion exceeding the sensor diameter. Therefore, in this case, the time t 1 when the energization of the welding current is stopped is the start of the solidification time T. Since the size of the melted portion L reaches the maximum when the welding current is stopped, this time can be used as the start of the solidification time T. In this case, using the time t 5 the diameter of the melted portion L is equal to the sensor size during cooling after application end may be a (t 5 -t 1) clotting time T.

そして、第1実施形態と同様に凝固時間Tを相関データと照合して溶融部の大きさを推定する(図5参照)。   Then, similarly to the first embodiment, the solidification time T is collated with the correlation data to estimate the size of the molten part (see FIG. 5).

いま、電極チップ1の傾きによって、超音波がワークに対して斜めに入射すると、透過波の強度が低下するが、透過波の強度が最小になる第1の時刻tは変化しない。一方、閾値の付近では透過波の強度差は殆ど生じないため、透過波の強度が閾値に達する第2の時刻tの差は無視できるほど小さくなる。つまり、溶融部の凝固に要する時間Tは変化しないので、ワークWに対する超音波の入射角変化の影響を受けることなく、溶融部の大きさを正確に推定できる。また、ワークの温度変化の影響を受けることもない。 Now, the slope of the electrode tip 1, the ultrasonic wave is obliquely incident on the workpiece, the intensity of the transmitted wave is degraded, the first time t 1 the intensity of the transmitted wave is minimized does not change. Meanwhile, since in the vicinity of the threshold value hardly occurs the intensity difference between the transmitted wave, a second difference between the time t 2 when the intensity of the transmitted wave reaches the threshold becomes negligibly small. That is, since the time T required for solidification of the molten part does not change, the size of the molten part can be accurately estimated without being affected by the change in the incident angle of the ultrasonic wave with respect to the workpiece W. Also, it is not affected by the temperature change of the workpiece.

ところで、ワークが亜鉛メッキ鋼板の場合、反射波を利用した第1実施形態と同様、溶接電流の通電を停止する時刻tを凝固時間Tの始期としている。つまり、溶接電流の通電停止時には溶融部の大きさが最大に達しているので、この時を凝固時間Tの始期として用いることができる。 By the way, when the workpiece is a galvanized steel sheet, the time t 1 when the energization of the welding current is stopped is set as the start of the solidification time T as in the first embodiment using a reflected wave. That is, when the welding current is stopped, the size of the melted portion reaches the maximum, and this time can be used as the start of the solidification time T.

本発明に係る第1実施形態の検査装置のブロック図。1 is a block diagram of an inspection apparatus according to a first embodiment of the present invention. 反射波強度と溶接電流の経時変化を示す図。The figure which shows the time-dependent change of reflected wave intensity and welding current. 反射波強度のセンサ径と溶融部の最大径との関係への依存性を示す図。The figure which shows the dependence to the relationship between the sensor diameter of reflected wave intensity, and the maximum diameter of a fusion | melting part. 図2に溶融メッキ層からの反射波を加えた図。The figure which added the reflected wave from a hot dipped layer to FIG. 溶融部の大きさと凝固時間に関する相関データを示す図。The figure which shows the correlation data regarding the magnitude | size of a fusion | melting part, and solidification time. 電極チップの傾きが反射波強度に及ぼす影響を説明する図。The figure explaining the influence which the inclination of an electrode tip has on reflected wave intensity. 本発明に係る第2実施形態の検査装置のブロック図。The block diagram of the inspection apparatus of 2nd Embodiment which concerns on this invention. 透過波強度と溶接電流の経時変化を示す図。The figure which shows the time-dependent change of transmitted wave intensity and welding current. センサ径が溶融部の最大径以上の場合、スポット溶接中のワークに横波の超音波を入射している状態の遷移を示す概略図であり、(a)は通電前の状態、(b)は通電終了時の状態、(c)は冷却中の状態、(d)は冷却終了時の状態を示す図。It is the schematic which shows the transition of the state which has injected the ultrasonic wave of the transverse wave into the workpiece | work in spot welding when a sensor diameter is more than the maximum diameter of a fusion | melting part, (a) is the state before electricity supply, (b) is The state at the end of energization, (c) is the state during cooling, (d) is a diagram showing the state at the end of cooling. センサ径が溶融部の最大径より小さい場合、スポット溶接中のワークに横波の超音波を入射している状態の遷移を示す概略図であり、(a)は通電終了時の状態、(b)は冷却中の状態を示す図。It is the schematic which shows the transition of the state which has injected the ultrasonic wave of the transverse wave into the workpiece | work in spot welding when a sensor diameter is smaller than the maximum diameter of a fusion | melting part, (a) is a state at the time of completion | finish of electricity supply, (b) FIG. 4 is a diagram showing a state during cooling.

