JP4878901B2 - Thermal insulation molding equipment - Google Patents
Thermal insulation molding equipment Download PDFInfo
- Publication number
- JP4878901B2 JP4878901B2 JP2006110174A JP2006110174A JP4878901B2 JP 4878901 B2 JP4878901 B2 JP 4878901B2 JP 2006110174 A JP2006110174 A JP 2006110174A JP 2006110174 A JP2006110174 A JP 2006110174A JP 4878901 B2 JP4878901 B2 JP 4878901B2
- Authority
- JP
- Japan
- Prior art keywords
- conveyor
- heat insulating
- insulating material
- drying furnace
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009413 insulation Methods 0.000 title claims description 4
- 238000000465 moulding Methods 0.000 title description 6
- 239000011810 insulating material Substances 0.000 claims abstract description 45
- 238000001035 drying Methods 0.000 claims description 25
- 239000012784 inorganic fiber Substances 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 230000006978 adaptation Effects 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 31
- 238000007906 compression Methods 0.000 description 31
- 239000000835 fiber Substances 0.000 description 9
- 239000003365 glass fiber Substances 0.000 description 9
- 229920000742 Cotton Polymers 0.000 description 4
- 239000011491 glass wool Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
- Building Environments (AREA)
Abstract
Description
本発明は、グラスウールまたはロックウール等の無機繊維をマット状に成形してなる断熱材を成形する装置に関する。 The present invention relates to an apparatus for forming a heat insulating material formed by forming inorganic fibers such as glass wool or rock wool into a mat shape.
一般的な無機繊維断熱材の製造方法は、高速回転する円筒状回転体内に溶融ガラスを供給し、回転体の側面に形成された小孔から遠心力で紡糸した一次繊維をエア流によって下方に引き伸ばして目標繊維径を有する二次繊維とし、この二次繊維が空中を飛行している間にフェノール樹脂等の接着剤を二次繊維に噴霧し、この二次繊維をキャタピラー状の下部コンベア上に堆積させ、この堆積した二次繊維を下流側の乾燥炉まで搬送し、所定寸法に切断してマット状の断熱材を得るようにしている。 A general method for manufacturing an inorganic fiber heat insulating material is to supply molten glass into a cylindrical rotating body rotating at high speed, and to lower the primary fiber spun by centrifugal force from a small hole formed on the side surface of the rotating body by an air flow. A secondary fiber having a target fiber diameter is stretched and sprayed onto the secondary fiber with an adhesive such as phenol resin while the secondary fiber is flying in the air, and the secondary fiber is placed on a caterpillar lower conveyor. The deposited secondary fibers are conveyed to a downstream drying furnace and cut into predetermined dimensions to obtain a mat-like heat insulating material.
上記の断熱材を住宅の外壁や間仕切壁に充填することで、断熱効果を発揮するようにしている。しかしながら、上記した製法からくる特性として、断熱材は厚み方向に容易に伸縮するが、幅方向あるいは長さ方向には伸縮しにくい。 The heat insulating effect is exhibited by filling the above-mentioned heat insulating material into the outer wall or partition wall of the house. However, as a characteristic derived from the above-described manufacturing method, the heat insulating material easily expands and contracts in the thickness direction, but hardly expands or contracts in the width direction or the length direction.
このため、図6に示すように、外壁100、内壁101、左右の縦胴縁102,102間に形成される空間に断熱材103を充填する場合、断熱材103の幅が空間の幅よりも短いと、(a)に示すように充填後に隙間が残ってしまい断熱効果に悪影響を及ぼす。また、断熱材103の幅が空間の幅よりも長いと、(b)に示すように充填することができない。 For this reason, as shown in FIG. 6, when the heat insulating material 103 is filled in the space formed between the outer wall 100, the inner wall 101, and the left and right vertical trunk edges 102, 102, the width of the heat insulating material 103 is larger than the width of the space. If it is short, gaps remain after filling as shown in FIG. Moreover, when the width | variety of the heat insulating material 103 is longer than the width of space, it cannot be filled as shown in (b).
