JP4879865B2 - Blast furnace granulated slag treatment method and blast furnace granulated slag - Google Patents

Blast furnace granulated slag treatment method and blast furnace granulated slag Download PDF

Info

Publication number
JP4879865B2
JP4879865B2 JP2007285570A JP2007285570A JP4879865B2 JP 4879865 B2 JP4879865 B2 JP 4879865B2 JP 2007285570 A JP2007285570 A JP 2007285570A JP 2007285570 A JP2007285570 A JP 2007285570A JP 4879865 B2 JP4879865 B2 JP 4879865B2
Authority
JP
Japan
Prior art keywords
slag
crushing
blast furnace
needle
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007285570A
Other languages
Japanese (ja)
Other versions
JP2009113999A (en
Inventor
秀樹 横田
直人 堤
祐輝 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007285570A priority Critical patent/JP4879865B2/en
Publication of JP2009113999A publication Critical patent/JP2009113999A/en
Application granted granted Critical
Publication of JP4879865B2 publication Critical patent/JP4879865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は製鉄所等の鉄鋼製造プロセスで発生するスラグのうち、針状滓を含む高炉水砕スラグの処理方法、およびそれにより製造される高炉水砕スラグに関するものである。   The present invention relates to a method for treating granulated blast furnace slag containing needle-shaped slag out of slag generated in a steel production process such as a steel mill, and to a granulated blast furnace slag produced thereby.

高炉水砕スラグ(以降、単に「スラグ」と記載する場合がある。)とは、製鐵所の製銑工程にて発生する高炉溶融スラグに加圧水を噴射し、急冷処理する事により得られる粒状のスラグである。近年、資源枯渇や環境保護の観点から、この高炉水砕スラグを土木建築や海洋環境整備などの分野で天然砂の代替として利用する機会が増えている。   Granulated blast furnace slag (hereinafter sometimes referred to simply as “slag”) is a granulated product obtained by injecting pressurized water into the blast furnace molten slag generated in the ironmaking process at the ironworks and quenching it. The slag. In recent years, from the viewpoint of resource depletion and environmental protection, there are increasing opportunities to use this granulated blast furnace slag as a substitute for natural sand in fields such as civil engineering and marine environment maintenance.

溶融している高炉スラグを加圧水で急冷して得られた高炉水砕スラグには、通常、針状に固化したスラグである針状滓が、含有されている。従って、高炉水砕スラグを利用するにあたって、針状滓を多く含むスラグに人が触れると、皮膚に不快な刺激がある。また、針状滓を多く含むスラグを覆砂としてそのまま用いると、魚介類が針状滓による刺激を忌避して蝟集性に悪影響が生じる恐れがある。   The granulated blast furnace slag obtained by quenching molten blast furnace slag with pressurized water usually contains acicular soot that is solidified into a needle shape. Therefore, when a blast furnace granulated slag is used, if a person touches the slag containing a lot of needle-shaped ridges, there is an unpleasant irritation on the skin. Moreover, if slag containing a lot of needle-shaped ridges is used as sand as it is, fish and shellfish may avoid irritation caused by needle-shaped ridges, which may adversely affect the collection performance.

この様な、高炉水砕スラグに含有される針状滓を除去する方法として、例えば、特許文献1に開示されている様な、破砕機による破砕処理が広く知られている。また、特許文献2には、パンチング板を篩部材として用いて、スラグから針状滓のみを分離する方法が開示されている。   As a method for removing such needle-shaped soot contained in blast furnace granulated slag, for example, a crushing process by a crusher as disclosed in Patent Document 1 is widely known. Further, Patent Document 2 discloses a method of separating only needle-shaped ridges from slag using a punching plate as a sieve member.

一方で、高炉水砕スラグは潜在水硬性を有しているため、スラグ単独であっても長期間静置すると固結してしまう。この様に固結したスラグはセメント用の骨材として使用できなくなり、あるいは覆砂材としても貝類などの底棲生物の棲息が困難となるため、固結を実用上問題なくなるまで抑制するような、固結遅延処理等の対策が必要となる。   On the other hand, since granulated blast furnace slag has latent hydraulic properties, even if it is slag alone, it will solidify if left still for a long time. The slag consolidated in this way can no longer be used as an aggregate for cement, or even as a sand-capping material, it is difficult for bottling organisms such as shellfish to inhabit, so the consolidation is suppressed until there is no practical problem. Measures such as consolidation delay processing are required.

この様な、固結を遅延させる方法として、例えば特許文献3に、高炉水砕スラグを分散させる工程と、分散された状態の高炉水砕スラグに炭酸ガスおよび炭酸水の少なくとも一方を含む物質を接触させる工程とを有する高炉水砕スラグの処理方法が開示されている。   As such a method of delaying consolidation, for example, Patent Document 3 discloses a step of dispersing blast furnace granulated slag and a substance containing at least one of carbon dioxide and carbonated water in the dispersed blast furnace granulated slag. A method for treating ground granulated blast furnace slag having a step of contacting is disclosed.

また、特許文献4には、高炉水砕スラグを軽破砕後24時間以内に二酸化炭素と接触させる水砕スラグの固結防止方法が開示されている。   Patent Document 4 discloses a method for preventing consolidation of granulated slag in which blast furnace granulated slag is brought into contact with carbon dioxide within 24 hours after light crushing.

特開昭53−22522号公報JP-A-53-22522 特開2006−181414号公報JP 2006-181414 A 特開2003−335558号公報JP 2003-335558 A 特開昭54−112304号公報JP-A-54-112304

しかし、上記の従来技術では以下のような問題点がある。   However, the above prior art has the following problems.

特許文献1に記載されている方法では、破砕処理により針状滓は破砕されて減少する。しかし、破砕によりスラグに新生面が生じ、時間経過とともにスラグからカルシウムなどの元素が溶出して固結するという欠点がある。   In the method described in Patent Document 1, the needle-shaped ridges are crushed and reduced by the crushing process. However, there is a disadvantage that a new surface is generated in the slag by crushing, and elements such as calcium are eluted from the slag and solidify over time.

また、特許文献2に記載されている方法であれば、針状滓を篩い分けることが出来るが、分離できるのは5mm以上の比較的大きな針状滓のみが開示されているだけであり、5mm未満については何ら記載されていない。   Moreover, if it is the method described in patent document 2, a needle-shaped wrinkle can be sieved, but only a comparatively large needle-shaped wrinkle of 5 mm or more is disclosed, and 5 mm Nothing is stated about less than.

一方、特許文献3に記載されている方法によれば、分散された状態の高炉スラグに二酸化炭素および炭酸水の少なくとも一方を含む物質を接触させることにより、スラグ粒子の表層にある可溶性の石灰を炭酸カルシウムへと変化させて固結を遅延させることができる。また、効率的な炭酸イオンの供給のためにスラグを分散させている。しかし、針状滓を破砕するほどの力はスラグに加わらないため、この方法では固結を遅延させることは出来ても、スラグ中の針状滓を十分に減らす事は出来ない。   On the other hand, according to the method described in Patent Document 3, by bringing a substance containing at least one of carbon dioxide and carbonated water into contact with blast furnace slag in a dispersed state, soluble lime on the surface layer of slag particles can be obtained. It can be changed to calcium carbonate to delay consolidation. In addition, slag is dispersed for efficient carbonate ion supply. However, since the force that crushes the needle-shaped ridge is not applied to the slag, this method cannot delay the consolidation, but cannot sufficiently reduce the needle-shaped ridge in the slag.

また、特許文献4に記載されている方法では、スラグを軽破砕後24時間以内に炭酸ガスを接触させる処理方法が述べられているだけであり、針状滓を破砕するために必要な破砕強度に関する記載がなされていない。   In addition, the method described in Patent Document 4 merely describes a treatment method in which carbon dioxide gas is contacted within 24 hours after lightly crushing slag, and crushing strength necessary for crushing acicular scissors. There is no description about.

以上の通り、従来の技術では、針状砕を除去し、かつ十分な固結遅延が可能な高炉水砕スラグの処理方法、およびこの方法で処理された高炉水砕スラグは得られていない。   As described above, according to the conventional technology, a method for treating granulated blast furnace slag capable of removing acicular crushing and sufficiently delaying consolidation, and a granulated blast furnace slag treated by this method have not been obtained.

本発明は、針状滓を適切に除去しながら、かつ十分な固結遅延を実現できる高炉水砕スラグの処理方法、およびこの方法で処理された高炉水砕スラグを提供することを目的とする。   An object of the present invention is to provide a method for treating granulated blast furnace slag capable of realizing sufficient caking delay while appropriately removing needle-like soot, and a granulated blast furnace slag treated by this method. .

本発明の要旨は、以下の通りである。
(1) 針状滓を含有する高炉水砕スラグの処理方法であって、下記の[1式]で示されるWm/Wiの値が0.037以上となるようにスラグを破砕処理しつつ、同時にスラグに炭酸化処理することを特徴とする高炉水砕スラグの処理方法。
Wm/Wi= 10/(d801/2 − 10/ (d80 (0)1/2 ・・・[1式]
Wm:破砕仕事
Wi:仕事指数
80:破砕後の試料の80%通過粒子径(μm)
80 (0):破砕前の試料の80%通過粒子径(μm
The gist of the present invention is as follows.
(1) A method for treating granulated blast furnace slag containing acicular soot, while crushing slag so that the value of Wm / Wi shown by the following [1 formula] is 0.037 or more, A method for treating granulated blast furnace slag, characterized by carbonizing slag at the same time.
Wm / Wi = 10 / (d 80) 1/2 - 10 / (d 80 (0)) 1/2 ··· [1 expression]
Wm: crushing work Wi: work index d 80 : 80% passing particle diameter of the sample after crushing (μm)
d 80 (0) : 80% passing particle diameter of the sample before crushing (μm )

本発明による高炉水砕スラグの処理方法によれば、破砕による針状滓の除去と、破砕により生じる新生面の効率的な固結遅延処理が実施可能である。それにより、針状滓による悪影響がなく、かつ十分な固結遅延処理がなされたスラグを得ることが出来る。   According to the method for treating granulated blast furnace slag according to the present invention, it is possible to carry out removal of needle-like ridges by crushing and efficient consolidation delay processing of a new surface caused by crushing. As a result, it is possible to obtain a slag that is not adversely affected by the needle-like flaws and that has been subjected to sufficient consolidation delay processing.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明者らは、高炉水砕スラグの針状滓の除去と固結遅延の両方を満足させる方法を種々検討したところ、適切な衝撃力でスラグを破砕することで針状滓を除去しつつ、この破砕処理の際に同時に炭酸化処理を行うことで、破砕により生じるスラグの新生面を効率的に炭酸化でき、これにより固結遅延処理も実施可能であるという新たな知見を得て、本発明を成すに至った。以下、本発明を詳細に説明する。   The inventors of the present invention have studied various methods for satisfying both the removal of the needle-shaped slag of the granulated blast furnace slag and the caking delay, while removing the needle-shaped slag by crushing the slag with an appropriate impact force. By conducting the carbonation treatment at the same time as this crushing treatment, the new surface of the slag generated by crushing can be efficiently carbonated, and this has led to the new knowledge that a caking delay treatment can be carried out. Invented the invention. Hereinafter, the present invention will be described in detail.

本発明の検討を行うに際して、環境保全の観点から厳しい品質が要求される覆砂材を想定して、「針状滓の除去」および「固結遅延」に関する基礎実験を実施した。   When examining the present invention, basic experiments on “removal of needle-like ridges” and “delay of caking” were conducted assuming sand-capping materials that require strict quality from the viewpoint of environmental conservation.

まず、針状滓の除去について、針状滓の個数を何処まで減少させれば実用上問題ないかを検討した。   First, regarding the removal of needle-shaped wrinkles, it was examined whether the number of needle-shaped wrinkles could be reduced to a practical problem.

なお、本発明が対象とする針状滓とは、高炉水砕スラグ中に含まれる長径が2.5mm以上、長径と短径のアスペクト比が1:3以上の針状のスラグであり、針状滓の数とはスラグ20g中に含まれる前記の針状滓の数とした。   The needle-shaped slag targeted by the present invention is a needle-shaped slag having a major axis of 2.5 mm or more and an aspect ratio of major axis to minor axis of 1: 3 or more, which is contained in the granulated blast furnace slag. The number of ridges was the number of the above-mentioned needle ridges contained in 20 g of slag.

針状滓の長径を2.5mm以上としたのは、通常、高炉水砕スラグの最大粒径はおよそ2.5mm前後であるため、それ以上の長さの針状滓であればスラグ中から突出して、悪影響が顕在化すると考えられるためである。針状滓の長径の上限は特に規定するものではないが、常識的には5mm程度であり、最大でも7mm程度である。また、長径と短径のアスペクト比を1:3以上としたのは、蝟集性等に影響するほど先の鋭い針状滓であれば、太さは最大でも直径0.8mm程度以下であり、上述の2.5mm以上の針状滓であればアスペクト比は1:3以上になるためである。   The reason why the major diameter of the acicular ridge is set to 2.5 mm or more is that the maximum particle size of the granulated blast furnace slag is usually about 2.5 mm. It is because it is thought that it will protrude and an adverse effect will become apparent. Although the upper limit of the major axis of the needle-like ridge is not particularly specified, it is generally about 5 mm and about 7 mm at the maximum. In addition, the aspect ratio of the major axis and the minor axis is set to 1: 3 or more if the needle-like ridge has a sharp tip so as to affect the gathering property or the like. This is because the aspect ratio is 1: 3 or more if the needle-like ridges are 2.5 mm or more.

具体的な実験では、コンクリートミキサー中に約3トンの高炉水砕スラグを入れ、さらに針状滓を破砕する目的で攪拌容器中に直径50mmの鉄球を入れ、ミキサーを回転させてスラグを攪拌することで針状滓の破砕を行った。このとき、任意に鉄球の個数、攪拌時間を変化させ、攪拌後にスラグ中に残留している針状滓の個数を変えた。そして、これらのスラグの覆砂材としての実用性を調べるため、その主な評価指標のである魚介類の蝟集性について評価を行った。ちなみに、針状滓の個数は、攪拌後のスラグ20gから目視で分離して、その個数を数えた。   In a concrete experiment, about 3 tons of granulated blast furnace slag was put into a concrete mixer, and an iron ball with a diameter of 50 mm was put into a stirring vessel for the purpose of crushing needle-shaped slag, and the slag was stirred by rotating the mixer. By doing so, the needle-shaped ridges were crushed. At this time, the number of iron balls and the stirring time were arbitrarily changed, and the number of needle-like ridges remaining in the slag after stirring was changed. Then, in order to investigate the practicality of these slags as sand-capping materials, the collection property of seafood, which is the main evaluation index, was evaluated. Incidentally, the number of needle-shaped ridges was visually separated from 20 g of the slag after stirring, and the number was counted.