符号の説明Explanation of symbols

1…電極チップ、2,7…センサ、3…超音波送受信器、4…検出手段、5…判定手段、6…記憶手段、A…溶接電流、B,B’…反射波強度、F,F’…透過波強度、L…溶融部、M…凝固部、W…ワーク、t…第1の時刻、t…第2の時刻 DESCRIPTION OF SYMBOLS 1 ... Electrode chip | tip, 2,7 ... Sensor, 3 ... Ultrasonic transmitter / receiver, 4 ... Detection means, 5 ... Determination means, 6 ... Memory | storage means, A ... Welding current, B, B '... Reflected wave intensity, F, F '... transmitted wave intensity, L ... melting part, M ... solidification part, W ... workpiece, t 1 ... first time, t 2 ... second time

Claims (6)

スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法において、
前記ワークに横波の超音波を入射して前記溶融部からの反射波を検出する工程と、
前記ワークへの溶接電流の通電を停止する第1の時刻を検出する工程と、
前記溶融部からの前記反射波の強度が所定値まで低下する第2の時刻を検出する工程と、
前記第1の時刻と前記第2の時刻との差を前記溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより前記溶融部の大きさを推定する工程とを備えたことを特徴とするスポット溶接の検査方法。
In the method of estimating the size of the melted part by injecting ultrasonic waves into the workpiece being spot welded,
Detecting a reflected wave from the melted portion by injecting a transverse ultrasonic wave into the workpiece;
Detecting a first time to stop energization of the welding current to the workpiece;
Detecting a second time when the intensity of the reflected wave from the melted portion decreases to a predetermined value;
The difference between the first time and the second time is defined as the solidification time of the melted portion, and the solidification time is compared with correlation data relating to the size of the melted portion and the solidification time. And a method for estimating spot welding.
スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法において、
前記ワークに横波の超音波を入射して前記溶融部からの反射波を検出する工程と、
前記溶融部からの前記反射波の強度が最大になる第1の時刻を検出する工程と、
前記溶融部からの前記反射波の強度が所定値まで低下する第2の時刻を検出する工程と、
前記第1の時刻と前記第2の時刻との差を前記溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより前記溶融部の大きさを推定する工程とを備えたことを特徴とするスポット溶接の検査方法。
In the method of estimating the size of the melted part by injecting ultrasonic waves into the workpiece being spot welded,
Detecting a reflected wave from the melted portion by injecting a transverse ultrasonic wave into the workpiece;
Detecting a first time at which the intensity of the reflected wave from the melted portion is maximized;
Detecting a second time when the intensity of the reflected wave from the melted portion decreases to a predetermined value;
The difference between the first time and the second time is defined as the solidification time of the melted portion, and the solidification time is compared with correlation data relating to the size of the melted portion and the solidification time. And a method for estimating spot welding.
スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法において、
ワークに横波の超音波を入射して溶融部からの透過波を検出する工程と、
前記ワークへの溶接電流の通電を停止する第1の時刻を検出する工程と、
前記溶融部からの前記透過波の強度が所定値まで増加する第2の時刻を検出する工程と、
前記第1の時刻と前記第2の時刻との差を前記溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより前記溶融部の大きさを推定する工程とを備えたことを特徴とするスポット溶接の検査方法。
In the method of estimating the size of the melted part by injecting ultrasonic waves into the workpiece being spot welded,
A process of detecting a transmitted wave from the melted portion by injecting a transverse wave ultrasonic wave into the workpiece;
Detecting a first time to stop energization of the welding current to the workpiece;
Detecting a second time at which the intensity of the transmitted wave from the melting portion increases to a predetermined value;
The difference between the first time and the second time is defined as the solidification time of the melted portion, and the solidification time is compared with correlation data relating to the size of the melted portion and the solidification time. And a method for estimating spot welding.
スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する方法において、
ワークに横波の超音波を入射して溶融部からの透過波を検出する工程と、
前記溶融部からの前記透過波の強度が最小になる第1の時刻を検出する工程と、
前記溶融部からの前記透過波の強度が所定値まで増加する第2の時刻を検出する工程と、