上記の不利を解消すべく、特許文献1〜3が提案されている。
特許文献1には、図5(a)に示す搬送方向に繊維配向を持つ長いグラスウール堆積集合体200を、(b)に示すように、カッターで搬送方向に沿って所定の幅に切断して縦切断細長断熱体201とし、次いで(c)に示すように、縦切断細長断熱体201を90°反転させてから被覆フィルム202でカバーすることにより幅方向に伸縮性を持たせたグラスウール断熱材203とする提案がなされている。
In order to solve the above disadvantages, Patent Documents 1 to 3 have been proposed.
In Patent Document 1, a long glass wool accumulation aggregate 200 having fiber orientation in the transport direction shown in FIG. 5A is cut to a predetermined width along the transport direction with a cutter, as shown in FIG. As shown in (c), the glass wool heat insulating material which is stretched in the width direction by inverting the vertical cut thin heat insulating material 201 by 90 ° and then covering with the covering film 202 as shown in (c). A proposal of 203 is made.
また特許文献2には、圧縮状態の連続気泡発泡体または繊維集成体の表面にポリエチレンフィルムを被覆してなる積層体をプレス法あるいはロール法によって収縮率60%程度で圧縮し、真空ポンプなどで脱気したものを、充填しようとする空間に挿入施工し、施工後に前記フィルムを開封することにより積層体が空気を吸収して1.4倍に膨張して未充填空間を埋めるようにした方法が提案されている。 Further, Patent Document 2 discloses that a compressed body of an open-cell foam or a fiber assembly is compressed with a shrinkage rate of about 60% by a press method or a roll method using a vacuum film or the like. A method of inserting degassed material into the space to be filled and opening the film after construction so that the laminate absorbs air and expands 1.4 times to fill the unfilled space. Has been proposed.
また特許文献3には、無機繊維マットの圧縮を第1コンベアと第2コンベアの2段階で行なうことにより、樹脂フィルムに内在する空気を排出しやすくすると同時に短辺方向の樹脂フィルム同士の接着を容易にして適度に圧縮し、建築物の柱の間や隙間に充填した後、表皮材に孔を空けて表皮材に空気を入れ、復元させる断熱材の施工方法が提案されている。 Further, in Patent Document 3, the inorganic fiber mat is compressed in two stages of the first conveyor and the second conveyor, so that air contained in the resin film can be easily discharged and at the same time the resin films in the short side direction are bonded to each other. There has been proposed a method of constructing a heat insulating material that is easily compressed to an appropriate level, filled between spaces or gaps in a building, and then made by opening holes in the skin material and introducing air into the skin material.
特許文献1に開示される断熱材にあっては、図5(d)に示すように、幅方向には伸縮するため、図6で説明したような従来の不利は解消できる。しかしながら、製作に手間がかかりコストアップになってしまう。また、厚み方向の伸縮がないため、厚めの製品を空間に充填すると内装材を内側から膨らませてしまう不利がある。 In the heat insulating material disclosed in Patent Document 1, since it expands and contracts in the width direction as shown in FIG. 5 (d), the conventional disadvantage as described in FIG. 6 can be solved. However, it takes a lot of time to manufacture and increases the cost. Further, since there is no expansion and contraction in the thickness direction, there is a disadvantage that the interior material is expanded from the inside when a thick product is filled in the space.
また、特許文献2にあっては連続気泡発泡体として、ウレタン樹脂を原料とするため、無機繊維に比較して大幅にコストアップになってしまう。 Moreover, in patent document 2, since a urethane resin is used as a raw material as an open-cell foam, it will raise a cost significantly compared with an inorganic fiber.
更に、特許文献3は、コンベアベルトで移動しながら圧縮と前記被覆加工を行うものであり、復元方向が厚み方向のみであるので、前記と同様の問題がある。 Furthermore, since Patent Document 3 performs compression and the covering process while moving on a conveyor belt, and the restoring direction is only the thickness direction, there is the same problem as described above.
上記課題を解決するため本発明は、無機繊維が厚み方向に積層されてマット状に成形された断熱材に対し、成形時に無機繊維を圧縮することで形成される波形状の方向が厚み方向と幅方向の中間または厚み方向と長さ方向の中間を向くようにした。このような構成とすることで、厚み方向の他に幅方向または長さ方向に伸縮可能となる。 In order to solve the above problems, the present invention relates to a heat insulating material in which inorganic fibers are laminated in the thickness direction and formed into a mat shape, and the direction of the wave shape formed by compressing the inorganic fibers during molding is the thickness direction. It was made to face the middle of the width direction or the middle of the thickness direction and the length direction. By setting it as such a structure, it becomes possible to expand-contract in the width direction or the length direction other than the thickness direction.
ここで、波形状とは、2次元状に展開されるグラスウールの層が積層されて乾燥炉に搬送される際に、搬送方向に圧縮されることで、前記積層体が厚み方向に角度をもった3次元状に配列され、この3次元状に配列されることで搬送方向に沿って形成される模様を指す。つまり搬送方向を長さ方向とすれば幅方向には波形状は形成されない。そして、波形状の方向とは波形をなす模様の頂点と左右の底部の中間点とを結んだ方向をいう。 Here, the wave shape means that when the glass wool layer developed two-dimensionally is laminated and conveyed to the drying furnace, the laminated body has an angle in the thickness direction by being compressed in the conveying direction. It is arranged in a three-dimensional shape, and indicates a pattern formed along the conveyance direction by being arranged in the three-dimensional shape. That is, if the conveying direction is the length direction, no wave shape is formed in the width direction. The wave shape direction refers to the direction connecting the apex of the wavy pattern and the midpoint between the left and right bottoms.
また上記の断熱材を成形する装置として、上流側で紡糸された無機繊維を下流側の乾燥炉まで搬送する下部コンベア群と上部コンベア群を備え、上部コンベア群は乾燥炉に向かって下部コンベア群との間隔が徐々に狭くなるように下部コンベア群に対して相対的に傾斜して配置され、更に下部コンベア群及び上部コンベア群を構成するコンベアは下流側のコンベアの搬送速度が上流側のコンベアの搬送速度よりも遅くなるように設定された装置を本願で提案する。 Also, as an apparatus for forming the above heat insulating material, it comprises a lower conveyor group and an upper conveyor group for conveying inorganic fibers spun on the upstream side to a drying furnace on the downstream side, and the upper conveyor group is a lower conveyor group toward the drying furnace. The lower conveyor group and the upper conveyor group are arranged so that the interval between the lower conveyor group and the lower conveyor group is gradually narrowed. An apparatus set to be slower than the transport speed is proposed in the present application.
上記の成形装置にあっては、下部コンベア群を構成するコンベアのうち最も上流側のコンベアの速度V1と、乾燥炉に設けられる乾燥炉コンベアの速度V9との比(V1/V9)を1.4〜2.5の範囲に設定し、且つ前記搬送コンベアの最終段出口の間隔を基準として、前記最終段出口に続く上下の乾燥炉コンベア間隔の比率を1/1.5〜1.0の範囲に設定することが所望の特性の断熱材を得る上で好ましい。 In the above molding apparatus, the ratio (V1 / V9) between the speed V1 of the most upstream conveyor among the conveyors constituting the lower conveyor group and the speed V9 of the drying furnace conveyor provided in the drying furnace is 1. The ratio between the upper and lower drying furnace conveyors following the final stage outlet is set to a range of 1 / 1.5 to 1.0 based on the interval of the final stage outlet of the conveyor. Setting to the range is preferable in obtaining a heat insulating material having desired characteristics.
また、無機繊維としてガラス繊維を用いる場合には、12〜24kg/m3の密度を持つものが好ましい。これにより、高い断熱効果が得られる。 Moreover, when using glass fiber as an inorganic fiber, what has a density of 12-24 kg / m < 3 > is preferable. Thereby, a high heat insulation effect is acquired.
本発明の断熱材は、厚さ方向だけでなく、幅方向または長さ方向にも収縮できるので、充填したい空間の幅に合わせて圧縮して挿入することができ、圧縮状態を解除すると断熱材が幅方向に膨張し、壁内寸法に適応して隙間を封隙することができ断熱効果を発揮する。
また、本発明の断熱材は厚み方向の伸縮もあるため、空間の厚さよりも若干厚めの製品を空間に入れることで、内装材を膨らますことなく密着させることができ更に高い断熱効果を発揮できる。
Since the heat insulating material of the present invention can be contracted not only in the thickness direction but also in the width direction or the length direction, it can be compressed and inserted in accordance with the width of the space to be filled, and when the compressed state is released, the heat insulating material Expands in the width direction, adapts to the dimensions in the wall, can seal the gap, and exhibits a heat insulating effect.
In addition, since the heat insulating material of the present invention also has expansion and contraction in the thickness direction, by putting a product slightly thicker than the thickness of the space into the space, the interior material can be brought into close contact without swelling and a higher heat insulating effect can be exhibited. .
以下に、本願発明の実施例について図に基づいて説明する。図1(a)は本発明に係る断熱材の圧縮前の状態を示す斜視図、(b)は本発明に係る断熱材の圧縮後の状態を示す斜視図であり、マット状をなす断熱材1はガラス繊維2を積層して構成される。ガラス繊維2は厚み方向だけでなく長さ方向にも重なるように成形され、その結果、側面に波形状の模様が形成されている。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a perspective view showing a state before compression of a heat insulating material according to the present invention, and FIG. 1B is a perspective view showing a state after compression of the heat insulating material according to the present invention, which is a mat-shaped heat insulating material. 1 is configured by laminating glass fibers 2. The glass fiber 2 is molded so as to overlap not only in the thickness direction but also in the length direction, and as a result, a corrugated pattern is formed on the side surface.
側面の波形状の方向、即ち、波形をなす模様の頂点と左右の底部の中間点とを結んだ方向は厚み方向と長さ方向の中間を向いており、その結果、図1(b)に示すように、断熱材1は厚み方向のみならず長さ方向に対して伸縮しやすい構造になっている。 The direction of the corrugated side surface, that is, the direction connecting the apex of the corrugated pattern and the midpoint of the left and right bottom portions is in the middle of the thickness direction and the length direction. As a result, FIG. As shown, the heat insulating material 1 has a structure that easily expands and contracts not only in the thickness direction but also in the length direction.
図2は本発明の断熱材を圧縮した状態で外壁と内壁の間に挿入した状態の断面図であり、外壁10、内壁11、左右の胴縁12,12の内側には空間13が設けられ、この空間13内に本発明に係る断熱材1が幅方向に圧縮された状態でセットされている。 FIG. 2 is a cross-sectional view showing a state where the heat insulating material of the present invention is compressed and inserted between the outer wall and the inner wall. The heat insulating material 1 according to the present invention is set in the space 13 in a state compressed in the width direction.
そして、圧縮された状態でセットされた断熱材1の圧縮状態を解除すると、図3に示すように、断熱材1は幅方向に膨張して、外壁10と内壁11との間に形成された空間13に充填される。 And if the compression state of the heat insulating material 1 set in the compressed state is released, the heat insulating material 1 expands in the width direction and is formed between the outer wall 10 and the inner wall 11 as shown in FIG. The space 13 is filled.
図4は、本発明の断熱材の成形装置の側面図であり、成形装置は上流側で紡糸されたガラス繊維2を下流側の乾燥炉30まで搬送する下部コンベア群31と上部コンベア群32を備え、下部コンベア群31は複数のコンベア31a,31b,31c,31dを連接して構成され、上部コンベア群32は複数のコンベア32b,32c,32dを連接して構成される。そして、上部コンベア群32は乾燥炉30に向かって下部コンベア群31との間隔が徐々に狭くなるように下部コンベア群に対して相対的に傾斜して配置され、更に乾燥炉30の入口にはコンベアローラ33,34が配置されている。 FIG. 4 is a side view of the heat insulating material molding apparatus of the present invention. The molding apparatus includes a lower conveyor group 31 and an upper conveyor group 32 that convey the glass fiber 2 spun on the upstream side to the drying furnace 30 on the downstream side. The lower conveyor group 31 is configured by connecting a plurality of conveyors 31a, 31b, 31c, and 31d, and the upper conveyor group 32 is configured by connecting a plurality of conveyors 32b, 32c, and 32d. The upper conveyor group 32 is arranged to be inclined relative to the lower conveyor group so that the distance from the lower conveyor group 31 is gradually narrowed toward the drying furnace 30. Conveyor rollers 33 and 34 are arranged.
下部コンベア群31及び上部コンベア群32を構成するコンベアは全て単独で速度調整が可能とされ、本実施例にあっては、下流側のコンベアの搬送速度が上流側のコンベアの搬送速度よりも遅くなるように設定されている。即ち、コンベア31aの速度をV1,コンベア32bの速度をV2,コンベア31bの速度をV3,コンベア32cの速度をV4,コンベア31cの速度をV5,コンベア32dの速度をV6,コンベア31dの速度をV7,コンベアローラ33の速度をV8,コンベアローラ34の速度をV9とした場合、以下に述べるように速度が設定される。 The speeds of all the conveyors constituting the lower conveyor group 31 and the upper conveyor group 32 can be adjusted independently. In this embodiment, the conveyance speed of the downstream conveyor is slower than the conveyance speed of the upstream conveyor. It is set to be. That is, the speed of the conveyor 31a is V1, the speed of the conveyor 32b is V2, the speed of the conveyor 31b is V3, the speed of the conveyor 32c is V4, the speed of the conveyor 31c is V5, the speed of the conveyor 32d is V6, and the speed of the conveyor 31d is V7. When the speed of the conveyor roller 33 is V8 and the speed of the conveyor roller 34 is V9, the speed is set as described below.
先ず下部搬送コンベア31aの移動速度V1と下部搬送コンベア31bの移動速度V3は、
V1×0.95≦V3≦V1×1.05
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
First, the moving speed V1 of the lower transport conveyor 31a and the moving speed V3 of the lower transport conveyor 31b are:
V1 × 0.95 ≦ V3 ≦ V1 × 1.05
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
また、上部搬送コンベア32bの移動速度V2は、下部搬送コンベア31bの移動速度V3に対して、
V3×0.6≦V2≦V3
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
Moreover, the moving speed V2 of the upper conveyor 32b is set to the moving speed V3 of the lower conveyor 31b.
V3 × 0.6 ≦ V2 ≦ V3
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
更に、ガラス繊維断熱材(原綿)の高さをH1とし、上部搬送コンベア32bの入口部と下部搬送コンベア31bの入口部との距離をH2とすると、
H1×0.4<H2<H1×1.2
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
Furthermore, when the height of the glass fiber heat insulating material (raw cotton) is H1, and the distance between the inlet portion of the upper conveyor 32b and the inlet portion of the lower conveyor 31b is H2,
H1 × 0.4 <H2 <H1 × 1.2
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
コンベア31b,32bにて搬送されたガラス繊維断熱材(原綿)は、更に圧縮コンベア対31c,32cによって長手方向に第1回目の圧縮を受ける。ここで、下側に位置する圧縮コンベア31cの移動速度V5は、前段の圧縮コンベア31bの移動速度V3及び次段の圧縮コンベア31dの移動速度V7と相関が高く、
V7×1.05≦V5≦V3×0.95
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
The glass fiber heat insulating material (raw cotton) conveyed by the conveyors 31b and 32b is further subjected to the first compression in the longitudinal direction by the pair of compression conveyors 31c and 32c. Here, the moving speed V5 of the compression conveyor 31c located on the lower side is highly correlated with the moving speed V3 of the preceding-stage compression conveyor 31b and the moving speed V7 of the next-stage compression conveyor 31d.
