JP2001108662A - Method for inspecting molten part and method for controlling energization - Google Patents

Method for inspecting molten part and method for controlling energization

Info

Publication number
JP2001108662A
JP2001108662A JP28363799A JP28363799A JP2001108662A JP 2001108662 A JP2001108662 A JP 2001108662A JP 28363799 A JP28363799 A JP 28363799A JP 28363799 A JP28363799 A JP 28363799A JP 2001108662 A JP2001108662 A JP 2001108662A
Authority
JP
Japan
Prior art keywords
time
fusion
resin
joint
resin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28363799A
Other languages
Japanese (ja)
Inventor
Shigeyuki Nishi
重幸 西
Kazumi Kato
一三 加藤
Takeshi Kato
健 加藤
Hideki Kawai
秀樹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP28363799A priority Critical patent/JP2001108662A/en
Publication of JP2001108662A publication Critical patent/JP2001108662A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52292Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8292Testing the joint by the use of ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting molten part capable of accurately deciding whether a necessary thickness of the part having a sufficient strength to connect is formed or not in substantially overall area of the molten connected part while melting an EF joint and a PE tube. SOLUTION: The method for inspecting a molten part comprises the steps of previously detecting a time for reciprocating a ultrasonic wave at a distance from a molten boundary surface of a non-molten part and the molten part of a synthetic resin member and a surface of a synthetic resin member when the boundary surface is located at a predetermined position, checking whether an echo signal from the member is received within a predetermined time after the lapse of the reciprocating time after receiving the echo signal from the surface of the member each time of receiving the wave in a thickness direction of a synthetic resin joint or a synthetic resin tube, and deciding that the part is a predetermined thickness when signal received.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂管と樹脂製継
手とを電気融着接合する際の溶融部を検査する方法、及
び通電制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a fusion zone when a resin pipe and a resin joint are electrically fusion-bonded to each other, and a method for controlling electric current.

【0002】[0002]

【従来の技術】地下に埋設される都市ガスの配管などに
は、樹脂管、例えばポリエチレン管(以下PE管と略称
する)などが使用されている。樹脂管を接続する手段と
しては、電気融着継手(以下EF継手と略称する)が多
用されている。図2は、EF継手を介して接続されたP
E管の接合部を示し、PE管2AはEF継手1の一端側
に、PE管2BはEF継手1の他端側に融着されてい
る。このEF継手1は、継手本体101と電熱線12と
2本のコネクターピン13A、13Bとからなる。継手
本体101はポリエチレン(以下PEという)製で略円
筒形状に形成され、内周面近傍に電熱線12が埋め込ま
れている。2本のコネクターピン13A、13Bの各々
は、下部が継手本体101の両端部に嵌挿され、かつ電
熱線12の各端部に接続されている。継手本体101の
両端部には中間部よりも突出した円錐台状の突起16
A、16Bが形成され、上記コネクターピン挿入時のガ
イドの役割を果たしている。
2. Description of the Related Art Resin pipes such as polyethylene pipes (hereinafter abbreviated as PE pipes) are used for pipes of city gas buried underground. As a means for connecting the resin pipes, an electric fusion joint (hereinafter abbreviated as an EF joint) is frequently used. FIG. 2 shows the P connected via an EF joint.
The PE pipe 2A is fused to one end of the EF joint 1, and the PE pipe 2B is fused to the other end of the EF joint 1. The EF joint 1 includes a joint main body 101, a heating wire 12, and two connector pins 13A and 13B. The joint body 101 is made of polyethylene (hereinafter, referred to as PE) and is formed in a substantially cylindrical shape, and the heating wire 12 is embedded near the inner peripheral surface. Each of the two connector pins 13 </ b> A and 13 </ b> B has a lower portion fitted into both ends of the joint main body 101 and connected to each end of the heating wire 12. At both ends of the joint body 101, truncated conical protrusions 16 protruding from the middle part
A and 16B are formed and serve as a guide when the connector pins are inserted.

【0003】PE管2A、PE管2BとEF継手1の接
続方法について説明する。まず、PE管2AおよびPE
管2Bを、EF継手1の各端部より内径部に突起14に
当接するまで挿入する。次にEF継手1の両端のコネク
ターピン13に各々コネクター(不図示)を差し込む。
このコネクターを通じて電熱線12に通電することによ
り電熱線12を発熱させ、EF継手1の内径部とPE管
2の外径部とを溶融して一体化し、所定時間経過後通電
を停止し、溶融部を冷却し融着を完了する。
A method of connecting the PE pipes 2A and 2B to the EF joint 1 will be described. First, PE pipe 2A and PE
The pipe 2 </ b> B is inserted from each end of the EF joint 1 into the inner diameter part until it comes into contact with the projection 14. Next, connectors (not shown) are inserted into the connector pins 13 at both ends of the EF joint 1, respectively.
When the heating wire 12 is energized through this connector, the heating wire 12 is heated, and the inner diameter portion of the EF joint 1 and the outer diameter portion of the PE pipe 2 are fused and integrated. The part is cooled to complete the fusion.

【0004】上記のように融着されたEF継手とPE管
との融着部を検査する方法として、以下に示すような方
法が提案されている。例えば、特開平1−301231
号(従来例1)には、EF継手外周部のコネクターピン
近くに熱電対を嵌装するための凹部を形成しておき、熱
電対とコネクターピンに嵌合するコネクターとを一体的
に保持する融着プラグを用い、コネクターをコネクター
ピンに嵌合するとともに、熱電対を凹部に嵌装し、通電
しながら熱電対によりEF継手の温度を連続的に測定
し、その温度が予め設定した温度にまで上昇した時に通
電を停止し、その温度が樹脂が固化する温度まで下降し
た時に融着終了と判断する方法が開示されている。この
方法は、EF継手内部の温度を直接測定するため、周囲
の初期温度やEF継手表面の温度、電熱線の電気抵抗誤
差等の通電時間に影響を与える要因を考慮して通電時間
を設定する必要がない、という利点がある。
The following method has been proposed as a method for inspecting the fused portion between the EF joint and the PE pipe fused as described above. For example, JP-A-1-301231
No. (Conventional Example 1), a concave portion for fitting a thermocouple is formed near the connector pin on the outer peripheral portion of the EF joint, and the thermocouple and the connector fitted to the connector pin are integrally held. Using a fusion plug, the connector is fitted to the connector pin, a thermocouple is fitted in the recess, and the temperature of the EF joint is continuously measured by the thermocouple while energizing, and the temperature reaches a preset temperature. A method is disclosed in which the energization is stopped when the temperature rises to a certain level, and when the temperature falls to a temperature at which the resin solidifies, it is determined that the fusion is completed. In this method, since the temperature inside the EF joint is directly measured, the energizing time is set in consideration of factors that affect the energizing time, such as the surrounding initial temperature, the temperature of the EF joint surface, and the electric resistance error of the heating wire. There is an advantage that there is no need.

【0005】また、特開平10−132791号(従来
例2)には、 EF継手とPE管のヒータ近傍部分とを
溶融することによって融合部を形成し、超音波探触子を
EF継手の一端から他端に向かって螺旋状に移動しなが
らEF継手またはPE管の厚さ方向に超音波を入射し、
得られる複数のエコーの内、融合部とEF継手またはP
E管との界面からのエコーのみを通過させるゲートを設
定しておき、そのゲートを通過したエコーについて超音
波を入射してからエコーが検出されるまでの時間を求
め、その時間に基づいて界面の深さを算出して融合部を
検査する方法が開示されている。
Japanese Patent Application Laid-Open No. 10-132791 (Conventional Example 2) discloses that an EF joint and a portion near a heater of a PE pipe are fused to form a fusion portion, and an ultrasonic probe is connected to one end of the EF joint. While moving in a spiral form from the other end to the other end, ultrasonic waves are incident in the thickness direction of the EF joint or PE pipe,
Among the multiple echoes obtained, the fusion part and the EF joint or P
A gate that allows only the echo from the interface with the E-tube to pass is set, and for the echo that passes through the gate, the time from when the ultrasonic wave is incident until the echo is detected is determined. A method for calculating the depth of a part and inspecting a fusion part is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来例1には
EF継手に熱電対挿入用穴を設ける必要があり、またE
F継手内部の温度を測定するものの、挿入用穴近傍だけ
の温度により継手とPE管との融着状態を推定するもの
で、融合部を直接検査しておらず、信頼性に欠けるとい
う問題があった。また、従来例2は、溶融部の厚さが所
定の値になるような時間だけヒータを発熱させた後に、
界面からのエコーを検出して界面の深さを算出するもの
である。しかし、超音波は透過する物質に密度差がある
場合、その音響インピーダンスが変化し、境界面からエ
コーが生ずる性質をもっているが、通電後時間が経過し
溶融部が固化した場合は、溶融部と周囲の非溶融PE部
材との密度差がなくなるので、界面からエコーが発生し
難く、信頼性の高い検出ができないという問題がある。
さらに、走査装置を移動することにより、超音波探触子
の先端が所定位置から半径方向にずれる場合、そのずれ
分がエコー検出時間の誤差となり、正しい界面深さが得
られず、ずれが大きい場合には、対象とするエコーがゲ
ートを通過しないという不具合も発生する。また、周囲
の初期温度や電熱線の電気抵抗の誤差を考慮して所定の
溶融部厚さが得られるようにするためには、通電時間を
長めに設定する必要があり、消費電力が多くなる。
However, in the conventional example 1, it is necessary to provide a thermocouple insertion hole in the EF joint.
Although the temperature inside the F-joint is measured, the state of fusion between the joint and the PE pipe is estimated based on the temperature only near the insertion hole. there were. Further, in Conventional Example 2, after heating the heater for a time such that the thickness of the fusion zone becomes a predetermined value,
It detects the echo from the interface and calculates the depth of the interface. However, ultrasonic waves have the property that the acoustic impedance changes and the echo is generated from the boundary surface when there is a density difference between the transmitting materials. Since there is no difference in density with the surrounding non-melted PE member, there is a problem that echo is hardly generated from the interface and highly reliable detection cannot be performed.
Furthermore, if the tip of the ultrasonic probe is displaced in the radial direction from a predetermined position by moving the scanning device, the displacement becomes an error in the echo detection time, and a correct interface depth cannot be obtained, and the displacement is large. In such a case, there occurs a problem that the target echo does not pass through the gate. In addition, in order to obtain a predetermined melted part thickness in consideration of errors in the surrounding initial temperature and electric resistance of the heating wire, it is necessary to set a longer energization time, which increases power consumption. .

【0007】本発明は、樹脂製継手と樹脂管の溶融部の
ほぼ全領域にわたりその良否を精度良く判定することが
できる検査方法を提供することを第1の目的とする。ま
た、本発明は、樹脂製継手と樹脂管とを溶融させる過程
で、良好に溶融部が形成されているか否かを検出し、溶
融に関する不具合を早い段階で除去できる検査方法を提
供することを第2の目的とする。さらに本発明は、樹脂
製継手と樹脂管とを溶融させる過程で、良好に溶融部が
形成されているか否かをチェックしながら、融着接合に
十分な溶融部が形成されるまで電気を通電する制御方法
を提供することを第3の目的とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide an inspection method capable of judging the quality of a resin joint and a resin pipe over almost the entire area of a molten portion thereof with high accuracy. In addition, the present invention provides an inspection method capable of detecting whether or not a molten portion is well formed in a process of melting a resin joint and a resin pipe, and removing a defect related to melting at an early stage. This is the second purpose. Further, in the present invention, in the process of melting the resin joint and the resin pipe, while checking whether or not a fused portion is formed well, electricity is supplied until a sufficient fused portion is formed for fusion bonding. A third object is to provide a control method for performing the control.

【0008】[0008]

【課題を解決するための手段】第1の発明は、樹脂管と
樹脂製継手とを電気的に加熱し、両者を融着する際に形
成される樹脂部材の溶融部を検査する方法において、樹
脂部材の非溶融部と溶融部との溶融境界面が所定位置に
ある時の、樹脂部材の表面から溶融境界面までの距離を
超音波が往復する基準往復時間を設定し、樹脂部材の表
面から内部に向かって超音波を入射する操作を繰返し、
各操作毎に、樹脂部材表面からのエコー信号が受信され
た時から略基準往復時間経過後の所定時間内に、部材内
からのエコー信号が受信されるか否かをチェックし、エ
コー信号が受信されたことをもって溶融部の厚さが正常
であると判定することを特徴としている。前記溶融境界
面の所定位置は、溶融部成長時の任意の位置を採ること
ができるが、樹脂管と樹脂製継手が十分の強度で融着接
合されるような位置とすることが望ましい。
According to a first aspect of the present invention, there is provided a method of electrically heating a resin pipe and a resin joint and inspecting a molten portion of a resin member formed when the two are fused. When the melting boundary between the non-melted portion and the melting portion of the resin member is at a predetermined position, a reference reciprocating time for the ultrasonic wave to reciprocate the distance from the surface of the resin member to the melting boundary is set, and the surface of the resin member is set. Repeat the operation of injecting ultrasonic waves from inside toward the inside,
For each operation, it is checked whether or not an echo signal from the inside of the member is received within a predetermined time after the lapse of the reference reciprocating time from the time when the echo signal from the resin member surface is received. The thickness of the fusion zone is determined to be normal based on the reception. The predetermined position of the fusion boundary surface can be any position during the growth of the fusion zone, but is preferably a position where the resin pipe and the resin joint are fusion-bonded with sufficient strength.

【0009】第2の発明は、樹脂管と樹脂製継手とを電
気的に加熱し、両者を融着する際に形成される樹脂部材
の溶融部を検査する方法において、樹脂部材の非溶融部
と溶融部との溶融境界面が通電開始後の基準とする経過
時間で定まる所定位置にある時の、樹脂部材の表面から
溶融境界面までの距離を超音波が往復する基準往復時間
を設定し、樹脂部材の表面から内部に向かって超音波を
入射する操作を繰返し、各操作毎に、樹脂部材表面から
のエコー信号が受信された時から略基準往復時間経過後
の所定時間内に、部材内からのエコー信号が受信される
か否かをチェックし、通電開始からエコー信号が受信さ
れるまでの経過時間を基準の経過時間と比較して、両者
の差が許容範囲にあるか否かを判断し、溶融部の良否を
判定するものである。前記基準とする経過時間は、溶融
境界面がほぼ平面状となるような時間以降で、できるだ
け間隔を短く設定することが望ましい。
According to a second aspect of the present invention, there is provided a method of electrically heating a resin pipe and a resin joint and inspecting a molten portion of the resin member formed when the two are fused. When the fusion boundary between the melting part and the fusion part is at a predetermined position determined by the elapsed time as the reference after the start of energization, the reference reciprocation time for the ultrasonic wave to reciprocate the distance from the surface of the resin member to the fusion boundary is set. The operation of injecting ultrasonic waves from the surface of the resin member toward the inside is repeated, and for each operation, the member is set within a predetermined time after a lapse of a reference reciprocating time from when an echo signal from the resin member surface is received. Check whether an echo signal from inside is received, compare the elapsed time from the start of energization to the reception of the echo signal with the reference elapsed time, and determine whether the difference between the two is within the allowable range To determine the quality of the fusion zone. . It is desirable to set the interval as short as possible after the time at which the melting boundary surface becomes substantially planar, as the reference elapsed time.

【0010】また、第3の発明は、樹脂管と樹脂製継手
とを電気的に加熱し、両者を融着するための通電制御方
法において、樹脂部材の非溶融部と溶融部との溶融境界
面が通電開始後の経過時間に応じて定まる所定位置にあ
る時の、樹脂部材の表面から溶融境界面までの距離を超
音波が往復する基準往復時間を、溶融部の成長に合せて
設定した複数の基準経過時間毎に経過往復時間として設
定するとともに、樹脂部材の非溶融部と溶融部との溶融
境界面が融着接合が良好となる融着位置にある時の、樹
脂部材の表面から溶融境界面までの距離を超音波が往復
する基準往復時間を、融着往復時間として設定し、樹脂
部材の表面から内部に向かって超音波を入射する操作を
繰返し、各操作毎に、樹脂部材表面からのエコー信号が
受信された時から略経過往復時間後の所定時間内に、部
材内からのエコー信号が受信されるか否かを基準経過時
間毎にチェックし、通電開始からエコー信号が受信され
るまでの経過時間を基準経過時間と比較して、両者の差
をもとに通電状態を調節する制御と、各操作毎に、樹脂
部材表面からのエコー信号が受信された時から略融着往
復時間経過後の所定時間内に、部材内からのエコー信号
が受信されるか否かをチェックし、該エコー信号が受信
されたことをもって通電を停止する制御とを行なうこと
を特徴とする。前記通電状態の調節とは、両者の差が許
容範囲にあるか否かを判断し、許容範囲内にある場合は
通電を継続し、許容範囲外にある時は通電を停止するよ
うにしてもよいし、両者の差の大きさに応じて電力量を
調節して供給してもよい。
According to a third aspect of the present invention, there is provided an energization control method for electrically heating a resin pipe and a resin joint and fusing the two together, wherein a fusion boundary between a non-melted portion and a molten portion of the resin member is provided. When the surface is at a predetermined position determined according to the elapsed time after the start of energization, the reference reciprocating time for the ultrasonic wave to reciprocate the distance from the surface of the resin member to the melting boundary surface was set in accordance with the growth of the molten portion. Along with setting the elapsed reciprocating time for each of the plurality of reference elapsed times, when the fusion boundary surface between the non-melted portion and the molten portion of the resin member is at the fusion position where fusion bonding is good, from the surface of the resin member The reference reciprocating time during which the ultrasonic wave reciprocates the distance to the fusion boundary surface is set as the fusion reciprocating time, and the operation of irradiating the ultrasonic wave from the surface of the resin member toward the inside is repeated. From when the echo signal from the surface was received Within a predetermined time after the elapsed round-trip time, it is checked whether or not an echo signal from the inside of the member is received for each reference elapsed time, and the elapsed time from the start of energization to the reception of the echo signal is defined as the reference elapsed time. In comparison, the control for adjusting the energization state based on the difference between the two, and for each operation, within a predetermined time after the elapse of approximately the fusion reciprocating time from when the echo signal from the resin member surface is received, It is characterized in that whether or not an echo signal from the inside of the member is received is checked, and control is performed to stop the energization when the echo signal is received. The adjustment of the energization state may include determining whether the difference between the two is within an allowable range, continuing the energization when the difference is within the allowable range, and stopping the energization when the difference is outside the allowable range. Alternatively, the power may be adjusted and supplied according to the magnitude of the difference between the two.

【0011】[0011]

【発明の実施の形態】以下、図面を参照しながら説明す
る。図1は、本発明を実施するための装置の一例を示
し、図2と同一部分は同一の参照符号で示す。図1に示
すように、制御装置21は、接続導線20を介してEF
継手に電力を供給するための電源11と、探触子保持具
3中に配列された探触子(不図示)からの信号に基づい
て溶融部の良否を判定する判定部10と、判定部からの
信号に基づいて通電量を調整する制御部18と、溶融状
態を表示する表示部19とを有する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of an apparatus for carrying out the present invention, and the same parts as those in FIG. 2 are denoted by the same reference numerals. As shown in FIG. 1, the control device 21
A power source 11 for supplying electric power to the joint, a determination unit 10 for determining the quality of the fusion zone based on signals from probes (not shown) arranged in the probe holder 3, and a determination unit And a display unit 19 for displaying the molten state.

【0012】探触子保持具3は、EF継手1の外周面と
同様の曲率をもち、かつEF継手1の軸方向に沿って伸
張し、溶融部に対応する長さを有する部材であり、手動
或いは機械的手段(不図示)により図示矢印方向に回動
できるようにEF継手1の外周面に装着されている。探
触子保持具3には、その長手方向に沿って溢水式又は噴
流水式或いは接触式の探触子を所定ピッチで一列に取り
付けており、各探触子は判定部部10からの指令で所定
タイミングで順次走査され、所定周波数(例えば略5M
Hz)の超音波をEF継手1の中心へ向かってほぼ垂直
に出射し、反射波のエコーを受信する。適宜探触子保持
具3を円周方向に回動させることにより、EF継手1と
PE管2A、2Bの接合部全周について溶融状態を知る
ことができる。判定部10はこの溶融状態に基づき、溶
融が異常である時或いは正常に溶融が完了した時に融着
終了信号を制御部18に出力する。制御部18は、電源
11にEF継手1への供電を停止する信号を出力すると
ともに、表示部19に溶融状況結果を表示させる信号を
出力する。
The probe holder 3 is a member having the same curvature as the outer peripheral surface of the EF joint 1 and extending along the axial direction of the EF joint 1 and having a length corresponding to the fusion zone. The EF joint 1 is mounted on the outer peripheral surface of the EF joint 1 so as to be rotatable in a direction indicated by an arrow in the figure by manual operation or mechanical means (not shown). In the probe holder 3, flood type, jet water type or contact type probes are attached in a line at a predetermined pitch along the longitudinal direction thereof, and each probe is instructed by the determination unit 10. Are sequentially scanned at a predetermined timing, and a predetermined frequency (for example, approximately 5M
Hz) is emitted almost vertically toward the center of the EF joint 1, and an echo of a reflected wave is received. By appropriately rotating the probe holder 3 in the circumferential direction, it is possible to know the molten state of the entire joint of the EF joint 1 and the PE pipes 2A and 2B. The judging unit 10 outputs a fusion end signal to the control unit 18 based on the fusion state when the fusion is abnormal or when the fusion is completed normally. The control unit 18 outputs a signal for stopping the power supply to the EF joint 1 to the power supply 11 and outputs a signal for displaying the melting state result on the display unit 19.

【0013】上記構成による溶融部の検査方法は次の通
りである。電源11に連なる接続導線20先端に設けた
コネクター(不図示)をEF継手1のコネクターピンに
挿入し、電熱線に通電しながら、EF継手1外周から超
音波を入射する。通電が継続されると、ジュール熱によ
り電熱線近傍のEF継手及びPE管のPE部材が加熱さ
れ、PEの融点(約130℃)を越えると溶融が始ま
る。
The method for inspecting the fusion zone with the above configuration is as follows. A connector (not shown) provided at the end of the connection conductor 20 connected to the power supply 11 is inserted into a connector pin of the EF joint 1, and ultrasonic waves are incident from the outer periphery of the EF joint 1 while energizing the heating wire. When the energization is continued, the EF joint near the heating wire and the PE member of the PE pipe are heated by Joule heat, and the melting starts when the temperature exceeds the melting point of PE (about 130 ° C.).

【0014】電熱線への通電を継続すると溶融部は成長
していく。図3は、電熱線(黒丸で示す)に通電後のE
F継手とPE管の溶融状態(斜線が固相から液相に変化
した溶融部)をシミュレーションした結果を模式的に示
した一例である。同図において、縦軸の目盛りが0の時
のラインは、通電前のEF継手内周面とPE管外周面の
境界面を示し、正の目盛りは前記境界面からEF継手外
周側への位置を、負の目盛りは前記境界面からPE管中
心方向への位置を示している。図3において、(a)、
(b)、(c)、(d)及び(e)は通電開始後20
秒、同40秒、同60秒、同80秒、同100秒経過し
た時の溶融部を示し、溶融部がEF継手の内面側とPE
管の外面側にわたって拡大して行くことがわかる。
[0014] When energization of the heating wire is continued, the molten portion grows. FIG. 3 shows E after the heating wire (shown by a black circle) is energized.
It is an example which showed typically the result of having simulated the fusion | melting state of the F joint and the PE pipe (the fusion | melting part whose oblique line changed from solid phase to liquid phase). In the figure, the line when the scale on the vertical axis is 0 indicates the boundary surface between the inner peripheral surface of the EF joint and the outer peripheral surface of the PE pipe before energization, and the positive scale indicates the position from the boundary surface to the outer peripheral side of the EF joint. And the negative scale indicates the position from the boundary surface toward the center of the PE tube. In FIG. 3, (a),
(B), (c), (d) and (e) are 20 minutes after the start of energization.
Sec, 40 s, 60 s, 80 s, and 100 s after the lapse of 100 seconds.
It can be seen that it expands over the outer surface of the tube.

【0015】上記のように通電が継続されると、溶融部
のPE温度は約200℃となり、この時の密度は0.7
5g/mmであり、20℃時の密度0.95g/mm
から大幅に低下している。前述したように、超音波が
伝播する媒質の密度が変化すると、伝播している音響イ
ンピーダンスは大きく変化する。すなわち、溶融部と非
溶融部との境界面で超音波は大きく反射してエコーが発
生するので、容易に境界面を検出することができる。上
記のエコーとしては、図4に示すように、EF継手1と
溶融部5との溶融境界面5aからのエコーA、PE管2
と溶融部5との溶融境界面5bからのエコーDの他に、
EF継手1表面からのエコーS、電熱線12からのエコ
ーC、EF継手1内面とPE管2外面の接合面からのエ
コーB、PE管内面からのエコーEが得られる。
When the energization is continued as described above, the PE temperature of the molten portion becomes about 200 ° C., and the density at this time becomes 0.7%.
5 g / mm 3 and a density at 20 ° C. of 0.95 g / mm 3
It has dropped significantly from 3 . As described above, when the density of the medium through which the ultrasonic wave propagates changes, the acoustic impedance that propagates greatly changes. That is, the ultrasonic wave is largely reflected at the boundary surface between the melted portion and the non-melted portion and an echo is generated, so that the boundary surface can be easily detected. As the above-mentioned echoes, as shown in FIG. 4, echoes A and PE pipes 2 from the fusion boundary 5a between the EF joint 1 and the fusion zone 5 are formed.
Besides the echo D from the fusion interface 5b between
An echo S from the surface of the EF joint 1, an echo C from the heating wire 12, an echo B from a joint surface between the inner surface of the EF joint 1 and the outer surface of the PE tube 2, and an echo E from the inner surface of the PE tube are obtained.

【0016】ところで、EF継手1とPE管2が良好に
融着される場合の溶融部5の厚さは知られている。例え
ば、図3(e)に示すように通電を開始してから約10
0秒後の、溶融境界面5aが縦軸の目盛りで約4のライ
ンを超え、溶融境界面5bが約−2のラインを超えるよ
うな場合である。溶融部5は、電熱線12を中心として
上下にほぼ同じ寸法の厚さとなるが、任意の基準位置、
例えばEF継手表面からの溶融境界面5aまでの距離と
溶融境界面5bまでの距離から求めることもできる。ま
た、EF継手、PE管の寸法及び品質のバラツキはほと
んどないので、溶融部の厚さに代えて、溶融境界面5a
の位置、或いは溶融境界面5bの位置を評価の基準とす
ることもできる。
Incidentally, the thickness of the fusion zone 5 when the EF joint 1 and the PE pipe 2 are fused well is known. For example, as shown in FIG.
After 0 seconds, the case where the melting boundary 5a exceeds the line of about 4 on the scale of the vertical axis and the melting boundary 5b exceeds the line of about -2. The melting portion 5 has a thickness of approximately the same size in the vertical direction with the heating wire 12 as a center.
For example, it can also be determined from the distance from the EF joint surface to the fusion boundary 5a and the distance to the fusion boundary 5b. Further, since there is almost no variation in the dimensions and quality of the EF joint and the PE pipe, the thickness of the fusion zone is replaced with the fusion boundary surface 5a.
Or the position of the fusion boundary 5b can be used as a reference for evaluation.

【0017】次に、溶融部が良好に融着される時の厚さ
となったか否かを検査するために、EF継手表面から溶
融境界面5aまでの距離が予め設定した基準値になった
か否かで溶融の良否を判定する場合を例に、その方法を
図4により説明する。EF継手の肉厚は製品毎に決まっ
ており、溶融境界面5aが所定の位置にある時のEF継
手表面からの距離は求めることができる。また、固相状
態のPE材の超音波伝播速度も一定である。従って、超
音波がEF継手表面と溶融境界面5aを往復する時間は
一定の値となり、探触子をEF継手表面に密接した場合
の、超音波を射出してからエコーAの信号を受信するま
での基準往復時間として得ることができる。従って、図
2の判定部10に超音波を射出してからほぼ前記基準往
復時間後に開くような所定幅のゲートを設け、信号がこ
のゲートを通過するのを監視し、信号が通過した時点を
もってEF継手表面から溶融境界面5aまでの距離が基
準値になったと判定することができる。
Next, in order to check whether or not the thickness of the melted portion has been sufficiently fused, whether or not the distance from the surface of the EF joint to the melt boundary 5a has reached a predetermined reference value is determined. The method will be described with reference to FIG. The thickness of the EF joint is determined for each product, and the distance from the EF joint surface when the molten boundary surface 5a is at a predetermined position can be obtained. Further, the ultrasonic wave propagation speed of the PE material in the solid state is also constant. Therefore, the time for the ultrasonic wave to reciprocate between the surface of the EF joint and the fusion boundary surface 5a is a constant value. When the probe is in close contact with the surface of the EF joint, the ultrasonic wave is emitted and the signal of the echo A is received. It can be obtained as the reference round trip time up to. Therefore, a gate having a predetermined width is provided so as to be opened approximately after the reference reciprocating time after the ultrasonic wave is emitted to the determination unit 10 in FIG. 2, and it is monitored that a signal passes through this gate. It can be determined that the distance from the EF joint surface to the fusion boundary 5a has reached the reference value.

【0018】但し、探触子位置が半径方向にずれた場合
には、射出から受信までの時間もずれ、前述したように
設定したゲートでは溶融境界面5aが所定の位置にあっ
てもそれを判別できなくなる。そこで、探触子位置によ
らず必ず表面から得られるエコーSに着目し、エコーS
の受信時を基準にしたゲートを設定することにする。即
ち、ゲートは表面エコーSを受信後T秒後に所定時間t
秒間開くように設定する。Tは、EF継手表面と溶融境
界面5a間距離が基準値Lになった時、超音波が表面と
溶融境界面5aの間を往復する時間であり、固相状態の
PEの超音波伝播速度をVとすると、下式で表すことが
できる。なお、tは溶融境界面5aの位置の許容範囲等
から決める。 T=2L/V
However, if the probe position is shifted in the radial direction, the time from injection to reception is also shifted. Even if the melting boundary 5a is located at a predetermined position in the gate set as described above, the time is not changed. It cannot be determined. Therefore, paying attention to the echo S always obtained from the surface regardless of the probe position, the echo S
A gate is set based on the time of reception of. That is, the gate receives the surface echo S for a predetermined time t after T seconds.
Set to open for seconds. T is the time when the ultrasonic wave reciprocates between the surface and the molten boundary surface 5a when the distance between the surface of the EF joint and the molten boundary surface 5a reaches the reference value L, and the ultrasonic wave propagation velocity of PE in the solid state. Is V, it can be represented by the following equation. Note that t is determined from the allowable range of the position of the fusion boundary surface 5a and the like. T = 2L / V

【0019】図5は、図3に示す通電時間と溶融状態に
おけるエコーの発生状況、及びゲートの関係を模式的に
示したもので、横軸は超音波射出後からエコーを受信す
るまでの時間を表している。図5(a)は、通電を開始
してから60秒後に射出された超音波の各エコーとゲー
トの関係を示し、まだ溶融部が十分成長しておらず、エ
コーAはゲートが閉じた後に受信されるようなタイミン
グである。図5(b)は通電を開始してから80秒後の
状態であり、溶融部がかなり成長し、エコーAは(a)
の時より早く発生するが、まだゲートを通過するには至
っていない。図5(c)は通電を開始してから100秒
後のものであり、溶融部が所定の大きさに成長し、エコ
ーAの信号はゲートを通過する。エコーAは、エコーS
の次に発生し、ゲートを最初に通過する信号であり、確
実に検出することができる。この場合の信号がゲートを
通過するまでの時間は、溶融部の成長速度によって異な
る。周囲温度や部材温度が低い場合には長くなり、温度
が高い場合は短くなるが、溶融部が所定の大きさになれ
ば確実に検出できる。また、対象条件に合せた電気エネ
ルギーが必要量だけ供給されることになり、余分な電気
エネルギーを供給することはない。
FIG. 5 schematically shows the relationship between the energization time, the state of echo generation in the molten state, and the gate shown in FIG. 3, and the horizontal axis represents the time from ultrasonic emission to reception of the echo. Is represented. FIG. 5A shows the relationship between each echo and the gate of the ultrasonic wave emitted 60 seconds after the start of energization. The melted portion has not yet grown sufficiently, and the echo A is not reflected after the gate is closed. It is the timing as received. FIG. 5B shows a state 80 seconds after the start of energization. The melted portion has grown considerably, and the echo A is shown in FIG.
It occurs earlier than at the time, but has not yet passed the gate. FIG. 5C shows the state 100 seconds after the start of energization. The melted portion grows to a predetermined size, and the signal of echo A passes through the gate. Echo A is Echo S
And the signal that first passes through the gate and can be reliably detected. The time required for the signal to pass through the gate in this case depends on the growth rate of the melted portion. It becomes longer when the ambient temperature or the member temperature is low, and becomes shorter when the temperature is high, but it can be reliably detected when the molten portion has a predetermined size. In addition, the required amount of electric energy according to the target condition is supplied, and no extra electric energy is supplied.

【0020】EF継手表面と溶融境界面5a間距離の基
準値Lは、融着に必要なだけの最終溶融部の大きさに対
応した値として、溶融部が所定の大きさになったか否か
をチェックすることができるだけでなく、通電途中にお
ける溶融部の大きさに対応した値に設定し、通電途中の
溶融状況の良否もチェックすることができる。この場合
は、通電開始後の途中チェックのために設定した基準経
過時間Ji(例えば40、60、80秒)におけるEF
継手表面と溶融境界面5a間の距離Liに対し、前述し
たと同様にしてチェック時間Ji用のゲートTiを設定
する。通電開始からゲートTiを信号が通過する時間を
監視し、この通過までの実時間jと基準経過時間Jiと
の関係をもとに判定することができる。例えば、チェッ
ク時間60秒用に設定したゲートT60をエコーが通過
した時の時間が通電から61秒であり、許容時間が例え
ば58秒〜62秒に設定してあれば、溶融は正常に行わ
れていると判断できる。一方、エコーの通過時間が56
秒であれば許容時間より短く、過電流が流れていること
等が考えられ、逆にエコーの通過時間が62秒より長く
なるような場合は、供給電流が少なく、その原因として
電流を供給する接続導線が切断しかかっていること等が
考えられ、速やかに融着作業を中断し導線を交換すれば
よい。許容時間は、外部温度等環境条件の変動、樹脂材
質等の要因を考慮して設定すればよく、基準経過時間毎
に適切な値を選定すると良い。
The reference value L of the distance between the surface of the EF joint and the fusion boundary surface 5a is a value corresponding to the size of the final fusion portion necessary for fusion, and determines whether the fusion portion has a predetermined size. Can be set to a value corresponding to the size of the melted portion during energization, and the quality of the melted state during energization can also be checked. In this case, the EF at the reference elapsed time Ji (for example, 40, 60, and 80 seconds) set for the halfway check after the energization is started.
A gate Ti for the check time Ji is set for the distance Li between the joint surface and the fusion boundary 5a in the same manner as described above. The time when the signal passes through the gate Ti from the start of energization is monitored, and the determination can be made based on the relationship between the actual time j up to this passage and the reference elapsed time Ji. For example, the time when the echo of the gate T 60 that is configured for checking the time 60 seconds has passed is 61 seconds from the energization, if it is implemented in the allowable time, for example 58 seconds to 62 seconds, melting normally line You can judge that it has been done. On the other hand, the transit time of the echo is 56
If it is seconds, it is shorter than the allowable time, and it is considered that an overcurrent is flowing. Conversely, if the echo transit time is longer than 62 seconds, the supply current is small, and the cause is that the current is supplied. It is conceivable that the connection conductor is about to be cut, and the welding operation may be interrupted immediately and the conductor may be replaced. The permissible time may be set in consideration of factors such as a change in environmental conditions such as an external temperature and a resin material, and an appropriate value may be selected for each reference elapsed time.

【0021】以上、溶融部の検査方法について説明した
が、樹脂を溶融させるための通電制御方法に適用するこ
ともできる。通常、通電開始から停止まで予め製品毎に
決められた一定の電力を供給するが、制御装置や被溶融
体に不具合があるような場合、通電途中から正常な溶融
状態が維持できなくなる。このような場合は、速やかに
作業を中断することが重要で、従って、前述した経時的
に適宜決めた複数の基準経過時間に対して、この時に予
定される溶融境界面位置に対して実際に要した通電時間
を検出して比較し、両者の差をもとに通電の継続可否を
判断し、その旨表示部に表示するような制御を用いるこ
とが有効である。この場合、単に通電のON−OFFを
判定するだけでなく、差の大きさに応じて電力量を調整
するようにしてもよい。溶融部が目標の大きさになった
ことは前述した方法で判定することができるので、この
情報をもとに通電を停止すればよい。なお、溶融部が目
標の大きさになる時の基準経過時間は設定可能であり、
この許容時間内に目標の大きさになった場合は、正常溶
融であることを示す信号を表示部に出力して表示させる
ことができ、溶融の信頼性を高めることができる。
Although the method for inspecting the melted portion has been described above, the present invention can also be applied to an energization control method for melting the resin. Normally, a constant power predetermined for each product is supplied from the start to the stop of energization. However, if there is a defect in the control device or the object to be melted, a normal molten state cannot be maintained during energization. In such a case, it is important to stop the work promptly, and therefore, for the plurality of reference elapsed times appropriately determined with the lapse of time described above, the actual position of the fusion boundary surface expected at this time is actually determined. It is effective to detect and compare the required energization time, determine whether or not energization is to be continued based on the difference between the two, and use control to display that fact on the display unit. In this case, the power amount may be adjusted according to the magnitude of the difference, instead of simply determining whether the energization is ON or OFF. Since the fact that the fusion zone has reached the target size can be determined by the method described above, the energization may be stopped based on this information. In addition, the reference elapsed time when the fusion zone becomes the target size can be set,
When the target size is reached within the allowable time, a signal indicating normal melting can be output to the display unit to be displayed, and the reliability of the melting can be improved.

【0022】以上の実施例では、エコーAに着目した場
合について説明したが、溶融境界面bについてエコーD
に着目して同様に行なってもよいし、エコーAとエコー
Dの両方を用いて行なってもよい。また、溶融部を貫通
して得られるエコーEを用いて行なってもよい。この場
合は、EF継手肉厚とPE管肉厚と、溶融部の超音波透
過速度データを加えて、溶融部厚さが所定寸法になる時
のゲートを算出することができる。なお、エコーDの反
射部位は電熱線より超音波の送受信位置の反対側であっ
て電熱線の近傍であるため、超音波が電熱線によって散
乱されて減衰し、エコーDのレベルが低いので、エコー
Dのみを通過し得るゲートを設定する場合、エコーAの
みを通過し得るゲートを設定する場合より大きいゲイン
を設定しておくことが好ましい。また、探触子保持具3
をPE管2A及び2B内に挿入し、PE管2A及び2B
の内周側から溶融部を検査することもできる。エコーD
を用いる場合には、こちらの方が好ましい。また、PE
管及びPE製の継手部材を用いる場合に限らず、他の合
成樹脂製の管と継手部材とを融着接続させる場合にも適
用し得ることはいうまでもない。
In the above embodiment, the case where attention is paid to echo A has been described.
And may be performed using both echo A and echo D. Alternatively, the measurement may be performed using the echo E obtained through the fusion part. In this case, by adding the EF joint thickness, the PE pipe thickness, and the ultrasonic transmission speed data of the fusion zone, a gate when the fusion zone thickness reaches a predetermined dimension can be calculated. Since the reflection part of the echo D is on the opposite side of the transmission / reception position of the ultrasonic wave from the heating wire and in the vicinity of the heating wire, the ultrasonic wave is scattered and attenuated by the heating wire, and the level of the echo D is low. When setting a gate that can pass only the echo D, it is preferable to set a larger gain than when setting a gate that can pass only the echo A. Also, the probe holder 3
Are inserted into the PE tubes 2A and 2B, and the PE tubes 2A and 2B
The welded portion can be inspected from the inner peripheral side of the above. Echo D
This is more preferable when using. Also, PE
It goes without saying that the present invention is not limited to the case where a pipe and a joint member made of PE are used, but is also applicable to a case where another synthetic resin tube and a joint member are fusion-spliced.

【0023】[0023]

【発明の効果】本発明は、被検査対象品に応じて予め設
定したゲートを通過する信号の有無により所定溶融部厚
さであるかどうかを判定するので、簡単で極めて短時間
に判定ができる。このため、複数の探触子を電気的に走
査したり、機械的に移動したりして広い範囲を検査する
場合もほぼ瞬時に判定が可能であり、溶融部全域を信頼
性高く検査することができる。また、通電の途中の溶融
部成長段階の状況を知ることができるので、溶融に係わ
る不具合を早い段階で検出することができる。さらに、
環境(周囲温度)の変化に合せて、融着強度を保証する
ことができるような溶融部を確実に形成するので、徒に
過剰な電力供給を行なう必要がなく省エネルギーとな
る。さらに、環境(周囲温度)の変化が大きい場合や、
制御装置に異常があるような場合に対しては、通電を遮
断するとともにこの旨を表示するように制御するので、
早い段階で対応策をとることができ、効率的である。
According to the present invention, it is possible to determine whether or not the thickness of the melted portion is the predetermined thickness based on the presence or absence of a signal passing through a gate which is set in advance according to the product to be inspected. . For this reason, even when inspecting a wide range by electrically scanning or mechanically moving a plurality of probes, it is possible to make almost instantaneous judgments, and to inspect the entire fused area with high reliability. Can be. In addition, since it is possible to know the state of the molten portion growing stage during energization, it is possible to detect a defect relating to melting at an early stage. further,
Since a fused portion capable of guaranteeing the fusion strength is reliably formed in accordance with a change in the environment (ambient temperature), it is not necessary to supply an excessive amount of electric power, thereby saving energy. Furthermore, when the environment (ambient temperature) changes greatly,
In the case where there is an abnormality in the control device, the power is cut off and control is performed so as to display this fact.
It is efficient because it can take countermeasures at an early stage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置の一例を示す概略
構成図
FIG. 1 is a schematic configuration diagram showing an example of an apparatus for carrying out the present invention.

【図2】EF継手とPE管の接続部を示す断面図FIG. 2 is a sectional view showing a connection portion between an EF joint and a PE pipe.

【図3】通電を開始してから所定時間経過後の溶融部の
形成状況を模式的に示した図で、(a)20秒後、
(b)40秒後、(c)60秒後、(d)80秒後、
(e)100秒後
FIG. 3 is a diagram schematically showing a state of formation of a molten portion after a predetermined time has elapsed from the start of energization.
(B) after 40 seconds, (c) after 60 seconds, (d) after 80 seconds,
(E) After 100 seconds

【図4】EF継手とPE管の溶融部からのエコーを示す
FIG. 4 is a view showing echoes from a fusion part of an EF joint and a PE pipe.

【図5】通電時間の経過に伴うエコーの変化を示す図
で、(a)60秒後、(b)80秒後、(c)100秒
FIGS. 5A and 5B are diagrams showing changes in echoes with the passage of energization time. FIG. 5A shows a state after 60 seconds, FIG. 5B shows a state after 80 seconds, and FIG.

【符号の説明】[Explanation of symbols]

1 EF継手 2 PE管 3 探触子保持具 10 判定部 11 電源 13 コネクター 18 制御部 19 表示部 20 接続導線 21 制御装置 DESCRIPTION OF SYMBOLS 1 EF joint 2 PE pipe 3 Probe holder 10 Judgment part 11 Power supply 13 Connector 18 Control part 19 Display part 20 Connection lead 21 Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河合 秀樹 三重県桑名市大福2番地 日立金属株式会 社桑名工場内 Fターム(参考) 2G047 AA08 AB01 BC02 EA10 GG30 GG33 3H019 GA03 4F211 AD05 AD12 AG08 AK09 AP20 AQ02 AR16 TA01 TC11 TD07 TJ30 TN08 TN31 TW39  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideki Kawai 2nd Daifuku, Kuwana-shi, Mie F-term in Kuwana Plant of Hitachi Metals Co., Ltd. 2G047 AA08 AB01 BC02 EA10 GG30 GG33 3H019 GA03 4F211 AD05 AD12 AG08 AK09 AP20 AQ02 AR16 TA01 TC11 TD07 TJ30 TN08 TN31 TW39

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 樹脂管と樹脂製継手とを電気的に加熱
し、両者を融着する際に形成される樹脂部材の溶融部を
検査する方法において、 樹脂部材の非溶融部と溶融部との溶融境界面が所定位置
にある時の、樹脂部材の表面から溶融境界面までの距離
を超音波が往復する基準往復時間を設定し、樹脂部材の
表面から内部に向かって超音波を入射する操作を繰返
し、各操作毎に、樹脂部材表面からのエコー信号が受信
された時から略基準往復時間経過後の所定時間内に、部
材内からのエコー信号が受信されるか否かをチェック
し、エコー信号が受信されたことをもって溶融部の厚さ
が正常であると判定することを特徴とする溶融部検査方
法。
1. A method of electrically heating a resin pipe and a resin joint and inspecting a molten portion of a resin member formed when the two are fused together, the method comprising the steps of: When the molten boundary surface is at a predetermined position, a reference reciprocating time for the ultrasonic wave to reciprocate the distance from the surface of the resin member to the molten boundary surface is set, and the ultrasonic wave is incident from the surface of the resin member toward the inside. The operation is repeated, and for each operation, it is checked whether or not an echo signal from the inside of the member is received within a predetermined time after a lapse of the reference reciprocating time from the time when the echo signal from the resin member surface is received. And determining that the thickness of the fusion zone is normal based on the reception of the echo signal.
【請求項2】 樹脂管と樹脂製継手とを電気的に加熱
し、両者を融着する際に形成される樹脂部材の溶融部を
検査する方法において、 樹脂部材の非溶融部と溶融部との溶融境界面が通電開始
後の基準とする経過時間で定まる所定位置にある時の、
樹脂部材の表面から溶融境界面までの距離を超音波が往
復する基準往復時間を設定し、樹脂部材の表面から内部
に向かって超音波を入射する操作を繰返し、各操作毎
に、樹脂部材表面からのエコー信号が受信された時から
略基準往復時間経過後の所定時間内に、部材内からのエ
コー信号が受信されるか否かをチェックし、通電開始か
らエコー信号が受信されるまでの経過時間を基準の経過
時間と比較して、両者の差が許容範囲にあるか否かを判
断し、溶融部の良否を判定することを特徴とする溶融部
検査方法。
2. A method of electrically heating a resin pipe and a resin joint and inspecting a molten portion of a resin member formed when the two are fused together, the method comprising the steps of: When the molten boundary surface is at a predetermined position determined by the elapsed time as a reference after the start of energization,
Set the reference reciprocating time for the ultrasonic wave to reciprocate the distance from the surface of the resin member to the melting boundary surface, repeat the operation of injecting the ultrasonic wave from the surface of the resin member toward the inside, and repeat the operation for each operation. Within a predetermined time after the lapse of the reference reciprocating time from the time when the echo signal is received from the member, it is checked whether or not the echo signal from the inside of the member is received. A method for inspecting a fusion zone, comprising: comparing an elapsed time with a reference elapsed time to determine whether a difference between the two is within an allowable range and determining a quality of the fusion zone.
【請求項3】 樹脂管と樹脂製継手とを電気的に加熱
し、両者を融着するための通電制御方法において、 樹脂部材の非溶融部と溶融部との溶融境界面が通電開始
後の経過時間に応じて定まる所定位置にある時の、樹脂
部材の表面から溶融境界面までの距離を超音波が往復す
る基準往復時間を、溶融部の成長に合せて設定した複数
の基準経過時間毎に経過往復時間として設定するととも
に、 樹脂部材の非溶融部と溶融部との溶融境界面が融着接合
が良好となる融着位置にある時の、樹脂部材の表面から
溶融境界面までの距離を超音波が往復する基準往復時間
を、融着往復時間として設定し、 樹脂部材の表面から内部に向かって超音波を入射する操
作を繰返し、各操作毎に、樹脂部材表面からのエコー信
号が受信された時から略経過往復時間後の所定時間内
に、部材内からのエコー信号が受信されるか否かを基準
経過時間毎にチェックし、通電開始からエコー信号が受
信されるまでの経過時間を基準経過時間と比較して、両
者の差をもとに通電状態を調節する制御と、 各操作毎に、樹脂部材表面からのエコー信号が受信され
た時から略融着往復時間経過後の所定時間内に、部材内
からのエコー信号が受信されるか否かをチェックし、該
エコー信号が受信された時通電を停止する制御とを行な
うことを特徴とする通電制御方法。
3. An energization control method for electrically heating a resin pipe and a resin joint and fusing the resin tube and the resin joint together, the method comprising the steps of: When the ultrasonic wave reciprocates the distance from the surface of the resin member to the melting boundary surface at a predetermined position determined according to the elapsed time, the reference reciprocating time is set for each of a plurality of reference elapsed times set in accordance with the growth of the molten portion. And the distance from the surface of the resin member to the fusion boundary when the fusion boundary between the non-molten portion and the fusion portion of the resin member is at the fusion position where fusion bonding is good. Is set as the fusion reciprocating time, and the operation of applying ultrasonic waves from the surface of the resin member toward the inside is repeated, and for each operation, an echo signal from the resin member surface is generated. After a lapsed round trip time from the time of reception Within a predetermined time, whether or not an echo signal from the inside of the member is received is checked for each reference elapsed time, and the elapsed time from the start of energization until the echo signal is received is compared with the reference elapsed time. Control for adjusting the energization state based on the difference between the signals, and for each operation, within a predetermined time after the reciprocation time of the fusion welding has elapsed since the reception of the echo signal from the surface of the resin member, Controlling whether a signal is received or not and stopping the power supply when the echo signal is received.
JP28363799A 1999-10-05 1999-10-05 Method for inspecting molten part and method for controlling energization Pending JP2001108662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28363799A JP2001108662A (en) 1999-10-05 1999-10-05 Method for inspecting molten part and method for controlling energization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28363799A JP2001108662A (en) 1999-10-05 1999-10-05 Method for inspecting molten part and method for controlling energization

Publications (1)

Publication Number Publication Date
JP2001108662A true JP2001108662A (en) 2001-04-20

Family

ID=17668112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28363799A Pending JP2001108662A (en) 1999-10-05 1999-10-05 Method for inspecting molten part and method for controlling energization

Country Status (1)

Country Link
JP (1) JP2001108662A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029957A1 (en) * 2006-09-07 2008-03-13 Sumitomo Metal Industries, Ltd. Method for evaluating fastening state of threaded joint of pipes or tubes and method for fastening threaded joint of pipes or tubes using the method
WO2008035794A1 (en) * 2006-09-21 2008-03-27 Sumitomo Metal Industries, Ltd., Ultrasonic testing method of threaded joint of pipes or tubes
CN100486506C (en) * 2003-08-22 2009-05-13 松下电器产业株式会社 Electric vacuum cleaner
CN103512954A (en) * 2013-10-09 2014-01-15 浙江大学 Device and method for automatic circumferential ultrasonic detection of joint of polyolefin composite tube
EP2759392A1 (en) * 2013-01-25 2014-07-30 Radius Systems Limited An electrofusion fitting
EP3299147A1 (en) * 2016-09-23 2018-03-28 Friatec Aktiengesellschaft Method for non-destructive testing of a welding joint formed by a lost element welding technique, said lost element being a winding, and corresponding arrangement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100486506C (en) * 2003-08-22 2009-05-13 松下电器产业株式会社 Electric vacuum cleaner
WO2008029957A1 (en) * 2006-09-07 2008-03-13 Sumitomo Metal Industries, Ltd. Method for evaluating fastening state of threaded joint of pipes or tubes and method for fastening threaded joint of pipes or tubes using the method
US8113055B2 (en) 2006-09-07 2012-02-14 Sumitomo Metal Industries, Ltd. Method for evaluating fastening state of threaded joint of pipes or tubes and method for fastening threaded joint of pipes or tubes using the method
WO2008035794A1 (en) * 2006-09-21 2008-03-27 Sumitomo Metal Industries, Ltd., Ultrasonic testing method of threaded joint of pipes or tubes
US8091425B2 (en) 2006-09-21 2012-01-10 Sumitomo Metal Industries, Ltd. Ultrasonic testing method of threaded joint of pipes or tubes
EP2759392A1 (en) * 2013-01-25 2014-07-30 Radius Systems Limited An electrofusion fitting
GB2510145A (en) * 2013-01-25 2014-07-30 Radius Systems Ltd An electrofusion fitting
CN103512954A (en) * 2013-10-09 2014-01-15 浙江大学 Device and method for automatic circumferential ultrasonic detection of joint of polyolefin composite tube
EP3299147A1 (en) * 2016-09-23 2018-03-28 Friatec Aktiengesellschaft Method for non-destructive testing of a welding joint formed by a lost element welding technique, said lost element being a winding, and corresponding arrangement

Similar Documents

Publication Publication Date Title
US10345266B2 (en) Ultrasonic NDT inspection system
WO1999013327A1 (en) Focusing longitudinal wave ultrasonic probe for inspecting polymer material and ultrasonic defect evaluation system
CN1332198C (en) Real time ultrasonic detection and monitoring method
JP2001108662A (en) Method for inspecting molten part and method for controlling energization
NL1024726C2 (en) Method for checking a weld between two metal pipelines.
WO2020051677A1 (en) Apparatus and method for inspecting a fusion joint
KR20170079187A (en) Apparatus for monitoring thermoplastic pipes fusion joining work
JP4067203B2 (en) Spot welding inspection method
JP4881180B2 (en) Spot welding inspection method and inspection apparatus
CN110370651B (en) Method for realizing intelligent electric fusion welding of plastic pipeline by using ultrasonic detection assistance
JPH11147258A (en) Electric fusing method and apparatus therefor
JP5053959B2 (en) Electrode tip contact area ratio evaluation method, workpiece internal resistance evaluation method, ultrasonic attenuation rate evaluation method, and electrode tip tilt state determination method
JP3703129B2 (en) Detection method and apparatus for defective fusion and resin pipe
JPH0287060A (en) Inspecting method for spot-welded part
JPH11132382A (en) Welded coupling
KR101646498B1 (en) System for detection of defects on high density poly-ethylene pipe and method thereof
JP2682390B2 (en) Ultrasonic flaw detector for welds
JPH11142376A (en) Method and apparatus for diagnosis of fusion state of fusion coupling
JP3693282B2 (en) Inspection method for welds
JP3590213B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JPH11142377A (en) Method and apparatus for detecting foreign article at fusion part
JPH10132791A (en) Method for inspecting fused part of tube
RU2721478C1 (en) Automated temperature control during welding
CN216747487U (en) Polyethylene pipeline defect detection system
JPH10246722A (en) Method for inspecting weld-bonded part of plastic tube