前記第1の時刻と前記第2の時刻との差を前記溶融部の凝固時間とし、その凝固時間を、溶融部の大きさと凝固時間とに関する相関データと照合することにより前記溶融部の大きさを推定する工程とを備えたことを特徴とするスポット溶接の検査方法。
In the method of estimating the size of the melted part by injecting ultrasonic waves into the workpiece being spot welded,
A process of detecting a transmitted wave from the melted portion by injecting a transverse wave ultrasonic wave into the workpiece;
Detecting a first time at which the intensity of the transmitted wave from the melting portion is minimized;
Detecting a second time at which the intensity of the transmitted wave from the melting portion increases to a predetermined value;
The difference between the first time and the second time is defined as the solidification time of the melted portion, and the solidification time is compared with correlation data relating to the size of the melted portion and the solidification time. And a method for estimating spot welding.
スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する装置において、
溶融部の大きさと凝固時間とに関する相関データを記憶する記憶手段と、
前記ワークに横波の超音波を入射して前記溶融部からの反射波を検出するセンサと、
前記ワークへの溶接電流の通電を停止する第1の時刻と、前記溶融部からの前記反射波の強度が所定値まで低下する第2の時刻とを検出する検出手段と、
前記第1の時刻と前記第2の時刻との差を前記溶融部の凝固時間とし、その凝固時間を相関データと照合することにより前記溶融部の大きさを推定する判定手段とを備えたことを特徴とするスポット溶接の検査装置。
In an apparatus that estimates the size of the melted part by injecting ultrasonic waves into the workpiece being spot welded,
Storage means for storing correlation data relating to the size of the melted portion and the solidification time;
A sensor that detects a reflected wave from the melted portion by injecting a transverse ultrasonic wave into the workpiece;
Detection means for detecting a first time at which energization of the welding current to the workpiece is stopped and a second time at which the intensity of the reflected wave from the melted portion decreases to a predetermined value;
And a determination means for estimating a size of the melted portion by comparing the solidification time with the correlation data using the difference between the first time and the second time as the solidification time of the melted portion. Spot welding inspection device characterized by.
スポット溶接中のワークに超音波を入射して溶融部の大きさを推定する装置において、
溶融部の大きさと凝固時間に関する相関データを記憶する記憶手段と、
前記ワークに横波の超音波を入射する超音波発生手段と、
前記溶融部からの透過波を検出するセンサと、
前記ワークへの溶接電流の通電を停止する第1の時刻と、前記溶融部からの前記透過波の強度が所定値まで増加する第2の時刻とを検出する検出手段と、
前記第1の時刻と前記第2の時刻との差を前記溶融部の凝固時間とし、その凝固時間を前記相関データと照合することにより前記溶融部の大きさを推定する判定手段とを備えたことを特徴とするスポット溶接の検査装置。
In an apparatus that estimates the size of the melted part by injecting ultrasonic waves into the workpiece being spot welded,
Storage means for storing correlation data regarding the size of the melted part and the solidification time;
Ultrasonic wave generation means for injecting ultrasonic waves of transverse waves to the workpiece;
A sensor for detecting a transmitted wave from the melting part;
Detection means for detecting a first time at which energization of the welding current to the workpiece is stopped and a second time at which the intensity of the transmitted wave from the melted portion increases to a predetermined value;
A determination unit that estimates a difference between the first time and the second time as a solidification time of the melted portion and estimates the size of the melted portion by comparing the solidification time with the correlation data; A spot welding inspection apparatus characterized by the above.
JP2007031795A 2006-02-15 2007-02-13 Spot welding inspection method and inspection apparatus Expired - Fee Related JP4881180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031795A JP4881180B2 (en) 2006-02-15 2007-02-13 Spot welding inspection method and inspection apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006037795 2006-02-15
JP2006037795 2006-02-15
JP2007031795A JP4881180B2 (en) 2006-02-15 2007-02-13 Spot welding inspection method and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2007248457A JP2007248457A (en) 2007-09-27
JP4881180B2 true JP4881180B2 (en) 2012-02-22