V7 × 1.05 ≦ V5 ≦ V3 × 0.95
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
また、上側に位置する圧縮コンベア32cの移動速度V4は、圧縮コンベア31cの移動速度V5に対して、
V5×0.6≦V4≦V5
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
The moving speed V4 of the compression conveyor 32c located on the upper side is higher than the moving speed V5 of the compression conveyor 31c.
V5 × 0.6 ≦ V4 ≦ V5
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
ここで、上部圧縮コンベア32bの入口部と下部圧縮コンベア31bの入口部の距離H2に対し、前記上部搬送コンベア32bの出口部と下部搬送コンベア31bの出口部の距離をH3とすると、
H3≦H2
の範囲であり、かつ上部圧縮コンベア32cの入口部と下部圧縮コンベア31cの入口部の距離をH4とすると、
H3≦H4
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
Here, with respect to the distance H2 between the inlet portion of the upper compression conveyor 32b and the inlet portion of the lower compression conveyor 31b, the distance between the outlet portion of the upper conveyor 32b and the outlet portion of the lower conveyor 31b is H3.
H3 ≦ H2
And the distance between the inlet part of the upper compression conveyor 32c and the inlet part of the lower compression conveyor 31c is H4,
H3 ≦ H4
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
コンベア対31b、32bとコンベア対31c、32cによって第1回目の長手方向圧縮を受けたガラス繊維断熱材(原綿)は、更にコンベア対31c、32cとコンベア対31d、32dによって第2回目の長手方向圧縮を受ける。ここで、下側に位置する圧縮コンベア31dの移動速度V7は、次段の乾燥炉コンベアローラ34の移動速度V9と相関が高く、
V9×0.95≦V7≦V9×1.05
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
The glass fiber heat insulating material (raw cotton) subjected to the first longitudinal compression by the conveyor pair 31b, 32b and the conveyor pair 31c, 32c is further subjected to the second longitudinal direction by the conveyor pair 31c, 32c and the conveyor pair 31d, 32d. Undergo compression. Here, the moving speed V7 of the compression conveyor 31d located on the lower side has a high correlation with the moving speed V9 of the drying furnace conveyor roller 34 in the next stage,
V9 × 0.95 ≦ V7 ≦ V9 × 1.05
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
また、上側に位置する圧縮コンベア32dの移動速度V6は、圧縮コンベア31dの移動速度V7に対して、
V7×0.6≦V6≦V7
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
The moving speed V6 of the compression conveyor 32d located on the upper side is higher than the moving speed V7 of the compression conveyor 31d.
V7 × 0.6 ≦ V6 ≦ V7
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
ここで、上部圧縮コンベア32dの入口部と下部圧縮コンベア31dの入口部の距離をH6とし、前記上部搬送コンベア32cの出口部と下部搬送コンベア31cの出口部の距離をH5とすると、
H5≦H6
の範囲であり、かつ上部圧縮コンベア32dの出口部と下部圧縮コンベア31dの出口部の距離をH7とすると、
H6>H7
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
Here, the distance between the inlet portion of the upper compression conveyor 32d and the inlet portion of the lower compression conveyor 31d is H6, and the distance between the outlet portion of the upper conveyor 32c and the outlet portion of the lower conveyor 31c is H5.
H5 ≦ H6
And the distance between the outlet of the upper compression conveyor 32d and the outlet of the lower compression conveyor 31d is H7,
H6> H7
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
上部圧縮コンベア32dと下部圧縮コンベア31dによって第2回目の圧縮を受けたガラス繊維断熱材(原綿)は、更に上部乾燥炉コンベア33と下部乾燥炉コンベア34によって乾燥炉へと搬送される。ここで、下側に位置する下部乾燥炉コンベア34の移動速度V9は、前記搬送コンベア31aの移動速度V1と相関が高く、
V1×0.40≦V9≦V1×0.70 (S1)
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。
The glass fiber heat insulating material (raw cotton) subjected to the second compression by the upper compression conveyor 32d and the lower compression conveyor 31d is further conveyed to the drying furnace by the upper drying furnace conveyor 33 and the lower drying furnace conveyor 34. Here, the moving speed V9 of the lower drying furnace conveyor 34 located on the lower side is highly correlated with the moving speed V1 of the conveyor 31a.
V1 × 0.40 ≦ V9 ≦ V1 × 0.70 (S1)
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good.
また、上側に位置する上部乾燥炉コンベア33の移動速度V8は、上記乾燥炉コンベア34の移動速度V9と同じ移動速度とした。 Moreover, the moving speed V8 of the upper drying furnace conveyor 33 located on the upper side is the same as the moving speed V9 of the drying furnace conveyor 34.
ここで、上部乾燥炉コンベア33の入口部と下部圧縮コンベア34の入口部の距離をH8とし、前記上部搬送コンベア6の出口部と下部搬送コンベア7の出口部の距離をH7とすると、
H8×1.0≦H7≦H8×1.5
の範囲であればライン進行方向における柔軟性と断熱特性が良好であった。つまり、上記の関係は、最終段の搬送コンベアの出口距離が乾燥炉の入口距離に較べて1.0倍から1.5倍の範囲に設定すれば良いことを示している。これを逆に言えば、乾燥炉の入口距離は、最終段の搬送コンベアの出口に較べて1.0から1/1.5の範囲であれば良いことを意味する。
Here, the distance between the inlet portion of the upper drying furnace conveyor 33 and the inlet portion of the lower compression conveyor 34 is H8, and the distance between the outlet portion of the upper conveyor 6 and the outlet portion of the lower conveyor 7 is H7.
H8 × 1.0 ≦ H7 ≦ H8 × 1.5
If it is in the range, the flexibility and heat insulating properties in the line traveling direction were good. In other words, the above relationship indicates that the exit distance of the final stage conveyor may be set in the range of 1.0 to 1.5 times the entrance distance of the drying furnace. In other words, it means that the entrance distance of the drying furnace may be in the range of 1.0 to 1 / 1.5 as compared with the exit of the final stage conveyor.
以上のデーターの中で、クリンピング率(V1/V9の比率)は前記V9とV7の関係式S1の全体をV1で割ると、
0.40≦V9/V1≦0.70
となり、この各項の逆数をとると、
1.4≦V1/V9≦2.5
となるので、クリンピング率は1.4から2.5が適切な範囲と考えられる。
Among the above data, the crimping rate (ratio of V1 / V9) is obtained by dividing the entire relational expression S1 of V9 and V7 by V1.
0.40 ≦ V9 / V1 ≦ 0.70
And taking the reciprocal of each term,
1.4 ≦ V1 / V9 ≦ 2.5
Therefore, it is considered that a suitable crimping rate is 1.4 to 2.5.
1…断熱材、2…ガラス繊維、10…外壁、11…内壁、12…胴縁、13…空間、30…乾燥炉、31…下部コンベア群、32…上部コンベア群、31a,31b,31c,31d…下部コンベア群を構成するコンベア、32b,32c,32d…上部コンベア群を構成するコンベア、33,34…コンベアローラ。
DESCRIPTION OF SYMBOLS 1 ... Heat insulating material, 2 ... Glass fiber, 10 ... Outer wall, 11 ... Inner wall, 12 ... Body edge, 13 ... Space, 30 ... Drying furnace, 31 ... Lower conveyor group, 32 ... Upper conveyor group, 31a, 31b, 31c, 31d ... Conveyor constituting the lower conveyor group, 32b, 32c, 32d ... Conveyor constituting the upper conveyor group, 33, 34 ... Conveyor roller.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006110174A JP4878901B2 (en) | 2006-04-12 | 2006-04-12 | Thermal insulation molding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006110174A JP4878901B2 (en) | 2006-04-12 | 2006-04-12 | Thermal insulation molding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007284803A JP2007284803A (en) | 2007-11-01 |
JP4878901B2 true JP4878901B2 (en) | 2012-02-15 |
Family
ID=38756851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006110174A Active JP4878901B2 (en) | 2006-04-12 | 2006-04-12 | Thermal insulation molding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4878901B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819458B2 (en) * | 1975-07-31 | 1983-04-18 | エス ピ− ア−ル エル リマテツクス | Continuous manufacturing method and manufacturing device for corrugated sheet material |
JPH08174655A (en) * | 1994-12-21 | 1996-07-09 | Nippon Muki Co Ltd | Corrugated inorganic fiberboard and production thereof |
FR2814474B1 (en) * | 2000-09-27 | 2002-11-29 | Saint Gobain Isover | PROCESS AND ASSEMBLY FOR MANUFACTURING FELTS IN THE FORM OF MINERAL FIBERS |
-
2006
- 2006-04-12 JP JP2006110174A patent/JP4878901B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007284803A (en) | 2007-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9938109B2 (en) | Method for the production of a sealing tape roll | |
US7323079B2 (en) | Production process of core material for vacuum insulation material | |
US20050126852A1 (en) | Hollow structure plate, manufacturing method thereof, manufacturing device thereof, and sound absorbing structure plate | |
US3616162A (en) | Autogenously interconnected and compressed polystyrene pearls | |
JP4878901B2 (en) | Thermal insulation molding equipment | |
JP4707601B2 (en) | Insulation pack | |
US20110072736A1 (en) | Drainage members for flat roofs and methods of making same | |
CN114953602A (en) | Preparation method of pipe body, pipe body and heating non-combustion smoke cartridge | |
JP4986578B2 (en) | Floor insulation | |
KR101896865B1 (en) | Manufacturing method of the tape | |
EP1790451B1 (en) | Manufacturing a rigid polymeric insulating foam board | |
JP6215566B2 (en) | Foam manufacturing method, foam manufacturing apparatus, and foam | |
ES2215548T3 (en) | PROCEDURE FOR THE CONTINUOUS MANUFACTURE OF A FLEXIBLE INSULATING TUBE THAT PRESENTS AT LEAST THREE LAYERS. | |
CZ2003123A3 (en) | Process for producing panel with mineral fibers and containing one or several shaped cavities, a panel produced in such a manner, apparatus for producing such panel as well as use of such panel | |
JP2002115794A (en) | Heat insulating material, and method and device for manufacturing the same | |
GB2432555A (en) | Manufacturing rigid polymeric foam boards | |
FI56330C (en) | SAETT ATT KONTINUERLIGT TILLVERKA LAONGSTRAECKTA PROFILKROPPAR AV CELLPLAST ELLER CELLGUMMI | |
ES2552827T3 (en) | Manufacturing method of a rolled paint roller | |
US10814585B2 (en) | Inorganic fiber laminate, vacuum insulation material using same, and manufacturing method for same | |
KR20170098663A (en) | reflective heat insulation with good formability and method for manufacturing the same | |
EP0964111A1 (en) | Method for constructing panels for roller shutter boxes, a plant for implementing the method, and a panel obtained by the method | |
IES20060847A2 (en) | Manufacture of insulating board | |
WO2006123015A1 (en) | Pipe section for insulating purposes and method for its manufacture | |
DK175937B1 (en) | Flexible felt of fiber material with random fiber orientation | |
FI126313B (en) | Arrangement and method for producing a mineral wool pipe insulating bowl and pipe insulating bowl |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4878901 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |