JP4879567B2 - Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby - Google Patents
Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby Download PDFInfo
- Publication number
- JP4879567B2 JP4879567B2 JP2005339789A JP2005339789A JP4879567B2 JP 4879567 B2 JP4879567 B2 JP 4879567B2 JP 2005339789 A JP2005339789 A JP 2005339789A JP 2005339789 A JP2005339789 A JP 2005339789A JP 4879567 B2 JP4879567 B2 JP 4879567B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- less
- powder
- sialon
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、紫外線乃至青色光で励起され、可視光線を発するサイアロン蛍光体の製造方法と、それで得られる蛍光体、更に前記蛍光体を用いた照明器具、特に白色LEDに関する。 The present invention relates to a method for producing a sialon phosphor that is excited by ultraviolet or blue light and emits visible light, a phosphor obtained by the method, and a lighting device using the phosphor, particularly a white LED.
蛍光体として、母体材料にケイ酸塩、リン酸塩、アルミン酸塩、硫化物を用い発光中心に遷移金属もしくは希土類金属を用いたものが広く知られている。一方、白色LEDについては、紫外線乃至青色光などの高いエネルギーを有した励起源により励起されて可視光線を発するものが注目され、開発が進んでいる。しかしながら、前記した従来の蛍光体では、励起源に曝される結果として、蛍光体の輝度が低下するという問題がある。輝度低下の少ない蛍光体として、最近、結晶構造が安定で、励起光や発光を長波長側にシフトできる材料であることから、窒化物や酸窒化物蛍光体が注目されている。 As phosphors, silicates, phosphates, aluminates, and sulfides are used as a base material, and transition metals or rare earth metals are used as emission centers. On the other hand, white LEDs that are excited by an excitation source having high energy such as ultraviolet light or blue light to emit visible light have been attracting attention and are being developed. However, the above-described conventional phosphor has a problem in that the luminance of the phosphor decreases as a result of exposure to the excitation source. Nitride and oxynitride phosphors have recently attracted attention as phosphors with low luminance reduction because they have a stable crystal structure and can shift excitation light and light emission to the longer wavelength side.
窒化物、酸窒化物蛍光体として、特定の希土類元素を付活させたα型サイアロンは、有用な蛍光特性を有することが知られており、白色LED等への適用が検討されている(特許文献1〜5、非特許文献1参照)。
また、希土類元素を付活させたCa2(Si,Al)5N8、CaSiAlN3又はβ型サイアロンも、同様の蛍光特性を有することが見出されている(特許文献6、非特許文献2,3参照)。
他にも、窒化アルミニウム、窒化ケイ素マグネシウム、窒化ケイ素カルシウム、窒化ケイ素バリウム、窒化ガリウム、窒化ケイ素亜鉛、等の窒化物や酸窒化物を母体材料とした蛍光体が提案されている。 In addition, a phosphor using a nitride or oxynitride such as aluminum nitride, magnesium magnesium nitride, calcium calcium nitride, silicon barium nitride, gallium nitride, or silicon zinc nitride as a base material has been proposed.
α型サイアロンは、α型窒化ケイ素の固溶体であり、結晶格子間に特定の元素(Ca、並びにLI、Mg、Y、又はLaとCeを除くランタニド金属)が侵入固溶し、電気的中性を保つために、Si−N結合が部分的にAl−N結合とAl−O結合で置換されている構造を有している。侵入固溶する元素の一部を発光中心となる希土類元素とすることにより、蛍光特性が発現する。 α-type sialon is a solid solution of α-type silicon nitride, and specific elements (Ca and LI, Mg, Y, or lanthanide metals excluding La and Ce) enter the solid solution between crystal lattices. In order to maintain this, the Si—N bond is partially substituted with an Al—N bond and an Al—O bond. Fluorescence characteristics are manifested by using a rare earth element as a light emission center for a part of the intruding solid solution element.
α型サイアロンは、窒化ケイ素、窒化アルミニウム、必要に応じて酸化アルミニウム、及び侵入固溶する元素の酸化物等からなる混合粉末を窒素中の高温で焼成することにより得られる。窒化ケイ素とアルミニウム化合物の比率と、侵入固溶させる元素の種類、並びに発光中心となる元素の割合等により、多様な蛍光特性が得られる。 The α-sialon is obtained by firing a mixed powder composed of silicon nitride, aluminum nitride, aluminum oxide if necessary, and oxides of intruding solid solution elements at a high temperature in nitrogen. Various fluorescent characteristics can be obtained depending on the ratio of silicon nitride and aluminum compound, the type of element that enters and dissolves, the ratio of the element that becomes the emission center, and the like.
β型サイアロンは、β型窒化ケイ素の固溶体であり、β型窒化ケイ素のSi位置にAlが、N位置にOが置換固溶したものである。単位胞に2式量の原子があるので、一般式として、Si6−ZAlZOZN8−Zが用いられる。ここで、組成Zは0〜4.2であり、固溶範囲は非常に広く、また(Si、Al)/(N、O)のモル比は、3/4を維持する必要がある。そこで、一般的に原料としては、窒化ケイ素の他に、酸化ケイ素と窒化アルミニウムとを、或いは酸化アルミニウムと窒化アルミニウムとを加えて加熱することでβ型サイアロンが得られる。 β-type sialon is a solid solution of β-type silicon nitride, in which Al is substituted at the Si position of O and silicon is substituted at the N position. Since there are two formula quantities of atoms in the unit cell, Si 6 -Z Al Z O Z N 8-Z is used as a general formula. Here, the composition Z is 0 to 4.2, the solid solution range is very wide, and the molar ratio of (Si, Al) / (N, O) needs to be maintained at 3/4. Therefore, as a raw material, β-sialon can be obtained by heating by adding silicon oxide and aluminum nitride, or aluminum oxide and aluminum nitride in addition to silicon nitride.
β型サイアロンの結晶構造内にEuイオンを充分固溶させると、紫外から青色の光で励起され、500〜550nmの緑〜黄色光の発光を示す。 When Eu ion is sufficiently dissolved in the crystal structure of β-sialon, it is excited by ultraviolet to blue light and emits green to yellow light of 500 to 550 nm.
ところで、白色LEDの白色光は、単色光とは異なり複数の色の組み合わせが必要であり、一般的な白色LEDは、紫外LED又は青色LEDとそれらの光を励起源とし、可視光を発する蛍光体との組み合わせにより構成されている。従って蛍光体が発する光の色調にばらつきが存すると、LEDが発する白色光の色調もばらついてしまう。 By the way, the white light of a white LED requires a combination of a plurality of colors unlike a monochromatic light, and a general white LED is a fluorescent light that emits visible light using an ultraviolet LED or a blue LED and their light as an excitation source. Consists of a combination with the body. Therefore, if there is variation in the color tone of the light emitted from the phosphor, the color tone of the white light emitted from the LED also varies.
信号灯、標識灯に用いられる有色光とは異なり、白色光は物を明るく照らす照明用の光として用いられることが多い。白色光の色調にばらつきが有ると、照らされる物の色もばらついてしまい、物の色を正しく映し出すことができなくなってしまう。従って、白色LEDを照明器具として用いる場合、色調のばらつきを解消することが重要な課題になる。 Unlike colored light used for signal lights and marker lights, white light is often used as illumination light to illuminate objects brightly. If there is a variation in the color tone of white light, the color of the illuminated object will also vary, and the color of the object cannot be projected correctly. Therefore, when using white LED as a lighting fixture, it becomes an important subject to eliminate variation in color tone.
白色LEDの色調ばらつきの原因になるサイアロン蛍光体の色調ばらつきは、サイアロン蛍光体の組成ばらつきによるところが大きい。この組成ばらつきを低減する方法として、従来は原料粉末混合の均一性を向上させる方法が検討されてきた。例えばセラミックス製ボール等を可動式の混合媒体として用い、しかも原料粉末を有機溶剤等の液体の分散媒に分散させることにより混合の均一性を向上させる湿式混合法であり、代表的なものは湿式ボールミル混合法や湿式振動ミル混合法などである。 The variation in the color tone of the sialon phosphor that causes the variation in the color tone of the white LED is largely due to the variation in the composition of the sialon phosphor. As a method for reducing this composition variation, conventionally, a method for improving the uniformity of the raw material powder mixing has been studied. For example, it is a wet mixing method that improves the uniformity of mixing by using ceramic balls or the like as a movable mixing medium and dispersing the raw material powder in a liquid dispersion medium such as an organic solvent. Ball mill mixing method or wet vibration mill mixing method.
これらの方法は、原料混合の均一性向上には有効である反面、湿式混合であるために、容器に充填して窒素雰囲気又は非酸化雰囲気において加熱処理を行う前に、原料の乾燥が必要になる。この乾燥時において原料粉末は凝集しやすくなるが、一旦凝集した粉末はその後解砕しても、窒素雰囲気又は非酸化雰囲気において加熱処理を行う際に成分中の特定元素が局所的に集中する、いわゆる偏析が生じやすくなる。この偏析によって、得られるサイアロン蛍光体の組成にばらつきが生じてしまい、折角の原料均一混合の効果が損なわれてしまう問題があった。 While these methods are effective for improving the uniformity of the raw material mixing, they are wet mixing, so that the raw material needs to be dried before filling the container and performing the heat treatment in a nitrogen atmosphere or a non-oxidizing atmosphere. Become. The raw material powder easily aggregates during this drying, but even if the aggregated powder is then crushed, the specific elements in the components are locally concentrated when heat treatment is performed in a nitrogen atmosphere or a non-oxidizing atmosphere. So-called segregation is likely to occur. Due to this segregation, the composition of the obtained sialon phosphor varies, and there is a problem that the effect of uniform mixing of raw materials at the corners is impaired.
原料乾燥の弊害を防ぐために、液体の分散媒を用いない乾式法で、可動式の混合媒体のみを用いる乾式ボールミル混合法や乾式振動ミル混合法が用いられる。これらの方法は、混合の均一性こそ湿式法には劣るものの、乾燥せずそのまま加熱処理できるため、成分元素の偏析は生じにくくなる。しかしながら乾式で可動式の混合媒体を用いた場合、混合時における媒体同士の衝突エネルギーが大きくなるため媒体の成分が不純物として原料に混入しやすくなる。これらの不純物は蛍光体の発光特性そのものを低下させてしまう問題があった。 In order to prevent the harmful effects of drying the raw material, a dry ball mill mixing method or a dry vibration mill mixing method using only a movable mixing medium is used as a dry method without using a liquid dispersion medium. In these methods, the uniformity of mixing is inferior to the wet method, but since the heat treatment can be performed as it is without drying, segregation of the component elements hardly occurs. However, when a dry and movable mixed medium is used, the energy of collision between the media during mixing increases, so that the components of the medium are easily mixed into the raw material as impurities. These impurities have a problem of deteriorating the light emission characteristics of the phosphor.
本発明は、前記従来技術の課題を解決することを意図したもので、サイアロン原料粉末の混合方法を種々検討した結果、特定の方法で原料を混合することによって従来技術の課題が解決できることを見出し、本発明を完成するに至った。 The present invention is intended to solve the above-described problems of the prior art, and as a result of various studies on the mixing method of sialon raw material powder, it has been found that the problems of the prior art can be solved by mixing the raw materials by a specific method. The present invention has been completed.
本発明は、窒化ケイ素粉末と、窒化アルミニウム粉末と、Eu含有化合物と、酸化アルミニウム粉末またはCa含有化合物とを混合してなる原料粉末を、窒素雰囲気又は非酸化雰囲気下で加熱してなるサイアロン粉末からなる蛍光体の製造方法であって、前記原料粉末を可動式の混合用媒体を用いずに乾式で混合した後、目開き250μm以下の篩を乾式で通過させ、これを解砕して45μm以下のサイズに分級し、かつ、これをさらに混合して45μm以下のサイズに分級することを特徴とする蛍光体の製造方法である。 The present invention relates to a sialon powder obtained by heating a raw material powder obtained by mixing a silicon nitride powder, an aluminum nitride powder, an Eu-containing compound, an aluminum oxide powder or a Ca-containing compound in a nitrogen atmosphere or a non-oxidizing atmosphere. The raw material powder is mixed by a dry method without using a movable mixing medium, then passed through a sieve having an opening of 250 μm or less, and crushed to 45 μm. The phosphor is classified into the following sizes, and further mixed to classify to a size of 45 μm or less.
本発明は、前記の蛍光体の製造方法で得られる蛍光体であって、サイアロン粉末が、一般式:(Ca、Eu)m/2(Si)12−(m+n)(Al)m+n(O)n(N)16−nで示されるα型サイアロンからなり、Si、Al、O、Nの変動係数がそれぞれ1%以下、3%以下、20%以下、1%以下であることを特徴とする蛍光体であり、好ましくは、更に、Ca、Euの変動係数が、それぞれ5%以下、20%以下であることを特徴とする前記の蛍光体である。 The present invention is a phosphor obtained by the method for producing a phosphor, wherein the sialon powder has a general formula: (Ca, Eu) m / 2 (Si) 12- (m + n) (Al) m + n (O) n (N) It is made of α-sialon represented by 16-n , and variation coefficients of Si, Al, O, and N are 1% or less, 3% or less, 20% or less, and 1% or less, respectively. Preferably, the phosphor is characterized in that the coefficient of variation of Ca and Eu is 5% or less and 20% or less, respectively.
本発明は、前記の蛍光体の製造方法で得られる蛍光体であって、サイアロン粉末が、一般式:Si6−ZAlZOZN8−Zで示されるβ型サイアロンを母体材料であり発光中心としてEuを固溶するものであり、Si、Al、O、Nの変動係数がそれぞれ1%以下、15%以下、20%以下、1%以下であることを特徴とする蛍光体であり、好ましくは、更に、Euの変動係数が20%以下であることを特徴とする前記の蛍光体である。 The present invention is a phosphor obtained by the above-described phosphor manufacturing method, wherein the sialon powder is a base material of β-sialon represented by the general formula: Si 6-Z Al Z O Z N 8-Z It is a phosphor in which Eu is dissolved as a light emission center, and variation coefficients of Si, Al, O, and N are 1% or less, 15% or less, 20% or less, and 1% or less, respectively. Preferably, the phosphor is characterized in that the coefficient of variation of Eu is 20% or less.
本発明は、発光光源と蛍光体から構成される照明器具において、前記の蛍光体を用いることを特徴とする照明器具であり、好ましくは、発光光源として紫外線又は可視光を用いることを特徴とする前記の照明器具である。 The present invention is a luminaire comprising the above-mentioned phosphor in a luminaire composed of a light-emitting light source and a phosphor. Preferably, ultraviolet light or visible light is used as the light-emitting light source. It is said lighting fixture.
本発明の蛍光体の製造方法は、組成変動の影響を受けやすいサイアロンからなる蛍光体粉末を、簡便で、従って、工程費用が掛からない方法で、製造ロット内の均一性を高くすることができるので、安価でバラツキの少ない粉末状のサイアロン蛍光体を提供することができる。 The phosphor production method of the present invention can increase the uniformity in the production lot by using a phosphor powder composed of sialon which is easily affected by composition fluctuations in a simple and low-cost manner. Therefore, it is possible to provide an inexpensive and powdery sialon phosphor with little variation.
本発明の蛍光体は、前記製造方法を適用して得られる、Euを含有するα型サイアロンからなる蛍光体であり、α型サイアロンが有する独自の結晶構造故に、Euが発光中心として機能し、紫外線又は可視光で効率良く励起されて、550〜600nmの黄色可視光領域にピークを有する発光を安定して生じる特徴があり、種々の照明器具、特に青色LEDや紫外LEDを光源とする白色LEDに好適である。 The phosphor of the present invention is a phosphor composed of α-sialon containing Eu obtained by applying the above production method, and Eu functions as an emission center because of the unique crystal structure of α-sialon. It is efficiently excited by ultraviolet rays or visible light, and stably emits light having a peak in the yellow visible light region of 550 to 600 nm, and is a white LED having various light fixtures, particularly blue LEDs and ultraviolet LEDs as light sources. It is suitable for.
本発明の蛍光体は、前記製造方法を適用して得られる、Euを含有するβ型サイアロンからなる蛍光体であり、β型サイアロンが有する独自の結晶構造故に、Euが発光中心として機能し、紫外線又は可視光で効率良く励起されて、500〜550nmの緑〜黄色可視光領域にピークを有する発光を安定して生じる特徴があり、種々の照明器具、特に青色LEDや紫外LEDを光源とする白色LEDに好適である。 The phosphor of the present invention is a phosphor made of β-sialon containing Eu obtained by applying the above manufacturing method, and Eu functions as a light emission center because of the unique crystal structure of β-sialon. Efficiently excited by ultraviolet light or visible light, and stably emits light having a peak in the green to yellow visible light region of 500 to 550 nm. Various light fixtures, particularly blue LEDs and ultraviolet LEDs are used as light sources. Suitable for white LED.
本発明の照明器具は、前記サイアロンからなる蛍光体を用いているが、サイアロンは熱的にも化学的にも安定であるため、蛍光体は高温で用いても輝度変化が少なく、また長寿命であるという特徴がある。α型サイアロンからなる蛍光体の場合には、波長440〜480nmの可視光を発することのできる青色LEDを発光光源に用いるときには、前記発光光源の光とα型サイアロンが発する蛍光との組み合わせにより白色光を容易に提供できるし、β型サイアロンの蛍光体の場合には、波長440〜480nmの可視光を発することのできる青色LEDや、波長350〜410nmの紫外光を発することのできる紫外LEDを発光光源に用い、前記発光光源の光とβ型サイアロン蛍光体及び必要に応じて赤色や青色の蛍光体を組み合わることにより白色光を容易に提供できる特徴があり、多様な用途に適用可能である。 The luminaire of the present invention uses the phosphor made of the sialon. However, since the sialon is thermally and chemically stable, the luminance of the phosphor is small even when used at a high temperature, and the lifetime is long. There is the feature that it is. In the case of a phosphor made of α-sialon, when a blue LED capable of emitting visible light having a wavelength of 440 to 480 nm is used as a light-emitting light source, a combination of the light from the light-emitting light source and the fluorescence emitted by the α-sialon is used. In the case of a β-type sialon phosphor, a blue LED capable of emitting visible light with a wavelength of 440 to 480 nm and an ultraviolet LED capable of emitting ultraviolet light with a wavelength of 350 to 410 nm can be provided. Used as a light-emitting light source, it has the feature that it can easily provide white light by combining the light from the light-emitting light source with β-type sialon phosphor and, if necessary, red or blue phosphor, and can be applied to various applications is there.
本発明の蛍光体の製造方法は、窒化ケイ素粉末と、窒化アルミニウム粉末、必要に応じて酸化アルミニウム粉末と、更に、Eu含有化合物と、必要に応じてCa含有化合物とを混合してなる原料粉末を、窒素雰囲気又は非酸化雰囲気下で加熱してなるサイアロン粉末からなる蛍光体に関する。然るに、当該製造方法によって得られるサイアロン蛍光体が微妙な組成変動を反映してその発光特性が変化することを防止することを課題としているからである。そして、本発明に於いては、前記原料粉末を配合し、可動式の混合用媒体を用いずに乾式で混合した後、目開き250μm以下の篩を乾式で通過させることにより製造ロット内での組成変動を極めて小さくし、実質的に発光特性にバラツキのない蛍光体粉末を安価に提供できる効果が得られる。 The phosphor production method of the present invention comprises a raw material powder obtained by mixing a silicon nitride powder, an aluminum nitride powder, an aluminum oxide powder as required, and an Eu-containing compound and, if necessary, a Ca-containing compound. The present invention relates to a phosphor made of sialon powder that is heated in a nitrogen atmosphere or a non-oxidizing atmosphere. However, this is because the sialon phosphor obtained by the manufacturing method has a problem of preventing the light emission characteristics from changing by reflecting subtle composition fluctuations. In the present invention, the raw material powder is blended, mixed in a dry method without using a movable mixing medium, and then passed through a sieve having an opening of 250 μm or less in a dry method. It is possible to obtain the effect that the composition fluctuation is extremely small and the phosphor powder having substantially no variation in emission characteristics can be provided at low cost.
可動式の混合媒体を用いずに乾式で原料を混合する具体的な方法としては、V型混合機、Wコーン型混合機、ロッキングミキサー等の転動式の混合機や、リボンブレンダー、ヘンシェルミキサー等の撹拌式の混合機等があげられるが、デッドスペースが生じず満遍なく混合されやすいことから、転動式の混合機が特に好ましい。 Specific methods of mixing raw materials without using a movable mixing medium include rolling mixers such as V-type mixers, W-corn type mixers, rocking mixers, ribbon blenders, and Henschel mixers. However, since a dead space does not occur and mixing is easy evenly, a rolling mixer is particularly preferable.
原料粉末は混合時に造粒されるが、サイアロンを得るために、このままで加熱処理を行うと、造粒粒子は焼結する。焼結時には原料中の主に酸素を含む成分によって液相が形成され、高温で活発に移動するため液相の偏析が生じやすく、その結果焼成物の組成にばらつきが生じやすくなる。本発明においては、加熱処理前に混合粉末を目開き250μm以下の篩を乾式で通過させるが、これによって造粒粒子は解砕されるので、加熱処理時に焼結しにくくなり、液相の偏析やそれに起因する焼成物組成のばらつきも生じにくくなる。 The raw material powder is granulated at the time of mixing, but if heat treatment is performed as it is to obtain sialon, the granulated particles are sintered. At the time of sintering, a liquid phase is formed by components mainly containing oxygen in the raw material and moves actively at a high temperature, so that the liquid phase is easily segregated, and as a result, the composition of the fired product tends to vary. In the present invention, the mixed powder is passed through a sieve having a mesh size of 250 μm or less before heat treatment, but the granulated particles are thereby crushed, which makes it difficult to sinter during the heat treatment and segregates the liquid phase. And variations in the composition of the fired product resulting therefrom are less likely to occur.
一方、湿式混合した原料も乾燥後に篩を乾式で通過させれば造粒は解砕されるが、乾燥時において、原料粉末の一次粒子が二次凝集する。この凝集力が乾式混合に比べて強いため、篩によって造粒粒子を解砕しても強い二次凝集は残存するため、加熱処理時の焼結による液相の偏析や、それに起因する焼成物組成のばらつきが生じやすい。本発明では、前記の理由から、混合過程に於いても、篩による工程と同じく、乾式であることが選択される。 On the other hand, if the wet-mixed raw material is also dried and passed through a sieve in a dry manner, the granulation is crushed, but the primary particles of the raw material powder are secondary agglomerated during drying. Since this cohesive force is stronger than that of dry mixing, strong secondary agglomeration remains even if the granulated particles are crushed with a sieve. Variations in composition are likely to occur. In the present invention, for the reason described above, the dry process is selected in the mixing process as well as the process using the sieve.
以下、α型サイアロンからなる蛍光体、β型サイアロンからなる蛍光体を製造することを念頭に、本発明を詳述する。 Hereinafter, the present invention will be described in detail with the intention of manufacturing a phosphor made of α-type sialon and a phosphor made of β-type sialon.
α型サイアロン蛍光体の組成は、一般式:(Ca、Eu)m/2(Si)12−(m+n)(Al)m+n(O)n(N)16−nで示されるが、蛍光特性を発現させるために、Eu含有量が0.1〜0.35at%であれば発光特性が確実に得られるので好ましい。 The composition of the α-type sialon phosphor is represented by the general formula: (Ca, Eu) m / 2 (Si) 12- (m + n) (Al) m + n (O) n (N) 16-n. In order to achieve expression, it is preferable that the Eu content is 0.1 to 0.35 at% because light emission characteristics can be reliably obtained.
多種類の元素によって構成されるα型サイアロン蛍光体粉末は、組成のばらつきに関連して、発する光の色調もばらついてしまう。発明者は、組成ばらつきと発光色調のばらつきの関係を調査し、その結果平均品位を決定する所定量の粉末(製造ロット)内における、各元素の含有量(質量%)のばらつきを示す変動係数を、Si、Al、O、Nについて、それぞれ1%以下、3%以下、20%以下、1%以下であるときに、サイアロン蛍光体の発光色調のばらつきが抑制できること、更に、Ca、Euの変動係数が、それぞれ5%以下、20%以下であるとき前記効果が一層顕著に達成できることを見いだし、本発明に至ったものである。尚、前記変動係数の算出に当たり、前記成分の合計を100質量%と規格化しておくと分析等の誤差を考慮外とすることができるので好ましい。 The α-sialon phosphor powder composed of many kinds of elements also varies in color tone of the emitted light in relation to the variation in composition. The inventor investigates the relationship between composition variation and emission color variation, and as a result, variation coefficient indicating variation in content (% by mass) of each element in a predetermined amount of powder (production lot) that determines the average quality. For Si, Al, O, and N, the variation in emission color tone of the sialon phosphor can be suppressed when the content is 1% or less, 3% or less, 20% or less, and 1% or less, respectively. It has been found that when the coefficient of variation is 5% or less and 20% or less, the effect can be achieved more remarkably, and the present invention has been achieved. In calculating the coefficient of variation, it is preferable to standardize the total of the components as 100% by mass because errors such as analysis can be excluded from consideration.
同様に、β型サイアロン蛍光体の組成は、一般式:Si6−ZAlZOZN8−Zで示されるが、蛍光特性を発現させるために、Eu含有量が0.05〜0.3at%であれば発光特性が確実に得られるので好ましい。 Similarly, the composition of the β-sialon phosphor, the general formula: is shown in Si 6-Z Al Z O Z N 8-Z, in order to express fluorescent properties, Eu content is from 0.05 to 0. If it is 3 at%, since the light emission characteristic is obtained reliably, it is preferable.
多種類の元素によって構成されるβ型サイアロン蛍光体粉末は、組成のばらつきに関連して、発する光の色調もばらついてしまう。発明者は、組成ばらつきと発光色調のばらつきの関係を調査し、製造ロット内における、各元素の含有量(質量%)のばらつきを示す変動係数を、Si、Al、O、Nのそれぞれが1%以下、15%以下、20%以下、1%以下であるときに、発光体の発光色調のばらつきが抑制でき好ましく、更に、Euの変動係数が20%以下であるときに一層前記効果が顕著に達成できることを見いだし、本発明に至ったものである。また、前記変動係数の算出に当たり、前記成分の合計を100質量%と規格化しておくと分析等の誤差を考慮外とすることができるので好ましい。 In the β-type sialon phosphor powder composed of many kinds of elements, the color tone of the emitted light varies depending on the variation in composition. The inventor investigated the relationship between the variation in composition and the variation in emission color tone, and the variation coefficient indicating the variation in the content (% by mass) of each element in the production lot is 1 for each of Si, Al, O, and N. % Or less, 15% or less, 20% or less, and 1% or less, it is possible to suppress the variation of the light emission color tone of the illuminant, and the above effect is more remarkable when the variation coefficient of Eu is 20% or less. Thus, the present invention has been found to be achieved. In calculating the coefficient of variation, it is preferable to standardize the total of the components as 100% by mass because errors such as analysis can be excluded.
本発明に於いては、αサイアロン或いはβサイアロンの所望組成に対応して、窒化ケイ素粉末と、窒化アルミニウム粉末、必要に応じて酸化アルミニウム粉末と、更に、Eu含有化合物と、必要に応じてCa含有化合物とを配合し、混合して得られる原料粉末を、前記操作をした後に、不純物の混入を抑えるために、少なくとも当該原料粉末が接する面が窒化硼素(BN)からなるルツボ等の容器内に充填し、窒素雰囲気中又は非酸化雰囲気中でα型サイアロンでは1600〜1800℃、β型サイアロンでは1820〜2200℃の温度で所定の時間加熱することによりα型サイアロン又はβ型サイアロンを得る。 In the present invention, according to the desired composition of α sialon or β sialon, a silicon nitride powder, an aluminum nitride powder, an aluminum oxide powder as required, an Eu-containing compound, and a Ca as required. In order to suppress mixing of impurities after the above operation, the raw material powder obtained by blending and mixing the containing compound is kept in a container such as a crucible where at least the surface in contact with the raw material powder is made of boron nitride (BN). In a nitrogen atmosphere or a non-oxidizing atmosphere, α-sialon or β-sialon is obtained by heating at a temperature of 1600-1800 ° C. for β-sialon and 1820-2200 ° C. for β-sialon for a predetermined time.
原料粉末の容器内への充填は、加熱処理中における粒子間の焼結を抑制する目的で、できるだけ嵩高く充填することが望ましい。具体的には、原料粉末の容器への充填率を40体積%以下にすることが望ましい。 The filling of the raw material powder into the container is desirably as bulky as possible for the purpose of suppressing sintering between particles during the heat treatment. Specifically, the filling rate of the raw material powder into the container is desirably 40% by volume or less.
加熱処理の温度については、α型サイアロンの場合には、加熱処理の温度が1600℃未満であると未反応生成物が多く存在したり、粒子の成長が不充分であったりするし、1800℃を超えると、粒子間の焼結が顕著になる。β型サイアロンの場合には、1820℃未満ではβ型サイアロン結晶構造中にEuが固溶できないし、2200℃を超えると原料やβ型サイアロンの分解を抑制するために高い雰囲気圧力が必要となり高圧容器を有する装置を必要とし、工業的に好ましくない。 As for the temperature of the heat treatment, in the case of α-sialon, if the temperature of the heat treatment is less than 1600 ° C., there are many unreacted products or insufficient particle growth, and 1800 ° C. If it exceeds, sintering between particles becomes remarkable. In the case of β-type sialon, Eu cannot be dissolved in the β-type sialon crystal structure below 1820 ° C., and if it exceeds 2200 ° C., high atmospheric pressure is required to suppress the decomposition of the raw material and β-type sialon. An apparatus having a container is required, which is industrially undesirable.
尚、加熱処理の時間については、未反応生成物が多く存在したり、Euの固溶が不十分であったり、一次粒子が成長不足であったり、あるいは粒子間の焼結が生じてしまったりといった不都合が生じない時間範囲が選択される。本発明者等の検討によれば、2〜24時間が好ましい範囲である。 Regarding the heat treatment time, there are many unreacted products, insufficient solid solution of Eu, insufficient growth of primary particles, or sintering between particles. A time range in which such an inconvenience does not occur is selected. According to the study by the present inventors, 2 to 24 hours is a preferable range.
上記した操作で得られるα型サイアロン並びにβ型サイアロンは、緩く凝集した塊状であるため、これを解砕し、必要に応じて分級処理と組み合わせて所定のサイズの粉末にし、更に必要ならば混合して、製造ロット化した後、種々の用途へ適用される粉末状蛍光体となる。 The α-type sialon and β-type sialon obtained by the above operation are loosely agglomerated lumps, so they are crushed and combined with a classification treatment as necessary to obtain a powder of a predetermined size, and further mixed if necessary. Thus, after making a production lot, it becomes a powdery phosphor applied to various uses.
粉末状蛍光体の平均品位を決める製造ロット化は、粉末製造時において処理可能な最大量を上限として定められることが多く、例えば、原料混合工程、焼成工程及び解砕、分級、混合等の後処理工程を経て製造される粉末は、1回の原料混合、1回の焼成又は1回の解砕、分級もしくは混合を基準にロットが定められる。従って、基準とする工程の種類や使用する設備の規模等によって、ロットの規模も異なる。 Production lots that determine the average quality of powdered phosphors are often determined with the maximum amount that can be processed during powder production as the upper limit. For example, after the raw material mixing step, firing step and crushing, classification, mixing, etc. The powder produced through the treatment process is determined in lots based on one raw material mixing, one firing or one crushing, classification or mixing. Accordingly, the scale of the lot varies depending on the type of process used as a reference and the scale of equipment used.
サイアロン蛍光体粉末は厳密な品質が要求されるため、実質上の最終工程である混合工程によって製造ロット化を行うことが一般的であり、また製造ロットの規模も品質管理の便宜上1〜数kg程度の比較的小規模である。 Since sialon phosphor powders require strict quality, it is common to make production lots by the mixing process, which is the actual final process, and the scale of the production lot is also 1 to several kg for the convenience of quality control. It is relatively small.
同一製造ロット(以下、単に「ロット」という。)内における粉末の品質ばらつきは通常以下の方法で求められる。先ず、ロットの複数個所から評価用サンプルを採集し、それら全サンプルについて分析、評価を行う。次に分析値、評価値の平均値(m)及び標準偏差(σ)を求め、標準偏差を平均値で除した値を百分率で表すことによって変動係数(CV)を求める。 The powder quality variation within the same production lot (hereinafter simply referred to as “lot”) is usually determined by the following method. First, samples for evaluation are collected from a plurality of locations in the lot, and all the samples are analyzed and evaluated. Next, an average value (m) and a standard deviation (σ) of analysis values and evaluation values are obtained, and a coefficient of variation (CV) is obtained by expressing a value obtained by dividing the standard deviation by the average value as a percentage.
サンプリングは、JIS M 8100−1992(粉塊混合物−サンプリング方法通則)、6.5.2項(インクリメント縮分方法)に準じて行うことができる。サンプリングの個数は、1ロットの粉末全量を所定の厚さに広げた後、同項における小口試料に準じて均等に10区分とし、各々の区分から所定のインクリメント縮分用スコップを用いてサンプリングすることができる。 Sampling can be performed according to JIS M 8100-1992 (powder mixture-general sampling method), Section 6.5.2 (increment reduction method). The number of samples is expanded to a predetermined thickness for the total amount of powder in one lot, and is equally divided into 10 categories according to the small sample in the same section, and sampling is performed from each category using a predetermined incremental reduction scoop. be able to.
上記サンプルの成分分析は、Ca、Eu、Si、Alの金属元素については蛍光X線分析装置(XRF)や誘導結合プラズマ発光分析装置(ICP)等、O及びNについては酸素窒素分析装置等を用いて行うことができる。尚、分析時には測定誤差が生じるが、サンプル間のばらつきに起因する偏差と比較すると著しく小さいため、無視し得る。 Component analysis of the above samples is performed using a fluorescent X-ray analyzer (XRF) or inductively coupled plasma emission analyzer (ICP) for the metallic elements Ca, Eu, Si, and Al, and an oxygen nitrogen analyzer for O and N. Can be used. Although a measurement error occurs during analysis, it can be ignored because it is significantly smaller than the deviation caused by the variation between samples.
α型サイアロン蛍光体は、発光光源と蛍光体から構成される照明器具に使用され、特に440〜480nmの波長を含有している可視光を励起源として照射することにより、550〜600nmの範囲の波長にピークを持つ発光特性を有するので、青色LEDとの組み合わせにより、容易に白色光が得られるという特徴がある。又α型サイアロンは、高温にさらしても劣化せず、更に耐熱性に優れており酸化雰囲気及び水分環境下における長期間の安定性にも優れているので、これらを反映して当該照明器具が高輝度で長寿命になるという特徴を有する。 The α-type sialon phosphor is used in a lighting fixture composed of a light emission source and a phosphor, and in particular, by irradiating visible light containing a wavelength of 440 to 480 nm as an excitation source, a range of 550 to 600 nm. Since it has a light emission characteristic having a peak in wavelength, white light can be easily obtained by combination with a blue LED. In addition, α-sialon does not deteriorate even when exposed to high temperatures, has excellent heat resistance, and excellent long-term stability in an oxidizing atmosphere and moisture environment. It is characterized by high brightness and long life.
また、β型サイアロン蛍光体は、発光光源と蛍光体から構成される照明器具に使用され、特に350〜500nmの波長を含有している紫外光や可視光を励起源として照射することにより、500〜550nmの範囲の波長にピークを持つ発光特性を有するので、紫外LED又は青色LED並びに必要に応じて赤色及び/又は青色蛍光体との組み合わせにより、容易に白色光が得られるという特徴がある。又β型サイアロンは、高温にさらしても劣化せず、更に耐熱性に優れており酸化雰囲気及び水分環境下における長期間の安定性にも優れているので、これらを反映して当該照明器具が高輝度で長寿命になるという特徴を有する。 In addition, the β-type sialon phosphor is used in a lighting fixture composed of a light source and a phosphor, and in particular, by irradiating ultraviolet light or visible light containing a wavelength of 350 to 500 nm as an excitation source, 500 Since it has a light emission characteristic having a peak at a wavelength in the range of ˜550 nm, there is a feature that white light can be easily obtained by combining with an ultraviolet LED or a blue LED and, if necessary, a red and / or blue phosphor. In addition, β-sialon does not deteriorate even when exposed to high temperatures, has excellent heat resistance, and has excellent long-term stability in an oxidizing atmosphere and moisture environment. It is characterized by high brightness and long life.
白色光を発する照明器具の主な用途は、物を照らす光の発光であるので、物の色を正しく反映するために安定した色調が要求される。このため発光光源である青色LEDだけでなく蛍光体であるα型サイアロン或いはβ型サイアロンに対しても、ばらつきの少ない安定した発光色調が要求される。 Since the main use of the luminaire that emits white light is emission of light that illuminates an object, a stable color tone is required to correctly reflect the color of the object. For this reason, not only a blue LED as a light emission source but also an α-type sialon or β-type sialon as a phosphor is required to have a stable emission color tone with little variation.
蛍光体の色調は、JIS Z 8724−1997(色の測定方法−光源色)、4項(分光測色方法)によって測定することができる。この方法によって蛍光体の発光分光分布を測定し、さらに色度座標値(x,y)を求め、これを比較することによって色調のばらつきを知ることができる。 The color tone of the phosphor can be measured according to JIS Z 8724-1997 (color measurement method-light source color) and item 4 (spectral colorimetry method). By measuring the emission spectral distribution of the phosphor by this method, further obtaining the chromaticity coordinate value (x, y), and comparing them, the variation in color tone can be known.
本発明の照明器具は、少なくとも一つの発光光源と本発明の蛍光体を用いて構成される。本発明の照明器具としては、LED、蛍光ランプなどが含まれ、例えば、特開平5−152609号公報、特開平7−99345号公報、特許第2927279号公報などに記載されている公知の方法により、本発明の蛍光体を用いてLEDを製造することが出来る。なお、この場合において、発光光源は350〜500nmの波長の光を発する紫外LED又は青色LED、特に好ましくは440〜480nmの波長の光を発する青色LEDを用いることが好ましく、これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整する事により所定の波長の光を発する発光光源となりうる。 The luminaire of the present invention is configured using at least one light-emitting light source and the phosphor of the present invention. The lighting fixture of the present invention includes an LED, a fluorescent lamp, etc., for example, by a known method described in JP-A-5-152609, JP-A-7-99345, JP-A-2927279, etc. An LED can be manufactured using the phosphor of the present invention. In this case, it is preferable to use an ultraviolet LED or a blue LED that emits light with a wavelength of 350 to 500 nm, particularly preferably a blue LED that emits light with a wavelength of 440 to 480 nm, as these light emitting elements. GaN, InGaN, and other nitride semiconductors can be used, and by adjusting the composition, a light emitting source that emits light of a predetermined wavelength can be obtained.
照明器具において、本発明のα型サイアロンからなる蛍光体を単独で使用する方法以外に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する照明器具を構成することも出来る。特に青色LEDを励起源とした場合、本発明のα型サイアロンからなる蛍光体とピーク波長が500〜550nmの緑〜黄色光の発光を示す蛍光体との組み合わせる時に、幅広い色温度の白色発光が可能となる。この様な蛍光体としては、Euが固溶したβ型サイアロンが挙げられる。また、更にCaSiAlN3:Eu等の赤色蛍光体と組み合わせることにより、演色性の向上が達成される。 In addition to the method of using the α-sialon phosphor of the present invention alone in a lighting fixture, a lighting fixture that emits a desired color can also be configured by using in combination with a phosphor having other light emission characteristics. . In particular, when a blue LED is used as an excitation source, white light emission with a wide color temperature is generated when the phosphor comprising the α-sialon of the present invention is combined with a phosphor exhibiting green to yellow light emission having a peak wavelength of 500 to 550 nm. It becomes possible. An example of such a phosphor is β-sialon in which Eu is dissolved. Further, by combining with a red phosphor such as CaSiAlN 3 : Eu, an improvement in color rendering is achieved.
また、照明器具において、本発明の蛍光体を単独で使用する方法以外に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する照明器具を構成することも出来る。特に青色LEDを励起源とした場合、本発明の蛍光体とCaSiAlN3:Eu等の赤色蛍光体と組み合わせることにより、幅広い色温度の白色発光が可能となる。又紫外LEDを励起源とした場合、青色光の発光を示す蛍光体及び赤色蛍光体と組み合わせる時に、幅広い色温度に加えて演色性の向上が達成される。 In addition, in addition to the method of using the phosphor of the present invention alone in a lighting fixture, a lighting fixture that emits a desired color can be configured by using it together with a phosphor having other light emission characteristics. In particular, when a blue LED is used as an excitation source, white light emission with a wide color temperature can be achieved by combining the phosphor of the present invention with a red phosphor such as CaSiAlN 3 : Eu. In addition, when an ultraviolet LED is used as an excitation source, when combined with a phosphor that emits blue light and a red phosphor, an improvement in color rendering is achieved in addition to a wide color temperature.
(実施例1)電気化学工業社製α型窒化珪素粉末(9FWグレード)69.9質量%、トクヤマ社製窒化アルミニウム粉末(Fグレード)17.1質量%、関東化学社製炭酸カルシウム粉末(特級試薬)6.7質量%、和光純薬社製フッ化カルシウム粉末(特級試薬)5.2質量%、信越化学工業社製酸化ユーロピウム粉末(RUグレード)1.1質量%を合計で1.2kgになるように配合した。尚、この場合のEu含有量は0.14at%である。 (Example 1) α-type silicon nitride powder (9 FW grade) manufactured by Denki Kagaku Kogyo Co., Ltd. 69.9% by mass, aluminum nitride powder (F grade) manufactured by Tokuyama Co., Ltd., 17.1% by mass, calcium carbonate powder manufactured by Kanto Chemical Co., Inc. (special grade) Reagent) 6.7% by mass, Wako Pure Chemical Industries, Ltd. calcium fluoride powder (special grade reagent) 5.2% by mass, Shin-Etsu Chemical Co., Ltd. europium oxide powder (RU grade) 1.1% by mass in total 1.2 kg It mix | blended so that it might become. In this case, the Eu content is 0.14 at%.
これを、ロッキングミキサー(愛知電機製 RM−10)を用いて60分間乾式で混合し、更に目開き150μmのステンレス製篩を全通させてα型サイアロン合成用の原料粉末を得た。 This was mixed by a dry method for 60 minutes using a rocking mixer (RM-10, manufactured by Aichi Electric), and further passed through a stainless steel sieve having an opening of 150 μm to obtain a raw material powder for synthesizing α-sialon.
これを、内寸で幅19.5cm×奥行19.5cm×高さ6.2cmの蓋付きの角形窒化硼素製容器2個に充填し、カーボンヒーターの電気炉で大気圧の窒素雰囲気中、1750℃で16時間の加熱処理を行った。得られた生成物は、容器内の上面近傍に少量生成した強固な焼結部分を除外してアルミナ製乳鉢で解砕し、目開き45μmの篩を通した。これらの操作によって、1.1kgの合成粉末を得た。X線回折装置(マックサイエンス製 MXP3)粉末X線回折測定を行った結果、合成粉末はα型サイアロン単相であった。 This was filled in two rectangular boron nitride containers with lids of 19.5 cm wide × 19.5 cm deep × 6.2 cm high in internal dimensions, and 1750 in a nitrogen atmosphere at atmospheric pressure with an electric furnace of a carbon heater. Heat treatment was carried out at 16 ° C. for 16 hours. The obtained product was crushed with an alumina mortar except for a strong sintered portion produced in a small amount near the upper surface in the container, and passed through a sieve having an opening of 45 μm. By these operations, 1.1 kg of synthetic powder was obtained. X-ray diffractometer (MXP3, MXP3) powder X-ray diffractometry was performed. As a result, the synthesized powder was α-sialon single phase.
この全量を、V型混合機を用いて1時間混合した後、転動造粒された粒子を解砕するため、再び目開き45μmの篩を通し、粉末のロット化を行った。 The whole amount was mixed for 1 hour using a V-type mixer, and then the particles obtained by rolling and granulation were crushed again through a sieve having an opening of 45 μm, and lots of powders were formed.
得られた蛍光体粉末のロットを表面を清浄にしたテーブル上に広げて、10mmの厚さで、幅:奥行きの長さ比が大凡5:2の長方形状の粉堆積物とした。次いで、幅方向に均等に5分割、奥行き方向に均等に2分割できるように堆積物に線を入れ、均等に10分割した。 The obtained lot of phosphor powder was spread on a table with a clean surface to obtain a rectangular powder deposit having a thickness of 10 mm and a width: depth length ratio of approximately 5: 2. Subsequently, a line was put in the deposit so that it could be equally divided into 5 in the width direction and equally divided into 2 in the depth direction, and was equally divided into 10.
更に、インクリメントスコップ(JIS M 8100−1992の付図1における、番号0.25Dのスコップ)を用い、分割した10個の区分から2gづつの粉末サンプル採集し、Ca、Eu、Si及びAlについては蛍光X線分析装置(理学電気製 ZSX100e)、O及びNについては酸素窒素分析計(LECO製 TC−436)を用いて成分分析を行った。これらの測定値、平均値(m)、標準偏差(σ)及び変動係数(CV)を求め、結果を表1に示した。又、分光蛍光光度計(日立ハイテクノロジー製 F−4500)を用いて測定した455nm励起光による発光分光分布から色度座標値(x,y)を求め、結果を表1に示した。 Further, by using an increment scoop (a scoop of number 0.25D in FIG. 1 of JIS M 8100-1992), 2 g of powder samples were collected from 10 divided sections, and fluorescence was obtained for Ca, Eu, Si and Al. X-ray analyzer (ZSX100e manufactured by Rigaku Corporation), and O and N were subjected to component analysis using an oxygen-nitrogen analyzer (TC-436 manufactured by LECO). These measured values, average value (m), standard deviation (σ) and coefficient of variation (CV) were determined, and the results are shown in Table 1. Further, chromaticity coordinate values (x, y) were obtained from the emission spectral distribution by 455 nm excitation light measured using a spectrofluorometer (F-4500, manufactured by Hitachi High-Technology), and the results are shown in Table 1.
(比較例1)ロッキングミキサー混合後のステンレス製篩への通篩を省略し、それ以外は実施例1と全く同様にして、α型サイアロン合成用の原料粉末を調製し、さらに実施例1と同条件にて加熱処理を行った。得られた生成物は、全体が焼結しており、更に容器内の上面近傍には、実施例1と比較して大量の強固な焼結部分が生成していた。この部分を除外してスタンプミルで粉砕し、目開き45μmの篩を通した。これらの操作によって、0.8kgの合成粉末を得た。粉末X線回折測定を行った結果、合成粉末はα型サイアロン単相であった。その後実施例1と同様にして粉末のロット化、サンプリング、成分分析及び色度の測定を行い、結果を表2に示した。 (Comparative Example 1) Omission of the sieve through the stainless steel sieve after mixing with the rocking mixer was omitted. Except that, a raw material powder for α-sialon synthesis was prepared in exactly the same manner as in Example 1. Heat treatment was performed under the same conditions. The obtained product was entirely sintered, and a large amount of a strong sintered portion was generated in the vicinity of the upper surface in the container as compared with Example 1. This portion was excluded and pulverized with a stamp mill, and passed through a sieve having an opening of 45 μm. By these operations, 0.8 kg of synthetic powder was obtained. As a result of powder X-ray diffraction measurement, the synthesized powder was an α-type sialon single phase. Thereafter, powder lotting, sampling, component analysis and chromaticity measurement were performed in the same manner as in Example 1, and the results are shown in Table 2.
(比較例2)実施例1と同じ割合で配合した各原料を、エタノール溶媒中において、窒化珪素質ポットとボールによる湿式ボールミル混合を3時間行った後、濾過及び乾燥を行い、更に目開き150μmのステンレス製篩を全通させてαサイアロン合成用の原料粉末を調製し、さらに実施例1と同条件にて加熱処理を行った。得られた生成物は、全体が焼結しており、更に容器内の上面近傍には、実施例1と比較して大量の強固な焼結部分が生成していた。この部分を除外してスタンプミルで粉砕し、目開き45μmの篩を通した。これらの操作によって、0.6kgの合成粉末を得た。粉末X線回折測定を行った結果、合成粉末はα型サイアロン単相であった。その後実施例1と同様にして粉末のロット化、サンプリング、成分分析及び色度の測定を行い、結果を表3に示した。 (Comparative Example 2) Each raw material blended at the same ratio as in Example 1 was subjected to wet ball mill mixing with a silicon nitride pot and balls in an ethanol solvent for 3 hours, followed by filtration and drying, and an opening of 150 μm. A raw material powder for synthesizing α sialon was prepared by passing through a stainless steel sieve, and further subjected to heat treatment under the same conditions as in Example 1. The obtained product was entirely sintered, and a large amount of a strong sintered portion was generated in the vicinity of the upper surface in the container as compared with Example 1. This portion was excluded and pulverized with a stamp mill, and passed through a sieve having an opening of 45 μm. By these operations, 0.6 kg of synthetic powder was obtained. As a result of powder X-ray diffraction measurement, the synthesized powder was an α-type sialon single phase. Thereafter, powder lotting, sampling, component analysis and chromaticity measurement were performed in the same manner as in Example 1, and the results are shown in Table 3.
(実施例2)電気化学工業社製α型窒化珪素粉末(NP−600グレード、酸素含有量1.3質量%)95.5質量%、トクヤマ社製窒化アルミニウム粉末(Fグレード、酸素含有量0.9質量%)3.5質量%、大明化学社製酸化アルミニウム粉末(TM−DARグレード)0.2質量%、信越化学工業社製酸化ユーロピウム粉末(RUグレード)0.8質量%を合計で1.3kgになるように配合した。尚、この場合のEu含有量は0.09at%である。 (Example 2) α-type silicon nitride powder (NP-600 grade, oxygen content 1.3% by mass) manufactured by Denki Kagaku Kogyo Co., Ltd. 95.5% by mass, aluminum nitride powder (F grade, oxygen content 0 by Tokuyama) 0.9% by mass) 3.5% by mass, 0.2% by mass of aluminum oxide powder (TM-DAR grade) manufactured by Daimei Chemical Co., Ltd., 0.8% by mass of europium oxide powder (RU grade) manufactured by Shin-Etsu Chemical Co., Ltd. It mix | blended so that it might become 1.3 kg. In this case, the Eu content is 0.09 at%.
これを、ロッキングミキサー(愛知電機製 RM−10)を用いて60分間乾式で混合し、更に目開き150μmのステンレス製篩を全通させてβサイアロン合成用の原料粉末を得た。 This was mixed by a dry mixer for 60 minutes using a rocking mixer (RM-10, manufactured by Aichi Electric), and further passed through a stainless steel sieve having an opening of 150 μm to obtain a raw material powder for β-sialon synthesis.
これを、内寸で幅19.5cm×奥行19.5cm×高さ6.2cmの蓋付きの角形窒化硼素製容器2個に充填し、カーボンヒーターの電気炉で0.9MPaの加圧窒素雰囲気中、1950℃で4時間の加熱処理を行った。得られた生成物は、容器内の上面近傍に少量生成した強固な焼結部分を除外してアルミナ製乳鉢で解砕し、目開き45μmの篩を通した。これらの操作によって、1.2kgの合成粉末を得た。X線回折装置(マックサイエンス製 MXP3)粉末X線回折測定を行った結果、合成粉末はβ型サイアロン単相であった。 This was filled into two square boron nitride containers with lids of 19.5 cm wide × 19.5 cm deep × 6.2 cm high inside dimensions, and a pressurized nitrogen atmosphere of 0.9 MPa in a carbon heater electric furnace. A heat treatment was performed at 1950 ° C. for 4 hours. The obtained product was crushed with an alumina mortar except for a strong sintered portion produced in a small amount near the upper surface in the container, and passed through a sieve having an opening of 45 μm. By these operations, 1.2 kg of synthetic powder was obtained. X-ray diffractometer (MXP3, MXP3) powder X-ray diffractometry was performed, and as a result, the synthetic powder was β-sialon single phase.
この全量を、V型混合機を用いて1時間混合した後、転動造粒された粒子を解砕するため、再び目開き45μmの篩を通し、粉末のロット化を行った。 The whole amount was mixed for 1 hour using a V-type mixer, and then the particles obtained by rolling and granulation were crushed again through a sieve having an opening of 45 μm, and lots of powders were formed.
得られた蛍光体粉末について、実施例1と同様にサンプリングを行い、成分分析、並びに色度を測定した。これらの結果を表4に示した。 About the obtained fluorescent substance powder, it sampled similarly to Example 1, and measured a component analysis and chromaticity. These results are shown in Table 4.
(比較例3)ロッキングミキサー混合後のステンレス製篩への通篩を省略し、それ以外は実施例2と全く同様にして、β型サイアロン合成用の原料粉末を調製し、さらに実施例2と同条件にて加熱処理を行った。得られた生成物は、全体が焼結しており、更に容器内の上面近傍には、実施例2と比較して大量の強固な焼結部分が生成していた。この部分を除外してスタンプミルで粉砕し、目開き45μmの篩を通した。これらの操作によって、0.9kgの合成粉末を得た。粉末X線回折測定を行った結果、合成粉末はβ型サイアロン単相であった。その後実施例2と同様にして粉末のロット化、サンプリング、成分分析及び色度の測定を行い、結果を表5に示した。 (Comparative Example 3) The raw material powder for β-sialon synthesis was prepared in the same manner as in Example 2 except that the sieving through the stainless steel sieve after mixing with the rocking mixer was omitted. Heat treatment was performed under the same conditions. The obtained product was entirely sintered, and a large amount of a strong sintered portion was generated in the vicinity of the upper surface in the container as compared with Example 2. This portion was excluded and pulverized with a stamp mill, and passed through a sieve having an opening of 45 μm. By these operations, 0.9 kg of synthetic powder was obtained. As a result of powder X-ray diffraction measurement, the synthetic powder was a β-type sialon single phase. Thereafter, powder lotting, sampling, component analysis and chromaticity measurement were performed in the same manner as in Example 2, and the results are shown in Table 5.
(比較例4)実施例2と同じ割合で配合した各原料を、エタノール溶媒中において、窒化珪素質ポットとボールによる湿式ボールミル混合を3時間行った後、濾過及び乾燥を行い、更に目開き150μmのステンレス製篩を全通させてβ型サイアロン合成用の原料粉末を調製し、さらに実施例2と同条件にて加熱処理を行った。得られた生成物は、全体が焼結しており、更に容器内の上面近傍には、実施例1と比較して大量の強固な焼結部分が生成していた。この部分を除外してスタンプミルで粉砕し、目開き45μmの篩を通した。これらの操作によって、1.0kgの合成粉末を得た。粉末X線回折測定を行った結果、合成粉末はβ型サイアロン単相であった。その後実施例2と同様にして粉末のロット化、サンプリング、成分分析及び色度の測定を行い、結果を表6に示した。 (Comparative Example 4) Each raw material blended in the same proportion as in Example 2 was mixed with a silicon nitride pot and a ball in a wet ball mill for 3 hours in an ethanol solvent, then filtered and dried, and further with an opening of 150 μm. A raw material powder for β-sialon synthesis was prepared by passing through a stainless steel sieve and further subjected to heat treatment under the same conditions as in Example 2. The obtained product was entirely sintered, and a large amount of a strong sintered portion was generated in the vicinity of the upper surface in the container as compared with Example 1. This portion was excluded and pulverized with a stamp mill, and passed through a sieve having an opening of 45 μm. By these operations, 1.0 kg of synthetic powder was obtained. As a result of powder X-ray diffraction measurement, the synthetic powder was a β-type sialon single phase. Thereafter, powder lotting, sampling, component analysis and chromaticity measurement were performed in the same manner as in Example 2, and the results are shown in Table 6.
本発明の蛍光体の製造方法は、組成変動の影響を受けやすいサイアロンからなる蛍光体粉末を、簡便で、従って、安価に提供できるので、産業上非常に有用である。 The method for producing a phosphor of the present invention is very useful industrially because phosphor powder made of sialon which is easily affected by composition fluctuations can be provided easily and at low cost.
本発明のα型サイアロンからなる蛍光体は、その特定の結晶構造及び組成に起因して、440〜480nmの励起光により550〜600nmの領域にピークを有する発光特性を安定して示すので、青色光を光源とする照明器具、特に青色LEDを発光光源とする白色LED用の蛍光体として好適であり、産業上非常に有用である。 The phosphor comprising the α-sialon of the present invention stably exhibits emission characteristics having a peak in the region of 550 to 600 nm by excitation light of 440 to 480 nm due to its specific crystal structure and composition. It is suitable as a luminaire using light as a light source, particularly as a phosphor for a white LED using a blue LED as a light emitting light source, and is very useful industrially.
本発明のβ型サイアロンからなる蛍光体は、その特定の結晶構造及び組成に起因して、350〜500nmの励起光により500〜550nmの領域にピークを有する発光特性を示すので、紫外光又は青色光を光源とする照明器具、特に紫外LED又は青色LEDを発光光源とする白色LED用の蛍光体として好適であり、産業上非常に有用である。 The phosphor comprising β-sialon according to the present invention exhibits emission characteristics having a peak in the region of 500 to 550 nm by excitation light of 350 to 500 nm due to its specific crystal structure and composition. It is suitable as a luminaire that uses light as a light source, particularly as a phosphor for a white LED that uses an ultraviolet LED or a blue LED as a light source, and is very useful in industry.
本発明の照明器具は、発光色の色調が安定しており、耐熱性に優れ、しかも発光特性の温度変化が少ないα型サイアロン或いはβ型サイアロンからなる粉末状の蛍光体を用いているので、物の色を正しく映し出すことが可能で、しかも長期に渡って高輝度な照明器具であり、産業上有用である。 Since the lighting fixture of the present invention uses a powdered phosphor composed of α-sialon or β-sialon, which has a stable color tone of luminescent color, excellent heat resistance, and little temperature change of luminescent properties, It is a lighting device that can accurately project the color of an object and has high brightness over a long period of time, and is industrially useful.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005339789A JP4879567B2 (en) | 2005-11-25 | 2005-11-25 | Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005339789A JP4879567B2 (en) | 2005-11-25 | 2005-11-25 | Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007145919A JP2007145919A (en) | 2007-06-14 |
JP4879567B2 true JP4879567B2 (en) | 2012-02-22 |
Family
ID=38207724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005339789A Expired - Fee Related JP4879567B2 (en) | 2005-11-25 | 2005-11-25 | Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4879567B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009096882A (en) * | 2007-10-17 | 2009-05-07 | Denki Kagaku Kogyo Kk | Phosphor and method for producing the same |
US8158026B2 (en) * | 2008-08-12 | 2012-04-17 | Samsung Led Co., Ltd. | Method for preparing B-Sialon phosphor |
JP4813577B2 (en) * | 2009-04-08 | 2011-11-09 | 電気化学工業株式会社 | Method for producing β-sialon phosphor |
JP2013237713A (en) * | 2010-09-09 | 2013-11-28 | Denki Kagaku Kogyo Kk | β TYPE SIALON, LIGHT-EMITTING DEVICE, AND METHOD OF MANUFACTURING β TYPE SIALON |
KR101973916B1 (en) | 2010-09-28 | 2019-04-29 | 미쯔비시 케미컬 주식회사 | Phosphor and light-emitting device using same |
JP6220112B2 (en) * | 2012-01-12 | 2017-10-25 | デンカ株式会社 | Phosphor and light emitting device |
JP2013142134A (en) * | 2012-01-12 | 2013-07-22 | Denki Kagaku Kogyo Kk | Fluorescent substance and light-emitting device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4165318B2 (en) * | 2003-07-16 | 2008-10-15 | 宇部興産株式会社 | Sialon phosphor and method for producing the same |
JP4318536B2 (en) * | 2003-11-19 | 2009-08-26 | 三井金属鉱業株式会社 | Red phosphor mainly composed of alkaline earth sulfide and method for producing the same |
JP3914991B2 (en) * | 2003-11-27 | 2007-05-16 | 独立行政法人物質・材料研究機構 | Method for producing sialon phosphor |
JP4362625B2 (en) * | 2004-02-18 | 2009-11-11 | 独立行政法人物質・材料研究機構 | Method for manufacturing phosphor |
JP3921545B2 (en) * | 2004-03-12 | 2007-05-30 | 独立行政法人物質・材料研究機構 | Phosphor and production method thereof |
JP2005272486A (en) * | 2004-03-22 | 2005-10-06 | Fujikura Ltd | POWDER PHOSPHOR, METHOD FOR PRODUCING alpha-SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE |
-
2005
- 2005-11-25 JP JP2005339789A patent/JP4879567B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007145919A (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101083504B1 (en) | Fluorescent material, process for producing the same, and illuminator employing the same | |
TWI510600B (en) | Phosphors and uses thereof | |
JP4565141B2 (en) | Phosphors and light emitting devices | |
JP4494306B2 (en) | Method for producing α-sialon powder | |
TWI411660B (en) | A phosphor and a method for manufacturing the same, and a light-emitting element using the same | |
JP4894048B2 (en) | Phosphor and production method thereof | |
JP4879567B2 (en) | Method for producing sialon phosphor and lighting apparatus using phosphor obtained thereby | |
KR101660618B1 (en) | Oxynitride phosphor powder | |
TW200925252A (en) | Fluorescent substance and method for manufacturing the same | |
JP2005112922A (en) | Oxynitride phosphor | |
WO2012067130A1 (en) | Phosphor, and light-emitting device and use thereof | |
JP6770353B2 (en) | β-type sialone phosphor, and light emitting member and light emitting device using the same | |
JP4538739B2 (en) | α-type sialon phosphor and lighting equipment using the same | |
JP6220112B2 (en) | Phosphor and light emitting device | |
WO2013105345A1 (en) | Fluorescent body and light emission device | |
CN104736664A (en) | Wavelength conversion member and light-emitting device employing same | |
Lee et al. | Effects of using MgO, CaO additives as sintering aid in pressureless sintering of M2Si5N8: Eu2+ (M= Ba, Sr) phosphor ceramics for amber LED automotive applications | |
JP4364189B2 (en) | α-type sialon, phosphor comprising α-type sialon, and lighting apparatus using the same | |
JP2007308593A (en) | Process for production of sialon fluorescent material, sialon fluorescent material and fluorescent light assembly | |
JP5912580B2 (en) | Phosphor, production method thereof and use thereof | |
TWI458809B (en) | Phosphor, method for manufacturing the same, and light-emitting device | |
TWI487774B (en) | Phosphor, manufacturing method thereof and illuminating device | |
JP5111181B2 (en) | Phosphor and light emitting device | |
JP6620022B2 (en) | Red phosphor and light emitting device | |
JP2007131728A (en) | Method for producing phosphor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110309 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110314 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110928 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20111006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4879567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |