JP4880649B2 - Dye-sensitized solar cell and method for producing the same - Google Patents

Dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JP4880649B2
JP4880649B2 JP2008186511A JP2008186511A JP4880649B2 JP 4880649 B2 JP4880649 B2 JP 4880649B2 JP 2008186511 A JP2008186511 A JP 2008186511A JP 2008186511 A JP2008186511 A JP 2008186511A JP 4880649 B2 JP4880649 B2 JP 4880649B2
Authority
JP
Japan
Prior art keywords
dye
gelled
rubber
titanium oxide
gel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008186511A
Other languages
Japanese (ja)
Other versions
JP2010003657A5 (en
JP2010003657A (en
Inventor
浩 北村
Original Assignee
浩 北村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩 北村 filed Critical 浩 北村
Priority to JP2008186511A priority Critical patent/JP4880649B2/en
Priority to PCT/JP2009/061544 priority patent/WO2009157497A1/en
Publication of JP2010003657A publication Critical patent/JP2010003657A/en
Publication of JP2010003657A5 publication Critical patent/JP2010003657A5/ja
Application granted granted Critical
Publication of JP4880649B2 publication Critical patent/JP4880649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素を吸着したゼオライト等を多孔質酸化チタンで被覆し高分子吸収体でゲル化したもの等を、粘着性(粘弾性)を損なわない範囲で乾燥させ後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮(以下「加圧凝縮」)の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材、又は色素又は電解液を高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させた後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材に形成して用いた色素増感太陽電池およびその製造方法に関する。The invention, and the like that gelled coated with absorbent polymer in the porous titanium oxide adsorbed zeolite pigment, after drying in a range that does not impair the adhesive (viscoelasticity), or in particulate A rubber-like gel material or pigment having a uniform, high-density and elasticity by processing pressure condensation (hereinafter referred to as “pressure condensation” ), including thinning and homogenization, in a subdivided or intact state Alternatively, after the electrolyte solution gelled with the polymer absorber is dried within a range that does not impair the adhesiveness (viscoelasticity), it is made into particles, subdivided, or further compressed and condensed as it is. The present invention relates to a dye-sensitized solar cell that has been processed and formed into a uniform, high-density and elastic rubber-like gel material , and a method for producing the same.

従来の色素増感太陽電池は、一般的には半導体層電極、対電極、及びそれらの電極間に充填された電解質層とから構成される。この際に、半導体層表面には可視光領域に吸収スペクトルを有する光増感色素が吸着されている。  Conventional dye-sensitized solar cells are generally composed of a semiconductor layer electrode, a counter electrode, and an electrolyte layer filled between the electrodes. At this time, a photosensitizing dye having an absorption spectrum in the visible light region is adsorbed on the surface of the semiconductor layer.

この半導体層電極に光を照射すると、電極側にある色素から電子が発生し、この電子が多孔質酸化チタン膜に移動してインジウムすず酸化物(ITO)等の導電層を通り、回路を経て対電極に流れる。  When this semiconductor layer electrode is irradiated with light, electrons are generated from the dye on the electrode side, and the electrons move to the porous titanium oxide film and pass through a conductive layer such as indium tin oxide (ITO) through a circuit. Flows to the counter electrode.

そして対電極に流れた電子は、電解質中のイオンにより運ばれて半導体層電極に戻る。この際の電解液には通常ニトリル系の溶媒を用い、これに溶質としてヨウ素とヨウ素イオンのレドックス系を溶解する。このような繰り返しにより電気エネルギーが取り出せる。  The electrons flowing to the counter electrode are carried by the ions in the electrolyte and return to the semiconductor layer electrode. In this case, a nitrile solvent is usually used as the electrolytic solution, and a redox system of iodine and iodine ions is dissolved therein as a solute. Electric energy can be taken out by repeating such operations.

しかし、変換効率が最大10%程度と低いため特許文献1及び2のように、電解液の液漏れや変質に対して高分子化合物等を用いたゲル状電解質やポリマー電解質といった類のもので解決を試みているが、大きな成果は見受けられない。  However, since the conversion efficiency is as low as about 10%, as in Patent Documents 1 and 2, it can be solved with a kind of gel electrolyte or polymer electrolyte using a polymer compound or the like against leakage or alteration of the electrolyte solution However, no great results are seen.

一方、特許文献3では、ゼオライト等の担体の表面に酸化チタンを被覆するといった光触媒技術が見受けられる。  On the other hand, in Patent Document 3, a photocatalytic technique in which the surface of a support such as zeolite is coated with titanium oxide can be seen.

特願2003−383307Japanese Patent Application No. 2003-383307 特願2004−124324Japanese Patent Application No. 2004-124324 特願平9−63867Japanese Patent Application No. 9-63867

従来の色素増感太陽電池は、紫外線域波長にのみ対応する酸化チタン及び色素の光増感に限界があるために変換効率が最大10%程度と低く、また色素や電解液の液漏れ等による長寿命化(長期安定性の確保)が困難となっている。  Conventional dye-sensitized solar cells have a limitation in the photosensitization of titanium oxide and dyes corresponding only to wavelengths in the ultraviolet region, so that the conversion efficiency is as low as about 10% at the maximum, and due to leakage of dyes and electrolytes, etc. It has become difficult to extend the service life (ensure long-term stability).

そのため、高増感色素を求めたり液漏れ等を改善するために、酸化チタンの多孔化、色素の改質、固体化及びゲル化等の研究がなされているが、大きな成果は見受けられない。  For this reason, in order to obtain highly sensitizing dyes and improve liquid leakage, etc., researches on porous titanium oxide, modification of dyes, solidification, and gelation have been conducted, but no great results have been found.

本発明は、これら課題を改善し解決することで、より高効率で長寿命化を図った色素増感太陽電池およびその製造方法を提供することを目的とするものである。  An object of the present invention is to provide a dye-sensitized solar cell that is improved in efficiency and has a long lifetime by improving and solving these problems, and a method for manufacturing the same.

問題を解決するための手段Means to solve the problem

本発明は、上記目的達成のために、まず色素をゼオライト(活性炭を含み、以下略。)に吸着させ後に多孔質酸化チタンを被覆する。この際に例えば色素を吸着したゼオライトを加圧し凝縮して良く、単位当たりの色素量が増大し発生電子も多く見込める。The present invention, in order achieve the above object, firstly dye (including activated carbon, following substantially.) Zeolite coating the porous titanium oxide After adsorption. At this time, for example, the zeolite adsorbed with the dye may be pressurized and condensed, the amount of the dye per unit is increased, and many generated electrons can be expected.

又はゼオライトを用いずに色素を直接多孔質酸化チタンに吸着させる。この際もそれを一定程度加圧し凝縮して良い。  Alternatively, the dye is directly adsorbed on the porous titanium oxide without using zeolite. At this time, it may be pressurized to a certain extent and condensed.

又はそれらにシリコンや化合物半導体を、微粒子状にして含める(シリコン等を混合しても良い。)ことで、多孔質酸化チタン及び色素の機能強化及び補強がなされる。  Alternatively, silicon and a compound semiconductor are included in the form of fine particles (silicon or the like may be mixed), thereby enhancing and reinforcing the functions of porous titanium oxide and pigment.

次に、それら(単一又は複数の色素、多孔質酸化チタン、電解液を含む。以下同。)を、それぞれ高分子吸収体でゲル状にして乾燥凝縮させるが、その際に粘着性(粘弾性)を損なわない範囲で最大限の乾燥と凝縮を行うことが必要である。  Next, each of them (including a single or plural dyes, porous titanium oxide, and electrolyte solution; the same applies hereinafter) is gelled with a polymer absorber and dried and condensed. It is necessary to perform maximum drying and condensation within a range that does not impair elasticity.

その粘着性(粘弾性)は、液体的な導電作用によって色素で発生した電子を半導体層に移動させて電極に伝え、電解液のイオンを保持して色素への電子供給機能を担う。また、それは面的な広がりを持つために透明度のある薄膜状の電極が可能となり、従来の電極の代替も可能となる。  The adhesiveness (viscoelasticity) moves electrons generated in the dye by a liquid conductive action to the semiconductor layer and transmits the electrons to the electrode, and retains ions of the electrolytic solution and has a function of supplying electrons to the dye. In addition, since it has a wide area, it is possible to form a transparent thin film-like electrode and to replace the conventional electrode.

そして、それらゲル状のものを、粒子状にしたり小さく裁断する等の細分化を行い又はそのままの状態でさらに一体的に加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材を形成させる。  Then, these gel-like materials are subdivided into particles or cut into small pieces, etc., or are processed in a state of pressure condensation in the state as they are, and are uniformly, high-density and elastic rubber-like A gel material is formed.

その場合、色素では、可視光域の吸収スペクトルが異なる複数の色素を単一のゴム状ゲル材に形成したり、複数の色素のゴム状ゲル材を組み合わせて(積層を含む。)用いる等で、さらに発生する電子量の増大が期待できる。  In that case, a plurality of dyes having different absorption spectra in the visible light region are formed in a single rubber-like gel material, or a plurality of dye-like rubber-like gel materials are used in combination (including lamination). Further, an increase in the amount of generated electrons can be expected.

また、電解液では、ゴム状ゲル材を形成するだけで十分に液漏れ等の解決は図れるが、粘着性(粘弾性)の働きによって電解液を用いずに直接電極から色素へ電子を供給して液漏れ等を解決することも可能である。  In addition, the electrolytic solution can sufficiently solve the liquid leakage etc. by forming a rubbery gel material, but by the action of adhesiveness (viscoelasticity), electrons are directly supplied from the electrode to the dye without using the electrolytic solution. It is also possible to solve the liquid leakage.

その後に、上記のゴム状ゲル材を積み重ね、それをさらに一体的にするために再び加圧凝縮等の加工、例えば圧延、ロール及びプレス加工等で凝縮化、薄膜化、均一化及び製品化等を行い、プラスチックの基板(ガラス材、天然繊維、合成繊維及び炭素繊維を含む。以下同。)に封止材、電極、反射膜及び反射防止膜等との一部又は全部の組み合わせで本発明の色素増感太陽電池が形成される。  After that, the above rubber-like gel material is stacked, and in order to make it more integrated, condensation, thinning, homogenization, productization, etc. are performed again by processing such as pressure condensation, for example, rolling, roll and press processing, etc. And a plastic substrate (including glass material, natural fiber, synthetic fiber, and carbon fiber; the same applies hereinafter) with a part or all of a combination of a sealing material, an electrode, a reflection film, an antireflection film, and the like. The dye-sensitized solar cell is formed.

また、上記のゴム状ゲル材を複数組み合わせて(積層を含む。)、上記同様にすることで、より機能向上を図った本発明の色素増感太陽電池が形成される。  Moreover, the dye-sensitized solar cell of this invention which improved the function further is formed by combining two or more said rubber-like gel materials (including lamination | stacking) and carrying out similarly to the above.

発明の効果The invention's effect

本発明は、変換効率の低さ、色素や電解液の液漏れ等を解決して高効率及び長寿命化を図るもので、まず変換効率の低さに対し、色素の高密度化及び吸収スペクトル域の拡大等によって単位当たりの色素量が増大して発生電子も増大する等により高効率となる。  The present invention solves the low conversion efficiency, the leakage of dyes and electrolytes, etc., and achieves high efficiency and long life. First, the density of the dye and the absorption spectrum are reduced with respect to the low conversion efficiency. Higher efficiency is achieved, for example, by increasing the amount of dye per unit due to expansion of the region and the like, and increasing the number of generated electrons.

また、シリコンや化合物半導体を用いることで、さらに発生する電子量を増大させるとともに半導体層の充実等になり電極に伝達させる電子量も増大して高効率となる。  Further, by using silicon or a compound semiconductor, the amount of generated electrons is further increased, the semiconductor layer is enriched, and the amount of electrons transmitted to the electrode is increased, resulting in high efficiency.

次に、色素及び電解液の液漏れ等に対しては、多孔質酸化チタン、色素及び電解液を高分子吸収体を用いてゴム状ゲル材に形成したことで解決される。  Next, the leakage of the dye and the electrolytic solution is solved by forming the porous titanium oxide, the dye and the electrolytic solution on the rubber-like gel material using the polymer absorber.

即ち、例えば電解液が担っていた色素への電子供給機能が、ゴム状ゲル材の粘着性(粘弾性)が持つ液体的な導電作用によって担保されるので液漏れ等が解決される。  In other words, for example, the function of supplying electrons to the dye that the electrolyte has carried is secured by the liquid conductive action of the adhesiveness (viscoelasticity) of the rubber-like gel material, so that liquid leakage and the like are solved.

また、粘着性(粘弾性)の液体的な導電作用によって電解液を不用とすることも可能となるので、その場合には液漏れ等の問題は生じない。  In addition, since the electrolytic solution can be made unnecessary by the adhesive (viscoelastic) liquid conductive action, problems such as liquid leakage do not occur in that case.

以上により、多孔質酸化チタン、色素及び電解液等をゴム状ゲル材とすることで変換効率が向上し、かつ液漏れ等が解消、解決されて弾力性が保持されることで、耐久性が増し長寿命化(長期安定性の確保)が図られる。  As described above, the conversion efficiency is improved by making the porous titanium oxide, the pigment, the electrolytic solution, and the like into a rubbery gel material, and the liquid leakage is solved and solved, and the elasticity is maintained, so that the durability is maintained. Increased service life (ensures long-term stability).

本発明について、図1から図12の実施例に基づいて説明する。ただし、本発明はこれらに限るものではなく、また作図は主要な構成物のみとする。  The present invention will be described based on the embodiment shown in FIGS. However, the present invention is not limited to these, and only the main components are drawn.

本発明の基本的な形態は、まず色素2をゼオライト3に吸着させ後に多孔質酸化チタン4で被覆し、又は色素2を直接多孔質酸化チタン4に吸着させ、又はそれらにシリコン(化合物半導体含む。以下同。)4−1を含ませる(シリコン4−1の単独でも良い。)。Basic form of the present invention, first the dye 2 was coated with porous titanium oxide 4 to be adsorbed onto the zeolite 3, or dye 2 was adsorbed directly on the porous titanium oxide 4, or silicon them (compound semiconductor (The same applies hereinafter.) 4-1 is included (silicon 4-1 alone may be used).

次に、それらを高分子吸収体5によってゲル化し、その後粘着性(粘弾性)を損なわない範囲で乾燥させて凝縮させる。その場合、自然乾燥でも人工乾燥でも良い。  Next, they are gelled by the polymer absorber 5, and then dried and condensed within a range that does not impair the stickiness (viscoelasticity). In that case, natural drying or artificial drying may be used.

そして、ゲル化し乾燥凝縮したそれらを、粒子状に加工したり裁断して細分化したり又はそのままの状態でさらに一体的に加圧凝縮の加工をして均一で高密度かつ弾力性を持ったゴム状ゲル材6(説明上、ゼオライト3やシリコン4−1の有無を問わない。以下同。)を形成する。  Then, the rubber that has been gelled and dried and condensed is processed into particles, cut into fine pieces, or further subjected to pressure condensation processing in the same state, and it is a uniform, high-density and elastic rubber. A gel material 6 (for the sake of explanation, whether or not zeolite 3 or silicon 4-1 is present is used) is formed.

一方、上記方法により色素2及び電解液7をそれぞれ色素ゴム状ゲル材8、電解液ゴム状ゲル材9に形成する。  On the other hand, the pigment | dye 2 and the electrolyte solution 7 are formed in the pigment | dye rubber-like gel material 8 and the electrolyte solution rubber-like gel material 9, respectively by the said method.

それらを、例えばプラスチックの基板(以下「基板」)10で挟み込み、電極11、封止材12、反射膜等13(等は反射防止膜)と一体的に組み合わせること(積層を含む。)で本発明の色素増感太陽電池が形成されるものである。  They are sandwiched between, for example, a plastic substrate (hereinafter referred to as “substrate”) 10, and are integrally combined with the electrode 11, the sealing material 12, the reflective film 13 (and the like are anti-reflective films), etc. (including lamination). The dye-sensitized solar cell of the invention is formed.

図1は基本構成を上から基板10、電極11、ゴム状ゲル材6、電解液ゴム状ゲル材9、電極11、基板10としたもので、図2は図1の基本構成において、ゴム状ゲル材6と電解液ゴム状ゲル材9の間に色素ゴム状ゲル材8を配置したものである。  FIG. 1 shows a basic configuration from the top as a substrate 10, an electrode 11, a rubber-like gel material 6, an electrolyte solution rubber-like gel material 9, an electrode 11, and a substrate 10. FIG. 2 shows a rubber-like structure in the basic configuration of FIG. A pigment rubber gel material 8 is disposed between the gel material 6 and the electrolyte rubber gel material 9.

そして、太陽光でゴム状ゲル材6の色素2から電子が発生し、また色素ゴム状ゲル材8からも同様に電子が発生し、それら電子が多孔質酸化チタン4を通じて電極11に流れる。  Then, electrons are generated from the pigment 2 of the rubber-like gel material 6 by sunlight, and electrons are similarly generated from the pigment rubber-like gel material 8, and these electrons flow to the electrode 11 through the porous titanium oxide 4.

その後、色素2に対し電解液ゴム状ゲル材9から新たな電子が供給されるが、それら発生電子の移動等に係る機能は、全てそれぞれのゴム状ゲル材(6、8、9)の粘着性(粘弾性)が担うこととなる。  Thereafter, new electrons are supplied from the electrolyte rubber-like gel material 9 to the dye 2, and all the functions relating to the movement of the generated electrons are the adhesion of the respective rubber-like gel materials (6, 8, 9). Nature (viscoelasticity).

図3は、図2の基本構成において色素ゴム状ゲル材8のほかに吸収スペクトルの異なる色素ゴム状ゲル材8−1を配置して、より色素増感を図ったものである。  FIG. 3 shows a dye sensitization by arranging a dye rubber-like gel material 8-1 having a different absorption spectrum in addition to the dye rubber-like gel material 8 in the basic configuration of FIG.

図4は、図2の基本構成において電解液ゴム状ゲル材9を除いたものである。  FIG. 4 is obtained by removing the electrolyte rubber-like gel material 9 from the basic configuration of FIG.

図5は、基本構成を上から基板10、ゴム状ゲル材6、電極11、ゴム状ゲル材6、電解液ゴム状ゲル材9、電極11、基板10としたもので、図6は図5の基本構成において、色素ゴム状ゲル材8を加えたものである。  FIG. 5 shows the basic structure from the top as substrate 10, rubber gel material 6, electrode 11, rubber gel material 6, electrolyte rubber gel material 9, electrode 11, and substrate 10. In the basic structure, a pigment rubber-like gel material 8 is added.

図5及び図6は、上部の電極11をその上下に配置したゴム状ゲル材6で挟み込むようにしたもので、上下に配置したゴム状ゲル材6からより多くの発生電子が伝えられる仕組みである。なお、必要に応じてセパレータ等による電極11の保護や制御を行う。5 and 6 show a structure in which the upper electrode 11 is sandwiched between rubber gel materials 6 disposed above and below, and more generated electrons are transmitted from the rubber gel material 6 disposed above and below. is there. Note that the electrode 11 is protected or controlled by a separator or the like as necessary.

図7は、図6の基本構成において電解液ゴム状ゲル材9を除いたもので、図8は基本構成を上から基板10、電極11、ゴム状ゲル材6、電解液ゴム状ゲル材9、電極11、電解液ゴム状ゲル材9、ゴム状ゲル材6、電極11、基板10としたものである。  FIG. 7 is obtained by removing the electrolyte rubber-like gel material 9 from the basic structure of FIG. 6, and FIG. 8 shows the basic structure from the top of the substrate 10, the electrode 11, the rubber-like gel material 6, and the electrolyte rubber-like gel material 9. , Electrode 11, electrolyte rubber gel material 9, rubber gel material 6, electrode 11 and substrate 10.

図9は、図8の基本構成において電解液ゴム状ゲル材9の替わりに色素ゴム状ゲル材8と8−1を加えたものである。  FIG. 9 is obtained by adding dye rubber-like gel materials 8 and 8-1 in place of the electrolyte solution rubber-like gel material 9 in the basic configuration of FIG.

図10は、基本構成を上から基板10、ゴム状ゲル材6、電極11、ゴム状ゲル材6、電解液ゴム状ゲル材9、電極11、電解液ゴム状ゲル材9、ゴム状ゲル材6、電極11、ゴム状ゲル材6、基板10としたものである。  FIG. 10 shows, from the top, the substrate 10, the rubber gel material 6, the electrode 11, the rubber gel material 6, the electrolyte rubber gel material 9, the electrode 11, the electrolyte rubber gel material 9, and the rubber gel material. 6, an electrode 11, a rubbery gel material 6, and a substrate 10.

図11は、図10の基本構成において電解液ゴム状ゲル材9の替わりに色素ゴム状ゲル材8と8−1を加えたものである。  FIG. 11 is obtained by adding pigment rubber-like gel materials 8 and 8-1 in place of the electrolyte solution rubber-like gel material 9 in the basic configuration of FIG.

図12は、色素ゴム状ゲル材8及び8−1を透明度の高い薄膜状にして電極11の代替を担わせたものである。FIG. 12 shows an alternative to the electrode 11 in which the pigment rubber gel materials 8 and 8-1 are formed into a thin film with high transparency.

本発明の実施例(1)を示す断面図。Sectional drawing which shows Example (1) of this invention. 本発明の実施例(2)を示す断面図。Sectional drawing which shows Example (2) of this invention. 本発明の実施例(3)を示す断面図。Sectional drawing which shows Example (3) of this invention. 本発明の実施例(4)を示す断面図。Sectional drawing which shows Example (4) of this invention. 本発明の実施例(5)を示す断面図。Sectional drawing which shows Example (5) of this invention. 本発明の実施例(6)を示す断面図。Sectional drawing which shows Example (6) of this invention. 本発明の実施例(7)を示す断面図。Sectional drawing which shows Example (7) of this invention. 本発明の実施例(8)を示す断面図。Sectional drawing which shows Example (8) of this invention. 本発明の実施例(9)を示す断面図。Sectional drawing which shows Example (9) of this invention. 本発明の実施例(10)を示す断面図。Sectional drawing which shows Example (10) of this invention. 本発明の実施例(11)を示す断面図。Sectional drawing which shows Example (11) of this invention. 本発明の実施例(12)を示す断面図。Sectional drawing which shows Example (12) of this invention.

1 本発明の実施例(1)
2 色素
3 ゼオライト
4 多孔質酸化チタン
4−1 シリコン(化合物半導体含む。)
5 高分子吸収体
6 ゴム状ゲル材
7 電解液
8 色素ゴム状ゲル材
8−1 色素ゴム状ゲル材(色素ゴム状ゲル材8と異なる吸収スペクトルを持つ。)
9 電解液ゴム状ゲル材
10 基板
11 電極
12 封止材
13 反射膜等
14 本発明の実施例(2)
15 本発明の実施例(3)
16 本発明の実施例(4)
17 本発明の実施例(5)
18 本発明の実施例(6)
19 本発明の実施例(7)
20 本発明の実施例(8)
21 本発明の実施例(9)
22 本発明の実施例(10)
23 本発明の実施例(11)
24 本発明の実施例(12)
1 Embodiment (1) of the present invention
2 Dye 3 Zeolite 4 Porous titanium oxide 4-1 Silicon (compound semiconductor included)
5 Polymer Absorber 6 Rubber Gel Material 7 Electrolytic Solution 8 Dye Rubber Gel Material 8-1 Dye Rubber Gel Material (having an absorption spectrum different from that of the dye rubber gel material 8)
9 Electrolytic solution rubbery gel material 10 Substrate 11 Electrode 12 Sealing material 13 Reflective film 14 Example (2) of the present invention
15 Embodiment (3) of the present invention
16 Embodiment (4) of the present invention
17 Embodiment (5) of the present invention
18 Embodiment (6) of the present invention
19 Embodiment (7) of the present invention
20 Embodiment (8) of the present invention
21 Embodiment (9) of the present invention
22 Embodiment (10) of the present invention
23 Embodiment (11) of the present invention
24 Embodiment (12) of the present invention

Claims (13)

色素を吸着したゼオライトや活性炭を多孔質酸化チタンで被覆し高分子吸収体でゲル化したもの、又は色素を吸着した多孔質酸化チタンを高分子吸収体でゲル化したもの、又は色素を吸着したゼオライトや活性炭を多孔質酸化チタンで被覆し高分子吸収体でゲル化したものや色素を吸着した多孔質酸化チタンを高分子吸収体でゲル化したものにシリコンや化合物半導体を含めたもの、又はシリコンや化合物半導体や多孔質酸化チタンを高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させ後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材
又は色素又は電解液を高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させた後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材、
に形成して用いたことを特徴とする色素増感太陽電池。
Zeolite or activated carbon with dye adsorbed coated with porous titanium oxide and gelled with polymer absorber, or porous titanium oxide adsorbed with dye gelled with polymer absorber, or dye adsorbed Silicone or activated carbon coated with porous titanium oxide and gelled with a polymer absorber, or porous titanium oxide adsorbed with a dye gelled with a polymer absorber , including silicon or a compound semiconductor, or silicon or a compound semiconductor or a porous titanium oxide that gelled absorbent polymer, after drying in a range that does not impair the adhesive (viscoelasticity), and in the state of subdivided or particulate or intact integrally Rubbery gel material with uniform, high density and elasticity by processing of pressure condensation including thinning and homogenization ,
Alternatively, after a pigment or electrolyte gelled with a polymer absorber is dried to the extent that it does not impair adhesiveness (viscoelasticity), it is made into particles, subdivided, or thinned as it is in one piece , Rubber gel material with uniform, high density and elasticity by processing of pressure condensation including homogenization,
A dye-sensitized solar cell, which is formed and used.
色素をゼオライトや活性炭に吸着させ加圧した後に多孔質酸化チタンで被覆したことを特徴とする請求項1記載の色素増感太陽電池。Dye-sensitized solar cell of claim 1, wherein the coated porous titanium oxide after the dye pressurized adsorbed on zeolite or activated carbon. 色素を吸着したゼオライトや活性炭を多孔質酸化チタンで被覆し高分子吸収体でゲル化したこと、又は色素を吸着した多孔質酸化チタンを高分子吸収体でゲル化したこと、又は色素を吸着したゼオライトや活性炭を多孔質酸化チタンで被覆し高分子吸収体でゲル化したものや色素を吸着した多孔質酸化チタンを高分子吸収体でゲル化したものにシリコンや化合物半導体を含めたこと、又はシリコンや化合物半導体や多孔質酸化チタン(シリコンや化合物半導体や多孔質酸化チタンを混合しても良い。)を高分子吸収体でゲル化したことを特徴とする請求項1記載の色素増感太陽電池。Zeolite or activated carbon with adsorbed dye coated with porous titanium oxide and gelled with polymer absorber, or porous titanium oxide adsorbed with dye gelled with polymer absorber, or dye adsorbed Silicon or a compound semiconductor was included in a material in which zeolite or activated carbon was coated with porous titanium oxide and gelled with a polymer absorber, or porous titanium oxide adsorbed with a dye was gelled with a polymer absorber , or 2. The dye-sensitized sun according to claim 1, wherein silicon, a compound semiconductor, or porous titanium oxide ( silicon, compound semiconductor, or porous titanium oxide may be mixed) is gelled with a polymer absorber. battery. 上記請求項3記載の高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させ後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材に形成したことを特徴とする請求項1記載の色素増感太陽電池。Those gelled absorbent polymer of the third aspect, after drying in a range that does not impair the adhesive (viscoelasticity), subdivided or particulate or even integrally thinned in a state that 2. The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is formed into a rubber-like gel material having uniform, high density and elasticity by processing of pressure condensation including homogenization . 単一又は複数の色素を高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させた後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材に形成したことを特徴とする請求項1記載の色素増感太陽電池。A single or multiple pigment gelled with a polymer absorber is dried to the extent that it does not impair the adhesiveness (viscoelasticity), and then is made into particles, subdivided, or further integrated into a thin film 2. The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is formed into a rubber-like gel material having uniform, high density and elasticity by processing of pressure condensation including crystallization and homogenization . 上記請求項5記載の色素のゴム状ゲル材を複数重ね合わせて一体化し又は複数重ねた後にさらに薄膜化、均一化を含む加圧凝縮の加工をして一体化したことを特徴とする請求項1記載の色素増感太陽電池。A plurality of the rubber-like gel materials of the pigment according to claim 5 are integrated by being overlapped, or after being overlapped, they are further integrated by performing pressure condensation processing including thinning and homogenization. 1. The dye-sensitized solar cell according to 1. 電解液を高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させた後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材に形成したことを特徴とする請求項1記載の色素増感太陽電池。The electrolyte solution gelled with a polymer absorber is dried to the extent that it does not impair adhesiveness (viscoelasticity), and then is made into particles, subdivided, or made into a thin film and uniformized as it is The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is formed into a rubber-like gel material having uniform, high density and elasticity by processing of pressure condensation including 上記請求項4、5、6、7記載のゴム状ゲル材を複数組み合わせて(積層を含む。)用いたことを特徴とする請求項1記載の色素増感太陽電池。  The dye-sensitized solar cell according to claim 1, wherein a plurality of the rubber-like gel materials according to claims 4, 5, 6, and 7 are used in combination (including lamination). 上記請求項において複数組み合わせた(積層含む。)ゴム状ゲル材を、さらに一体的に薄膜化、均一化を含む加圧凝縮の加工をしてゴム状ゲル材に形成したことを特徴とする請求項1記載の色素増感太陽電池。The rubber-like gel material combined in plural (including lamination) in the above-mentioned claim 8 is formed into a rubber-like gel material by further subjecting it to pressure condensation processing including thinning and homogenization. The dye-sensitized solar cell according to claim 1. 上記請求項4、5、6、7、、9記載のゴム状ゲル材を、さらに薄膜状にして透明度を持たせたゴム状ゲル材としたことを特徴とする請求項1の色素増感太陽電池。The dye-sensitized dye according to claim 1, wherein the rubber-like gel material according to any one of claims 4, 5, 6, 7, 8 , and 9 is further converted into a rubber-like gel material having a thin film shape and transparency. Solar cell. 上記請求項4、5、6、7、、9、10記載のゴム状ゲル材を、プラスチックの基板(ガラス材、天然繊維、合成繊維及び炭素繊維材を含む。)に挟み込んで用いたことを特徴とする請求項1記載の色素増感太陽電池。The rubbery gel material according to any one of claims 4, 5, 6, 7, 8 , 9, and 10 is used by being sandwiched between plastic substrates (including glass materials, natural fibers, synthetic fibers, and carbon fiber materials). The dye-sensitized solar cell according to claim 1. 上記請求項4、5、6、7、、9、10記載のゴム状ゲル材において、粘着性(粘弾性)を損なわない範囲でゴム状ゲル材に形成したことを特徴とする請求項1記載の色素増感太陽電池。The rubber-like gel material according to any one of claims 4, 5, 6, 7, 8 , 9, and 10, wherein the rubber-like gel material is formed in a range that does not impair adhesiveness (viscoelasticity). The dye-sensitized solar cell described. 色素を吸着したゼオライトや活性炭を多孔質酸化チタンで被覆し高分子吸収体でゲル化したもの、又は色素を吸着した多孔質酸化チタンを高分子吸収体でゲル化したもの、又は色素を吸着したゼオライトや活性炭を多孔質酸化チタンで被覆し高分子吸収体でゲル化したものや色素を吸着した多孔質酸化チタンを高分子吸収体でゲル化したものにシリコンや化合物半導体を含めたもの、又はシリコンや化合物半導体や多孔質酸化チタンを高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させ後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材
又は色素又は電解液を高分子吸収体でゲル化したものを、粘着性(粘弾性)を損なわない範囲で乾燥させた後に、粒子状にしたり細分化し又はそのままの状態でさらに一体的に薄膜化、均一化を含む加圧凝縮の加工をして均一で高密度かつ弾力性を持つゴム状ゲル材、
に形成して用いたことを特徴とする請求項1記載の色素増感太陽電池の製造方法。
Zeolite or activated carbon with dye adsorbed coated with porous titanium oxide and gelled with polymer absorber, or porous titanium oxide adsorbed with dye gelled with polymer absorber, or dye adsorbed Silicone or activated carbon coated with porous titanium oxide and gelled with a polymer absorber, or porous titanium oxide adsorbed with a dye gelled with a polymer absorber , including silicon or a compound semiconductor, or silicon or a compound semiconductor or a porous titanium oxide that gelled absorbent polymer, after drying in a range that does not impair the adhesive (viscoelasticity), and in the state of subdivided or particulate or intact integrally Rubbery gel material with uniform, high density and elasticity by processing of pressure condensation including thinning and homogenization ,
Alternatively, after a pigment or electrolyte gelled with a polymer absorber is dried to the extent that it does not impair adhesiveness (viscoelasticity), it is made into particles, subdivided, or thinned as it is in one piece , Rubber gel material with uniform, high density and elasticity by processing of pressure condensation including homogenization,
Method for manufacturing a dye-sensitized solar cell according to claim 1, wherein the to be used formed.
JP2008186511A 2008-06-23 2008-06-23 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP4880649B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008186511A JP4880649B2 (en) 2008-06-23 2008-06-23 Dye-sensitized solar cell and method for producing the same
PCT/JP2009/061544 WO2009157497A1 (en) 2008-06-23 2009-06-18 Dye-sensitized solar cell and process for producing the dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186511A JP4880649B2 (en) 2008-06-23 2008-06-23 Dye-sensitized solar cell and method for producing the same

Publications (3)

Publication Number Publication Date
JP2010003657A JP2010003657A (en) 2010-01-07
JP2010003657A5 JP2010003657A5 (en) 2011-01-20
JP4880649B2 true JP4880649B2 (en) 2012-02-22

Family

ID=41444561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186511A Expired - Fee Related JP4880649B2 (en) 2008-06-23 2008-06-23 Dye-sensitized solar cell and method for producing the same

Country Status (2)

Country Link
JP (1) JP4880649B2 (en)
WO (1) WO2009157497A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192621A (en) * 2010-03-15 2011-09-29 Hiroshi Kitamura Dye-sensitized solar cell and method of manufacturing the same
JP2012186127A (en) * 2011-03-03 2012-09-27 Hiroshi Kitamura Dye-sensitized solar cell and manufacturing method thereof
KR101763433B1 (en) 2011-05-23 2017-08-01 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
JP2014093367A (en) * 2012-11-01 2014-05-19 Toyota Motor East Japan Inc Method of manufacturing thin film solar cell
US9812745B2 (en) 2012-12-28 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4477729B2 (en) * 2000-01-19 2010-06-09 シャープ株式会社 Photoelectric conversion element and solar cell using the same
JP2006332469A (en) * 2005-05-27 2006-12-07 Peccell Technologies Inc Optically chargeable laminated capacitor

Also Published As

Publication number Publication date
WO2009157497A1 (en) 2009-12-30
JP2010003657A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
Pichot et al. Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells
Wei et al. Immobilization of poly (N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium− tin oxide glass and its application in dye-sensitized solar cells
JP4880649B2 (en) Dye-sensitized solar cell and method for producing the same
US8710363B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module, and coating liquid for forming electrolyte layer
US8481850B2 (en) Dye doped graphite graphene solar cell on aluminum
KR101347198B1 (en) Method of manufacturing coating agent of dye-sensitive solar cell surface, coating agent thereof and dye-sensitive solar cell coated with coating agent
JP2010003657A5 (en)
KR101034618B1 (en) Gel-type polymer electrolyte comprising uv curable urethaneacrylate for dye-sensitized solarcell, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
Seo et al. Improvement on the electron transfer of dye-sensitized solar cell using vanadium doped TiO2
KR101405588B1 (en) Construction Method of Solid Electrolytes of the Porous Membrance Film and Dye-Sensitized Solar Cell Using thereof
KR101110651B1 (en) Dye-sensitized solar cell
WO2014092080A1 (en) Silicon dioxide solar cell
KR101146174B1 (en) Dye sensitized solar cell for applying a light-spread film
KR20100041486A (en) Gel-type polymer electrolyte comprising ceramic nanofiller for dye-sensitized solarcell, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP6561880B2 (en) Method for producing dye-sensitized solar cell module
JP2004319197A (en) Photoelectric conversion element and its manufacturing method
US20130008492A1 (en) Porous film type solid electrolyte, dye-sensitized solar cell using the same, and manufacturing method thereof
KR20100076925A (en) Gel-type polymer electrolyte comprising uv curable urethaneacrylate for dye-sensitized solarcell, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR101294704B1 (en) Dye-sensitized solar cell comprising multilayer electrolyte and preparation method thereof
TW201735379A (en) Dye-sensitized solar cell module
KR101293466B1 (en) Dye Sensitized Solar Cell for applying a Reflection Film of Technical Type
KR101541646B1 (en) Dye-sensitive solar cell with ultraviolet- absorptiveness
JP2006019072A (en) Dye-sensitized solar cell and its manufacturing method
JP2006339127A (en) Dye sensitized solar cell by photoelectric conversion tube, or the like
CN102024571A (en) Method for preparing nano wafer photon anode of flexible dye-sensitized solar cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees