JP4879596B2 - Method for producing metal member having through hole - Google Patents

Method for producing metal member having through hole Download PDF

Info

Publication number
JP4879596B2
JP4879596B2 JP2006025296A JP2006025296A JP4879596B2 JP 4879596 B2 JP4879596 B2 JP 4879596B2 JP 2006025296 A JP2006025296 A JP 2006025296A JP 2006025296 A JP2006025296 A JP 2006025296A JP 4879596 B2 JP4879596 B2 JP 4879596B2
Authority
JP
Japan
Prior art keywords
hole
thickness
mold
slide tool
shearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006025296A
Other languages
Japanese (ja)
Other versions
JP2006255785A5 (en
JP2006255785A (en
Inventor
正一 阿部
靖 渡辺
和美 下飯
淳 富澤
光俊 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Nippon Steel Pipe Co Ltd
Sumitomo Metal Industries Ltd
Original Assignee
NSK Ltd
Nippon Steel Pipe Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006025296A priority Critical patent/JP4879596B2/en
Application filed by NSK Ltd, Nippon Steel Pipe Co Ltd, Sumitomo Metal Industries Ltd filed Critical NSK Ltd
Priority to PCT/JP2006/302543 priority patent/WO2006088023A1/en
Priority to CN2006800015000A priority patent/CN101090780B/en
Priority to KR1020077011646A priority patent/KR100948711B1/en
Priority to US11/791,848 priority patent/US8459077B2/en
Priority to EP06713684.6A priority patent/EP1852196B1/en
Priority to PL06713684T priority patent/PL1852196T3/en
Publication of JP2006255785A publication Critical patent/JP2006255785A/en
Publication of JP2006255785A5 publication Critical patent/JP2006255785A5/ja
Application granted granted Critical
Publication of JP4879596B2 publication Critical patent/JP4879596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/28Perforating, i.e. punching holes in tubes or other hollow bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/035Deforming tubular bodies including an additional treatment performed by fluid pressure, e.g. perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards

Description

この発明は、例えば中空管状の素材の軸方向中間部にハイドロフォーム工法により膨出部を形成した後、この膨出部の側壁部に通孔を形成する事により、この膨出部をコラムブラケットとする、ステアリングコラムの製造方法として利用できる。或いは、自動車用ボディーを構成する金属板をハイドロフォーム工法により加工した後、この金属板の一部に、ドアノブ、方向指示器等を装着する為の取付孔を形成する場合にも利用できる。
要するに、本発明の製造方法の対象となる金属製部材は、金属板製の部材を含み、上記通孔が形成されている部分が板状(平板状、曲板状を含む)である金属製部材を言う。平板状の金属板を加工して成る金属板製部材は勿論、電縫管、押し出し管等で、管壁部分に通孔を形成した金属管も含む。
In the present invention, for example, a bulging portion is formed in a middle portion in the axial direction of a hollow tubular material by a hydroforming method, and then a through hole is formed in a side wall portion of the bulging portion. It can be used as a method for manufacturing a steering column . Or after processing the metal plate which comprises the body for motor vehicles by the hydroforming method, it can utilize also when forming the attachment hole for mounting | wearing with a door knob, a direction indicator, etc. in a part of this metal plate.
In short, the metal member that is the target of the manufacturing method of the present invention includes a metal plate member, and the portion in which the through hole is formed is a plate shape (including a flat plate shape and a curved plate shape). Say the member. A metal plate member formed by processing a flat metal plate includes, of course, a metal tube having a through-hole formed in a tube wall portion, such as an electric sewing tube or an extruded tube.

自動車用操舵装置を構成するステアリングコラムのうち、チルト式ステアリング装置と呼ばれるステアリングホイールの高さ位置調節装置、或いはテレスコピックステアリング装置と呼ばれるステアリングホイールの前後位置調節装置に組み込まれるステアリングコラムの軸方向中間部には、コラムブラケットと呼ばれるブラケットを固定する必要がある。従来一般的には、この様なコラムブラケットを、ステアリングコラムと別体に形成したものを、後からこのステアリングコラムに溶接固定する様にしていた。これに対して特許文献1には、図15〜16に示す様に、ステアリングコラム1を構成する金属製の中空管の軸方向中間部を径方向外方に膨らませ、この膨らませた部分をコラムブラケット2とする構造が記載されている。この様な構造を採用する事により、部品点数が少なく、軽量で安価な自動車用操舵装置を実現できる。   Among the steering columns that make up the steering system for automobiles, an intermediate portion in the axial direction of the steering column incorporated in a steering wheel height position adjusting device called a tilt type steering device, or a steering wheel longitudinal position adjusting device called a telescopic steering device It is necessary to fix a bracket called a column bracket. Conventionally, generally, such a column bracket formed separately from the steering column is welded and fixed to the steering column later. On the other hand, in Patent Document 1, as shown in FIGS. 15 to 16, the axial intermediate portion of the metal hollow tube constituting the steering column 1 is inflated radially outward, and this inflated portion is the column. A structure for the bracket 2 is described. By adopting such a structure, it is possible to realize a light and inexpensive steering apparatus for an automobile with a small number of parts.

上述の様なコラムブラケット2を一体に設けたステアリングコラム1を造る為には、ハイドロフォーム工法により、このステアリングコラム1を構成する(鋼板製或はアルミニウム合金製の)金属管3の内周面に液圧(例えば水圧)を加えて、この金属管3の一部を、図15〜16に示す様に、径方向外方に膨出(塑性変形)させる。尚、上記ハイドロフォーム工法により上記金属管3の軸方向中間部を膨出させるには、例えば後述する図19に示す様に、分割可能で、拡径して造るべき上記金属管3の外面形状に見合う内面形状を有する金型6内に、素材である中空部材11(金属管)をセットする。そして、この中空部材11の両端を、軸押し工具19a、19bにより塞ぎ、中空部材11内に例えば196MPa(2000kg/cm2)程度の、高圧の液圧を付加する。この液圧付加により、上記中空部材11の軸方向中間部を径方向外方に、金型6のキャビティの内面に密着するまで拡径して、この中空部材11の軸方向中間部に膨出部7を形成する。この際、この膨出部7が薄肉になるのを防止する為に、上記中空部材11を上記両軸押し工具19a、19bにより軸方向に圧縮し、上記膨出部7への材料供給を促す。 In order to manufacture the steering column 1 integrally provided with the column bracket 2 as described above, the inner peripheral surface of the metal tube 3 (made of steel plate or aluminum alloy) constituting the steering column 1 by a hydroforming method. A hydraulic pressure (e.g., water pressure) is applied to the metal tube 3 so that a part of the metal tube 3 is bulged outward (plastic deformation) as shown in FIGS. In addition, in order to bulge the axial direction intermediate part of the said metal pipe 3 by the said hydroform construction method, as shown, for example in FIG. 19 mentioned later, the outer surface shape of the said metal pipe 3 which can be divided | segmented and should be expanded and manufactured. A hollow member 11 (metal tube), which is a material, is set in a mold 6 having an inner surface shape suitable for the above. Then, both ends of the hollow member 11 are closed with shaft pressing tools 19a and 19b, and a high hydraulic pressure of about 196 MPa (2000 kg / cm 2 ) is applied to the hollow member 11, for example. By applying this hydraulic pressure, the axially intermediate portion of the hollow member 11 is expanded radially outwardly until it is in close contact with the inner surface of the cavity of the mold 6, and bulges to the axially intermediate portion of the hollow member 11. Part 7 is formed. At this time, in order to prevent the bulging portion 7 from becoming thin, the hollow member 11 is compressed in the axial direction by the biaxial pushing tools 19a and 19b, and the material supply to the bulging portion 7 is promoted. .

尚、上述の様に膨出させた部分を、更に図18の(A)→(B)に示す様に、更に膨出させる場合もある。この様にして、上記ステアリングコラム1の一部に形成した上記コラムブラケット2には、例えばチルトボルト4を挿通する為の通孔5、5を形成する必要がある。又、これら各通孔5、5は、上記金属管3の一部を塑性変形させて上記コラムブラケット2を形成した後に形成する必要がある。更に、テレスコピックステアリング装置を構成する場合には、上記各通孔5、5を、上記ステアリングコラム1の軸方向に長い長孔とする必要がある。
上述の様な、中空部材のうちでハイドロフォーム工法により膨らませた部分に通孔を形成する為の技術として従来から、特許文献2〜3、非特許文献1に記載されている様なハイドロピアシング等が知られている。このうちの非特許文献1に記載された従来技術の3例に就いて、図19により説明する。
Note that the portion bulged as described above may be further bulged as shown in FIGS. 18A to 18B. In this manner, the column bracket 2 formed in a part of the steering column 1 needs to have through holes 5 and 5 for inserting, for example, the tilt bolt 4. The through holes 5 and 5 must be formed after the column bracket 2 is formed by plastic deformation of a part of the metal tube 3. Further, when configuring a telescopic steering device, the through holes 5 and 5 need to be long holes in the axial direction of the steering column 1.
Conventionally, as a technique for forming a through hole in a portion of the hollow member that has been expanded by the hydroform method, hydropiercing as described in Patent Documents 2 to 3 and Non-Patent Document 1 etc. It has been known. Of these, three examples of the prior art described in Non-Patent Document 1 will be described with reference to FIG.

先ず、この図19の左端部に示した第1例の場合には、金型6内に設置した素材をハイドロフォーム工法により膨らませて膨出部7を形成する工程が完了した後、この膨出部7の内側に液圧を付与したまま、上記金型6の一部で通孔5を形成すべき部分に整合する位置に設けたシリンダ孔8に嵌装した、先端面が上記膨出部7の外面に合致する形状とされたパンチ9を、上記膨出部7に向け押し付ける。そして、このパンチ9によりこの膨出部7の一部を打ち抜いて、上記通孔5とする。このパンチ9によりこの膨出部7の一部を打ち抜く事で生じた打ち抜き片10は、この膨出部7を備えた中空部材11の内部に残留する。   First, in the case of the first example shown at the left end of FIG. 19, after the step of forming the bulging portion 7 by inflating the material placed in the mold 6 by the hydroform method, the bulging is completed. While the hydraulic pressure is applied to the inside of the portion 7, the tip surface is fitted in the cylinder hole 8 provided at a position aligned with the portion where the through hole 5 is to be formed in a part of the mold 6 and the bulging portion 7 is pressed against the bulging portion 7. A part of the bulging portion 7 is punched out by the punch 9 to form the through hole 5. The punched piece 10 produced by punching a part of the bulging portion 7 with the punch 9 remains inside the hollow member 11 provided with the bulging portion 7.

次に、図19の中央部に示した第2例の場合には、金型6内に設置した素材をハイドロフォーム工法により膨らませて膨出部7を形成する工程が完了した後、この膨出部7の内側に液圧を付与したまま、上記金型6の一部で通孔5aを形成すべき部分に整合する位置に設けたシリンダ孔8aに嵌装した、先端面が一方向に傾斜したパンチ9aを、上記膨出部7に向け押し付ける。そして、このパンチ9aによりこの膨出部7の一部を突き破って、上記通孔5aとする。この通孔5aを形成する為に上記膨出部7の側壁を破る為の剪断乃至破断は、この通孔5aの片側から開始されて他側に向け漸次進行するので、上記通孔5aの加工に伴って生じる打ち抜き片10aは、この通孔5aの加工完了後も、上記膨出部7の側壁に繋がったままの状態で残る。   Next, in the case of the second example shown in the center part of FIG. 19, after the step of forming the bulging part 7 by inflating the material installed in the mold 6 by the hydroforming method is completed, With the hydraulic pressure applied to the inside of the portion 7, the tip surface is inclined in one direction, fitted in the cylinder hole 8a provided at a position aligned with the portion where the through hole 5a is to be formed in a part of the mold 6 The punch 9a is pressed against the bulging portion 7. And this punch 9a breaks through a part of this bulging part 7, and it is set as the said through-hole 5a. Since the shearing or breaking for breaking the side wall of the bulging portion 7 to form the through hole 5a starts from one side of the through hole 5a and progresses gradually toward the other side, the processing of the through hole 5a is performed. The punched piece 10a generated along with this remains in a state of being connected to the side wall of the bulging portion 7 even after the processing of the through hole 5a is completed.

更に、図19の右端部に示した第3例の場合には、金型6内に設置した素材をハイドロフォーム工法により膨らませて膨出部7を形成する工程が完了した後、この膨出部7の内側に液圧を付与したまま、上記金型6の一部で通孔5bを形成すべき部分に整合する位置に設けた抜き孔12に嵌装したスライド工具13を、上記膨出部7から遠ざける方向に移動させる。この結果、それまで当接していた、これらスライド工具13の先端面と膨出部7の外面とが離れる。この膨出部7の内面には、上記液圧が加わり続けている為、この膨出部7の側壁の一部で上記抜き孔12に整合する部分は、バックアップを失う事に伴ってこの抜き孔12内に強く押されて剪断乃至破断し、上記通孔5bが形成される。この結果生じた打ち抜き片10bは、上記抜き孔12内に捕集されるので、次の加工前に、上記スライド工具13を前進させる等により取り除く。   Furthermore, in the case of the third example shown in the right end portion of FIG. 19, after the step of forming the bulging portion 7 by inflating the material installed in the mold 6 by the hydroform method, the bulging portion is completed. The slide tool 13 fitted in the punched hole 12 provided at a position aligned with the portion where the through hole 5b is to be formed in a part of the mold 6 while the hydraulic pressure is applied to the inside of the mold 7 is Move in a direction away from 7. As a result, the front end surface of the slide tool 13 and the outer surface of the bulging portion 7 that have been in contact with each other are separated from each other. Since the fluid pressure continues to be applied to the inner surface of the bulging portion 7, a portion of the side wall of the bulging portion 7 that is aligned with the punched hole 12 is removed as the backup is lost. The hole 5b is formed by being strongly pushed into the hole 12 and shearing or breaking. The punched piece 10b generated as a result is collected in the punched hole 12, and is removed by advancing the slide tool 13 before the next processing.

上述の様な、非特許文献1に記載された3通りの従来技術のうち、図19の左端部に示した第1例によると、通孔5を形成するのに伴って生じた打ち抜き片10が中空部材11の内部に残留する。この為、上記通孔5を形成した後、この打ち抜き片10をこの中空部材11から取り出す必要がある。ところが、この打ち抜き片10の大きさに比べてこの中空部材11の端部開口が狭かったり、或は、この中空部材11が複雑な形状を有する等の場合には、この中空部材11の内部から上記打ち抜き片10を取り出す事が不可能若しくは困難になる可能性がある。又、上記第1例の場合には、上記通孔5を形成すべく、上記膨出部7の外周面を前記パンチ9により強く押圧するのに伴って、この膨出部7のうちで上記通孔5の周囲部分が、上記中空部材11の径方向内方に変形する(だれる)。この為、加工完了後に於ける、この周囲部分の形状精度及び寸法精度を確保する事が難しくなる。   Of the three prior arts described in Non-Patent Document 1 as described above, according to the first example shown at the left end of FIG. 19, the punched piece 10 generated when the through hole 5 is formed. Remains in the hollow member 11. For this reason, it is necessary to take out the punched piece 10 from the hollow member 11 after forming the through hole 5. However, when the end opening of the hollow member 11 is narrower than the size of the punched piece 10 or the hollow member 11 has a complicated shape, the inside of the hollow member 11 is removed. It may be impossible or difficult to take out the punched piece 10. Further, in the case of the first example, the outer surface of the bulging portion 7 is strongly pressed by the punch 9 in order to form the through hole 5. A peripheral portion of the through hole 5 is deformed (slipped) inward in the radial direction of the hollow member 11. For this reason, it becomes difficult to ensure the shape accuracy and dimensional accuracy of the surrounding portion after the processing is completed.

次に、図19の中央部に示した第2例によると、加工後の通孔5aの形状及び寸法を、所望通り正確に規制する事が難しい。特に、打ち抜き片10aの基端部が繋がった状態となる、膨出部7の側壁の一部で上記通孔5aの一端部(図19の左端部)は、この側壁の一部が曲げ変形された状態のまま残る為、曲げ変形の分だけこの側壁がだれて変形する。これに対して、上記通孔5aの中間部乃至他端部(図19の右端部)では、上記側壁が前記パンチ9aにより径方向内方に強く押される事で上記膨出部7の内方に変形する。この結果、何れの部分でも、上記通孔5aの形状及び寸法に関する精度を確保する事が難しい。又、打ち抜き片10aが、膨出部7の内面から径方向内方に突出した状態で残る為、中空部材11の用途によっては、上記打ち抜き片10aが邪魔になる可能性もある。   Next, according to the second example shown in the center portion of FIG. 19, it is difficult to accurately regulate the shape and dimensions of the processed through-hole 5a as desired. In particular, one end of the through hole 5a (the left end in FIG. 19) is a part of the side wall of the bulging portion 7 where the base end of the punched piece 10a is connected. In order to remain as it is, the side wall is bent and deformed by the amount of bending deformation. On the other hand, in the middle part through the other end part (the right end part in FIG. 19) of the through hole 5a, the side wall is strongly pushed inward in the radial direction by the punch 9a, so Transforms into As a result, it is difficult to ensure the accuracy regarding the shape and size of the through hole 5a in any part. Further, since the punched piece 10a remains in a state of projecting radially inward from the inner surface of the bulging portion 7, the punched piece 10a may become an obstacle depending on the use of the hollow member 11.

これらの事を考慮した場合には、図19の右端部に示した第3例により、中空部材11の膨出部7に通孔5bを形成する事が好ましい。この様な事情を考慮して、前述の図15に示す様な、コラムブラケット2を一体に設けたステアリングコラム1を造る為に先に考えた方法に就いて、図20〜23により説明する。この先に考えた方法では、先ず、図20に示す様に、素材であり、板厚がT1 である金属管3を、金型6a内の所定位置に配置する。この金型6aは、図21に示す様に、1対の金型素子15、15を最中状に突き合わせて成るもので、その内部には、上記金属管3の両端部及び中間部のうちの周方向片半部をほぼ隙間なく内嵌できる円孔部16と、この円孔部16の中間部から径方向外方に突出した凹部17とを備える。この凹部17の内面形状は、形成すべき上記膨出部7の外面形状と一致する。又、上記両金型素子15、15の一部で、上記円孔部16の中心軸よりも上記凹部17に向けこの円孔部16の径方向外方にずれた、互いに整合する位置に、それぞれ抜き孔12a、12aを設けている。そして、これら各抜き孔12a、12a内にスライド工具13a、13aを、それぞれ上記凹部17に対する進退を可能として、密に内嵌している。 In consideration of these matters, it is preferable to form the through hole 5b in the bulging portion 7 of the hollow member 11 according to the third example shown in the right end portion of FIG. In view of such circumstances, the method previously considered for manufacturing the steering column 1 integrally provided with the column bracket 2 as shown in FIG. 15 will be described with reference to FIGS. In the method considered above, first, as shown in FIG. 20, a metal tube 3 which is a material and has a plate thickness of T 1 is arranged at a predetermined position in the mold 6a. As shown in FIG. 21, the mold 6 a is formed by a pair of mold elements 15, 15 being abutted in the middle, and the inside of the metal tube 3 includes both ends and an intermediate portion. The circumferential hole half 16 can be fitted with almost no gap, and the recess 17 protrudes radially outward from the middle of the circular hole 16. The inner surface shape of the concave portion 17 matches the outer surface shape of the bulging portion 7 to be formed. Further, in a part of both the mold elements 15 and 15, they are shifted from the central axis of the circular hole portion 16 toward the concave portion 17 and radially outward of the circular hole portion 16, and are aligned with each other. Holes 12a and 12a are provided respectively. The slide tools 13a and 13a are tightly fitted in the punched holes 12a and 12a so that the slide tools 13a and 13a can advance and retreat with respect to the concave portion 17, respectively.

上記コラムブラケット2を一体に設けたステアリングコラム1を造る場合には、先ず、図20〜21に示す様に、上記両金型素子15、15により上記金属管3を挟持する様にして、この金属管3を上記円孔部16に内嵌する。この状態で、この金属管3の中間部の円周方向片半部が、上記凹部17に対向する。次いで、この金属管3の軸方向両端縁を軸押し工具19、19により互いに近づく方向に押圧しつつ、この金属管3の内側に液圧(一般的には水圧)を導入する。この液圧の導入は、例えば、一方又は双方の軸押し工具19、19の中心孔18、18を通じて行なう。又、この様にして行なう、上記液圧導入の初期段階では、上記両スライド工具13a、13aの先端面20、20と、上記凹部17の内面とを一致させておく。   When making the steering column 1 with the column bracket 2 integrally provided, first, as shown in FIGS. 20 to 21, the metal tube 3 is sandwiched between the mold elements 15, 15. The metal tube 3 is fitted into the circular hole portion 16. In this state, the circumferential half piece of the intermediate portion of the metal tube 3 faces the concave portion 17. Next, hydraulic pressure (generally water pressure) is introduced to the inside of the metal tube 3 while pressing both end edges in the axial direction of the metal tube 3 in directions approaching each other by the axial pressing tools 19 and 19. The introduction of the hydraulic pressure is performed, for example, through the center holes 18 and 18 of one or both axial pushing tools 19 and 19. Further, in the initial stage of the introduction of the hydraulic pressure performed in this way, the front end surfaces 20 and 20 of the slide tools 13a and 13a and the inner surface of the recess 17 are made to coincide.

この様にして上記金属管3の内部に液圧を導入し、且つ、上記両軸押し工具19、19を互いに近づく方向に移動させると、上記金属管3の軸方向中間部の円周方向片半部が、上記凹部17に向けて膨出する。即ち、この金属管3の内周面に径方向外方に向いた強い力を加えつつ、この金属管3を軸方向に圧縮する力を付与する事で、この金属管3が、図22〜23に示す様に、前記金型6aの内面形状に沿った形状、即ち、中間部の円周方向片半部に径方向外方に突出した膨出部7aを有する形状に加工される。   In this way, when the hydraulic pressure is introduced into the inside of the metal tube 3 and the biaxial pushing tools 19 and 19 are moved in a direction approaching each other, a circumferential piece at an axially intermediate portion of the metal tube 3 is obtained. A half portion bulges toward the concave portion 17. That is, by applying a force that compresses the metal tube 3 in the axial direction while applying a strong force directed radially outward to the inner peripheral surface of the metal tube 3, the metal tube 3 is formed as shown in FIG. As shown in FIG. 23, it is processed into a shape along the inner surface shape of the mold 6a, that is, a shape having a bulging portion 7a projecting radially outward in a circumferential half piece of the intermediate portion.

この様に膨出部7aが形成された状態から、上記両スライド工具13a、13aを、形成された直後のこの膨出部7aの側壁14、14から退避させれば、これら両側壁14、14の一部で上記両抜き孔12a、12aに整合する部分が、上記膨出部7aの内側に存在する液圧に押されてこれら両抜き孔12a、12a内に押し込まれ、当該部分に通孔5c、5cが形成される。   If the slide tools 13a and 13a are retracted from the side walls 14 and 14 of the bulging portion 7a immediately after being formed from the state in which the bulging portion 7a is formed in this way, the both side walls 14 and 14 are formed. A part of which is aligned with the two holes 12a and 12a is pushed into the holes 12a and 12a by the hydraulic pressure existing inside the bulging part 7a, and is inserted into the holes. 5c and 5c are formed.

上述の様に、上記金属管3の一部にハイドロフォーム工法により膨出部7aを形成する技術と、前述の図19の右端部に示した従来技術の第3例とを組み合わせれば、上記膨出部7aの一部に通孔5c、5cを効率良く形成できる可能性があるものと考えられる。ところが、上記両技術を単に組み合わせただけでは、上記通孔5c、5cを必ずしも安定して形成できない事が、本発明者の研究により分かった。この原因に就いて、図22〜23に図24〜25を加えて説明する。   As described above, if the technology for forming the bulging portion 7a in a part of the metal tube 3 by the hydroforming method is combined with the third example of the prior art shown in the right end portion of FIG. It is considered that there is a possibility that the through holes 5c and 5c can be efficiently formed in a part of the bulging portion 7a. However, the present inventors have found that the through-holes 5c and 5c cannot always be stably formed by simply combining the two techniques. This cause will be described with reference to FIGS.

上記金属管3の一部にハイドロフォーム工法により膨出部7aを形成した場合、この膨出部7aに対応する部分で、上記金属管3を構成する金属板が面方向に引き伸ばされるので、この金属管3を軸方向に圧縮してこの膨出部7aに材料の供給を促しているとは言え、上記金属板が、元々の板厚T1 (図20参照)よりも小さくなる。そして、この様に板厚が小さくなる程度は、上記膨出部7aのうちでも差を生じる。具体的には、この膨出部7aの基部(図22〜23の下部)から離れる程材料の供給量が減少する為、この基部寄り部分では板厚が小さくなる程度が低く、先端部(図22〜23の上部)に向かう程板厚が小さくなる程度が著しくなる。更に、この先端部のうちでも、曲率が大きくなった(曲率半径が小さくなった)、図23の左右両隅角部及びその近傍は、板厚が小さくなる程度が著しくなる。 When the bulging portion 7a is formed on a part of the metal tube 3 by the hydroform method, the metal plate constituting the metal tube 3 is stretched in the surface direction at a portion corresponding to the bulging portion 7a. Although the metal tube 3 is compressed in the axial direction to promote the supply of material to the bulging portion 7a, the metal plate becomes smaller than the original plate thickness T 1 (see FIG. 20). And the extent to which the plate thickness is reduced in this way also makes a difference in the bulging portion 7a. Specifically, since the supply amount of the material decreases as the distance from the base of the bulging portion 7a (the lower part of FIGS. 22 to 23) decreases, the thickness of the portion closer to the base is small, and the tip (see FIG. The extent to which the plate thickness decreases as it goes to the upper part of 22 to 23) becomes remarkable. Further, even in this tip portion, the curvature becomes large (the radius of curvature becomes small), and the left and right corner portions and the vicinity thereof in FIG.

そして、前記両側壁14、14のうちで上記両通孔5c、5cを形成すべき部分の板厚は、これら両通孔5c、5cの幅方向(図22〜25の上下方向)に関して不均一な(漸次変化する)状態となる。具体的には、上記両側壁14、14のうちで上記両通孔5c、5cを形成すべき部分の断面形状がくさび形となる。そして、これら両通孔5c、5cの幅方向両端縁部分での上記両側壁14、14の板厚T2 、T3 (図24参照)が、上記膨出部7aの基端寄りで大きく、同じく先端寄りで小さく(T2 >T3 )なる。 And the plate | board thickness of the part which should form both the said through-holes 5c and 5c among the said both-side walls 14 and 14 is not uniform regarding the width direction (up-down direction of FIGS. 22-25) of these both through-holes 5c and 5c. (Gradual change). Specifically, the cross-sectional shape of the part where both the through holes 5c and 5c are to be formed in the both side walls 14 and 14 is a wedge shape. Then, the plate thickness T 2, T 3 of the side walls 14, 14 of these Ryotsuana 5c, in both widthwise end edges of 5c (see FIG. 24) is greater at the proximal end side of the said bulging portion 7a, Similarly, it becomes smaller near the tip (T 2 > T 3 ).

上記膨出部7aを形成する際には、上記金属管3の内部に導入する液圧の昇圧パターンと、前記軸押し工具19、19を前進させるパターン(軸押しパターン)とを適切に設定する。即ち、軸押し量の増加に対して液圧の上昇が速い場合には、膨出部の減肉が著しくなり、割れが発生する可能性が高くなる。反対に、液圧の上昇に対して軸押し量の増加が先行した場合には、材料の座屈が発生し易くなる。一般的には、座屈が発生しない範囲で軸押しを先行し、最終的な軸押し量を多く設定した方が、上記両端縁部分での板厚T2 、T3 の差を小さくし、且つ、元々の板厚T1 との差も小さくできる。図19の右端部に示した、外抜きのハイドロピアシングとして、前記非特許文献1に記載された、通常の加工方法を採用する場合、上記各部の板厚T1 、T2 、T3 のうち、上記両端縁部分の板厚T2 、T3 の差が、板厚が大きい側から見て、5%以内、更に好ましくは3%以内である事が、上記両通孔5c、5cを形成する面からは好ましい。但し、製品形状の非対称性が著しい場合には、軸押しパターンや液圧の昇圧パターンを調整しても、板厚の不均一を十分に解消する事ができず、特に、図20〜23に示す様に、金属管3の片側にのみ膨出部7aを形成する場合には、上述の様に、通孔5c、5cを形成すべき側壁14、14の板厚が不均一な状態となる。言い換えれば、上記両端縁部分の板厚T2 、T3 の差が、板厚が大きい側から見て、3%、更には5%を越える様な場合も生じる。 When the bulging portion 7a is formed, a pressure increase pattern of the hydraulic pressure introduced into the metal tube 3 and a pattern (axis pressing pattern) for moving the shaft pressing tools 19, 19 are appropriately set. . That is, when the hydraulic pressure rises quickly with respect to the increase in the amount of axial push, the bulge portion becomes extremely thin and the possibility of cracking increases. On the other hand, when the increase in the axial push amount precedes the increase in the hydraulic pressure, the material is likely to buckle. In general, when the axial push is preceded in a range where buckling does not occur and the final axial push amount is set to be large, the difference between the thicknesses T 2 and T 3 at the both end edge portions is reduced. In addition, the difference from the original plate thickness T 1 can be reduced. When the normal processing method described in Non-Patent Document 1 is adopted as the outside hydropiercing shown in the right end part of FIG. 19, among the plate thicknesses T 1 , T 2 , T 3 of the above-mentioned parts The difference between the plate thicknesses T 2 and T 3 of the both edge portions is within 5%, more preferably within 3% when viewed from the side where the plate thickness is large, forming the through holes 5c and 5c. It is preferable from the aspect of doing. However, when the asymmetry of the product shape is significant, even if the shaft pressing pattern or the hydraulic pressure increasing pattern is adjusted, the uneven thickness cannot be sufficiently eliminated. As shown, when the bulging portion 7a is formed only on one side of the metal tube 3, the thickness of the side walls 14 and 14 where the through holes 5c and 5c are to be formed is in a non-uniform state as described above. . In other words, the difference between the plate thicknesses T 2 and T 3 of the both end edge portions may exceed 3% and further 5% when viewed from the side where the plate thickness is large.

この様に、通孔5c、5cを形成すべき側壁14、14の板厚が不均一となるにも拘らず、図21、23〜25に示す様に、先端面20、20がこれら両側壁14、14と平行な平坦面であるスライド工具13a、13aを使用した場合、上記通孔5c、5cを安定して形成する事が難しい。即ち、その先端面20、20が上述の様な単純な形状であるスライド工具13a、13aを使用した場合、通孔の形状が、楕円形や長円形等、複雑であったり、単純な円孔であっても、開口面積が大きい通孔を加工する場合には、打ち抜き片が通孔となるべき部分から完全に抜けきらず、この打ち抜き片が素材と部分的に繋がれた状態のままになり易い。特に、上記側壁14、14に上記通孔5c、5cを形成する場合の様に、板厚が不均一な部分に通孔を形成する場合には、上述の様な問題を生じ易い。   As shown in FIGS. 21, 23 to 25, the end surfaces 20, 20 are formed on both side walls, although the thickness of the side walls 14, 14 where the through holes 5 c, 5 c are to be formed is not uniform. When the slide tools 13a and 13a, which are flat surfaces parallel to 14 and 14, are used, it is difficult to stably form the through holes 5c and 5c. That is, when the slide tools 13a and 13a having the simple shapes of the front end surfaces 20 and 20 as described above are used, the shape of the through hole is complicated such as an ellipse or an oval, or a simple circular hole. However, when processing a through hole with a large opening area, the punched piece cannot be completely removed from the portion that should be the through hole, and the punched piece remains in a state of being partially connected to the material. easy. In particular, when the through holes are formed in a portion having a non-uniform thickness, as in the case where the through holes 5c and 5c are formed in the side walls 14 and 14, the above-described problems are likely to occur.

即ち、上記両端縁部分の板厚T2 、T3 に5%を越える様な差が存在するにも拘らず、上述の様に先端面20が平坦なスライド工具13aにより上記通孔5cを形成しようとした場合、このスライド工具13aが後退し始めるのとほぼ同時に、上記側壁14の一部で抜き孔12aに対向する部分が、この抜き孔12a内に向けて変形(剪断)し始める。そして、上記スライド工具13aが或る程度後退した時点で、上記側壁14の一部で抜き孔12aに対向する部分のうちで板厚T3 が小さい部分が、同じく板厚T2 が大きい部分に先立って破断する。この結果、図25に示す様に、上記側壁14の一部で抜き孔12aに対向する部分のうちの板厚T2 が大きい部分が上記側壁14と繋がった状態のまま、抜き取るべき部分の両側に、同じ液圧が存在する状態となる。即ち、金属管3の内部の液圧が破断個所から抜けてしまう。この結果、それ以上いくら上記スライド工具13aを後退させても、上記板厚T2 が大きく上記側壁14と繋がった部分の剪断は進行せず、上記通孔5cを形成できなくなってしまう。この様に、抜き取るべき部分の一部が側壁14と繋がったままの状態となる現象は、通孔を形成すべき部分の肉厚の差が大きい程、又、この通孔の形状が丸孔の場合よりも長孔と言った様に、形状が複雑化する程、著しくなる。 That is, the through-hole 5c is formed by the slide tool 13a having the flat tip end surface 20 as described above, despite the fact that there is a difference exceeding 5% in the plate thicknesses T 2 and T 3 of the both end edge portions. When trying to do so, almost simultaneously with the slide tool 13a starting to retract, a portion of the side wall 14 facing the punch hole 12a starts to deform (shear) into the punch hole 12a. Then, when the slide tool 13a is retracted to some extent, the plate thickness T 3 is small part of the portion facing the vent hole 12a in part of the side wall 14, also on part thickness T 2 greater Fracture first. As a result, as shown in FIG. 25, both sides of the portion to be extracted while the portion having a large plate thickness T 2 in the portion of the side wall 14 facing the punch hole 12 a is connected to the side wall 14. In addition, the same hydraulic pressure exists. That is, the hydraulic pressure inside the metal tube 3 is released from the broken portion. As a result, even more much retract the slide tool 13a, shear portion where the plate thickness T 2 is connected to the larger the side wall 14 does not proceed, it becomes impossible to form the through hole 5c. As described above, the phenomenon that a part of the portion to be removed remains connected to the side wall 14 is that the difference in the thickness of the portion where the through hole is to be formed is larger, and the shape of the through hole is a round hole. As the shape of the long hole is more complicated than in the case of the above, the more complicated the shape becomes, the more remarkable it becomes.

尚、前述の図19に示した様な、従来から知られているハイドロピアシングの場合には、膨出部7が中空部材11の中心軸に関して対称(或いはほぼ対称)な形状であり、通孔を形成すべき部分の管壁の肉厚が全周でほぼ均一である為、抜き取るべき部分を径方向外側に取り出す、所謂外抜きの場合も、通孔を形成できる。但し、前記ステアリングコラム1のコラムブラケット2の場合には、通孔を形成すべき部分の管壁の肉厚を均一にする事が難しい事は、前述した通りである。又、図19の左部及び中央部に記載した孔あけ方法の場合には、通孔を形成すべき部分の肉厚が不均一であっても、この通孔の形成自体は可能であるが、前述した様な問題がある。
尚、前記特許文献2、3に記載された方法は、全体の工程が複雑で、コストが嵩む事が避けられない。従って、図20〜23に示した様な、膨出部7aの加工と通孔5c、5cの形成作業とを連続して能率良く行なう事で、コスト低減を図れる工法の代わりにはならない。
In the case of conventionally known hydropiercing as shown in FIG. 19 described above, the bulging portion 7 has a symmetric (or almost symmetrical) shape with respect to the central axis of the hollow member 11, and the through hole Since the wall thickness of the tube wall of the portion to be formed is substantially uniform over the entire circumference, the through-hole can be formed even in the case of so-called outside extraction in which the portion to be extracted is taken out radially outward. However, in the case of the column bracket 2 of the steering column 1, as described above, it is difficult to make the wall thickness of the tube wall where the through hole should be formed uniform. Further, in the case of the drilling method described in the left part and the center part of FIG. 19, even if the thickness of the part where the through hole is to be formed is not uniform, the formation of this through hole is possible. There are problems as described above.
In addition, the method described in the said patent documents 2 and 3 cannot avoid that the whole process is complicated and cost increases. Therefore, it is not a substitute for a method of reducing the cost by continuously and efficiently performing the processing of the bulging portion 7a and the forming operation of the through holes 5c and 5c as shown in FIGS.

特開平8−276852号公報Japanese Patent Laid-Open No. 8-276852 特開平6−292929号公報JP-A-6-292929 特開2001−314926号公報JP 2001-314926 A Frank-Ulrich LEITLOFF/Steffen GEISWEID著、「自動車産業におけるチューブハイドロフォーミング技術の適用」、Journal of the JSTP vol.39 no.453(1998-10)Frank-Ulrich LEITLOFF / Steffen GEISWEID, “Application of tube hydroforming technology in the automotive industry”, Journal of the JSTP vol.39 no.453 (1998-10)

本発明は、上述の様な事情に鑑みて、金属製で、少なくとも一部が板状とされた部材の一部で、この板状とされた部分の板厚に差がある肉厚不均一部分に通孔を形成する作業を、安定してしかも低コストで行なえる製造方法を実現すべく発明したものである。 In view of the circumstances as described above, the present invention is a part of a member that is made of metal and at least a part of which is plate-shaped, and the thickness of the plate-shaped part is different. The present invention was invented to realize a manufacturing method capable of stably and inexpensively performing the operation of forming a through hole in a part.

本発明の製造方法の対象となる通孔を有する金属製部材は、金属製で、少なくとも一部が板状とされた部材の一部で、この板状とされた部分の厚さに差がある肉厚不均一部分に通孔を、この部分を貫通する状態で設けている。
この通孔は、上記肉厚不均一部分の片面を金型に当接させた状態でこの肉厚不均一部分の他面に液圧を加えつつ、この肉厚不均一部分の一部で上記金型に設けた抜き孔に対応する部分をこの抜き孔に押し込む、ハイドロピアシングにより形成されたものである。
このハイドロピアシングは、形成すべき上記通孔の周縁全体で剪断現象を同時に終了させる事で行なう。
The metal member having a through hole which is the object of the manufacturing method of the present invention is a part of a member made of metal and at least part of which is plate-shaped, and there is a difference in the thickness of the plate-shaped part. A through-hole is provided in a certain thickness nonuniform portion so as to penetrate this portion.
This through hole applies the hydraulic pressure to the other surface of the non-uniform thickness portion in a state where one surface of the non-uniform thickness portion is in contact with the mold, while the part of the non-uniform thickness portion It is formed by hydropiercing, in which a portion corresponding to a hole provided in the mold is pushed into this hole.
This hydropiercing is performed by simultaneously terminating the shearing phenomenon on the entire periphery of the through hole to be formed .

この為に、請求項1に記載した発明の場合には、金型の抜き孔に挿入されるスライド工具として、剪断加工を施される材料の肉厚分布に応じて、先端面が、肉厚の小さい側で金型の内側方向へ突出し、肉厚の大きい側で金型の外側方向へ窪んだ形状を有するスライド工具を使用する。そして、請求項4に記載した発明の様に、上記金型の内面を上記肉厚不均一部分の片面に突き当てた状態でこの肉厚不均一部分の他面に液圧を加えつつ、上記スライド工具をこの肉厚不均一部分から退避する方向に変位させて、この肉厚不均一部分の一部で上記抜き孔に対応する部分を、上記液圧によりこの抜き孔に押し込む。
或いは、請求項2に記載した発明の様に、金型の抜き孔の周縁部である刃先部分の断面形状の曲率半径が、この刃先部分が剪断加工を施される材料の肉厚分布に応じて、肉厚の大きい側で小さく、肉厚の小さい側で大きく形成された金型を使用する。
更に、請求項3に記載した発明の様に、上述した請求項1に記載した発明と請求項2に記載した発明とを同時に実施する事もできる。
何れの場合でも、上記肉厚不均一部分のうちで上記抜き孔の周縁全体に対応する部分に剪断応力を発生させ、この部分に剪断現象を発生させ、更にこの剪断現象を同時に破断に結び付けて、上記抜き孔に整合する部分に上記通孔を形成する。
For this reason, in the case of the invention described in claim 1, as a slide tool to be inserted into vent hole of the mold, depending on the thickness distribution of the material to be subjected to shearing, the front end surface, the thickness A slide tool having a shape that protrudes toward the inner side of the mold on the smaller side and is recessed toward the outer side of the mold on the larger thickness side is used. Then, as in the invention described in claim 4, while applying the hydraulic pressure to the other surface of the non-uniform thickness portion in a state where the inner surface of the mold is abutted against one surface of the non-uniform thickness portion, The slide tool is displaced in the direction of retracting from the uneven thickness portion, and a portion of the uneven thickness portion corresponding to the punch hole is pushed into the punch hole by the hydraulic pressure.
Alternatively, as in the invention described in claim 2, the radius of curvature of the cross-sectional shape of the cutting edge portion is a peripheral portion of the mold vent holes, depending on the thickness distribution of the material the cutting part is subjected to shearing Thus, a mold that is small on the thick side and large on the thin side is used.
Furthermore, like the invention described in claim 3, the invention described in claim 1 and the invention described in claim 2 can be carried out simultaneously.
In any case, a shear stress is generated in a portion corresponding to the entire peripheral edge of the punched hole in the uneven thickness portion, a shear phenomenon is generated in this portion, and this shear phenomenon is simultaneously combined with fracture. The through hole is formed in a portion aligned with the punched hole.

この点に就いて、図1を参照しつつ説明する。この図1の(A)〜(C)は、ハイドロピアシングによる剪断加工で、金属製部材の一部で板状の部分(以下、「金属板25」とする)の一部に通孔を形成する状態を段階的に示す断面図である。前述した、所謂外抜きのハイドロピアシングは、基本的には、金型6に設けられた抜き孔12の周縁部である刃先部分による剪断加工であり、この剪断加工をより詳細に見ると、次の通りである。先ず、図1の(A)に示す様に、金型6の抜き孔12からスライド工具13を外側へ移動させ始めた段階で、スライド工具13の退避によって生じた凹部に金属板25の一部が進入し、この部分が凸状に塑性変形する。   This point will be described with reference to FIG. 1A to 1C are shearing processes by hydropiercing, and through holes are formed in a part of a plate-like part (hereinafter referred to as “metal plate 25”) by a part of a metal member. It is sectional drawing which shows the state to do in steps. The so-called outer-piercing hydropiercing described above is basically a shearing process by a blade edge part which is a peripheral part of the punching hole 12 provided in the mold 6. It is as follows. First, as shown in FIG. 1A, when the slide tool 13 starts to move outward from the punching hole 12 of the mold 6, a part of the metal plate 25 is formed in the recess generated by the retraction of the slide tool 13. Enters, and this part is plastically deformed into a convex shape.

この塑性変形が発生した後も、上記スライド工具13の移動(退避)を継続すると、図1の(B)に示す様に、上記抜き孔12の周縁部に設けた刃先部分26により、上記金属板25の一部片面(外面、図1の右面)側で、剪断面27が形成され始める。そして、この剪断面27の加工が或る程度進行した段階で、図1の(C)に示す様に、この剪断面27から発生したクラック28(亀裂)が、上記金属板25の他面(図1の左面)側にまで貫通し、切れ残っていたこの金属板25が瞬時に破断し、剪断加工が終了する。この結果生じた打ち抜き片10は、この金属板25の片面側へ排出される。この金属板25の外面、即ち、製品の表面には、図1の(C)に示す様に、だれ等の不具合部分が発生しない。   Even after the plastic deformation occurs, if the slide tool 13 continues to move (retract), the metal edge is formed by the cutting edge portion 26 provided at the peripheral edge of the punching hole 12 as shown in FIG. A shearing surface 27 starts to be formed on a part of one surface (outer surface, right surface in FIG. 1) of the plate 25. Then, at a stage where the processing of the shearing surface 27 has progressed to some extent, as shown in FIG. 1C, the cracks 28 (cracks) generated from the shearing surface 27 are transferred to the other surface of the metal plate 25 ( The metal plate 25 penetrating to the left side in FIG. 1 and remaining uncut is instantaneously broken, and the shearing process is completed. The resulting punched piece 10 is discharged to one side of the metal plate 25. On the outer surface of the metal plate 25, that is, the surface of the product, as shown in FIG.

外抜きのハイドロピアシングによる剪断加工は、上述した様に、塑性変形と剪断加工と破断とが複合したものとなるが、本発明の場合には、このうちの剪断加工開始のタイミングを肉厚分布に応じて調整する事で、この板厚分布に拘らず、上記外抜きのハイドロピアシングによる通孔の形成を可能にしている。尚、本件の特許請求の範囲及び明細書では、上記図1の(B)に示した剪断面27の形成が始まる時点を「剪断加工開始のタイミング」とし、同じく(C)に示したクラック28が金属板25の厚さ方向に貫通して破断が終了し、材料が完全に分離する時点を「破断に至るクラック発生のタイミング」(剪断現象終了のタイミング)とする。 As described above, the shearing process by external hydropiercing is a combination of plastic deformation, shearing process, and fracture. In the case of the present invention, the timing of starting shearing process is the thickness distribution. Regardless of the thickness distribution, through holes can be formed by the above-described hydropiercing. In the claims and specification of the present case, the time point at which the formation of the shearing surface 27 shown in FIG. 1B starts is referred to as “shearing start timing”, and the crack 28 shown in FIG. The time when the metal plate 25 penetrates in the thickness direction and the fracture is completed and the material is completely separated is defined as “crack generation timing leading to fracture” (shearing phenomenon termination timing).

上述の様な本発明に対して、上記金属板25のうちの肉厚不均一部分に通孔を形成すべく、この部分に、前述の図19の右端部に示した様な外抜きのハイドロピアシングを、特に工夫する事なく施すと、形成すべき通孔の周囲のうちの最も肉厚が薄い部分で先に剪断現象が終了し、この部分でクラック28が上記金属板25の厚さ方向に貫通する。この局部的な剪断現象終了により、前述の図25により説明した通り、圧抜けが起こり、以後の剪断加工が進まなくなって、この図25に示す様な切れ残りが生じる。この為従来は、前述した通り、肉厚不均一部分に通孔を形成する為に、外抜きのハイドロピアシングを適用できなかった。これに対して本発明の場合には、肉厚不均一部分であっても、その肉厚分布に応じて剪断加工開始のタイミングを変えるので、肉厚が小さい部分の剪断現象が部分的に破断にまで先行し、この肉厚が小さい部分の剪断現象が肉厚が大きい部分よりも明らかに先に終了する事態を回避できる。具体的には、肉厚が小さい部分に比べて肉厚が大きい部分で、例えば剪断加工開始のタイミングを早くして、肉厚が小さい部分と大きい部分とで、剪断加工が終了して破断に至るクラック発生のタイミングを揃える(最後の破断を通孔の全周で同時に発生させる)。即ち、形成すべき通孔の全周で、剪断現象終了のタイミングを揃えて、切れ残りのない完全な外抜きハイドロピアシングを可能にする。   In order to form a through hole in the non-uniform thickness portion of the metal plate 25 in the present invention as described above, the outside hydro-hydrophone as shown in the right end of FIG. When the piercing is performed without any special measures, the shearing phenomenon is terminated first at the thinnest portion around the through hole to be formed, and the crack 28 is formed in the thickness direction of the metal plate 25 at this portion. To penetrate. By the end of the local shearing phenomenon, as described with reference to FIG. 25, the pressure loss occurs, the subsequent shearing process does not proceed, and the uncut portion as shown in FIG. 25 occurs. For this reason, conventionally, as described above, in order to form a through hole in a non-uniform thickness portion, it has not been possible to apply external hydropiercing. On the other hand, in the case of the present invention, even in the non-uniform thickness portion, the shearing start timing is changed according to the thickness distribution, so the shear phenomenon in the small thickness portion is partially broken. Thus, it is possible to avoid a situation in which the shearing phenomenon of the portion having the small thickness is clearly ended earlier than the portion having the large thickness. Specifically, in the portion where the wall thickness is large compared to the portion where the wall thickness is small, for example, the start timing of the shearing process is advanced, and the shearing process is completed and the fracture occurs at the portion where the wall thickness is small and the portion where the wall thickness is large. Align the timing of the cracks to reach (the last break is generated all around the hole at the same time). That is, it is possible to achieve complete outer piercing hydropiercing with no uncut portions by aligning the timing of the end of the shearing phenomenon on the entire circumference of the through-hole to be formed.

上述の様な本発明を実施するのに好都合な事は、必ずしも、肉厚分布に応じて剪断加工開始のタイミングを、厳密に管理する必要はない点である。即ち、上記通孔を形成する際に、上記通孔の周縁部に対応する部分で生じる剪断現象の最後は、クラックの貫通による破断であり、この破断は、通孔の周縁部に或る程度剪断現象が進行していれば、この周縁部に沿って伝播する。従って、剪断代の残量が或る程度の精度で揃う(一部でクラックが発生する瞬間に、残部で剪断が或る程度以上進行している)様に、上記剪断現象の進行のタイミングを調整すれば、剪断現象終了(クラック発生)のタイミングは、実用上揃う事になる。即ち、破断が上記通孔の周縁部で、全周に亙り同時に起こる程度に、上記剪断加工開始のタイミングの調整を行なえば足りる。しかも、このタイミングの調整は、例えばスライド工具の先端面の形状を変更する事により、比較的簡単に行なえる為、上記剪断加工開始のタイミングの調整は、上記クラック発生のタイミングを揃える面から、極めて現実的な対策である。   An advantage of carrying out the present invention as described above is that it is not always necessary to strictly control the timing of starting the shearing process according to the thickness distribution. That is, when the through hole is formed, the last of the shearing phenomenon that occurs in the portion corresponding to the peripheral portion of the through hole is a break due to the penetration of the crack, and this break is to some extent at the peripheral portion of the through hole. If the shearing phenomenon progresses, it propagates along this peripheral edge. Therefore, the timing of the progress of the shearing phenomenon is set so that the remaining amount of the shearing allowance is aligned with a certain degree of accuracy (the moment when the crack is generated in a part, the shearing is proceeding to some extent in the remaining part). If adjusted, the timing of the end of the shearing phenomenon (crack generation) is practically aligned. In other words, it is sufficient to adjust the timing of the shearing process so that the breakage occurs at the periphery of the through-hole at the same time over the entire circumference. Moreover, since the adjustment of this timing can be performed relatively easily, for example, by changing the shape of the tip surface of the slide tool, the adjustment of the timing of the shearing start is from the surface that aligns the timing of occurrence of the crack, This is a very realistic measure.

又、仮に剪断加工開始のタイミングが全周で同時であっても、形成すべき通孔の周縁で、破断に至るクラック発生のタイミングを肉厚分布に応じて調整し、肉厚の大きい部分で同じく小さい部分よりも早くクラックによる破断を発生させれば、全周に亙って同時に破断を終了させる事が可能となる。即ち、破断に至るクラック発生のタイミングを、金属板の肉厚分布に応じて調整する事によっても、形成すべき通孔の周縁の全周で、剪断現象終了のタイミングを揃える事ができて、外抜きのハイドロピアシングが可能になる。この対策は、例えば金型側の工夫、具体的には、請求項2に記載した発明の様に、金型の抜き孔の周縁部である刃先部分の断面形状の曲率半径を変える事により可能である。即ち、この刃先部分の断面形状の曲率半径が、剪断加工を施される材料の肉厚分布に応じて、肉厚の大きい側で小さく、肉厚の小さい側で大きく形成された金型を使用し、この肉厚の小さい側で、クラックによる破断の発生を遅らせる。この様にすれば、剪断加工開始のタイミングの調整を行なわなくても、剪断現象終了(クラック発生)のタイミングを揃える事ができる。尚、前述の請求項1に記載した発明の様に、スライド工具の先端部の形状の工夫と、上述した刃先部分の曲率半径の工夫とを組み合わせて、剪断現象終了のタイミングを揃える事も可能である。 In addition, even if the timing of starting shearing is the same for all circumferences, the timing of crack generation leading to fracture is adjusted according to the thickness distribution at the periphery of the through-hole to be formed. Similarly, if a break due to a crack is generated earlier than a small portion, the break can be completed simultaneously over the entire circumference. That is, by adjusting the timing of crack generation leading to breakage according to the thickness distribution of the metal plate, it is possible to align the timing of the end of the shearing phenomenon on the entire periphery of the through hole to be formed, External piercing is possible. This measure is possible, for example, by modifying the mold side, specifically, by changing the radius of curvature of the cross-sectional shape of the blade edge portion, which is the peripheral edge of the punch hole of the mold, as in the invention described in claim 2. It is. In other words, the radius of curvature of the cross-sectional shape of the cutting edge portion is a mold that is small on the thick side and large on the thin side according to the thickness distribution of the material to be sheared. However, the occurrence of breakage due to cracks is delayed on the small thickness side. In this way, it is possible to align the timing of the end of the shearing phenomenon (crack generation) without adjusting the timing of starting the shearing process. In addition, as in the first aspect of the invention described above, it is also possible to align the timing of the end of the shearing phenomenon by combining the idea of the shape of the tip of the slide tool and the idea of the radius of curvature of the edge part described above. It is.

尚、前者のスライド工具の先端部形状の工夫により上記破断を全周同時に発生させる技術は、剪断加工開始のタイミングの調整と、クラック発生のタイミングの調整との両方が組み合わさって、剪断現象終了のタイミングを揃える。これに対して、後者の刃先部分の曲率半径の工夫により上記破断を全周同時に発生させる技術は、主に破断に至るクラック発生のタイミングの調整により、剪断現象終了のタイミングを揃える。従って、形成すべき通孔の周縁部の全長に亙って剪断現象を同時に終了させるのに必要なタイミング差を得られる様に、材料の肉厚分布に応じて工具設計を行なう。例えば、肉厚の薄い部分で剪断開始のタイミングを遅くすべく、この部分に加工の初期段階で、剪断面に対し垂直方向の圧縮応力が付与される様にしたり、抜き孔の端縁部(刃先部分)の曲率半径を大きくする。一方、肉厚の厚い部分で剪断開始のタイミングを早くすべく、剪断開始そのものを早くしたり、この部分に加工の初期段階で引っ張り応力が付与される様にする。   Note that the technique for generating the above breaks simultaneously all around the tip of the former slide tool by combining the adjustment of the timing for starting shearing and the adjustment of the timing for generating cracks ends the shearing phenomenon. Align the timing. On the other hand, the latter technique of generating the rupture at the same time around the entire circumference by devising the radius of curvature of the cutting edge portion aligns the timing of the end of the shearing phenomenon mainly by adjusting the timing of the occurrence of cracks leading to the rupture. Therefore, the tool is designed according to the thickness distribution of the material so that the timing difference necessary for simultaneously terminating the shearing phenomenon can be obtained over the entire length of the peripheral edge of the through hole to be formed. For example, in order to delay the start timing of shearing in a thin part, a compressive stress in a direction perpendicular to the shearing surface is applied to this part in the initial stage of processing, or the edge part of the hole ( Increase the radius of curvature of the cutting edge. On the other hand, in order to accelerate the shear start timing in the thick part, the shear start itself is accelerated, or a tensile stress is applied to this part in the initial stage of processing.

本発明の製造方法の対象となる、通孔を有する金属製部材は、ハイドロフォーム工法(ハイドロフォーミング)と組み合わせる事が適切である事から、一般的には閉鎖断面を有する管状部材であるが、板状部材であっても良く、その形状は特に限定しない。管状部材の場合には、電縫管、シームレス管(押し出し成形管を含む)の何れでも良い。又、板状部材のうちで通孔を形成すべき部分は、平坦部に限らず、湾曲部であっても良い。例えば、車のボディー等の平板乃至は湾曲板にも、ハイドロフォーミング並びにハイドロピアシングを適用できる。この様な場合には、平板乃至は湾曲板を成形した後、そのまま続いて通孔を形成できるので、加工工程の簡略化を図れる。代表的な通孔を有する金属製部材は、例えば一体型コラムブラケットをもつステアリングコラム用アウターチューブであり、その一体型コラムブラケットは、例えばハイドロフォーミングにより形成する。又、通孔を有する金属製部材に於ける肉厚不均一部分は、肉厚に差がある部分を言うが、その肉厚が連続的に変化する場合だけでなく、段階的に変化したり、連続的且つ段階的に変化する(連続的に変化する部分と段階的に変化する部分とが混在する)ものも含む。 A metal member having a through-hole, which is an object of the production method of the present invention, is generally a tubular member having a closed cross section because it is appropriate to be combined with a hydroforming method (hydroforming). It may be a plate-like member, and its shape is not particularly limited. In the case of a tubular member, either an electric sewing tube or a seamless tube (including an extruded tube) may be used. Moreover, the part which should form a through-hole among plate-shaped members is not restricted to a flat part, A curved part may be sufficient. For example, hydroforming and hydropiercing can be applied to a flat plate or a curved plate such as a car body. In such a case, after forming a flat plate or a curved plate, a through hole can be formed as it is, so that the machining process can be simplified. A metal member having a representative through hole is, for example, an outer tube for a steering column having an integrated column bracket, and the integrated column bracket is formed by, for example, hydroforming. In addition, the non-uniform thickness portion of the metal member with a through hole refers to a portion with a difference in thickness, but not only when the thickness changes continuously but also changes stepwise. , And those that change continuously and stepwise (a portion that changes continuously and a portion that changes stepwise are mixed).

金属製部材のうちで通孔を形成すべき部分(肉厚不均一部分)での肉厚の変化率(最小肉厚と最大肉厚との差)は、特に問わない。変化率の大小に関係なく、本発明は有効である。但し、肉厚の変化率が大きくなる程、一般的な外抜きのハイドロピアシングによっては通孔形成が困難になる事を考慮すると、肉厚の変化率が大きい程、本発明の有効性は大きくなる。即ち、3%以上の場合に本発明を実施する事が有効であり、5%以上の場合には更に有効である。   The thickness change rate (difference between the minimum thickness and the maximum thickness) at the portion (thickness nonuniformity portion) where the through hole is to be formed in the metal member is not particularly limited. The present invention is effective regardless of the rate of change. However, in consideration of the fact that the larger the change rate of the wall thickness, the more difficult it is to form through holes by general external hydropiercing, the greater the change rate of the wall thickness, the greater the effectiveness of the present invention. Become. That is, it is effective to implement the present invention when the content is 3% or more, and further effective when the content is 5% or more.

上記肉厚不均一部分は、様々な要因で形成される。前述した様なハイドロフォーミングによる膨出部の形成で生じるだけでなく、絞り加工、曲げ加工等の他の塑性加工でも生じる。更には、塑性加工以外でも生じる場合があるので、本発明の技術的範囲を画定する場合に、上記肉厚不均一部分が生じる要因は限定しない。同様に肉厚不均一部分の形状も、前述した通り、特に限定しない。例えば管を曲げ加工した場合、曲げの外周側が減肉し、曲げの内周側が増肉して肉厚差が発生する。この曲げ加工を施した素材にハイドロフォーミング加工を施し、平坦部を形成した場合にも、結果的に肉厚差が発生する。この様な原因で肉厚に差が生じた平坦面乃至湾曲面に通孔を形成する場合にも、本発明は有効である。更に、金属の種類も特に問わない。鋼等の鉄系合金、アルミニウム系合金、銅系合金等の非鉄合金は勿論、他の各種金属、合金であっても良い。   The uneven thickness portion is formed due to various factors. It occurs not only in the formation of the bulging portion by hydroforming as described above, but also in other plastic processing such as drawing and bending. Furthermore, since it may occur in other than plastic working, the factor causing the uneven thickness portion is not limited when defining the technical scope of the present invention. Similarly, the shape of the uneven thickness portion is not particularly limited as described above. For example, when a pipe is bent, the outer peripheral side of the bend is thinned, the inner peripheral side of the bend is increased, and a thickness difference is generated. Even when a hydroformed process is performed on the material subjected to the bending process to form a flat portion, a difference in thickness occurs as a result. The present invention is also effective when a through hole is formed on a flat surface or a curved surface in which a difference in thickness occurs due to such a cause. Further, the type of metal is not particularly limited. Of course, non-ferrous alloys such as iron-based alloys such as steel, aluminum-based alloys, copper-based alloys, and other various metals and alloys may be used.

上述の様に構成する本発明の通孔を有する金属製部材の製造方法によれば、金属製で、少なくとも一部が板状とされた部材の一部で、この板状とされた部分の厚さに差がある肉厚不均一部分に通孔を形成する作業を、安定してしかも低コストで行なえる。
即ち、スライド工具の先端面の形状、或いは金型のうちで抜き孔の周縁部の形状を工夫する事で、上記板状とされた部材の一部の板厚が不均一である場合にも、抜き孔の両側縁同士の間で、この板厚の差を解消乃至は低減する事ができる。この為、上記スライド工具を上記肉厚不均一部分から退避させるのに伴って、この肉厚不均一部分のうちで上記抜き孔に対向する部分を、この抜き孔の全周に亙り裂断して、上記通孔を確実に形成できる。
According to the method of manufacturing a metal member having a through hole of the present invention configured as described above, a part of a member made of metal and having at least a part in a plate shape, The operation of forming the through hole in the uneven thickness portion having a difference in thickness can be performed stably and at low cost.
That is, even when the thickness of a part of the plate-shaped member is not uniform by devising the shape of the tip surface of the slide tool or the shape of the peripheral edge of the punch hole in the mold. The difference in plate thickness between the side edges of the punched hole can be eliminated or reduced. For this reason, as the slide tool is retracted from the non-uniform thickness portion, the portion of the non-uniform thickness portion that opposes the punch hole is torn around the entire circumference of the punch hole. Thus, the through hole can be reliably formed.

本発明のうちの請求項1に記載した発明を実施する場合に、例えば、請求項5に記載した発明の様に、スライド工具の先端面のうちで最も突出した部分を金型の内面と一致する部分に位置させる。そして、この先端面を肉厚不均一部分の片面に、この肉厚不均一部分のうちで板厚が小さい側で当接させ、同じく大きい側で隙間を介して対向させる。この状態から上記スライド工具を、抜き孔の内側で上記肉厚不均一部分から退避させる方向に変位させる事により、通孔を形成する。 When carrying out the invention described in claim 1 of the present invention, for example, as in the invention described in claim 5 , the most protruding portion of the tip surface of the slide tool coincides with the inner surface of the mold. It is located in the part to be. Then, the front end surface is brought into contact with one surface of the non-uniform thickness portion on the side where the plate thickness is small among the non-uniform thickness portions, and is opposed to the large side via a gap. The through hole is formed by displacing the slide tool from this state in a direction in which the slide tool is retracted from the uneven thickness portion inside the punch hole.

この様に構成した場合には、上記スライド工具を退避させる以前の状態(スライド工具の先端面のうちで最も突出した部分を金型の内面と一致する部分に位置させた状態)で、上記肉厚不均一部分の一部で上記隙間に対向する部分、即ち、上記板厚が大きい側の部分が、この隙間内に少し押し込まれる。この結果、この板厚が大きい側の部分のうちで上記抜き孔の開口部一端縁に当接する部分で、他の部分よりも先に剪断加工が開始される。同時に、この部分の板厚が少し減少し、この部分の板厚と、上記板厚が小さい側部分のうちで上記抜き孔の開口部他端縁に対向する部分の板厚との差が、低減若しくは解消する。そこで、この状態から上記スライド工具を退避させれば、上記他の部分でも剪断加工が開始される。そして、上記肉厚不均一部分のうちで上記抜き孔に対向する部分が、この抜き孔の開口部周縁の全周に亙り破断してこの抜き孔内に押し込まれ、上記通孔が形成される。   When configured in this way, in the state before the slide tool is retracted (the most protruding portion of the tip surface of the slide tool is located at a portion that coincides with the inner surface of the mold), A part of the non-uniform thickness part that opposes the gap, that is, the part on the side where the plate thickness is larger is slightly pushed into the gap. As a result, the shearing process is started earlier than the other portions at the portion of the portion on the side where the plate thickness is larger that contacts the one end edge of the opening of the punch hole. At the same time, the plate thickness of this portion is slightly reduced, and the difference between the plate thickness of this portion and the plate thickness of the portion facing the other end edge of the opening of the punched hole in the side portion where the plate thickness is small, Reduce or eliminate. Therefore, if the slide tool is retracted from this state, shearing is started also in the other portions. Then, a portion of the uneven thickness portion that faces the punched hole is broken over the entire circumference of the periphery of the opening of the punched hole and pushed into the punched hole to form the through hole. .

或は、請求項6に記載した発明の様に、スライド工具の先端面のうちで最も突出した部分を金型の内面から突出させ、最も突出していない部分をこの内面と一致若しくはこの内面よりも凹んだ部分に位置させる。上記スライド工具の先端部をこの様な位置に配置した状態で、肉厚不均一部分の片面で上記スライド工具が対向している面と反対側の面に液圧を作用させて、この肉厚不均一部分をこのスライド工具の先端部に倣って屈曲させる。この状態でこのスライド工具の先端面が、この様に屈曲した上記肉厚不均一部分の片面に当接した状態となるので、この状態から、上記スライド工具を抜き孔の内側で上記肉厚不均一部分から退避させる方向に変位させる事で通孔を形成する。 Alternatively, as in the invention described in claim 6 , the most protruding portion of the tip surface of the slide tool is protruded from the inner surface of the mold, and the least protruding portion is coincident with the inner surface or more than the inner surface. Locate in the recessed part. With the tip of the slide tool arranged at such a position, the wall thickness is applied to the surface opposite to the surface facing the slide tool on one side of the uneven thickness portion. The uneven portion is bent following the tip of the slide tool. In this state, the tip surface of the slide tool comes into contact with one surface of the uneven thickness portion bent in this manner. From this state, the thickness of the slide tool is increased inside the punch hole. A through hole is formed by displacing in a direction to retract from the uniform portion.

この様に構成した場合には、上記肉厚不均一部分の片面に液圧を作用させる事で、この肉厚不均一部分の一部で通孔を形成すべき部分の両端縁に対応する部分のうち、板厚が小さくなった側の部分が、上記スライド工具を後退させて上記通孔を形成する際に変形する方向と逆方向に、比較的大きく変形する。これに対して、板厚が比較的大きい側の部分は、上記通孔を形成する際に変形する方向と逆方向には変形しないか、仮に変形した場合でもその変形量は僅少に留る。   In such a configuration, by applying hydraulic pressure to one surface of the uneven thickness portion, portions corresponding to both end edges of the portion where the through hole should be formed in a portion of the uneven thickness portion. Of these, the portion on the side where the plate thickness is reduced is deformed relatively greatly in the direction opposite to the direction of deformation when the slide tool is retracted to form the through hole. On the other hand, the portion having a relatively large plate thickness does not deform in the direction opposite to the direction in which the through hole is formed, or even if it is deformed, the amount of deformation remains small.

肉厚不均一部分の一部で通孔を形成すべき部分のうちの両端縁に対応する部分の板厚に応じて、これら両部分の形状が上述の様になった状態から、上記スライド工具を抜き孔内で上記肉厚不均一部分から退避させると、この肉厚不均一部分のうちでこの抜き孔に整合する部分がこの抜き孔内に押し込まれる。この際、上記板厚が比較的大きい部分は、直ちにこの抜き孔内に押し込まれ始めて剪断加工が開始されるのに対して、上記板厚が小さくなった部分は、一度他の部分と平行になるまで変形してから、上記抜き孔内に押し込まれる。そして、上記板厚が小さくなった部分が一度他の部分と平行になるまで変形し、更に上記抜き孔内に押し込まれる過程で、この部分に圧縮応力が付加されて、この部分が破断しにくい(破断のタイミングが遅れる)状態となる。又、この部分の板厚が少し増大する。   In accordance with the plate thickness of the part corresponding to both end edges of the part where the through hole should be formed in a part of the uneven thickness part, the slide tool is changed from the state in which the shape of both parts is as described above. Is retracted from the uneven thickness portion in the punched hole, a portion of the uneven thickness portion that matches the punched hole is pushed into the punched hole. At this time, the portion having a relatively large plate thickness immediately starts to be pushed into the punched hole and shearing is started, whereas the portion having the small plate thickness is once parallel to other portions. After being deformed, it is pushed into the punched hole. Then, the part where the thickness is reduced is deformed until it becomes parallel with the other part once, and further, in the process of being pushed into the punched hole, a compressive stress is applied to this part, and this part is difficult to break. (Breaking timing is delayed). In addition, the thickness of this portion slightly increases.

この為、上記板厚が比較的大きい部分での剪断加工開始から破断に至るタイミングと、上記板厚が小さくなった部分での剪断加工開始から破断に至るタイミングとの間に、大きな差がなくなる。この結果、上記肉厚不均一部分のうちで上記抜き孔に対向する部分が、この抜き孔の周縁部の全周に亙って同時に破断しつつこの抜き孔内に押し込まれ、上記通孔が形成される。   For this reason, there is no significant difference between the timing from the start of shearing to breakage at the portion where the plate thickness is relatively large and the timing from the start of shearing to breaking at the portion where the plate thickness is reduced. . As a result, the portion of the non-uniform thickness portion that opposes the punched hole is pushed into the punched hole while simultaneously breaking along the entire periphery of the punched hole. It is formed.

本発明を実施する場合に、例えば請求項7に記載した発明の様に、肉厚不均一部分の一部で板厚が漸次変化している部分を、ハイドロフォーム工法により素材の一部を膨らませて成る膨出部の側壁とする。
この場合に、例えば請求項8に記載した発明の様に、金属製部材を、中空管の一部をハイドロフォーム工法により径方向外方に膨らませ、この膨らませて成る膨出部の側壁部に通孔を形成したステアリングコラムとする。そして、この膨出部の加工作業に続いてこの通孔の形成作業を行なう。
この様な形態で本発明を実施すれば、膨出部の形成と通孔の形成とを、素材を移し替える事なく連続して行なう事ができて、工程の簡素化による製造コストの低減を図れる。
又、この場合に例えば、請求項9に記載した様に、中空管の中心軸を含み、膨出部が膨出している方向と直角方向に拡がる仮想平面を考えた場合に、通孔全体を、この仮想平面から上記膨出している方向に外れた位置に形成する。
膨出部を構成する側壁部のうちで、この様な位置に存在する部分の板厚は漸次変化している。この為、この様な側壁部に本発明により通孔を形成する事は有効である。
When practicing the present invention, as in the invention described in claim 7 , for example, a part of the material whose thickness is gradually changed in a part of the uneven thickness part is expanded by a hydroforming method. As a side wall of the bulging part.
In this case, for example, as in the invention described in claim 8 , the metal member is inflated radially outward by a hydroforming method and a part of the hollow tube is inflated on the side wall of the bulging portion. The steering column has a through hole. Then, the through hole is formed following the processing of the bulging portion.
If the present invention is carried out in such a form, the formation of the bulging portion and the formation of the through hole can be performed continuously without changing the material, and the manufacturing cost can be reduced by simplifying the process. I can plan.
Further, in this case, for example, as described in claim 9, when considering a virtual plane including the central axis of the hollow tube and extending in a direction perpendicular to the direction in which the bulging portion bulges, Is formed at a position deviating from the virtual plane in the bulging direction.
Among the side wall portions constituting the bulging portion, the thickness of the portion existing at such a position gradually changes. For this reason, it is effective to form a through hole in the side wall portion according to the present invention.

図2〜5は、請求項1、4、5、7〜9に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、前述の図20〜23に示した様なハイドロフォーム工法により金属管3の一部を径方向外方に塑性変形させて、前述の図15〜16に示す様な膨出部7aを形成した後、この膨出部7aの側壁14に通孔5cを形成する工程を工夫する事により、この通孔5cを確実に形成できる様にする点にある。上記膨出部7aを形成する点に関しては、前述した通りであるから、重複する説明は省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。 2 to 5 show Embodiment 1 of the present invention corresponding to claims 1, 4 , 5, and 7-9 . The present embodiment is characterized in that a part of the metal tube 3 is plastically deformed radially outward by the hydroforming method as shown in FIGS. 20 to 23 as shown in FIGS. After forming the bulging portion 7a, the step of forming the through hole 5c in the side wall 14 of the bulging portion 7a is devised so that the through hole 5c can be reliably formed. Since the point of forming the bulging portion 7a is as described above, overlapping description will be omitted or simplified, and the following description will focus on the features of the present embodiment.

本実施例の場合も、金型6aを構成する金型素子15の一部で、上記側壁14のうちの上記通孔5cを形成すべき部分に、この通孔5cに見合う(実質的に合致する)形状(例えば長円形)を有する抜き孔12aを設けている。そして、この抜き孔12a内に、上記通孔5cを形成する為のスライド工具13bを、密に、且つ、上記側壁14に対する進退を可能に嵌装している。本実施例に使用する、上記スライド工具13bの先端面20aは、上記抜き孔12a(或は通孔5c)の幅方向(図2〜5の上下方向)の片端部(図2〜5の上端部)を、上記金型素子15の内面と平行な平坦面21とし、中間部乃至他端部(図2〜5の下端部)を、この平坦面21から離れるに従って上記側壁14から離れる方向に傾斜した傾斜面22としている。上記金属管3の一部に上記膨出部7aを形成する為のハイドロフォーム工程時には、上記スライド工具13bを上記抜き孔12a内で前進させ、上記平坦面21を上記金型素子15の内面と同一平面上に位置させておく。従って、上記スライド工具13bの先端面20aのうちで上記傾斜面22に対応する部分は、上記金型素子15の内面よりも凹んだ状態となる。   Also in the case of the present embodiment, a part of the mold element 15 constituting the mold 6a corresponds to the through hole 5c in the portion of the side wall 14 where the through hole 5c is to be formed (substantially matches). A punch hole 12a having a shape (for example, oval) is provided. A slide tool 13b for forming the through hole 5c is closely fitted in the punched hole 12a so as to be able to advance and retreat with respect to the side wall 14. The front end surface 20a of the slide tool 13b used in the present embodiment has one end (the upper end in FIGS. 2 to 5) in the width direction (vertical direction in FIGS. 2 to 5) of the punch hole 12a (or the through hole 5c). Part) is a flat surface 21 parallel to the inner surface of the mold element 15, and the intermediate part or the other end part (the lower end part in FIGS. 2 to 5) is separated from the side wall 14 as the distance from the flat surface 21 increases. The inclined surface 22 is inclined. During the hydroforming process for forming the bulging portion 7a in a part of the metal tube 3, the slide tool 13b is advanced in the punch hole 12a, and the flat surface 21 is connected to the inner surface of the mold element 15. Keep them on the same plane. Therefore, the portion corresponding to the inclined surface 22 in the tip surface 20 a of the slide tool 13 b is in a state of being recessed from the inner surface of the mold element 15.

上記スライド工具13bを、上述の様に前進させた状態で、上記金属管3の内部に液圧を導入すると共に、この金属管3を軸方向に圧縮する方向の力を加えつつ、上記膨出部7aを形成する。この場合に、この膨出部7aの側壁14の板厚が、図2〜5の上方程小さくなる事は、前述した通りである。本実施例の場合、上記膨出部7aの加工に伴って、この膨出部7aの側壁14の一部で、上記傾斜面22に対向する部分が、図2に示す様に、これら側壁14と傾斜面22との間に存在する隙間23内に少し入り込む。そして、この様に隙間23内に入り込んだ部分に、剪断面に対し垂直方向の引っ張り応力が加わると共に、上記側壁14の一部で上記抜き孔12aの周縁部に存在する刃先部分26に突き当たる部分に剪断応力が加わる。   While the slide tool 13b is advanced as described above, the bulge is introduced while introducing a hydraulic pressure into the metal tube 3 and applying a force in the direction of compressing the metal tube 3 in the axial direction. Part 7a is formed. In this case, as described above, the plate thickness of the side wall 14 of the bulging portion 7a becomes smaller as it goes upward in FIGS. In the case of the present embodiment, as the bulging portion 7a is processed, a part of the side wall 14 of the bulging portion 7a that is opposed to the inclined surface 22 as shown in FIG. And slightly enters the gap 23 existing between the inclined surface 22 and the inclined surface 22. Then, a tensile stress in a direction perpendicular to the shearing surface is applied to the portion that has entered the gap 23 in this way, and a portion that strikes the blade edge portion 26 that exists at the peripheral edge portion of the punched hole 12a at a part of the side wall 14 Shear stress is applied.

即ち、上記隙間23に対向する部分の両端縁部のうち、上記平坦面21と上記傾斜面22との連続部に対向する側(図2の上側)には、若干の剪断面に対し垂直方向の引っ張り方向の応力に加えて曲げ応力が加わり、上記側壁14の一部が折れ曲がる。これに対して、上記抜き孔12aの開口周縁部に存在する上記刃先部分26に対向する側(図2の下側)には、この刃先部分26と液圧とにより、剪断応力が加わり、この部分で剪断加工が開始される。同時に、この部分の板厚T が、上記隙間23が存在しない状態の板厚T (図24参照)に比べて小さく(T <T )なる。 That is, of the both end edge portions of the portion facing the gap 23, the side facing the continuous portion of the flat surface 21 and the inclined surface 22 (upper side in FIG. 2) is perpendicular to the slight shear surface. In addition to the stress in the pulling direction, bending stress is applied, and a part of the side wall 14 is bent. On the other hand, a shearing stress is applied to the side (lower side in FIG. 2) facing the cutting edge portion 26 existing at the opening peripheral edge of the punching hole 12a by the cutting edge portion 26 and the hydraulic pressure. Shearing is started at the part. At the same time, the thickness T 4 of this portion becomes smaller (T 4 <T 2 ) than the thickness T 2 (see FIG. 24) in the state where the gap 23 does not exist.

一方、上記抜き孔12aの幅方向両端縁に対向する上記側壁14のうち、上記平坦面21と前記金型素子15の内面との連続部に対応する部分は、図2に示した状態では未だ剪断加工が開始されておらず、この部分の板厚T3 に関しても、前述の図20〜23に示した様なハイドロフォーム工法により、金属管3の一部を径方向外方に塑性変形させて膨出部7aを形成しただけの状態と変わらない。即ち、上記部分の板厚T3 は、本実施例のスライド工具13bを使用する事で、特に減少する事はない。 On the other hand, the portion corresponding to the continuous portion of the flat surface 21 and the inner surface of the mold element 15 in the side wall 14 facing both end edges in the width direction of the punch hole 12a is still in the state shown in FIG. Since the shearing process has not been started, the thickness T 3 of this part is also plastically deformed radially outward by a part of the metal tube 3 by the hydroforming method as shown in FIGS. Thus, it is not different from the state in which the bulging portion 7a is simply formed. That is, the plate thickness T 3 of the above portion is not particularly reduced by using the slide tool 13b of this embodiment.

この様に本実施例の場合には、スライド工具13bの先端面20aの形状を工夫し、ハイドロフォーム工程を実施する際にこの先端面20aの位置を適切に規制しているので、上記側壁14の一部で抜き孔12aに対向している部分のうち、板厚が大きな側(図2の下側)から先に剪断加工が開始される。又、上記側壁14のうちで、上記抜き孔12aの幅方向両端縁部に位置する部分の板厚T4 、T3 の差を小さく抑えられる。即ち、ハイドロフォーム工程の終了時に比較的大きな部分の板厚を(T2 から)低減させてT4 とし、同じく比較的小さな部分の板厚を低減させずにT3 のままとする為、上記幅方向両端縁部の板厚T4 、T3 をほぼ等しく(T4 ≒T3 )できる他、剪断加工終了のタイミングを揃え易く(同時に終了させ易く)できる。 Thus, in the case of the present embodiment, the shape of the front end surface 20a of the slide tool 13b is devised, and the position of the front end surface 20a is appropriately regulated when performing the hydroforming process. Among the portions of the portion facing the punching hole 12a, the shearing process is started first from the side with the larger plate thickness (the lower side in FIG. 2). Further, the difference between the plate thicknesses T 4 and T 3 of the side wall 14 located at both edge portions in the width direction of the punch hole 12a can be kept small. That is, at the end of the hydroforming process, the thickness of the relatively large portion is reduced (from T 2 ) to T 4, and the thickness of the relatively small portion is not reduced, but remains at T 3. The plate thicknesses T 4 and T 3 at both edges in the width direction can be made substantially equal (T 4 ≈T 3 ), and the end timing of the shearing process can be easily aligned (can be easily ended simultaneously).

そこで、図3に示す様に、上記スライド工具13bを上記抜き孔12a内で後退を開始させる。この後退開始により、上記側壁14の一部で抜き孔12aに対向している部分のうち、板厚が小さな側(図3の上側)でも剪断加工が開始される。この状態から、上記スライド工具13bを、図4に示す様に更に後退させると、上記側壁14の一部で抜き孔12aに対向している部分の全周(板厚が大きい側及び小さい側並びにその間部分)で剪断加工が進行する。そして、この剪断加工の進行に伴って、上記側壁14の一部で抜き孔12aに対向している部分の全周で、ほぼ同時に、前述の図1の(C)に示す様なクラックが発生する。   Therefore, as shown in FIG. 3, the slide tool 13b starts to retract in the punch hole 12a. By starting the retreat, the shearing process is started even on the side where the plate thickness is small (upper side in FIG. 3) in the part of the side wall 14 facing the punch hole 12a. From this state, when the slide tool 13b is further retracted as shown in FIG. 4, the entire circumference of the part of the side wall 14 that faces the punch hole 12a (the side with the larger thickness and the side with the smaller thickness) In the meantime, the shearing process proceeds. As the shearing process proceeds, cracks as shown in FIG. 1C are generated almost simultaneously on the entire circumference of the part of the side wall 14 facing the punch hole 12a. To do.

この結果、上記抜き孔12aに対向している部分が、図5に示す様に、上記側壁14の内側部分に存在する液圧により打ち抜かれて打ち抜き片10cとなり、上記抜き孔12a内に押し込まれる。この際、上記抜き孔12aに対向する部分の周縁部が剪断加工から破断に至るが、この破断は、上述の様に板厚が大きい部分から先に剪断加工を開始している事と、この部分の周縁部の板厚T4 、T3 が全周に亙ってほぼ等しく(T4 ≒T3 )、この部分の剪断加工終了のタイミングを揃え易い事とにより、上記周縁部の全周に亙って、実質的に同時に発生し、上記打ち抜き片10cとなる。前述の図25に示した様に、側壁14の一部で抜き孔12aに対向する部分がこの側壁14と繋がった状態のままになる事はない。この結果、上記側壁14のうちで上記抜き孔12aに整合する部分に前記通孔5cを、確実に形成できる。 As a result, as shown in FIG. 5, the portion facing the punched hole 12a is punched out by the hydraulic pressure existing in the inner portion of the side wall 14 to become a punched piece 10c, and is pushed into the punched hole 12a. . At this time, the peripheral portion of the portion facing the punched hole 12a is ruptured from the shearing process, and this rupture is caused by the fact that the shearing process is started first from the portion where the plate thickness is large as described above. The plate thicknesses T 4 and T 3 of the peripheral portion of the portion are almost equal over the entire circumference (T 4 ≈T 3 ), and the timing of the end of the shearing process of this portion can be easily aligned, so that the entire circumference of the peripheral portion is Accordingly, the punched pieces 10c are generated substantially at the same time. As shown in FIG. 25 described above, a part of the side wall 14 that faces the punched hole 12a does not remain connected to the side wall 14. As a result, the through hole 5c can be reliably formed in a portion of the side wall 14 that is aligned with the punch hole 12a.

又、上記打ち抜き片10cは、上記抜き孔12a内に押し出されて、前記膨出部7aを含む金属管3内に残留する事はない。従って、上記通孔5cを形成した後に上記打ち抜き片10cをこの金属管3の内部から取り出す工程及び装置が不要になる。この為、上記膨出部7a及び通孔5cを備えた製品を造る為の装置の小型化(省スペース化)を図れる等、当該製品を造る為に要するコストの低減を図れる。   Further, the punched piece 10c is not pushed into the punched hole 12a and remains in the metal tube 3 including the bulging portion 7a. Therefore, the process and apparatus for taking out the punched piece 10c from the inside of the metal tube 3 after forming the through hole 5c are unnecessary. For this reason, the cost required for manufacturing the product can be reduced, for example, the device for manufacturing the product including the bulging portion 7a and the through hole 5c can be reduced in size (space saving).

尚、上記通孔5cとなるべき部分を確実に打ち抜く為に、上記板厚が大きい側で剪断加工の開始を同じく小さい側に比べて早くする程度、或いは、上記幅方向両端縁部の板厚T4 、T3 をほぼ等しくし、剪断加工終了のタイミングを揃え易くする程度は、上記金属管3の材質、元々の板厚等により、設計的、実験的に定める。例えば、軟鋼板、アルミニウム合金板等により造るステアリングコラムに一体に設けたコラムブラケットに通孔を形成する場合、前記スライド工具13bの先端部分の形状を適宜工夫する事により、上記剪断加工の開始のタイミングをずらせる。又、上述の様に、上記幅方向両端縁部の板厚T4 、T3 の関係を、剪断加工終了のタイミングを揃え易い関係にする為には、上記幅方向に関する前記傾斜面22の幅寸法を、液圧や上記金属管3の材質、元々の板厚との関係で、実験データに基づいて規制する。 In order to surely punch out the portion to be the through-hole 5c, the shearing process is started earlier on the side where the plate thickness is larger than that on the same side, or the plate thicknesses at both edges in the width direction. The degree of making T 4 and T 3 substantially equal and making it easy to align the timing of the end of the shearing process is determined experimentally and experimentally according to the material of the metal tube 3 and the original plate thickness. For example, when a through hole is formed in a column bracket provided integrally with a steering column made of a mild steel plate, an aluminum alloy plate, etc., by appropriately devising the shape of the tip portion of the slide tool 13b, the shearing process can be started. Shift the timing. Further, as described above, in order to make the relationship between the plate thicknesses T 4 and T 3 at the both end edges in the width direction easy to align the timing of the end of the shearing process, the width of the inclined surface 22 in the width direction is set. The dimensions are regulated based on experimental data in relation to the hydraulic pressure, the material of the metal tube 3 and the original plate thickness.

尚、上記抜き孔12a内に押し込まれた上記打ち抜き片10cは、例えば、膨出部7aを形成し、更にこの膨出部7aの側壁14に通孔5cを形成した金属管3を、前記金型素子15により構成した金型6aから取り出した後に、前記スライド工具13bを前進させて上記抜き孔12aから押し出す事により、容易に上記金型6aから取り出せる。或は、上記金属管3が軟鋼板等の磁性材製である場合には、この金属管3を金型6aから取り出した後、磁石で上記打ち抜き片10cを吸着し、上記抜き孔12aから取り出す事もできる。更には、上記金型6aの内部に、この抜き孔12aから外部空間に通じる、上記打ち抜き片10cを通過させられるだけの大きさを有する排出通路を設ける事もできる。この場合には、上記金属管3内に導入した液圧により上記抜き孔12a内に押し込まれた上記打ち抜き片10cを、上記金属管3を上記金型6aから取り出した後、別途上記抜き孔12a内に導入した空気圧や液圧によりこの抜き孔12aから排出する。何れの場合でも、上記通孔5cの加工に伴ってこの抜き孔12a内に押し込まれた上記打ち抜き片10cは、次の加工作業に先立って、この抜き孔12aから排出しておく。   The punched piece 10c pushed into the punched hole 12a forms, for example, a bulging portion 7a, and the metal tube 3 having a through hole 5c formed in a side wall 14 of the bulging portion 7a After taking out from the mold 6a constituted by the mold element 15, the slide tool 13b is advanced and pushed out from the punching hole 12a so that it can be easily taken out from the mold 6a. Alternatively, when the metal tube 3 is made of a magnetic material such as a mild steel plate, the metal tube 3 is taken out from the mold 6a, and then the punched piece 10c is adsorbed by a magnet and taken out from the hole 12a. You can also do things. Furthermore, a discharge passage having a size that allows the punched piece 10c to pass through the punched hole 12a to the external space can be provided inside the mold 6a. In this case, after the punched piece 10c pushed into the punched hole 12a by the hydraulic pressure introduced into the metal tube 3 is taken out of the mold 6a, the punched hole 12a is separately provided. The air is discharged from the hole 12a by air pressure or fluid pressure introduced into the inside. In any case, the punched piece 10c pushed into the punched hole 12a with the processing of the through hole 5c is discharged from the punched hole 12a prior to the next processing operation.

尚、本実施例の場合、図2に示した、通孔形成加工の初期段階で、上記スライド工具13bの先端面20aの平坦面21を、金型素子15の内面と同じ位置に存在させている。但し、この平坦面21は、図6に示す様に、この内面よりも少し凹んだ位置に存在させても良い。この場合には、図6に示した様に、上記平坦面21を金型素子15の内面よりも凹まさない状態に比べて、板厚が小さい部分も僅かに抜き孔12a内に押し込まれる。従って、板厚が大きい部分と小さい部分とで、剪断加工の開始のタイミングのずれが少なくなる。図2と図6との何れを採用するかは、上記板厚が大きい部分と小さい部分との差等に応じて、設計的に決める(実験等により条件を設定する)。   In the case of the present embodiment, the flat surface 21 of the tip surface 20a of the slide tool 13b is present at the same position as the inner surface of the mold element 15 in the initial stage of the through hole forming process shown in FIG. Yes. However, as shown in FIG. 6, the flat surface 21 may be present at a position slightly recessed from the inner surface. In this case, as shown in FIG. 6, compared with the state in which the flat surface 21 is not recessed from the inner surface of the mold element 15, the portion having a small plate thickness is slightly pushed into the punched hole 12a. Therefore, the deviation of the start timing of the shearing process is reduced between the portion where the plate thickness is large and the portion where the plate thickness is small. Which of FIG. 2 and FIG. 6 is used is determined by design in accordance with the difference between the portion with a large plate thickness and the portion with a small plate thickness (conditions are set by experiment etc.).

図7〜8は、請求項1、4、6〜9に対応する、本発明の実施例2を示している。本実施例に使用するスライド工具13cの先端面20bに関しても、上述した実施例1の場合と同様に、側壁14のうちで比較的板厚が小さくなった部分に対向する平坦面21aと、同じく比較的板厚が大きい部分に対向する傾斜面22aとを備える。但し、本実施例に使用するスライド工具13cの場合には、この傾斜面22aの傾斜角度を、上記実施例1に使用するスライド工具13bの傾斜面22(図2〜6参照)よりも緩やかにしている。 7 to 8 show a second embodiment of the present invention corresponding to claims 1, 4, and 6-9 . The tip surface 20b of the slide tool 13c used in the present embodiment is also the same as the flat surface 21a facing the portion of the side wall 14 where the plate thickness is relatively small, as in the first embodiment. And an inclined surface 22a facing a portion having a relatively large plate thickness. However, in the case of the slide tool 13c used in the present embodiment, the inclination angle of the inclined surface 22a is made gentler than that of the inclined surface 22 (see FIGS. 2 to 6) of the slide tool 13b used in the first embodiment. ing.

本実施例の場合には、この様なスライド工具13cの先端部を、金型素子15の内面よりも少し突出させた状態で、金属管3の内側に液圧を導入し、この金属管3の一部を径方向外方に塑性変形させて膨出部7aを形成する、ハイドロフォーミングを行なう。即ち、上記スライド工具13cの先端面20bのうちで最も突出した部分である上記平坦面21aを上記金型素子15の内面から突出させる。これに対して、上記先端面20bのうちで最も突出していない部分である、上記傾斜面22aのうちの上記平坦面21aから最も離れた部分を、上記金型素子15の内面と一致する部分に位置させる。そして、この状態で、上記金属管3の内側に液圧を導入し、この金属管3の一部を径方向外方に膨出させて、上記膨出部7aを形成する。   In the case of the present embodiment, the pressure of the slide tool 13c is slightly protruded from the inner surface of the mold element 15, and a hydraulic pressure is introduced into the inside of the metal tube 3. Hydroforming is performed to plastically deform a part of the bulge 7 radially outward to form the bulging portion 7a. That is, the flat surface 21a, which is the most protruding portion of the tip surface 20b of the slide tool 13c, is protruded from the inner surface of the mold element 15. On the other hand, a portion of the inclined surface 22a that is the least protruding portion of the tip surface 20b is a portion that is farthest from the flat surface 21a, and is a portion that matches the inner surface of the mold element 15. Position. In this state, a hydraulic pressure is introduced into the inside of the metal tube 3, and a part of the metal tube 3 is bulged outward in the radial direction to form the bulging portion 7a.

上記金型素子15の内面の一部には、上記スライド工具13cの先端部が突出しているので、上記膨出部7aが形成された状態で、この膨出部7aを構成する側壁14の一部が、図7に示す様に、上記スライド工具13cの先端部に倣って屈曲する。即ち、この側壁14のうちで上記平坦面21aに当接した部分が、最も上記金型素子15の内面から離れた状態となり、上記傾斜面22aに当接した部分が、この傾斜面22aに沿って傾斜し、上記平坦面21aに向かう程上記金型素子15の内面からの距離が大きくなる方向に傾斜する。   Since the tip of the slide tool 13c protrudes from a part of the inner surface of the mold element 15, one side wall 14 constituting the bulging portion 7a is formed in the state where the bulging portion 7a is formed. As shown in FIG. 7, the portion bends following the tip of the slide tool 13c. That is, the portion of the side wall 14 that is in contact with the flat surface 21a is farthest from the inner surface of the mold element 15, and the portion that is in contact with the inclined surface 22a is along the inclined surface 22a. Inclined in such a way that the distance from the inner surface of the mold element 15 increases toward the flat surface 21a.

そこで、この状態から、図8に示す様に、上記スライド工具13cを抜き孔12aの内側で上記側壁14から退避させる方向に変位させれば、この側壁14の一部でこの抜き孔12aに整合する部分が、この抜き孔12aの全周に亙り裂断されて、この抜き孔12aに見合う通孔5cが形成される。   Therefore, from this state, as shown in FIG. 8, if the slide tool 13 c is displaced in the direction of retracting from the side wall 14 inside the punch hole 12 a, a part of the side wall 14 is aligned with the punch hole 12 a. The portion to be cut is torn around the entire circumference of the hole 12a, and a through hole 5c corresponding to the hole 12a is formed.

本実施例の場合には、次の様な理由で、上記側壁14の一部で上記抜き孔12aに整合する部分が、この抜き孔12aの全周に亙って破断される。先ず、上記膨出部7aを形成すべく、上記金属管3の内側に液圧を作用させてこの膨出部7aを形成する工程の最終段階で、この膨出部7aの側壁14の一部が上記スライド工具13cの先端部に押し付けられ、当該部分がこの先端部に倣って変形する。具体的には、上記側壁14の一部で上記通孔5cを形成すべき部分の両端縁に対応する部分のうち、板厚が小さくなった側(図7の上側)の部分が、上記スライド工具13cを後退させて上記通孔5cを形成する際に変形する方向と逆方向に、比較的大きく変形する(折れ曲がる)。この状態で、この様に大きく折れ曲がった部分の板厚は、T6 となる。これに対して、板厚が比較的大きい側(図7の下側)の部分は、上記通孔5cを形成する際に変形する方向と逆方向に変形するが、その変形量は僅少に留り、当該部分の板厚は、T5 となる。 In the case of the present embodiment, a portion of the side wall 14 that is aligned with the punched hole 12a is broken over the entire circumference of the punched hole 12a for the following reason. First, in order to form the bulging portion 7a, a part of the side wall 14 of the bulging portion 7a is formed at the final stage of the step of forming the bulging portion 7a by applying hydraulic pressure to the inside of the metal tube 3. Is pressed against the tip of the slide tool 13c, and the portion is deformed following the tip. Specifically, among the portions of the side wall 14 corresponding to both end edges of the portion where the through hole 5c is to be formed, the portion on the side where the plate thickness is reduced (the upper side in FIG. 7) is the slide. When the tool 13c is retracted to form the through hole 5c, the tool 13c is deformed (bent) relatively largely in the direction opposite to the direction of deformation. In this state, the thickness of the bent portion is T 6 . On the other hand, the portion having the relatively large thickness (the lower side in FIG. 7) is deformed in the direction opposite to the direction of deformation when the through hole 5c is formed, but the amount of deformation is small. Ri, the thickness of the part, the T 5.

そこで、上記側壁14の一部で上記通孔5cを形成すべき部分が上述の様に変形した状態から、上記スライド工具13cを上記抜き孔12a内に、前述の実施例1を示す図2に示した程度にまで少し退避させると、上記比較的大きな板厚T5 の部分では、この図2に示す様に直ちに剪断加工が開始されるのに対して、上記比較的小さな板厚T6 の部分では、未だ剪断加工が開始されない。むしろ、この比較的小さな板厚T6 の部分は、剪断面に対し垂直方向に圧縮されて、圧縮応力が加わり、クラックが発生しにくい状態となる。この状態から更に上記スライド工具13cを上記抜き孔12a内に、前述の実施例1を示す図3に示した程度にまで少し退避させると、上記比較的小さな板厚T6 の部分でも剪断加工が開始される。そして、上記スライド工具13cを、前述の実施例1を示す図4の状態を経て更に退避させると、図8に示す様に、上記側壁14の一部で上記抜き孔12aに対向している部分の全周(上記比較的大きな板厚T5 の部分及び上記比較的小さな板厚T6 の部分並びにその間部分)で剪断加工が進行する。そして、この剪断加工の進行に伴い、上記側壁14の一部で抜き孔12aに対向している部分の全周で、ほぼ同時に、前述の図1の(C)に示す様なクラックが発生する。 Therefore, from the state in which the portion where the through hole 5c is to be formed in a part of the side wall 14 is deformed as described above, the slide tool 13c is placed in the punch hole 12a, and FIG. When retracted a little to the extent shown, shearing is started immediately as shown in FIG. 2 in the relatively large plate thickness T 5 , whereas the relatively small plate thickness T 6 In the part, shearing has not yet started. Rather, this relatively small plate thickness T 6 portion is compressed in the direction perpendicular to the shear plane, and a compressive stress is applied to make it difficult for cracks to occur. Further the slide tool 13c from the state in the vent hole 12a, when the slightly retracted to the extent shown in FIG. 3 showing the first embodiment described above, the shearing at the portion of the relatively small thickness T 6 Be started. When the slide tool 13c is further retracted through the state of FIG. 4 showing the first embodiment, a part of the side wall 14 facing the punch hole 12a as shown in FIG. The shearing process proceeds on the entire circumference (the portion having the relatively large plate thickness T 5 and the portion having the relatively small plate thickness T 6 and the portion in between). With the progress of the shearing process, cracks as shown in FIG. 1C described above occur almost simultaneously on the entire circumference of the part of the side wall 14 facing the punch hole 12a. .

この結果、上記抜き孔12aに対向している部分が、図8に示す様に、上記側壁14の内側部分に存在する液圧により打ち抜かれて打ち抜き片10cとなり、上記抜き孔12a内に押し込まれる。尚、上述の様に、上記側壁14の一部で抜き孔12aに対向している部分の全周でほぼ同時にクラックが発生するのは、上記剪断加工の開始のタイミングをずらせる事に加えて、各部の板厚の差が小さくなる事も寄与するものと考えられる。即ち、上記図7に示す様に、上記スライド工具13cを上記抜き孔12a内で上記側壁14から退避させると、この側壁14のうちでこの抜き孔12aに整合する部分が、この抜き孔12a内に押し込まれる。この際、上記比較的大きな板厚T5 を有する部分は、直ちにこの抜き孔12a内に押し込まれ始める。これに対して、上記板厚T6 が小さな部分は、一度他の部分と平行になるまで変形してから、上記抜き孔12a内に押し込まれる。そして、上記板厚T6 が小さな部分が一度他の部分と平行になるまで変形し、更に上記抜き孔12a内に押し込まれる過程で、この部分に圧縮応力が加わると同時に、この部分の板厚が少し増大する(T6 よりも大きくなる)。この結果、上記側壁14のうちで上記抜き孔12aに対向する部分が、この抜き孔12aの周縁部の全周に亙って破断しつつこの抜き孔12a内に押し込まれ、上記通孔5cが形成される。 As a result, as shown in FIG. 8, the portion facing the punched hole 12a is punched out by the hydraulic pressure existing in the inner portion of the side wall 14 to form a punched piece 10c and is pushed into the punched hole 12a. . In addition, as described above, cracks are generated almost simultaneously in the entire circumference of the part of the side wall 14 facing the punch hole 12a in addition to shifting the timing of starting the shearing process. It is also considered that the reduction in the difference in the plate thickness of each part contributes. That is, as shown in FIG. 7, when the slide tool 13c is retracted from the side wall 14 in the hole 12a, a portion of the side wall 14 that matches the hole 12a is located in the hole 12a. Is pushed into. At this time, the portion having the relatively large plate thickness T 5 immediately starts to be pushed into the hole 12a. On the other hand, the portion with the small plate thickness T 6 is once deformed until it becomes parallel with the other portion, and then pushed into the hole 12a. Then, the portion where the thickness T 6 is small is once deformed until it becomes parallel to the other portion, and further, in the process of being pushed into the punched hole 12a, a compressive stress is applied to this portion, and at the same time, the thickness of this portion Slightly increases (greater than T 6 ). As a result, a portion of the side wall 14 that faces the punch hole 12a is pushed into the punch hole 12a while breaking along the entire periphery of the peripheral edge of the punch hole 12a. It is formed.

尚、本実施例の場合、図7の様に膨出部7aを形成する段階で、上記スライド工具13cの先端面20bの傾斜面22aのうちで、平坦面21aから遠い側の端部は、金型素子15の内面よりも少し凹んだ部分に位置させても良い。この場合には、図示の様に、当該部分を金型素子15の内面よりも凹まさない状態に比べて、膨出部7aの側壁14のうちで当該部分に当接する部分が僅かに抜き孔12a内に押し込まれるので、この部分での剪断加工の開始がより早くなると共に、この部分の板厚が、僅かに薄くなる傾向になる。   In the case of the present embodiment, at the stage of forming the bulging portion 7a as shown in FIG. 7, among the inclined surfaces 22a of the tip surface 20b of the slide tool 13c, the end portion on the side far from the flat surface 21a is It may be positioned in a portion slightly recessed from the inner surface of the mold element 15. In this case, as shown in the figure, the portion of the side wall 14 of the bulging portion 7a that is in contact with the portion is slightly punched through the hole 12a as compared with the state in which the portion is not recessed from the inner surface of the mold element 15. Since it is pushed in, the shearing process starts at this part earlier, and the plate thickness at this part tends to be slightly thinner.

何れの場合でも、図7に示す様に、金属管3の一部を膨出させて膨出部7aを形成し、この膨出部7aの側壁14の一部に上記スライド工具13cの先端面20bを突き当てた状態で、この側壁部14のうちで上記抜き孔12aの幅方向両端縁に対応する部分の板厚T5 、T6 の差が、板厚が大きい側から見て、好ましくは30%以内、更に好ましくは20%以内であれば、上記通孔5cを形成するに就いて、特に問題を生じにくい。即ち、本実施例の製造方法は、前述した実施例1の場合よりも、板厚の差が大きい場合に適切である。又、上記先端面20bのうちで最も凹んでいる、上記傾斜面22aのうちで上記平坦面21aから遠い側の端部は、図示の様に金型素子15の内面と一致させても、或いは、上述の様にこの内面よりも少し凹んだ部分に位置させても、更には、この内面よりも少し突出させても良い。 In any case, as shown in FIG. 7, a part of the metal tube 3 is bulged to form a bulging part 7a, and the tip surface of the slide tool 13c is formed on a part of the side wall 14 of the bulging part 7a. The difference between the plate thicknesses T 5 and T 6 of the side wall portion 14 corresponding to both end edges in the width direction of the side wall portion 14 is preferably viewed from the side where the plate thickness is large. If it is within 30%, more preferably within 20%, it is particularly difficult to cause a problem in forming the through hole 5c. That is, the manufacturing method of this embodiment is appropriate when the difference in plate thickness is larger than that in the case of Embodiment 1 described above. Further, the end portion of the inclined surface 22a which is the most concave among the tip surfaces 20b and which is far from the flat surface 21a may coincide with the inner surface of the mold element 15 as shown in FIG. , be positioned a little recessed portion than the inner surface as described above, further, it may be slightly protrude from the inner surface.

図9は、本発明の実施例3として、前述の実施例1及び上述の実施例2に使用したスライド工具13b、13cと、このスライド工具13b、13cに置換可能なスライド工具の2例との、合計3例のスライド工具を示している。即ち、上記両実施例の様にして通孔5cを形成する場合に使用するスライド工具の先端部の形状は、図9の(A)に示す様な、断面形状が直線状である傾斜面22、22aを備えたスライド工具13b(13c)に限らず、図9の(B)(C)に示す様に、断面形状が円弧形である曲面状の傾斜部24、24aを備えたものであっても良いし、図示はしないが、傾斜面の断面形状が直線と曲線とを組み合わせたものである、複合面であっても良い。尚、上記図9の(A)に破線で示す様に、スライド工具13b(13c)の先端面20a(20b)に形成した傾斜面22(22a)の傾斜角度θを、この先端面20a(20b)の長さ方向(図9の表裏方向)の中間部で変化させる事もできる。この様な配慮は、ハイドロピアシングにより通孔を形成すべき部分の肉厚が、この通孔の幅方向だけでなく長さ方向にも変化している場合に必要になる。尚、この場合に、上記傾斜面22(22a)の傾斜角度θに代えて、平坦面21(21a)の幅W2 を変化させたり、両方を変化させる事もできる。この様に、材料の肉厚分布の形態によっては、必要に応じて、先端面20a(20b)の形状を3次元的に変化させる。 FIG. 9 shows, as Example 3 of the present invention, slide tools 13b and 13c used in Example 1 and Example 2 described above, and two examples of slide tools that can be replaced with the slide tools 13b and 13c. A total of three slide tools are shown. That is, the shape of the tip of the slide tool used when forming the through hole 5c as in the above two embodiments is the inclined surface 22 having a linear cross-sectional shape as shown in FIG. In addition to the slide tool 13b (13c) provided with 22a, as shown in FIGS. 9B and 9C, it is provided with curved inclined portions 24 and 24a having a circular cross-sectional shape. Although not shown, the cross-sectional shape of the inclined surface may be a composite surface in which a straight line and a curve are combined. As shown by the broken line in FIG. 9A, the inclination angle θ of the inclined surface 22 (22a) formed on the tip surface 20a (20b) of the slide tool 13b (13c) is set to the tip surface 20a (20b). ) In the middle of the length direction (front and back direction in FIG. 9). Such consideration is necessary when the thickness of the portion where the through hole is to be formed by hydropiercing changes not only in the width direction but also in the length direction of the through hole. In this case, it instead to the inclination angle θ of the inclined surface 22 (22a), or by changing the width W 2 of the flat surface 21 (21a), also to vary both. Thus, depending on the form of the thickness distribution of the material, the shape of the tip surface 20a (20b) is changed three-dimensionally as necessary.

尚、図9の(A)は、上記実施例1及び上述の実施例2に使用したスライド工具13b(13c)を示しているが、この様なスライド工具13b(13c)の寸法は、例えば次の様に規制する。即ち、このスライド工具13b(13c)の幅をW1 、このスライド工具13b(13c)の先端面20a(20b)のうちの平坦面21(21a)の幅をW2 、同じく傾斜面22(22a)の傾斜角度をθとすると、
0≦W2 ≦0.9W1
0.3°≦θ<90°
の範囲が採用可能である。
好ましくは、
0.01W1 ≦W2 ≦0.9W1
0.3°≦θ<90°
更に好ましくは、
0.2W1 ≦W2 ≦0.8W1
1°≦θ≦20°
特に好ましくは、
0.2W1 ≦W2 ≦0.7W1
3°≦θ≦20°
の範囲で設定する。
9A shows the slide tool 13b (13c) used in the first embodiment and the second embodiment. The dimensions of such a slide tool 13b (13c) are as follows, for example. It regulates like That is, the width of the slide tool 13b (13c) is W 1 , the width of the flat surface 21 (21a) of the tip surface 20a (20b) of the slide tool 13b (13c) is W 2 , and the inclined surface 22 (22a) ) Tilt angle is θ,
0 ≦ W 2 ≦ 0.9W 1
0.3 ° ≦ θ <90 °
The range of can be adopted.
Preferably,
0.01W 1 ≦ W 2 ≦ 0.9W 1
0.3 ° ≦ θ <90 °
More preferably,
0.2W 1 ≦ W 2 ≦ 0.8W 1
1 ° ≦ θ ≦ 20 °
Particularly preferably,
0.2W 1 ≦ W 2 ≦ 0.7W 1
3 ° ≦ θ ≦ 20 °
Set within the range.

要するに、上記スライド工具13b(13c)の幅W1 は、形成すべき通孔5cの幅に応じて決定するが、残りの幅W2 及び傾斜角度θに関しては、金属管3の材質や板厚に応じて、実験により最適な値を選定する。平坦面21(21a)の幅W2 が大き過ぎると、この平坦面21(21a)を突出させる事による、剪断加工開始のタイミング、破断に至るクラック発生のタイミングの調整効果を十分に得にくくなる。反対に上記幅W2 が小さ過ぎると、上記平坦面21の機械的強度の確保が難しくなる。従って、スライド工具の機械的強度確保の面で問題がなければ、この平坦面21は省略しても良い。上記傾斜角度θに就いても、小さ過ぎると、上記スライド工具13b(13c)を退避させる事による上記各タイミングの調整効果を得にくくなる。反対に、上記傾斜角度θが大き過ぎる場合には、上記平坦面21(21a)の機械的強度の確保が難しくなるだけでなく、厚肉側が過度に剪断され易くなり、上記各タイミングの調整が難しくなる。 In short, the width W 1 of the slide tool 13b (13c) is determined according to the width of the through-hole 5c to be formed, but the remaining width W 2 and the inclination angle θ are related to the material and thickness of the metal tube 3. The optimum value is selected by experiment. If the width W 2 is too large flat surface 21 (21a), made this by that projecting the flat face 21 (21a), difficult to obtain the timing of the shearing start, the effect of adjusting the timing of cracking to fracture enough . On the contrary, if the width W 2 is too small, it is difficult to ensure the mechanical strength of the flat surface 21. Therefore, if there is no problem in securing the mechanical strength of the slide tool, the flat surface 21 may be omitted. If the inclination angle θ is too small, it is difficult to obtain the adjustment effect of each timing by retracting the slide tool 13b (13c). On the contrary, when the inclination angle θ is too large, it is difficult not only to secure the mechanical strength of the flat surface 21 (21a), but also the thick wall side is easily sheared, and the adjustment of each timing described above. It becomes difficult.

又、図9の(B)(C)は、断面形状の曲率半径がRである、部分円筒面状の凹曲面{図9の(B)の場合}或は凸曲面{図9の(C)の場合}の傾斜部24、24aを、上記傾斜面22(22a)に代えて形成したものであるが、この様な傾斜部24、24aを形成したスライド工具13d、13eに関しても、各部の寸法を下記の範囲で選定する。
即ち、これら各スライド工具13d、13eの幅をW1 、これら各スライド工具13d、13eの先端面20c、20dのうちの平坦面21b、21cの幅をW2 とすると、
0≦W2 ≦0.9W1
好ましくは、
0.01W1 ≦W2 ≦0.9W1
の範囲で設定できる。上記傾斜部24、24aの断面形状の曲率半径Rの値は任意に設定できる。各々の値に就いて、金属管3の材質や板厚に応じて、実験により最適な値を選定する事は、図9の(A)に示したスライド工具13b(13c)の場合と同様である。
要するに、本発明を実施するに就いて、抜き孔の内側でスライド工具を退避させる際に、膨出部の側壁の如く、板厚に差がある場合でも、上記抜き孔の両側で板厚の差を小さくする等、この抜き孔に対向する部分を全周に亙って同時に破断できる様にする先端形状を有するスライド工具であれば、本発明の実施に使用できる。
9B and 9C show a partially cylindrical concave curved surface {in the case of FIG. 9B} having a radius of curvature of the cross-sectional shape R or a convex curved surface {(C of FIG. )}, The inclined portions 24 and 24a are formed in place of the inclined surfaces 22 (22a). However, the slide tools 13d and 13e having such inclined portions 24 and 24a are also formed in each portion. Select dimensions within the following range.
That is, each of these slide tool 13d, W 1 width of 13e, each of these slide tool 13d, 13e of the front end surface 20c, the flat surface 21b of the 20d, and the width of 21c and W 2,
0 ≦ W 2 ≦ 0.9W 1
Preferably,
0.01W 1 ≦ W 2 ≦ 0.9W 1
It can be set within the range. The value of the radius of curvature R of the cross-sectional shape of the inclined portions 24, 24a can be arbitrarily set. For each value, the optimum value is selected by experiment according to the material and thickness of the metal tube 3 as in the case of the slide tool 13b (13c) shown in FIG. is there.
In short, in carrying out the present invention, when the slide tool is retracted inside the punched hole, even if there is a difference in the plate thickness, such as the side wall of the bulging portion, the thickness of the plate is reduced on both sides of the punched hole. Any slide tool having a tip shape that can be simultaneously broken along the entire circumference, such as reducing the difference, can be used in the practice of the present invention.

更に、スライド工具13b、13cの先端面20a、20bの、金型素子15の内面から突出量S(図7)或いは凹み量−S(図6)は、側壁14のうちで、通孔を形成すべき部分の肉厚T(図2のT3 に相当)を基準として、|T|>|S|の範囲内に規制する事が好ましい。この突出量Sが大き過ぎると、スライド工具の後退に伴って肉厚が小さい部分に付加される圧縮応力が過大となり、剪断加工が進んでもクラックが入らなくなる。その結果、肉厚が大きい部分のみが剪断される様な事態が生じ、本発明の実施が困難となる。又、上記凹み量−Sが過大になると、初期状態から材料が抜き孔内に過度に進入し、スライド工具の先端面形状により、肉厚が大きい側と小さい側とに応じて前記各タイミングを調整する効果が小さくなる。言い換えれば、これら各タイミングの調整が困難になる。
尚、通孔を形成する際、スライド工具を退避させつつ側壁14の片面(金型素子15と反対側の面)に作用させる液圧Pに就いては、金属材料の剪断抵抗をr、肉厚をT、通孔の周長をL、通孔の面積をSとした場合に、P>(r・T・L)/Sを満たす様に規制する。
Further, the protruding amount S (FIG. 7) or the recessed amount −S (FIG. 6) from the inner surface of the mold element 15 of the tip surfaces 20a, 20b of the slide tools 13b, 13c forms a through hole in the side wall 14. as the thickness of the portion to be T (corresponding to T 3 in FIG. 2) reference, | T |> | is preferably regulated to within the range of | S. If this protrusion amount S is too large, the compressive stress applied to the portion having a small thickness as the slide tool moves backward becomes excessive, and cracks do not occur even if the shearing process proceeds. As a result, a situation occurs in which only the thick portion is sheared, making it difficult to implement the present invention. Also, if the amount of depression -S is excessive, the material excessively enters the punched hole from the initial state, and the respective timings are set according to the thick side and the small side depending on the shape of the tip surface of the slide tool. The effect of adjustment is reduced. In other words, it is difficult to adjust these timings.
Note that when forming the through-hole, with respect to the hydraulic pressure P that acts on one side of the side wall 14 (the side opposite to the mold element 15) while retracting the slide tool, the shear resistance of the metal material is r, When the thickness is T, the perimeter of the through hole is L, and the area of the through hole is S, regulation is performed so that P> (r · T · L) / S is satisfied.

図10は、請求項2、7〜9に対応する、本発明の実施例4を示している。本実施例の場合には、先に述べた各実施例の場合と異なり、金型6の側を工夫している。即ち、通孔を形成すべき側壁14に対向する金型素子15に形成した抜き孔12bの開口周縁部のうちの幅方向両端縁に存在する刃先部分26a、26bの断面形状の曲率半径を互いに異ならせている。具体的には、上記側壁14のうちの板厚が大きい側を剪断加工すべき、図10の下側の刃先部分26aの断面形状の曲率半径を小さくしている(シャープエッジとしている)。これに対して、上記側壁14のうちの板厚が小さい側を剪断加工すべき、図10の上側の刃先部分26bの断面形状の曲率半径を比較的大きくしている。上記抜き孔12bに挿入したスライド工具13の先端面20は、全面に亙り平坦である。 FIG. 10 shows a fourth embodiment of the present invention corresponding to claims 2 and 7 to 9 . In the case of this embodiment, unlike the case of each embodiment described above, the mold 6 side is devised. That is, the curvature radii of the cross-sectional shapes of the blade edge portions 26a and 26b existing at the both edges in the width direction of the opening peripheral portion of the punch hole 12b formed in the mold element 15 facing the side wall 14 where the through hole is to be formed are mutually equal. It is different. Specifically, the radius of curvature of the cross-sectional shape of the lower blade edge portion 26a in FIG. 10 where the thicker side of the side wall 14 is to be sheared is made smaller (sharp edge). On the other hand, the curvature radius of the cross-sectional shape of the upper blade edge portion 26b in FIG. The front end surface 20 of the slide tool 13 inserted into the punched hole 12b is flat over the entire surface.

本実施例の場合には、上記板厚が小さい側を剪断加工すべき刃先部分26bの断面形状の曲率半径を比較的大きくする事により、この板厚が小さい側で剪断を進行しにくくして、この側で破断に至るクラックの発生タイミングを、上記刃先部分26bをシャープエッジとした場合に比べて遅くしている。要するに本実施例の場合には、元々板厚が小さい事により、破断に至るクラックの発生タイミングが早くなりがちな側で、このタイミングを遅くする傾向としている。   In the case of the present embodiment, by making the radius of curvature of the cross-sectional shape of the cutting edge portion 26b to be sheared on the side where the plate thickness is small, the shearing is difficult to proceed on the side where the plate thickness is small. The generation timing of the crack leading to the break on this side is delayed as compared with the case where the blade edge portion 26b has a sharp edge. In short, in the case of the present embodiment, since the plate thickness is originally small, the timing of occurrence of cracks leading to breakage tends to be delayed, and this timing tends to be delayed.

この為本実施例の場合には、板厚が小さい側と大きい側とで、剪断加工開始のタイミングを同じとしても、破断に至るクラックの発生タイミング(剪断現象終了のタイミング)をほぼ同じに揃えて、板厚が不同にも拘らず、切れ残りのない、完全な外抜きのハイドロピアシングを行なえる。
尚、本実施例の様に、上記各刃先部分26a、26bの断面形状の曲率半径を変える事と合わせて、前述の実施例1〜3の様に、スライド工具13の先端面20の形状を工夫する事も可能である(請求項3に記載した発明)。具体的には、剪断に対する感受性を鈍化させる必要がある板厚の小さな側で、刃先部分の断面形状の曲率半径を大きくすると共に、スライド工具13の先端面20を金型素子15の内部に突出させて剪断加工開始のタイミングを遅らせる。一方、板厚の大きな側で、刃先部分の断面形状の曲率半径を小さくすると共に、スライド工具13の先端面20を上記金型素子15の外方に凹ませて剪断加工を促進する。
For this reason, in the case of this embodiment, even when the shearing start timing is the same on the side where the plate thickness is small and the side where the plate thickness is large, the generation timing of cracks leading to breakage (timing of the end of the shearing phenomenon) is almost the same. Therefore, it is possible to perform complete outer-piercing hydropiercing with no difference in thickness.
In addition, the shape of the front end surface 20 of the slide tool 13 is changed as in the first to third embodiments, in combination with the change in the radius of curvature of the cross-sectional shape of each of the blade edge portions 26a and 26b as in the present embodiment. It is also possible to devise (the invention described in claim 3) . Specifically, the radius of curvature of the cross-sectional shape of the cutting edge portion is increased on the side of the plate thickness where it is necessary to reduce the sensitivity to shear, and the tip surface 20 of the slide tool 13 protrudes into the mold element 15. To delay the start of shearing. On the other hand, the radius of curvature of the cross-sectional shape of the cutting edge portion is reduced on the thicker side, and the tip surface 20 of the slide tool 13 is recessed outward of the mold element 15 to promote shearing.

図11〜12は、本発明の実施例5を示している。本実施例の場合には、ハイドロフォーム工法により金属管3の一部を径方向外方に塑性変形させて形成した膨出部7aの側壁14に、異形の通孔5dを形成する場合に就いて示している。この通孔5dは、図12の(A)に示す様な比較的幅寸法の小さい長円形部分と、同(B)に示す様な比較的幅寸法の大きな長円形部分とを重ね合わせ(合成し)て、同(C)に示す様な鍵孔状とした如きものである。但し、この鍵孔状の通孔5dは、断面形状を鍵孔状としたスライド工具により、一挙に加工する。スライド工具の先端面形状は、先に説明した何れかの実施例に合わせて形成する。この様な鍵孔状の通孔5dに就いても、板厚が均一である場合に加工できる事は勿論、本発明を適用すれば、板厚が不均一であっても、又、金属製部材が環状であるか板状であるかを問わず、ハイドロピアシングにより、確実に加工できる。尚、金属製部材の一部でこの通孔5dを形成すべき部分の形状に就いては、平坦面、部分円弧面、曲面等、何れでも良い(スライド工具の先端面形状をそれに合わせる)。   11 to 12 show a fifth embodiment of the present invention. In the case of the present embodiment, when the deformed through hole 5d is formed in the side wall 14 of the bulging portion 7a formed by plastic deformation of a part of the metal tube 3 radially outward by the hydroforming method. It shows. The through-hole 5d is formed by superposing (combining) an oval portion having a relatively small width dimension as shown in FIG. 12A and an oval portion having a relatively large width dimension as shown in FIG. Thus, a keyhole shape as shown in FIG. However, this keyhole-shaped through hole 5d is processed at once by a slide tool having a cross-sectional shape of a keyhole. The shape of the tip surface of the slide tool is formed in accordance with any of the embodiments described above. Even if such a keyhole-shaped through-hole 5d is used, it can be processed when the plate thickness is uniform. If the present invention is applied, even if the plate thickness is non-uniform, it can be made of metal. Regardless of whether the member is annular or plate-like, it can be reliably processed by hydropiercing. In addition, as for the shape of the portion where the through hole 5d is to be formed in a part of the metal member, any shape such as a flat surface, a partial arc surface, and a curved surface may be used (the tip surface shape of the slide tool is adjusted to that).

図13は、請求項10に対応する、本発明の実施例6を示している。本実施例の場合には、ハイドロフォーム工法により金属管3の一部を径方向外方に塑性変形させて形成した膨出部7aの側壁14に、アスペクト比が大きい(スリット状の)通孔5eを、この膨出部7aの傾斜部29を跨ぐ状態で形成する場合に就いて示している。本実施例の場合、スライド工具の先端面形状は、先に説明した何れかの実施例に合わせると共に、上記通孔5eを形成すべき、上記側壁14の外面形状に合わせて形成する。この様な、傾斜部29を跨ぐ状態で存在するスリット状の通孔5eに就いても、上述した実施例5と同様、本発明を適用する事により、ハイドロピアシングにより、確実に加工できる。 FIG. 13 shows a sixth embodiment of the present invention corresponding to the tenth aspect . In the case of the present embodiment, a through-hole having a large aspect ratio (slit-like) is formed in the side wall 14 of the bulging portion 7a formed by plastic deformation of a part of the metal tube 3 radially outward by the hydroforming method. 5e is shown when formed in a state straddling the inclined portion 29 of the bulging portion 7a. In the case of the present embodiment, the tip surface shape of the slide tool is matched with any of the embodiments described above, and is also formed according to the outer surface shape of the side wall 14 where the through hole 5e is to be formed. Even in the case of the slit-shaped through-hole 5e that exists in such a state as to straddle the inclined portion 29, it can be reliably processed by hydropiercing by applying the present invention, similarly to the above-described fifth embodiment.

図14は、請求項10に対応する、本発明の実施例7を示している。本実施例の場合には、ハイドロフォーム工法により金属管3の一部を径方向外方に塑性変形させて形成した膨出部7aの側壁14に、鍵孔状の通孔5fを、この膨出部7aの傾斜部29を跨ぐ状態で形成する場合に就いて示している。本実施例の場合も、スライド工具の先端面形状は、先に説明した何れかの実施例に合わせると共に、上記通孔5fを形成すべき、上記側壁14の外面形状に合わせて形成する。この様な、傾斜部29を跨ぐ状態で存在する鍵孔状の通孔5fに就いても、上述した実施例5、6と同様、本発明を適用する事により、ハイドロピアシングにより、確実に加工できる。 FIG. 14 shows a seventh embodiment of the present invention corresponding to the tenth aspect . In the case of the present embodiment, a keyhole-shaped through hole 5f is formed on the side wall 14 of the bulging portion 7a formed by plastic deformation of a part of the metal tube 3 radially outward by the hydroforming method. The case where it forms in the state straddling the inclination part 29 of the protrusion part 7a is shown. Also in this embodiment, the tip surface shape of the slide tool is formed in accordance with any of the embodiments described above, and in accordance with the outer surface shape of the side wall 14 in which the through hole 5f is to be formed. Even in the case of the keyhole-shaped through-hole 5f that exists in such a state that straddles the inclined portion 29, by applying the present invention, as in the fifth and sixth embodiments described above, it is reliably processed by hydropiercing. it can.

本発明の有効性を確認する為に行なった実験に就いて説明する。前述の図7〜8に示した実施例2の方法により、実際にハイドロフォーミング及びハイドロピアシングを行なった。即ち、一体型コラムブラケットを形成したステアリングコラム用アウターチューブの製作を想定して、ハイドロフォーミングにより金属管の軸方向中間部に膨出部を形成し、引き続き同一金型内でハイドロピアシングにより、その膨出部の両側の側壁部に長円形の通孔を形成した(図15〜17参照)。金型に組み合わされるスライド工具としては、先端面を平坦面と傾斜面で形成した、図9の(A)に示した形状のものを使用した。   An experiment conducted to confirm the effectiveness of the present invention will be described. Hydroforming and hydropiercing were actually performed by the method of Example 2 shown in FIGS. That is, assuming the manufacture of an outer tube for a steering column with an integrated column bracket, a bulging portion is formed in the axial middle portion of the metal tube by hydroforming, and then by hydropiercing in the same mold. Oval holes were formed in the side wall portions on both sides of the bulging portion (see FIGS. 15 to 17). As the slide tool combined with the mold, a tool having the shape shown in FIG. 9A in which the front end surface is formed of a flat surface and an inclined surface was used.

実験に使用した金属管は、機械構造用炭素鋼管(STKM11A)であり、外径が60.5mm、肉厚が2.0mm、全長が500mmである。この材料の機械試験値は、降伏点が300MPa、引張強さが400MPa、伸びが40%である。通孔を形成する為の長円形の抜き孔の寸法は、長径方向の長さを60mm、短径方向の長さを10mmとした。   The metal pipe used for the experiment is a carbon steel pipe for machine structure (STKM11A), which has an outer diameter of 60.5 mm, a wall thickness of 2.0 mm, and a total length of 500 mm. The mechanical test value of this material is that the yield point is 300 MPa, the tensile strength is 400 MPa, and the elongation is 40%. The length of the oval hole for forming the through hole was 60 mm in the major axis direction and 10 mm in the minor axis direction.

ハイドロフォーミングにより形成された膨出部での拡管率は約30%であり、板厚は、小さい側で1.8mm、大きい側で2.0mmであった。ハイドロピアシングにより膨出部の両側の側壁部に長円形の通孔を形成するべく、スライド工具の先端面の幅W1 と平坦面の幅W2 の関係(ランド幅比W2 /W1 )、傾斜面の平坦面に対する傾斜角度θ、及び初期位置での平坦面の突出量Sを種々変更した。これらの値を、実験結果と共に、次の表1に示す。この表1中の比較例は、スライド工具として、その先端面が全面に亙り平坦面であるものを使用した場合である。 The tube expansion rate at the bulging portion formed by hydroforming was about 30%, and the plate thickness was 1.8 mm on the small side and 2.0 mm on the large side. Relationship between the width W 1 of the tip surface of the slide tool and the width W 2 of the flat surface (land width ratio W 2 / W 1 ) in order to form oblong through holes in the side wall portions on both sides of the bulging portion by hydropiercing The inclination angle θ of the inclined surface with respect to the flat surface and the protrusion amount S of the flat surface at the initial position were variously changed. These values are shown in the following Table 1 together with the experimental results. The comparative example in Table 1 is a case where a slide tool having a flat tip surface is used.

Figure 0004879596
Figure 0004879596

この表1から明らかな通り、スライド工具の先端面の形状を適切に選定して、剪断加工開始のタイミング、及び、破断に至るクラック発生のタイミングを調整する事により、形成すべき通孔の周縁部全体で剪断現象を同時に終了させて全周に亙り破断させる事ができる。この為、板厚に差がある膨出部の両側壁部に対しても、切れ残りのない完全なハイドロピアシングが可能になる。又、本発明の方法により膨出部の両側壁部に通孔を形成した金属管加工品は、ステアリングコラム用アウターチューブとして使用可能であった。更に言えば、得られたアウターチューブは、溶接部のない一体型コラムブラケットを有する上に、膨出部の両側壁部に存在する孔あけ加工品質も高く、非常に高品質なものであった。しかも、同一金型内での一連の操作により膨出部の形成から孔あけ加工までが効率的に行なえる為、経済性も非常に高いものとなった。   As clearly shown in Table 1, the peripheral edge of the through hole to be formed can be formed by appropriately selecting the shape of the tip surface of the slide tool and adjusting the timing of starting the shearing process and the timing of occurrence of cracks leading to fracture. The shearing phenomenon can be terminated at the same time in the entire part and can be broken all around. For this reason, complete hydropiercing without any uncut portion is possible even on both side walls of the bulging portion having a difference in plate thickness. Further, the metal tube processed product in which the through holes are formed in the both side walls of the bulging portion by the method of the present invention can be used as an outer tube for a steering column. Furthermore, the obtained outer tube has an integrated column bracket without a welded portion, and the drilling quality existing on both side walls of the bulging portion is high, so that the quality is extremely high. . In addition, since a series of operations within the same mold can efficiently perform from the formation of the bulging portion to the drilling process, the economic efficiency is very high.

本発明を実施する場合に、金属部材に形成する通孔の数は問わない。即ち、通孔の数が1個乃至は2個の場合は勿論、3個以上であっても、金型に必要数の抜き孔とスライド工具とを設ける事で、本発明を実施する事は可能である。
又、形成すべき通孔の形状に就いても、単純な円形は勿論、長円形、楕円形、略四角形、或はこれらを組み合わせた様な形状やより複雑な形状等、各種形状の通孔の形成に適用できる。例えば、前述した実施例1〜7の構造を適宜組み合わせて実施する事ができる。この場合に、例えば、互いに異なる形状を有する複数の通孔を、複数の抜き孔及びスライド工具を備えた金型を使用して、ハイドロピアシングにより同時に形成する事が考えられる。
更に、本発明を、金属管を径方向外方に塑性変形して形成した膨出部に通孔を形成するのに適用する場合に、金属管を一方向に膨出させた場合に限らず、全周に亙って膨出させた場合でも、本発明を適用できる。即ち、金属管を全周に亙って膨出させた場合であっても、部分的に膨出の程度が変化する等により、板厚に差がある肉厚不均一部分が存在し、当該部分に通孔を形成する必要があれば、本発明を適用できる。
要するに本発明は、中空部材の膨出部に通孔を形成する場合に限らず、各種金属製部材のうちで、板厚に差がある肉厚不均一部分に通孔を形成する場合に利用可能である。
When carrying out the present invention, the number of through holes formed in the metal member is not limited. In other words, when the number of through holes is one or two, even if the number is three or more, the present invention can be implemented by providing the mold with the necessary number of holes and slide tools. Is possible.
In addition, the shape of the through hole to be formed is not only a simple circle but also an oval, an ellipse, a substantially square, or a combination of these or a more complicated shape. It can be applied to the formation of For example, the structures of Examples 1 to 7 described above can be combined as appropriate. In this case, for example, it is conceivable that a plurality of through holes having different shapes are simultaneously formed by hydropiercing using a mold having a plurality of punch holes and a slide tool.
Furthermore, when the present invention is applied to form a through hole in a bulging portion formed by plastic deformation of a metal tube radially outward, it is not limited to the case where the metal tube is bulged in one direction. The present invention can be applied even when it is swollen over the entire circumference. That is, even when the metal tube is swollen over the entire circumference, there is a non-uniform thickness portion with a difference in plate thickness due to a partial change in the degree of swelling, etc. If it is necessary to form a through hole in the portion, the present invention can be applied.
In short, the present invention is not limited to the case where the through hole is formed in the bulging portion of the hollow member, but is used when the through hole is formed in a non-uniform thickness portion having a difference in plate thickness among various metal members. Is possible.

特に、本発明を、例えばコラムブラケット一体型のステアリングコラムの製造に適用した場合には、前述した本発明の基本的な作用・効果に比べて、より優れた作用・効果を得られる。即ち、この様なステアリングコラムを造る場合に、前述の図20〜23で説明した様に、コラムブラケットとなる膨出部を形成する為のハイドロフォーム工程と、通孔を形成する為の孔加工工程とを連続して(実質的に同時に)実施できる。この為、上述の様なステアリングコラムの製造に費やす時間及び手間を低減して、製造コストの低廉化が可能になる。更に、1個の部材に複数の通孔を形成する場合にも、これら各通孔の位置決めを図る為に、この部材とこれら各通孔との位置決めを行なう為の考慮も不要になり、コスト上昇を抑えつつ、複数の通孔を正確に位置決めした製品を得られる。   In particular, when the present invention is applied, for example, to the manufacture of a column bracket integrated steering column, it is possible to obtain more excellent functions and effects than the basic functions and effects of the present invention described above. That is, when manufacturing such a steering column, as described in FIGS. 20 to 23, the hydroforming process for forming the bulging portion serving as the column bracket and the hole processing for forming the through hole are performed. The steps can be carried out continuously (substantially simultaneously). For this reason, it is possible to reduce the manufacturing cost by reducing the time and labor required for manufacturing the steering column as described above. Further, even when a plurality of through holes are formed in one member, it is not necessary to consider the positioning of this member and each through hole in order to position each through hole. A product in which a plurality of through-holes are accurately positioned can be obtained while suppressing the rise.

尚、本発明をコラムブラケットの膨出部に通孔を形成するのに適用する場合は勿論、何れの部分に適用する場合でも、形成した通孔の周縁部を含み、この通孔の周囲部分には、だれ等、材料の変形が殆どない、良好な面が残る。この為、この通孔を形成した後、上記周囲部分の精度を向上させる為の後加工が不要若しくは容易になり、後加工の為の装置や機構が不要若しくは簡易になって、設備費用の削減等によるコスト低減を図れる。   In addition, when applying this invention to forming a through-hole in the bulging part of a column bracket, when applying to any part, including the peripheral part of the formed through-hole, the peripheral part of this through-hole In this case, a good surface with almost no deformation of the material such as anyone remains. For this reason, after this through hole is formed, post-processing for improving the accuracy of the surrounding portion is unnecessary or easy, and equipment and mechanisms for post-processing are unnecessary or simplified, thereby reducing equipment costs. Cost reduction by etc. can be aimed at.

又、図示の各実施例は、肉厚に差がある肉厚不均一部分を孔あけ加工(ハイドロピアシング)する場合に就いて示した。但し、肉厚(板厚)が同じでも加工硬化の程度に差がある、加工硬化不均一部分に孔あけ加工(ハイドロピアシング)を施す場合にも、上記肉厚不均一部分と同様の問題を生じる可能性がある。この為、この様な加工硬化不均一部分で、剪断現象を同時に終了させるべく、この部分での剪断開始のタイミング等を加工硬化の程度に応じて調節する(設計的に条件の設定をする)事もできる。この場合に、例えば、加工硬化の程度が著しい部分を、前述の各実施例の説明中での肉厚の大きい(厚い)部分に対応させ、加工硬化の程度が低い(若しくは加工硬化していない)部分を、同じく肉厚の小さい(薄い)部分に対応させる。加工硬化の程度により剪断開始のタイミングをずらせる程度は、肉厚が不均一の場合と同様、実験により求める。更に、肉厚が不均一で、しかも加工硬化の程度が異なる部分に関して本発明を実施できる事は勿論である。この場合も、タイミングをずらせる程度は、実験により、肉厚及び加工硬化の程度に応じて規制する。 In addition, each of the examples shown in the drawings shows a case where a non-uniform thickness portion having a difference in thickness is drilled (hydropiercing). However, even if the thickness (plate thickness) is the same, there is a difference in the degree of work hardening, and even when drilling (hydropiercing) is performed on a work hardening non-uniform part, the same problem as the above non-uniform thickness part occurs. It can happen. For this reason, in order to end the shearing phenomenon simultaneously in such a work hardening non-uniform portion, the shear start timing in this portion is adjusted according to the degree of work hardening (conditions are set in terms of design). You can also do things. In this case, for example, a portion where the degree of work hardening is remarkable is made to correspond to a portion having a large thickness (thickness) in the description of each of the above-described embodiments, and the degree of work hardening is low (or not work hardened). ) Part corresponds to a part having the same small thickness. The degree to which the timing of starting shearing is shifted depending on the degree of work hardening is obtained by experiment as in the case where the thickness is not uniform. Furthermore, it goes without saying that the present invention can be implemented with respect to portions where the thickness is not uniform and the degree of work hardening is different. Also in this case, the degree to which the timing is shifted is regulated by the experiment according to the thickness and the degree of work hardening.

本発明の原理を説明する為の、ハイドロピアシングの進行状態を示す部分断面図。The fragmentary sectional view which shows the advancing state of hydropiercing for demonstrating the principle of this invention. 本発明の実施例1を、通孔を形成する以前の状態で示す、図23のA部に相当する拡大断面図。The expanded sectional view equivalent to the A section of Drawing 23 which shows Example 1 of the present invention in the state before forming a penetration hole. 同じく通孔形成の途中状態を示す、図2と同様の図。The figure similar to FIG. 2 which similarly shows the middle state of through-hole formation. 同じく続く状態を示す、図2と同様の図。The same figure as FIG. 2 which shows the state which continues. 同じく通孔を形成した状態で示す、図2と同様の図。The figure similar to FIG. 2 shown in the state which formed the through-hole similarly. 本発明の実施例1の変形例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the modification of Example 1 of this invention. 本発明の実施例2を、通孔を形成する以前の状態で示す、図23のA部に相当する拡大断面図。The expanded sectional view equivalent to the A section of Drawing 23 showing Example 2 of the present invention in the state before forming a penetration hole. 同じく通孔を形成した状態で示す、図7と同様の図。The figure similar to FIG. 7 shown in the state which formed the through-hole similarly. 本発明の実施例3として、通孔を形成する為のスライド工具の3例を示す断面図。Sectional drawing which shows three examples of the slide tool for forming a through-hole as Example 3 of this invention. 本発明の実施例4を示す、図23のA部に相当する拡大断面図。The expanded sectional view equivalent to the A section of Drawing 23 showing Example 4 of the present invention. 本発明の実施例5を示しており、(A)は側面図、(B)(C)はそれぞれ通孔を形成した部分を、互いに異なる方向で切断した状態で示す断面図。5A and 5B show a fifth embodiment of the present invention, in which FIG. 5A is a side view, and FIG. 5B and FIG. 5C are cross-sectional views showing portions where through holes are formed, cut in different directions. 通孔の形状を説明する為の部分側面図。The partial side view for demonstrating the shape of a through-hole. 本発明の実施例6を示す、図11と同様の図。The figure similar to FIG. 11 which shows Example 6 of this invention. 本発明の実施例7を示す、図11と同様の図。The figure similar to FIG. 11 which shows Example 7 of this invention. コラムブラケットを一体に設けたステアリングコラムの従来例を示す断面図。Sectional drawing which shows the prior art example of the steering column which provided the column bracket integrally. 同じく部分斜視図。Similarly a partial perspective view. 図16のB矢視図。B arrow view of FIG. (A)はコラムブラケットの側壁部を、(B)は側壁部を更に膨出させた状態を、それぞれ示す、図17のC−C断面図。(A) is the side wall part of a column bracket, (B) is CC sectional drawing of FIG. 17 which shows the state which expanded the side wall part further, respectively. 金属管を塑性変形して成る膨出部に通孔を形成する方法の3例を示す断面図。Sectional drawing which shows three examples of the method of forming a through-hole in the bulging part formed by plastically deforming a metal tube. 先に考えた、金属管に膨出部を形成し更にこの膨出部に通孔を形成する方法の準備工程を示す断面図。Sectional drawing which shows the preparatory process of the method of forming the bulging part in the metal pipe | tube considered previously, and also forming a through-hole in this bulging part. 図20のD−D断面図。DD sectional drawing of FIG. 同じく金属管に膨出部を形成した状態を示す断面図。Sectional drawing which shows the state which formed the bulging part in the metal pipe similarly. 図22のE−E断面図。EE sectional drawing of FIG. 図23のA部拡大断面図。The A section expanded sectional view of FIG. 先に考えた方法で通孔が形成されない理由を説明する為の、図24と同様の断面図。FIG. 25 is a cross-sectional view similar to FIG. 24 for explaining the reason why a through hole is not formed by the previously considered method.

符号の説明Explanation of symbols

1 ステアリングコラム
2 コラムブラケット
3 金属管
4 チルトボルト
5、5a、5b、5c、5d、5e、5f 通孔
6、6a 金型
7、7a 膨出部
8、8a シリンダ孔
9、9a パンチ
10、10a、10b、10c 打ち抜き片
11 中空部材
12、12a、12b 抜き孔
13、13a、13b、13c、13d、13e スライド工具
14 側壁
15 金型素子
16 円孔部
17 凹部
18 中心孔
19、19a、19b 軸押し工具
20、20a、20b、20c、20d 先端面
21、21a、21b、21c 平坦面
22、22a 傾斜面
23 隙間
24、24a 傾斜部
25 金属板
26、26a、26b 刃先部分
27 剪断面
28 クラック
29 傾斜部
DESCRIPTION OF SYMBOLS 1 Steering column 2 Column bracket 3 Metal tube 4 Tilt bolt 5, 5a, 5b, 5c, 5d, 5e, 5f Through-hole 6, 6a Die 7, 7a Protruding part 8, 8a Cylinder hole 9, 9a Punch 10, 10a 10b, 10c Punched piece 11 Hollow member 12, 12a, 12b Punched hole 13, 13a, 13b, 13c, 13d, 13e Slide tool 14 Side wall 15 Mold element 16 Circular hole portion 17 Recessed portion 18 Center hole 19, 19a, 19b Shaft Push tool 20, 20a, 20b, 20c, 20d Tip end surface 21, 21a, 21b, 21c Flat surface 22, 22a Inclined surface 23 Gap 24, 24a Inclined portion 25 Metal plate 26, 26a, 26b Cutting edge portion 27 Shear surface 28 Crack 29 Slope

Claims (10)

金属製で、少なくとも一部が板状とされた部材の一部で、この板状とされた部分の厚さに差がある肉厚不均一部分に通孔を、この肉厚不均一部分を貫通する状態で設ける為に、この肉厚不均一部分の片面を金型に当接させた状態でこの肉厚不均一部分の他面に液圧を加えつつ、この肉厚不均一部分の一部で上記金型に設けた抜き孔に対応する部分をこの抜き孔に押し込む、ハイドロピアシングを施す際に、上記金型の抜き孔に挿入されるスライド工具として、剪断加工を施される材料の肉厚分布に応じて、先端面が肉厚の小さい側で金型の内側方向へ突出し、肉厚の大きい側で金型の外側方向へ窪んだ形状を有するスライド工具を使用する事により、形成すべき上記通孔の周縁全体で剪断現象を同時に終了させる事を特徴とする、通孔を有する金属製部材の製造方法。 A part of a member made of metal and having at least a part in a plate shape has a through-hole in a non-uniform thickness portion having a difference in thickness of the plate-shaped portion. In order to provide it in a penetrating state, one side of this non-uniform thickness portion is in contact with the mold, while applying hydraulic pressure to the other surface of this non-uniform thickness portion, The part corresponding to the punched hole provided in the mold at the part is pushed into the punched hole. When hydropiercing is performed, as a slide tool inserted into the punched hole of the mold, a material to be subjected to shearing is used. Formed by using a slide tool that has a shape in which the tip surface protrudes inward of the mold on the small thickness side and is recessed in the outward direction of the mold on the large thickness side according to the wall thickness distribution It has a through-hole, characterized by simultaneously terminating the shearing phenomenon on the entire periphery of the above-mentioned through-hole Method for producing a metal-made member. 金属製で、少なくとも一部が板状とされた部材の一部で、この板状とされた部分の厚さに差がある肉厚不均一部分に通孔を、この肉厚不均一部分を貫通する状態で設ける為に、この肉厚不均一部分の片面を金型に当接させた状態でこの肉厚不均一部分の他面に液圧を加えつつ、この肉厚不均一部分の一部で上記金型に設けた抜き孔に対応する部分をこの抜き孔に押し込む、ハイドロピアシングを施す際に、上記金型として、上記抜き孔の周縁部である刃先部分の断面形状の曲率半径が、この刃先部分が剪断加工を施される材料の肉厚分布に応じて、肉厚の大きい側で小さく、肉厚の小さい側で大きく形成された金型を使用する事により、形成すべき上記通孔の周縁全体で剪断現象を同時に終了させる事を特徴とする、通孔を有する金属製部材の製造方法。 A part of a member made of metal and having at least a part in a plate shape has a through-hole in a non-uniform thickness portion having a difference in thickness of the plate-shaped portion. In order to provide it in a penetrating state, one side of this non-uniform thickness portion is in contact with the mold, while applying hydraulic pressure to the other surface of this non-uniform thickness portion, When the part corresponding to the punched hole provided in the mold is pushed into the punched hole at the part, and the hydropiercing is performed, the radius of curvature of the cross-sectional shape of the blade edge part which is the peripheral part of the punched hole is obtained as the mold. According to the thickness distribution of the material to which the cutting edge is subjected to the shearing process, the above-mentioned should be formed by using a mold formed small on the thick side and large on the small thickness side. characterized in that to terminate the shearing phenomena simultaneously throughout the periphery of the through hole, a metal member having a through hole Manufacturing method. 金型として、抜き孔の周縁部である刃先部分の断面形状の曲率半径が、この刃先部分が剪断加工を施される材料の肉厚分布に応じて、肉厚の大きい側で小さく、肉厚の小さい側で大きく形成された金型を使用する、請求項1に記載した通孔を有する金属製部材の製造方法。 As a mold, the radius of curvature of the cross-sectional shape of the cutting edge part, which is the peripheral part of the punched hole, is small on the thick side according to the wall thickness distribution of the material on which the cutting edge part is subjected to shearing processing. The manufacturing method of the metal member which has a through-hole of Claim 1 using the metal mold | die formed largely on the small side of this . 金型に設けた、通孔に見合う形状及び大きさを有する抜き孔の内側に、肉厚不均一部分のうちで板厚が小さい部分が同じく厚い部分に比べてこの肉厚不均一部分の側に向けて突出している先端面を有するスライド工具を挿入すると共に、上記金型の内面を上記肉厚不均一部分の片面に突き当てた状態でこの肉厚不均一部分の他面に液圧を加えつつ、上記スライド工具をこの肉厚不均一部分から退避する方向に変位させて、この肉厚不均一部分の一部で上記抜き孔に対応する部分を、上記液圧によりこの抜き孔に押し込む、請求項1〜3のうちの何れか1項に記載した通孔を有する金属製部材の製造方法。 On the inside of the punch hole provided in the mold and having a shape and size suitable for the through hole, the portion of the non-uniform thickness portion where the plate thickness is small is the same as the thick portion. Insert a slide tool having a tip surface protruding toward the surface, and apply hydraulic pressure to the other surface of the uneven thickness portion with the inner surface of the mold abutting against one surface of the uneven thickness portion. In addition, the slide tool is displaced in a direction to retract from the uneven thickness portion, and a portion of the uneven thickness portion corresponding to the punch hole is pushed into the punch hole by the hydraulic pressure. The manufacturing method of the metal member which has a through-hole in any one of Claims 1-3 . スライド工具の先端面のうちで最も突出した部分を金型の内面と一致する部分に位置させる事によりこの先端面を肉厚不均一部分の片面に、この肉厚不均一部分のうちで板厚が小さい側で当接させ、同じく大きい側で隙間を介して対向させた状態から上記スライド工具を抜き孔の内側で上記肉厚不均一部分から退避させる方向に変位させる事により通孔を形成する、請求項1と、請求項3と、請求項1又は請求項3を引用した請求項4とのうちの何れか1項に記載した通孔を有する金属製部材の製造方法。 By positioning the most protruding part of the tip surface of the slide tool at the part that matches the inner surface of the mold, this tip surface is placed on one side of the uneven thickness part, and the thickness of the uneven thickness part is the plate thickness. The through tool is formed by displacing the slide tool in the direction of retracting from the non-uniform thickness portion inside the punched hole from the state where it is abutted on the small side and facing the gap on the large side. The manufacturing method of the metal member which has a through-hole described in any one of Claim 1, Claim 3, and Claim 4 which referred to Claim 1 or Claim 3 . スライド工具の先端面のうちで最も突出した部分を金型の内面から突出させ、最も突出していない部分をこの内面と一致若しくはこの内面よりも凹んだ部分に位置させると共に、上記先端面を上記スライド工具の先端部に倣って屈曲した肉厚不均一部分の片面に当接させた状態から、このスライド工具を抜き孔の内側で上記肉厚不均一部分から退避させる方向に変位させる事により通孔を形成する、請求項1と、請求項3と、請求項1又は請求項3を引用した請求項4とのうちの何れか1項に記載した通孔を有する金属製部材の製造方法。 The most projecting portion of the tip surface of the slide tool is projected from the inner surface of the mold, and the least projecting portion is positioned at a portion that coincides with or is recessed from the inner surface, and the tip surface is slid. By moving the slide tool in the direction of retreating from the non-uniform thickness portion inside the punch hole from the state where it is in contact with one surface of the non-uniform thickness portion bent along the tip of the tool The manufacturing method of the metal member which has a through-hole as described in any one of Claim 1, Claim 3, and Claim 4 which quoted Claim 1 or Claim 3 which forms. 肉厚不均一部分の一部で板厚が漸次変化している部分が、ハイドロフォーム工法により素材の一部を膨らませて成る膨出部の側壁である、請求項1〜6のうちの何れか1項に記載した通孔を有する金属製部材の製造方法。 Some at the portion where the plate thickness is gradually changed in the thickness uneven part, a side wall of the bulge portion formed by inflating a part of the material by hydroforming method, any one of claims 1 to 6 A method for producing a metal member having a through-hole described in item 1. 金属製部材が、中空管の一部をハイドロフォーム工法により径方向外方に膨らませ、この膨らませて成る膨出部の側壁部に通孔を形成したステアリングコラムであり、この膨出部の加工作業に続いてこの通孔の形成作業を行なう、請求項7に記載した通孔を有する金属製部材の製造方法。 A metal member is a steering column in which a part of a hollow tube is expanded radially outward by a hydroforming method, and a through hole is formed in a side wall portion of the expanded portion formed by the expansion. Processing of the expanded portion The method for producing a metal member having a through hole according to claim 7 , wherein the through hole is formed following the work. 中空管の中心軸を含み、膨出部が膨出している方向と直角方向に拡がる仮想平面を考えた場合に、通孔全体を、この仮想平面から上記膨出している方向に外れた位置に形成する、請求項8に記載した通孔を有する金属製部材の製造方法。 When considering a virtual plane that includes the central axis of the hollow tube and expands in a direction perpendicular to the direction in which the bulging portion bulges, the position where the entire through hole deviates from the virtual plane in the bulging direction. The manufacturing method of the metal member which has the through-hole described in Claim 8 formed in this. 膨らませた部分と膨らませていない部分とが、傾斜部又は段差部を介して連続しており、通孔のうちの少なくとも一部を、この傾斜部又は段差部に形成する、請求項8〜9のうちの何れか1項に記載した通孔を有する金属製部材の製造方法。 And inflatable portion and inflatable are not part is continuous through an inclined portion or the stepped portion, at least a portion of the through hole, is formed in the inclined portion or the stepped portion of claim 8-9 The manufacturing method of the metal member which has a through-hole described in any one of them.
JP2006025296A 2005-02-15 2006-02-02 Method for producing metal member having through hole Active JP4879596B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006025296A JP4879596B2 (en) 2005-02-15 2006-02-02 Method for producing metal member having through hole
CN2006800015000A CN101090780B (en) 2005-02-15 2006-02-14 Metal member with through hole and method of manufacturing the same
KR1020077011646A KR100948711B1 (en) 2005-02-15 2006-02-14 Metal member with through hole and method of manufacturing the same
US11/791,848 US8459077B2 (en) 2005-02-15 2006-02-14 Manufacturing method for metal member with through hole
PCT/JP2006/302543 WO2006088023A1 (en) 2005-02-15 2006-02-14 Metal member with through hole and method of manufacturing the same
EP06713684.6A EP1852196B1 (en) 2005-02-15 2006-02-14 Method of manufacturing a metal member with through hole
PL06713684T PL1852196T3 (en) 2005-02-15 2006-02-14 Method of manufacturing a metal member with through hole

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005037851 2005-02-15
JP2005037851 2005-02-15
JP2005040175 2005-02-17
JP2005040175 2005-02-17
JP2006025296A JP4879596B2 (en) 2005-02-15 2006-02-02 Method for producing metal member having through hole

Publications (3)

Publication Number Publication Date
JP2006255785A JP2006255785A (en) 2006-09-28
JP2006255785A5 JP2006255785A5 (en) 2009-02-26
JP4879596B2 true JP4879596B2 (en) 2012-02-22

Family

ID=36916429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025296A Active JP4879596B2 (en) 2005-02-15 2006-02-02 Method for producing metal member having through hole

Country Status (6)

Country Link
EP (1) EP1852196B1 (en)
JP (1) JP4879596B2 (en)
KR (1) KR100948711B1 (en)
CN (1) CN101090780B (en)
PL (1) PL1852196T3 (en)
WO (1) WO2006088023A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296835B1 (en) * 2009-08-05 2014-01-15 GI.DI. Meccanica S.p.A. A method for obtaining an opening in a hollow-body member and equipment for implementing the same
CN102791559B (en) 2011-02-25 2015-05-20 日本精工株式会社 Steering column device
JP5408176B2 (en) * 2011-04-05 2014-02-05 日本精工株式会社 Manufacturing method of steering column
JP5494587B2 (en) * 2011-08-01 2014-05-14 日本精工株式会社 Telescopic steering device
WO2013039102A1 (en) * 2011-09-16 2013-03-21 松陽産業株式会社 Method for forming holes in sheet-like material and hole-forming device
JP5899913B2 (en) * 2011-12-27 2016-04-06 新日鐵住金株式会社 Bogie frame for railcar and manufacturing method, and bogie equipped with the bogie frame
JP6003395B2 (en) * 2012-08-23 2016-10-05 日本精工株式会社 Telescopic steering device
CN104338818B (en) * 2013-08-01 2016-12-28 浙江摩多巴克斯科技股份有限公司 A kind of internal high pressure forming equipment
NL1040477C2 (en) * 2013-11-01 2015-05-04 Bosch Gmbh Robert Method for manufacturing a transverse segment for a pushbelt for a continuously variable transmission and a transverse segment thus obtained.
CN106694690A (en) * 2016-11-16 2017-05-24 东莞汉旭五金塑料科技有限公司 Hollow tube hold forming stamping die
WO2019003333A1 (en) * 2017-06-28 2019-01-03 貴嗣 飯塚 Method for cutting metal plate, method for manufacturing metal molding, and metal molding
JP7115354B2 (en) * 2019-02-15 2022-08-09 トヨタ自動車株式会社 Steering support fixing method and fixing device, deformation confirmation method of instrument panel reinforcement main body
CN110107013A (en) * 2019-06-06 2019-08-09 江门格瑞德光电科技有限公司 A kind of suspended ceiling with lighting effects
CN112692150A (en) * 2020-12-11 2021-04-23 星火智慧(杭州)信息科技有限公司 Divide water collector internal expanding machine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6615105A (en) * 1965-11-09 1967-05-10
US3495486A (en) * 1967-06-09 1970-02-17 Western Electric Co Methods of simultaneously cutting portions of a member having differing resistances to cutting action
JPS55144334A (en) * 1979-04-27 1980-11-11 Nippon Baruji Kogyo Kk Liquid pressure bulging method
US5890387A (en) 1989-08-24 1999-04-06 Aquaform Inc. Apparatus and method for forming and hydropiercing a tubular frame member
JPH08276852A (en) 1995-04-03 1996-10-22 Nippon Seiko Kk Tilt steering device
US5816089A (en) * 1996-11-26 1998-10-06 Dana Corporation Hydroforming apparatus having in-die hole piercing capabilities and a slug ejection system using hydroforming fluid
US7047786B2 (en) * 1998-03-17 2006-05-23 Stresswave, Inc. Method and apparatus for improving the fatigue life of components and structures
JP2000280032A (en) * 1999-03-30 2000-10-10 Kawasaki Steel Corp Steel pipe for fluid pressure molding and manufacture method thereof
JP3676619B2 (en) 1999-06-14 2005-07-27 日産自動車株式会社 Hydraulic hole punching method for cylindrical members
JP2001246430A (en) * 2000-03-02 2001-09-11 Somic Ishikawa Inc Holed cylindrical body and its working method
DE10016208C1 (en) 2000-03-31 2001-10-04 Schuler Hydroforming Gmbh & Co Cutting section from hollow component during high internal pressure deformation process, employs plunger spring-loaded to snap back abruptly
JP3738659B2 (en) * 2000-04-24 2006-01-25 住友金属工業株式会社 Piercing method and mold and hydraulic bulge processing component in hydraulic bulge processing of metal pipe
JP2004098069A (en) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd Method and device for hydraulic punching of hollow member
JP2004203133A (en) * 2002-12-24 2004-07-22 Nsk Ltd Steering column device and method for manufacturing steering column
JP2004337861A (en) * 2003-05-13 2004-12-02 Sango Co Ltd Piercing-working method in hydraulic-pressure bulge-working of pipe
DE10328452B3 (en) * 2003-06-25 2004-12-09 Daimlerchrysler Ag Production of a hole on the outer periphery of a closed hollow profile having high inner pressure comprises moving a stamp in a guiding hole of a deforming tool with a drive part and subjecting the stamp to drive contours of the drive part
JP4855928B2 (en) * 2004-02-20 2012-01-18 住友金属工業株式会社 Hydroform processing method and mold used therefor
JP5017870B2 (en) * 2006-02-01 2012-09-05 日本精工株式会社 Steering device

Also Published As

Publication number Publication date
EP1852196B1 (en) 2013-04-24
WO2006088023A1 (en) 2006-08-24
PL1852196T3 (en) 2013-10-31
KR20070084481A (en) 2007-08-24
EP1852196A1 (en) 2007-11-07
KR100948711B1 (en) 2010-03-22
CN101090780B (en) 2010-04-21
EP1852196A4 (en) 2010-04-21
CN101090780A (en) 2007-12-19
JP2006255785A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4879596B2 (en) Method for producing metal member having through hole
US8459077B2 (en) Manufacturing method for metal member with through hole
KR102252568B1 (en) Self-piercing rivet and self-piercing riveting method and self-piercing riveted joint
KR101118815B1 (en) Punching method and punching device employing hydro-form and hydro-formed part and structure body
US10876565B2 (en) Self-piercing rivet
JPWO2006126622A1 (en) Drilling method and drilling device
KR100899740B1 (en) Hydroformed part, hydroforming method, and mold used for the hydroforming method
JP2007105788A (en) Piercing method and counterpunch used therefor
US7127924B1 (en) Double action punch assembly for hydroforming die
JP2005297060A (en) Method for piercing hole by hydroforming method, piercing dies, and product manufactured by hydroforming method
US10702913B2 (en) Welding auxiliary joining part, matrixes for placing the welding auxiliary joining part, and connection and production methods for the welding auxiliary joining part and the matrixes
US10265751B2 (en) Method and device for achieving long collar lengths
JP4696334B2 (en) Hydroform method
EP3006133B1 (en) Method for producing steel pipe
JP2006110609A (en) Connecting structure
JP4456459B2 (en) Hydroform processing method, hydroformed product and structure
WO2006126622A1 (en) Punching method and punching device
JP2004098069A (en) Method and device for hydraulic punching of hollow member
JP2001300652A (en) Piercing method and die in hydraulic bulging of metal tube
KR101314353B1 (en) Multipart punch for hydro piercing
JP2005088010A (en) Method for producing joint member, and metallic mold apparatus for the production
JP4316576B2 (en) Anchor block for vehicle parking brake
US20220193790A1 (en) Drilling processing method using press
WO2022195057A1 (en) Self-piercing rivet and self-piercing riveted joint
JP2009012018A (en) Pressure punching and cutting method for metallic material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4879596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350