魚介類の蝟集性の評価は、「福岡県水産海洋技術センター事業報告 H16年度〜H17年度」に開示されている内容に基いて行った。以下に具体的に示す。   Evaluation of seafood collection was performed based on the contents disclosed in the “Fukuoka Prefectural Fisheries and Marine Technology Center Project Report H16-H17”. This is specifically shown below.

1トン型円形水槽を4等分し、交互に「海砂」と攪拌後スラグである「試験材」を10cmの深さで敷き詰め、流水無給餌でシロギス4匹を5日間飼育した。ここで、5日間としたのは、7日以上になるとスラグの固結が開始する恐れがあることを知見していたため、スラグの固結の影響が出ない期間として5日間とした。また、5日間という制約のため、シロギスを4匹飼育し、シロギス1匹を20日間飼育した場合と等価の実験を、短期間で実施した。また、この評価にシロギスを選定したのは、底砂に生息する魚類であることから、覆砂材の影響が顕著に把握できるためである。   A 1-ton type circular aquarium was divided into four equal parts, and “sea sand” and “test material” that was slag after stirring were spread alternately at a depth of 10 cm, and 4 shirogis were raised for 5 days without feeding with running water. Here, 5 days was set to 5 days as a period during which the influence of slag consolidation does not occur because it was found that consolidation of slag may start when 7 days or more are reached. Also, due to the limitation of 5 days, an experiment equivalent to the case where 4 shirogis were bred and 1 shirogis was bred for 20 days was conducted in a short period of time. The reason why Shirogis was selected for this evaluation is that it is a fish that inhabits the bottom sand, so that the influence of sand-capping material can be recognized.

飼育の際、1日1回、シロギスがスラグと海砂のどちらの底砂にいるかを観察し、観察したシロギスの延べ数のうち、スラグの区画にいたシロギスの延べ数の割合を求めた。
その結果、針状滓の個数と蝟集性の関係を図1に示す通り、スラグ20g当りの針状滓が70個以下であれば、スラグ区にいるシロギスの割合は50%前後となることが判明した。これは、海砂区にいるシロギスの割合も50%前後であることを意味していることから、スラグ20g当りの針状滓が70個以下にまで破砕されたスラグの蝟集性は、海砂と同等とすることが可能であることを知見した。
At the time of breeding, once a day, it was observed whether shirogis was in the bottom sand of slag or sea sand, and the ratio of the total number of shirogis in the slag compartment was determined out of the total number of shirogis observed.
As a result, as shown in FIG. 1, the relationship between the number of needle ridges and the collection property is as follows. If the number of needle ridges per 20g of slag is 70 or less, the ratio of shirogisu in the slag area may be around 50%. found. This means that the percentage of shirogisu in the sea sand zone is also around 50%. Therefore, the collectability of slag that has been crushed to less than 70 needles per 20g of slag is It was found that it can be equivalent to

そこで、スラグ20g当りの針状滓を70個以下とするために必要な破砕条件について調べた。スラグの硬度などの物性は、スラグ自体の成分のみならず、溶融スラグを急冷・固化し始める直前の温度や、そのときスラグ中に溶解している窒素の濃度、スラグの冷却条件など様々な要因により変化し、その結果、針状滓を破砕するために必要な条件も変化する。一般的には、同じスラグ成分であれば、固化し始める直前の溶融スラグの温度が低く、冷却時の冷却速度は速いほうが固化後のスラグは硬質になる。その結果、針状滓の破砕に必要な条件もスラグの性状により、多少変化することが知られている。   Therefore, the crushing conditions necessary to reduce the number of needle-shaped ridges per 20 g of slag to 70 or less were investigated. The physical properties such as slag hardness are not only the components of the slag itself, but also various factors such as the temperature just before the molten slag begins to quench and solidify, the concentration of nitrogen dissolved in the slag, and the cooling conditions of the slag As a result, the conditions necessary for crushing acicular scissors also change. Generally, if the slag components are the same, the temperature of the molten slag immediately before starting to solidify is lower, and the slag after solidification becomes harder as the cooling rate during cooling is faster. As a result, it is known that the conditions necessary for crushing the needle-shaped ridge vary somewhat depending on the properties of the slag.

しかし、本発明者らは、Bondの破砕理論(「Bond, F. C., Wang, J. T., Trans. AIME, 187, 871 (1950)」、あるいは「Bond, F. C., Trans. AIME, 193, 484 (1952)」に記載)を用い、破砕仕事Wmを試料の破砕性を示す指標である仕事指数Wiで割った、以下の[1式]で示されるWm/Wiと、破砕処理後の針状滓の個数との間の相関について、針状滓を含有する種々の高炉水砕スラグを用いて、別途、検討を行った。その結果、これらには良い相関があることを知見し、これを針状滓の破砕に必要な条件の指標とすることが可能であることを見出した。   However, the present inventors have found that Bond's fracture theory (“Bond, FC, Wang, JT, Trans. AIME, 187, 871 (1950)” or “Bond, FC, Trans”). AIM, 193, 484 (1952)), and dividing the crushing work Wm by the work index Wi which is an index indicating the crushability of the sample, Wm / Wi represented by the following [Formula 1]: The correlation between the number of needle-shaped ridges after the crushing treatment was separately examined using various blast furnace granulated slag containing needle-shaped ridges. As a result, it was found that there is a good correlation between them, and it was found that this can be used as an indicator of conditions necessary for crushing acicular scissors.

Wm/Wi= 10/(d801/2 − 10/ (d80 (0)1/2 ・・・[1式]
Wm:破砕仕事
Wi:仕事指数(JIS M 4002にて測定方法を規定)
80:破砕後の試料の80%通過粒子径(μm)
80 (0):破砕前の試料の80%通過粒子径(μm)
Wm / Wi = 10 / (d 80) 1/2 - 10 / (d 80 (0)) 1/2 ··· [1 expression]
Wm: crushing work Wi: work index (measurement method is defined in JIS M 4002)
d 80 : 80% passing particle diameter of the sample after crushing (μm)
d 80 (0) : 80% passing particle diameter of the sample before crushing (μm)

なお、Wm/Wiの値は、WmやWiの値を直接求めることなく、上記に示した破砕前の試料の80%通過粒子径「d80 (0)」および破砕後の試料の80%通過粒子径「d80」をそれぞれ求め、その差分により求めることができる。 In addition, the value of Wm / Wi does not directly determine the value of Wm or Wi, but the 80% passing particle diameter “d 80 (0) ” of the sample before crushing shown above and 80% of the sample after crushing pass. The particle diameter “d 80 ” can be obtained and the difference can be obtained.

ちなみに、前記の「d80 (0)」や「d80」については、篩い分けにより粒径と通過質量百分率の関係を調べ、その結果から求めることができる。 Incidentally, the above-mentioned “d 80 (0) ” and “d 80 ” can be obtained from the result of examining the relationship between the particle diameter and the passing mass percentage by sieving.

そこで、スラグ中の針状滓の個数を種々変化させて、図1に用いた試料について、Wm/Wiと針状滓の個数の関係を検討した。その結果、図2に示す通り、Wm/Wiが0.037以上であれば、スラグ20g当りの針状滓が70個以下とできることが判明した。従って、後述の方法により、Wm/Wiが0.037以上となる様にスラグを破砕することで、覆砂材として用いる際に針状滓を適切に除去できる。   Accordingly, the relationship between Wm / Wi and the number of needle-shaped scissors was examined for the sample used in FIG. 1 by varying the number of needle-shaped scissors in the slag. As a result, as shown in FIG. 2, it was found that when Wm / Wi is 0.037 or more, the number of needle-like ridges per 20 g of slag can be made 70 or less. Therefore, when the slag is crushed so that Wm / Wi is 0.037 or more by the method described later, the needle-like ridge can be appropriately removed when used as a sand covering material.

なお、Wm/Wiの上限値は特に規定するものではないが、この値が大きくなるほどスラグがより細かい粉状に破砕されることを意味している。従って、天然砂の代替材としての利用を指向する場合は、破砕後の粒度が天然砂と同等となる程度の値である0.095をWm/Wiの上限値とすることが、粉砕コストの面から推奨される。参考として、Wm/Wi=0.037、および0.095の場合のd80 (0)とd80の関係を図3に示す。 In addition, although the upper limit of Wm / Wi is not particularly defined, it means that the slag is crushed into a finer powder as the value increases. Therefore, when aiming to use natural sand as an alternative material, the upper limit of Wm / Wi is 0.095, which is a value at which the particle size after crushing is equivalent to that of natural sand. Recommended from the aspect. As a reference, FIG. 3 shows the relationship between d 80 (0) and d 80 when Wm / Wi = 0.037 and 0.095.

また、実用面からは、Wm/Wiの上限値は0.080でも、ほとんど天然砂と同等の代替材としての利用できることから、粉砕コスト面からは、より好ましい。   From the practical point of view, even if the upper limit value of Wm / Wi is 0.080, it can be used as an alternative material almost equivalent to natural sand.

次に、破砕スラグの固結遅延について、検討した。   Next, the caking slag consolidation delay was examined.

破砕によりスラグに新生面が生じると、時間経過とともにスラグからカルシウムなどの元素が溶出してpHが上昇し、固結し易くなる恐れがある。このため、スラグの固結遅延の手法として、スラグの炭酸化処理を行うことを検討した。   When a new surface is generated in the slag by crushing, elements such as calcium are eluted from the slag with the passage of time, and the pH may increase and the slag may be easily consolidated. For this reason, as a method for delaying the consolidation of slag, the carbonation of slag was studied.

具体的には、スラグ破砕時に炭酸化処理を行った場合、およびスラグ破砕後に所定の静置時間を設定し、その後に炭酸化処理を行った場合について、炭酸化処理後のスラグから溶出するアルカリ分としてpHを調べた。pH の測定は、「土質試験の方法と解説 第一回改訂版」(社団法人 地盤工学会発行 平成12年3月20日 第1刷発行、丸善)に記載されている測定方法に従い、固液比1:5の条件となるようスラグ20gを入れたビーカーに蒸留水100ミリリットルを加え、攪拌棒で懸濁させる程度まで攪拌後に30分静置してから測定した。   Specifically, when the carbonation treatment is performed at the time of slag crushing, and when a predetermined standing time is set after the slag crushing and then the carbonation treatment is performed, the alkali eluted from the slag after the carbonation treatment The pH was checked in minutes. The pH was measured according to the measurement method described in “Method and explanation of soil test, first revised edition” (published by the Geotechnical Society of Japan, March 20, 2000, first printing, Maruzen). 100 ml of distilled water was added to a beaker containing 20 g of slag so as to satisfy the ratio of 1: 5, and the mixture was allowed to stand for 30 minutes after stirring until suspended with a stirring rod.

実験では、スラグ破砕と炭酸化を同時に行う場合(すなわち、静置時間がない場合)として、攪拌容器の容量が約10mのコンクリートミキサーに約3トンの高炉水砕スラグと直径50mmの鉄球30個を入れ、当該攪拌容器中に二酸化炭素を20容量%含む常温のガスを2m/minの流量で吹き込みながら、容器の回転数3rpmで炭酸化処理を行った。処理時間は1時間から5時間まで30分おきの計9通りとした。 In the experiment, when slag crushing and carbonation are performed at the same time (ie, when there is no standing time), a concrete mixer with a stirring vessel capacity of about 10 m 3 and a granulated blast furnace slag of about 3 tons and an iron ball with a diameter of 50 mm are used. Thirty pieces were put, and carbonation treatment was performed at a rotation speed of 3 rpm of the vessel while blowing a normal temperature gas containing 20% by volume of carbon dioxide into the stirring vessel at a flow rate of 2 m 3 / min. The total treatment time was 9 times every 30 minutes from 1 hour to 5 hours.

一方、スラグ破砕後に所定時間静置してから、炭酸化を別途行う場合としては、まず上記の攪拌による針状滓の破砕を二酸化炭素雰囲気中ではなく大気中で行い、攪拌容器中から上記の鉄球を取り除いて、12時間静置し、その後、攪拌容器中に二酸化炭素を20容量%含む常温のガスを2m/minの流量で吹き込みながら、容器の回転数3rpmで炭酸化処理を行った。処理時間は1時間から4時間まで30分おきの計7通りとした。 On the other hand, when the carbonation is performed separately after standing for a predetermined time after slag crushing, first the crushing of the needle-shaped rice cake by the above stirring is performed in the air instead of the carbon dioxide atmosphere, Remove the iron ball and let stand for 12 hours, and then perform carbonation treatment at a rotation speed of 3 rpm of the container while blowing a normal temperature gas containing 20% by volume of carbon dioxide into the stirring container at a flow rate of 2 m 3 / min. It was. The treatment time was set to 7 types every 30 minutes from 1 hour to 4 hours.

その結果、Wm/WiとpH の関係は、図4に示す通り、スラグの破砕と同時に炭酸化処理をした場合のpHと比較して、スラグ破砕後に12時間静置時間を設定した後、炭酸化処理を行った場合のpHの方が上昇していることがわかった。従って、12時間静置時間を設定した場合では、その後に炭酸化処理を行ってもpHが上昇することから、スラグが固結しやすくなっていることが確認された。   As a result, as shown in FIG. 4, the relationship between Wm / Wi and pH was set to 12 hours after slag crushing, compared with the pH when carbonation was performed simultaneously with slag crushing. It was found that the pH was higher when the crystallization treatment was performed. Therefore, when the standing time of 12 hours was set, it was confirmed that the slag is easily consolidated because the pH rises even if the carbonation treatment is performed thereafter.

また、pHが中性付近の水はわずかなアルカリ成分の溶出でも急激にpHが上昇するため、破砕直後にスラグの新生面からカルシウムなどの元素が溶出し始めると、スラグのpHは速やかに上昇することも確認している。しかし、破砕と同時に炭酸化処理することにより破砕直後のアルカリ成分の溶出も抑制でき、これによるpH上昇は顕著に抑制できる。   In addition, since the pH of water in the vicinity of neutral pH rises sharply even when a slight amount of alkaline component is eluted, the pH of the slag rises quickly if elements such as calcium begin to elute from the new surface of the slag immediately after crushing. I have also confirmed that. However, by carrying out the carbonation treatment simultaneously with the crushing, the elution of the alkali component immediately after the crushing can be suppressed, and the pH increase due to this can be remarkably suppressed.

以上のことから、スラグ破砕と同時に破砕により生じるスラグの新生面を炭酸化処理する必要があることが判明した。   From the above, it has been found that it is necessary to carbonize the new surface of slag generated by crushing simultaneously with slag crushing.

ちなみに、炭酸化処理にCOガスを用いる場合、二酸化炭素の量は、特に規定するものではなく、二酸化炭素を含有するガスであれば良い。但し、炭酸化処理ではスラグ表面の間隙水を介して炭酸ガスとカルシウムが反応するため、処理温度が高いほど水への炭酸ガスの溶解度が減少し、炭酸化反応は進みづらくなくなる。このため、処理温度は80℃以下、好ましくは60℃以下とするのが好ましい。 Incidentally, when CO 2 gas is used for the carbonation treatment, the amount of carbon dioxide is not particularly limited, and any gas containing carbon dioxide may be used. However, since carbon dioxide reacts with calcium through pore water on the slag surface in the carbonation treatment, the solubility of carbon dioxide gas in water decreases as the treatment temperature increases, and the carbonation reaction does not proceed easily. For this reason, the treatment temperature is preferably 80 ° C. or lower, preferably 60 ° C. or lower.

二酸化炭素を含有するガスとしては、工業的には、例えば製鉄所内であれば、各種工場から排出されている排ガスを用いることが効率的である。代表的な排ガスとしては、石灰を焼成するキルン工場の排ガス(CO濃度として約20体積%)、加熱炉排ガス(CO濃度約7体積%)や発電工場排ガス(CO濃度約15体積%)等が挙げられ、これら排ガスのCO濃度であれば十分な炭酸化処理が可能である。さらに、炭酸化処理の際の二酸化炭素の供給形態は、気体だけでなく炭酸水等の液体やドライアイス等でも良く、その添加量や添加条件は、事前実験等により把握することで、適宜、設定すれば良い。 As the gas containing carbon dioxide, industrially, for example, in an ironworks, it is efficient to use exhaust gas discharged from various factories. Typical exhaust gases include exhaust gas from a kiln factory that burns lime (approximately 20% by volume as a CO 2 concentration), exhaust gas from a heating furnace (approximately 7% by volume of CO 2 ), and exhaust gas from a power plant (approximately 2 % by volume of CO 2 concentration). If the CO 2 concentration of these exhaust gases is sufficient, sufficient carbonation treatment is possible. Further, the carbon dioxide supply form during the carbonation treatment may be not only gas but also liquid such as carbonated water, dry ice, etc., and the addition amount and addition conditions are appropriately determined by grasping by preliminary experiments, etc. Set it.

以上の通り、環境保全の観点から厳しい品質が要求される覆砂材に、針状滓を含有する高炉水砕スラグを適用する場合であっても、スラグの適切な破砕により針状滓を除去しつつ、同時に炭酸化処理を行うことにより、破砕により生じるスラグの新生面を効率的に炭酸化でき、これにより固結遅延処理も併せて実現可能とすることができ、実用上、十分に固結を遅延させた高炉水砕スラグを、効率的に製造することができる。   As described above, even when blast furnace granulated slag containing acicular soot is applied to sand-clad materials that require strict quality from the viewpoint of environmental conservation, acicular soot is removed by appropriate crushing of the slag. At the same time, by performing carbonation treatment at the same time, the new surface of the slag generated by crushing can be efficiently carbonated, and this also makes it possible to achieve a solidification delay treatment. It is possible to efficiently produce the granulated blast furnace slag that has been delayed.

従って、本発明によれば、高炉水砕スラグの用途として、覆砂材以外では、天然砂代替材料として一般的な用途に使用でき、さらには、セメントの原料としての骨材として使用することもできる。   Therefore, according to the present invention, as an application of granulated blast furnace slag, it can be used for a general application as a natural sand substitute material other than a sand-capping material, and can also be used as an aggregate as a raw material for cement. it can.

ちなみに、Wm/Wiの値を所望の値に設定して、スラグの破砕を実施する際には、スラグ破砕に用いる装置ごとに、処理条件を事前に実験により確かめる必要がある。スラグを破砕する装置としては、例えば、ミキサー車、水平円筒型混合機、揺動回転型混合機、V型混合機、あるいは2重円錐型混合機等が挙げられる。   Incidentally, when slag crushing is performed by setting the value of Wm / Wi to a desired value, it is necessary to confirm the processing conditions in advance by experiments for each apparatus used for slag crushing. Examples of the device for crushing slag include a mixer truck, a horizontal cylindrical mixer, a rocking and rotating mixer, a V mixer, and a double cone mixer.

ここでは、実機での処理として、ミキサー車を用いた場合を例に挙げて、スラグを破砕しながら炭酸化処理を実施し、当該スラグに含まれる針状滓個数をスラグ20g中に70個以下とするための破砕条件として、Wm/Wiの値を0.037以上とするための処理時間、投入する鉄球の個数、ミキサーの回転数などの処理条件を調べた。   Here, as an example of a process using an actual machine, a case where a mixer truck is used is taken as an example, and carbonation treatment is performed while crushing slag, and the number of needle-like ridges contained in the slag is 70 or less in 20 g of slag. As the crushing conditions, the processing conditions such as the processing time for setting the value of Wm / Wi to 0.037 or more, the number of iron balls to be introduced, the number of rotations of the mixer, and the like were examined.

まず、処理時間に関する実験では、攪拌容器の容量が約10mのコンクリートミキサー車に約3トンのスラグを入れ、当該攪拌容器中に、二酸化炭素を20容量%含む常温のガスを2m/minの流量で吹き込みながら3rpmの回転数で6時間攪拌しつつ炭酸化処理を行った。処理中は、処理開始から1時間、2時間、4時間で処理を一旦中断し、5kgずつスラグをサンプリングしてWm/Wiの値を求めた。併せて、攪拌中の破砕エネルギーを増加させる目的で、攪拌容器中にスラグと一緒に直径50mmの鉄球を20個入れ、その他は同条件で炭酸化処理を行った場合についても、同様にWm/Wiの値を求めた。その結果、処理時間とWm/Wiの関係は図5に示す通り、処理時間とWm/Wiの間には線形の相関が見られる。処理時間が増加し、スラグの粒子径が小さくなると、粒子径を小さくする為に必要なエネルギーは徐々に大きくなり、処理時間を長くしても、粒子径から算出するWm/Wiの増加は緩やかになるが、図5の鉄球ありの場合では、Wm/Wiが0.05になっても攪拌時間とWm/Wiの間には線形の関係が成り立っている。 First, in an experiment relating to the processing time, about 3 tons of slag was put into a concrete mixer truck having a capacity of a stirring vessel of about 10 m 3 , and normal temperature gas containing 20% by volume of carbon dioxide was put into the stirring vessel at 2 m 3 / min. Carbonation was carried out while stirring for 6 hours at a rotational speed of 3 rpm while blowing at a flow rate of 5 rpm. During the process, the process was temporarily interrupted for 1 hour, 2 hours, and 4 hours from the start of the process, and the value of Wm / Wi was obtained by sampling slag by 5 kg each. At the same time, in order to increase the crushing energy during stirring, 20 iron balls with a diameter of 50 mm are put in a stirring vessel together with slag, and the other cases where carbonation treatment is performed under the same conditions are similarly Wm. The value of / Wi was determined. As a result, the relationship between the processing time and Wm / Wi shows a linear correlation between the processing time and Wm / Wi as shown in FIG. As the processing time increases and the particle size of the slag decreases, the energy required to reduce the particle size gradually increases, and even if the processing time is increased, the increase in Wm / Wi calculated from the particle size is moderate. However, in the case with the iron ball in FIG. 5, even when Wm / Wi becomes 0.05, a linear relationship is established between the stirring time and Wm / Wi.

同様に、鉄球なしの場合でもWm/Wiが0.05程度迄であれば、攪拌時間とWm/Wiの関係が線形を大きく外れるほどスラグの粒子径が小さくはならず、攪拌時間とWm/Wiの間には線形の関係が成り立つことがわかっており、Wm/Wiを0.037以下とするためには、鉄球なしの条件では約15時間の攪拌が必要であると推察されること、また直径50mmの鉄球を20個入れて攪拌した場合には攪拌時間を約4.5時間まで短縮できることが確認できた。   Similarly, even when there is no iron ball, if the Wm / Wi is up to about 0.05, the particle size of the slag does not decrease as the relationship between the stirring time and Wm / Wi deviates greatly from the linearity. It is known that there is a linear relationship between / Wi, and in order to make Wm / Wi 0.037 or less, it is inferred that stirring for about 15 hours is necessary under the condition of no iron ball. In addition, when 20 iron balls having a diameter of 50 mm were put and stirred, it was confirmed that the stirring time could be shortened to about 4.5 hours.

次に、鉄球の個数とWm/Wiの関係を調べるために、直径50mmの鉄球が10個、20個、30個を用いて、4時間処理の場合について、上記と同様に、二酸化炭素を20容量%含む常温のガスを2m/minの流量で吹き込みながら3rpmの回転数で処理を行った。その結果、鉄球個数と、4時間処理後のWm/Wiとの関係は図6に示す通り、鉄球の個数とWm/Wiの間には線形の相関が見られ、回転数3rpmで4時間の処理条件では、鉄球を23個以上使用すればWm/Wiを0.037以上に出来ることが確認できた。鉄球の個数をさらに増加させることで、針状滓の破砕効率が上がり、必要な攪拌時間を短縮する操業形態を選択することもできる。 Next, in order to examine the relationship between the number of iron balls and Wm / Wi, carbon dioxide having a diameter of 50 mm is used in the same manner as described above in the case of treatment for 4 hours using 10, 20, and 30 iron balls. Was performed at a rotation speed of 3 rpm while blowing a normal temperature gas containing 20% by volume at a flow rate of 2 m 3 / min. As a result, as shown in FIG. 6, the relationship between the number of iron balls and Wm / Wi after 4 hours treatment shows a linear correlation between the number of iron balls and Wm / Wi. It was confirmed that the Wm / Wi could be increased to 0.037 or more when using 23 or more iron balls under the time processing conditions. By further increasing the number of iron balls, the efficiency of crushing the needle-shaped ridges can be increased, and an operation mode that shortens the required stirring time can be selected.

さらに、攪拌容器の回転数とWm/Wiとの関係について調べるために、直径50mmの10個の鉄球を用いて、4時間処理の場合について、容器の回転数を1、3、5rpmの3通りで、上記と同様に二酸化炭素を20容量%含む常温のガスを2m/minの流量で吹き込みながら処理を行った。その結果、回転数とWm/Wiの関係は図7に示す通り、両者には線形の相関が見られ、回転数5rpm以上でWm/Wiを0.037以上に出来ることが判明した。回転数をさらに増加させた場合のWm/Wiとの関係を把握しておくことで、必要な攪拌時間を短縮する操業形態を選択することもできる。 Furthermore, in order to investigate the relationship between the rotation speed of the stirring vessel and Wm / Wi, using 10 iron balls with a diameter of 50 mm, the rotation speed of the container was set to 3 of 1, 3, 5 rpm for the case of 4 hours treatment. In the same manner as above, the treatment was performed while blowing a normal temperature gas containing 20% by volume of carbon dioxide at a flow rate of 2 m 3 / min. As a result, the relationship between the rotational speed and Wm / Wi was found to be linearly correlated as shown in FIG. 7, and it was found that Wm / Wi could be increased to 0.037 or higher at a rotational speed of 5 rpm or higher. By grasping the relationship with Wm / Wi when the number of rotations is further increased, it is possible to select an operation mode that shortens the necessary stirring time.

以上のように、ミキサー車を用いた炭酸化処理の例では、ミキサー車に特有の条件である攪拌時間、投入する鉄球の個数、ミキサーの回転数などの処理条件を変化させることで、Wm/Wiの値を0.037以上とするための条件を事前に確認することができる。また、Wm/Wiの値を0.037以上の所望の値に設定するニーズが発生した場合でも、同様にミキサー車の攪拌時間、投入する鉄球の個数、ミキサーの回転数などの処理条件を変化させることで、処理条件を事前に確認することができる。   As described above, in the example of the carbonation treatment using the mixer truck, by changing the processing conditions such as the stirring time, the number of iron balls to be introduced, the number of rotations of the mixer, and the like, which are conditions specific to the mixer truck, Wm The condition for setting the value of / Wi to 0.037 or more can be confirmed in advance. Even when there is a need to set the value of Wm / Wi to a desired value of 0.037 or more, similarly, the processing conditions such as the stirring time of the mixer truck, the number of iron balls to be charged, the number of rotations of the mixer, etc. By changing it, the processing conditions can be confirmed in advance.

同様に、ミキサー車以外の装置を用いて、スラグを破砕する場合は、当該装置に特有の処理条件を変化させて、Wm/Wiを所望の値とするための処理条件を事前に確認することができる。   Similarly, when crushing slag using a device other than a mixer truck, change the processing conditions peculiar to the device and confirm in advance the processing conditions for setting Wm / Wi to a desired value. Can do.

以下、本発明の実施例ならびに比較例について説明する。   Examples of the present invention and comparative examples will be described below.

本実験で用いた処理前水砕スラグの化学成分の分析結果は表1、分級試験での篩いの目の開きと通過質量百分率の関係は表2に示した通りである。   Table 1 shows the analysis results of chemical components of pre-treated granulated slag used in this experiment, and Table 2 shows the relationship between the opening of the sieving sieve and the percentage by weight in the classification test.

用いたスラグの水分は外掛けで7質量%であった。また、スラグに含まれる長径が2.5mm以上で、かつ長径/短径が3以上の針状滓の個数は、約170個/スラグ20gであった。   The water content of the slag used was 7% by mass. Further, the number of needle-like ridges having a major axis of 2.5 mm or more and a major axis / minor axis of 3 or more included in the slag was about 170 / slag 20 g.

このスラグを約3トンずつに小分けした後、容器体積約10mのコンクリートミキサー車に配置した。これらのスラグに対し、攪拌時間、用いた鉄球の個数、攪拌容器の回転数、破砕から炭酸化までの間隔を変化させて、それぞれ小分けされたスラグごとに炭酸化処理を行った。なお、鉄球は直径50mmのものを用いた。 The slag was subdivided into about 3 tons and then placed on a concrete mixer truck having a container volume of about 10 m 3 . These slags were each subjected to carbonation treatment by changing the stirring time, the number of used iron balls, the number of revolutions of the stirring vessel, and the interval from crushing to carbonation, respectively. An iron ball having a diameter of 50 mm was used.

実施例1〜6、および比較例1〜4は、攪拌を行うと同時に、攪拌容器中に二酸化炭素を20容量%含む(残部は空気)ガスを常温で2m/minの流量で吹き込むことで、炭酸化処理を行った。また、比較例5と6の実験方法は、鉄球を用いた回転数3rpmで3時間の攪拌を大気中で行い、その後、鉄球を除いて12時間、もしくは24時間静置し、その後、攪拌容器中に二酸化炭素を20容量%含む(残部は空気)ガスを常温で2m/minの流量で吹き込みながら、回転数3rpmで3時間の炭酸化処理を実施した。 In Examples 1 to 6 and Comparative Examples 1 to 4, by stirring, a gas containing 20% by volume of carbon dioxide in the stirring vessel (the balance is air) was blown at a flow rate of 2 m 3 / min at room temperature. Carbonation treatment was performed. In addition, in the experimental methods of Comparative Examples 5 and 6, the stirring was performed in the atmosphere for 3 hours at a rotation speed of 3 rpm using an iron ball, and then left to stand for 12 hours or 24 hours except for the iron ball. Carbonation treatment was carried out at a rotation speed of 3 rpm for 3 hours while blowing a gas containing 20% by volume of carbon dioxide into the stirring vessel (the balance was air) at a flow rate of 2 m 3 / min at room temperature.

実施例、比較例の処理条件を表3に示す。   Table 3 shows the processing conditions of Examples and Comparative Examples.

表3の実施例、比較例で処理を行った後のスラグに対し、Wm/Wi、針状滓個数、魚介類の蝟集性、pH の測定を前述の方法で行った。なお、表4に示す魚介類の蝟集性については、前述の「福岡県水産海洋技術センター事業報告 H16年度〜H17年度」に開示された方法に基づいており、5日間という短期間のため、針状滓による影響を評価するものであるため、固結の影響は評価の対象としていない。   Wm / Wi, the number of needle-shaped sharks, the collection property of seafood, and pH were measured for the slag after treatment in the examples and comparative examples in Table 3 by the methods described above. The seafood collection shown in Table 4 is based on the method disclosed in the aforementioned “Fukuoka Prefectural Fisheries and Marine Technology Center Business Report H16-H17” and is a short period of 5 days. The effect of consolidation is not subject to evaluation because it evaluates the effect of the condition.

Wm/Wiの値は[1式]を用い、前記のd80およびd80 (0)から求めた。その際に、d80 (0)は表2の篩目の開きとスラグの通過質量百分率との関係をプロットして、スラグの80%通過粒子径(μm)の値を求めることでも良いが、篩目の開きが1.2mmと2.5mmの間を直線近似で求めても精度的にはほとんど問題がないことが確認されているため、ここでは直線近似でスラグの80%通過粒子径(μm)の値を求めた。 The value of Wm / Wi was obtained from d 80 and d 80 (0) using [Expression 1]. At that time, d 80 (0) may be obtained by plotting the relationship between the sieve opening in Table 2 and the passing mass percentage of the slag to obtain the value of 80% passing particle diameter (μm) of the slag, Since it has been confirmed that there is almost no problem in terms of accuracy even if the opening of the sieve mesh is between 1.2 mm and 2.5 mm by linear approximation, here, 80% passing particle diameter of slag (by linear approximation ( μm) was determined.

なお、各実施例および比較例の条件で破砕された後のスラグについても、それぞれ篩目の開きとスラグの通過質量百分率との関係を求め、上記と同様にスラグの80%通過粒子径(μm)の値を求めた。   In addition, regarding the slag after being crushed under the conditions of each Example and Comparative Example, the relationship between the opening of the sieve mesh and the passing mass percentage of the slag was obtained, and the 80% passing particle diameter of the slag (μm as in the above). ) Value.

さらに、実海域での覆砂材としての使用を想定した固結評価試験を行った。この実海域でのスラグの固結評価については、「福岡県水産海洋技術センター事業報告 H16年度〜H17年度」に開示されている内容に基き、実海域でスラグを一定期間設置した後に、固結の状態を評価する方法を用いた。   Furthermore, a consolidation evaluation test was performed assuming use as sand-capping material in actual sea areas. Regarding the consolidation evaluation of slag in the actual sea area, based on the contents disclosed in the “Fukuoka Prefectural Fisheries and Marine Technology Center Project Report FY2016-H17”, after slag installation in the actual sea area for a certain period, The method of evaluating the state of was used.

具体的には、福岡県豊前市大字宇島の豊前海沿岸において、海岸線から50m程度の浅場海域に縦1m×横0.6m×深さ0.3mのステンレス網のボックスを設置し、その中に処理後のスラグを入れて、設置から半年後の固結の有無を調べた。評価期間は、気温が高く、最も固結しやすい夏場を含む、4月から10月の半年間とした。   Specifically, on the coast of Buzen Sea in Uzen, Uzen, Buzen City, Fukuoka Prefecture, a stainless steel box of 1m in length, 0.6m in width and 0.3m in depth is installed in a shallow water area about 50m from the coastline. The treated slag was put in and examined for consolidation after half a year from installation. The evaluation period was half a year from April to October, including the summertime when the temperature was high and the most likely to consolidate.

固結の有無の判定については、山中式土壌硬度計(藤原製作所製)を用いてボックス中央部の硬度を測定し、後述の通り、予備試験で多くの生物に蝟集性への悪影響が見られた15mm以上を固結ありとした。   Regarding the determination of the presence or absence of consolidation, the hardness of the center of the box is measured using a Yamanaka soil hardness tester (manufactured by Fujiwara Seisakusho), and as described later, many organisms have an adverse effect on aggregability. More than 15 mm was considered to be consolidated.

なお、前記の山中式土壌硬度計による硬度の測定方法は、平坦な試験面に垂直にコーンを所定の位置まで圧入し、このときのコーンの圧入深さを測定した。   In addition, the measuring method of the hardness by the said Yamanaka type | system | group soil hardness meter pressed the cone to the predetermined position perpendicularly | vertically to the flat test surface, and measured the indentation depth of the cone at this time.

また、予備試験としては、海砂とスラグを様々な比率で混合し、その比率を変えることで固結強度を変化させた試験材を用い、干潟にこれらを入れたボックスを約4ヶ月設置して、固結の硬度により貝類やゴカイ類が棲息可能であるか調査した。結果として硬度が15mm以上ではこれらの生物が見られず、生存が困難であるとの知見を得ている。   Also, as a preliminary test, sea sand and slag were mixed at various ratios, and test materials whose consolidation strength was changed by changing the ratios were set up for about 4 months. Therefore, we investigated whether shellfish and sandworms can be inhabited by the hardness of consolidation. As a result, when the hardness is 15 mm or more, these organisms are not seen, and it has been found that survival is difficult.

結果は表4に示すとおり、本実施例1〜6ではWm/Wiが0.037以上を満足しており、長径が2.5mm以上、長径と短径のアスペクト比が1:3以上の針状滓個数は、スラグ20g当りで70個以下であり、また蝟集性は50%前後となり、前述の通り、海砂と同等とすることができた。さらに、実海域での実証試験でも長期的に固結せず、十分な固結遅延効果を得ることが出来た。   The results are as shown in Table 4. In Examples 1 to 6, Wm / Wi satisfies 0.037 or more, needles having a major axis of 2.5 mm or more and an aspect ratio of major axis to minor axis of 1: 3 or more. The number of ridges was 70 or less per 20 g of slag, and the collecting property was about 50%, which was equivalent to sea sand as described above. Furthermore, in the demonstration test in the actual sea area, it did not consolidate in the long term, and a sufficient consolidating delay effect could be obtained.

一方、比較例1〜4ではWm/Wiが0.037以上を満足しておらず、上記の針状滓個数はスラグ20g当りで70個を超えていた。従って、長期的な固結はなかったものの、針状滓による蝟集性への悪影響が見られた。   On the other hand, in Comparative Examples 1 to 4, Wm / Wi did not satisfy 0.037 or more, and the number of needle-like ridges exceeded 70 per 20 g of slag. Therefore, although there was no long-term consolidation, there was an adverse effect on accumulating properties due to needle-shaped wrinkles.

また、破砕から炭酸化処理までに間隔をあけた比較例5と6は、Wm/Wiが0.037以上を満足しており、針状滓個数はスラグ20g当りで70個以下であったため、蝟集性は50%前後とできたものの、固結が発生し、長期的な固結遅延効果は不充分であった。   Further, in Comparative Examples 5 and 6 with an interval from crushing to carbonation treatment, Wm / Wi satisfies 0.037 or more, and the number of needle-like ridges is 70 or less per 20 g of slag. Although the collection property was about 50%, solidification occurred and the long-term consolidation delay effect was insufficient.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

強度を変えて破砕した高炉水砕スラグの、針状滓の個数と魚の蝟集性の関係の一例を示す図である。It is a figure which shows an example of the relationship between the number of needle-shaped ridges, and the collectability of fish of the blast furnace granulated slag crushed by changing intensity. Wm/Wiの値と、破砕処理後のスラグ中に残留する針状滓の個数の関係の一例を示す図である。It is a figure which shows an example of the relationship between the value of Wm / Wi, and the number of acicular ridges which remain | survives in the slag after a crushing process. Wm/Wi=0.037、および0.095の場合の、破砕前と後のスラグの80%通過粒子径の関係の一例を示す図である。It is a figure which shows an example of the relationship of 80% passage particle diameter of the slag before and after crushing in the case of Wm / Wi = 0.037 and 0.095. 破砕と同時に炭酸化処理を行った場合と、破砕後に12時間静置してから炭酸化した場合の、pHの違いを示す図である。It is a figure which shows the difference in pH when the carbonation process is performed simultaneously with crushing, and when carbonizing after standing for 12 hours after crushing. 炭酸化処理の攪拌時間と、スラグに加わる破砕仕事の関係の一例を示す図である。It is a figure which shows an example of the relationship between the stirring time of a carbonation process, and the crushing work added to slag. 攪拌で使用する鉄球の個数と、スラグに加わる破砕仕事の関係の一例を示す図である。It is a figure which shows an example of the relationship between the number of the iron balls used by stirring, and the crushing work added to slag. 炭酸化処理時の攪拌容器の回転数と、スラグに加わる破砕仕事の関係の一例を示す図である。It is a figure which shows an example of the relationship between the rotation speed of the stirring container at the time of a carbonation process, and the crushing work added to slag.

Claims (1)

針状滓を含有する高炉水砕スラグの処理方法であって、
下記の[1式]で示されるWm/Wiの値が0.037以上となるようにスラグを破砕処理しつつ、同時にスラグを炭酸化処理することを特徴とする、高炉水砕スラグの処理方法。
Wm/Wi= 10/(d801/2 − 10/ (d80 (0)1/2 ・・・[1式]
Wm:破砕仕事
Wi:仕事指数
80:破砕後の試料の80%通過粒子径(μm)
80 (0):破砕前の試料の80%通過粒子径(μm)
A method for treating granulated blast furnace slag containing acicular soot,
A method for treating granulated blast furnace slag, wherein the slag is crushed so that the Wm / Wi value represented by the following [1 formula] is 0.037 or more, and the slag is carbonized at the same time. .
Wm / Wi = 10 / (d 80) 1/2 - 10 / (d 80 (0)) 1/2 ··· [1 expression]
Wm: crushing work Wi: work index d 80 : 80% passing particle diameter of the sample after crushing (μm)
d 80 (0) : 80% passing particle diameter of the sample before crushing (μm)
JP2007285570A 2007-11-01 2007-11-01 Blast furnace granulated slag treatment method and blast furnace granulated slag Active JP4879865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285570A JP4879865B2 (en) 2007-11-01 2007-11-01 Blast furnace granulated slag treatment method and blast furnace granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285570A JP4879865B2 (en) 2007-11-01 2007-11-01 Blast furnace granulated slag treatment method and blast furnace granulated slag

Publications (2)

Publication Number Publication Date
JP2009113999A JP2009113999A (en) 2009-05-28
JP4879865B2 true JP4879865B2 (en) 2012-02-22

Family

ID=40781572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285570A Active JP4879865B2 (en) 2007-11-01 2007-11-01 Blast furnace granulated slag treatment method and blast furnace granulated slag

Country Status (1)

Country Link
JP (1) JP4879865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752586B2 (en) * 2016-02-22 2020-09-09 日本製鉄株式会社 Slag pile construction method Slag and slag pile construction method
EP4324803A1 (en) * 2022-08-17 2024-02-21 Carbon Upcycling Technologies Inc. A mechanochemically carbonated slag, methods of its production and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112304A (en) * 1978-02-23 1979-09-03 Nippon Steel Corp Preventing method for granulated slag from caking
JP4434555B2 (en) * 2002-05-21 2010-03-17 Jfeミネラル株式会社 Processing method of granulated blast furnace slag
JP4406328B2 (en) * 2004-07-07 2010-01-27 Jfeミネラル株式会社 Granulating treatment method of granulated blast furnace slag

Also Published As

Publication number Publication date
JP2009113999A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
Omoregie et al. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method
Li et al. An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry
Morone et al. Valorization of steel slag by a combined carbonation and granulation treatment
Kawatra et al. Iron ore pelletization: part I. fundamentals
Morone et al. Granulation–carbonation treatment of alkali activated steel slag for secondary aggregates production
Gao et al. Characteristics of calcined magnesite and its application in oxidized pellet production
JP4608382B2 (en) Slag granulation method and granulated slag
CN102503323A (en) Baking-free cylindrical attapulgite fire-retarding ceramsite
Librandi et al. Carbonation of steel slag: testing of the wet route in a pilot-scale reactor
JP4879865B2 (en) Blast furnace granulated slag treatment method and blast furnace granulated slag
JP2007022817A (en) Treating method of steelmaking slag
JP5126524B2 (en) Manufacturing method for civil engineering materials using steel slag
Xu et al. Immobilization of lead (Pb) using ladle furnace slag and carbon dioxide
Amjad et al. Impacts of biomimetic self-healing of Lysinibacillus boronitolerans immobilized through recycled fine and coarse brick aggregates in concrete
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
CN110436807A (en) A kind of processing method of steel slag surface stabilization
JP2007284268A (en) Method for granulating powdery slag, and granulated slag
JP6413451B2 (en) Carbonation treatment method for steelmaking slag
Olagunju et al. Physical, mechanical, chemical, and environmental characterization of stockpiled BOF slag as railway ballast material
Niu et al. Experimental study on the effect of grouting interval on microbial induced calcium carbonate precipitation
Molahid et al. Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation
Umadevi et al. Influence of raw material particle size on quality of pellets
JP2014131793A (en) Removal method of contaminated earth surface layer in winter
Turgunova et al. The research of autohesion properties of sintering burden
TW201024424A (en) An innovative method that to age the basic oxygen furnace slag rapidly as a cement additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R151 Written notification of patent or utility model registration

Ref document number: 4879865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350