Family

ID=38592889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031795A Expired - Fee Related JP4881180B2 (en) 2006-02-15 2007-02-13 Spot welding inspection method and inspection apparatus

Country Status (1)

Country Link
JP (1) JP4881180B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053959B2 (en) * 2008-09-03 2012-10-24 本田技研工業株式会社 Electrode tip contact area ratio evaluation method, workpiece internal resistance evaluation method, ultrasonic attenuation rate evaluation method, and electrode tip tilt state determination method
DE102009032860B4 (en) 2008-08-04 2013-03-21 Honda Motor Co., Ltd. Determination method using ultrasonic waves
JP5236385B2 (en) * 2008-08-04 2013-07-17 本田技研工業株式会社 Melting zone interface position detection method and apparatus
JP5209749B2 (en) 2011-03-04 2013-06-12 株式会社豊田中央研究所 Resistance welding method, resistance welding member, resistance welding machine and its control device, resistance welding machine control method and control program, resistance welding evaluation method and evaluation program

Also Published As

Publication number Publication date
JP2007248457A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US10695868B2 (en) Laser hybrid welding control systems and methods
US10105789B2 (en) Systems and methods for ultrasonic welding
US8110774B2 (en) Laser welding method and apparatus
JP3644958B2 (en) Evaluation method of welded joint
JP4881180B2 (en) Spot welding inspection method and inspection apparatus
CA1286370C (en) Ultrasonic method and apparatus for spot weld control
US20100133248A1 (en) Method and device for quality control of a weld bead
JP4352143B2 (en) Method and apparatus for preventing or repairing hole defects in laser spot welding
JP5064704B2 (en) Laser welding method
Dharmaraj et al. Ultrasonic thermometry for friction stir spot welding
JP5738702B2 (en) Resistance welding evaluation method, resistance welding machine control method, resistance welding machine control device, and resistance welding machine
JP4611620B2 (en) Quality control method in laser welding
JP5053959B2 (en) Electrode tip contact area ratio evaluation method, workpiece internal resistance evaluation method, ultrasonic attenuation rate evaluation method, and electrode tip tilt state determination method
JP2008256478A (en) Inspection method
JP2001108662A (en) Method for inspecting molten part and method for controlling energization
JP3796746B2 (en) Spot welding equipment
JP2002316269A (en) Monitoring device for spot welding
JPH11138291A (en) Welding quality judging device in welding equipment
JP2002361438A (en) Method and device for monitoring spot welding
JP3705057B2 (en) Spot welding equipment
JP5789483B2 (en) Resistance welding method and apparatus
JP4445279B2 (en) Welding control method and welding control apparatus for spot welding
JP2008068325A (en) Method for determining output modulation waveform of laser welding
Huang et al. Laser Welding Control
Sweeney et al. Towards real-time quantitative monitoring and control of weld pool dimensions using phased array ultrasonics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Ref document number: 4881180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees