JP4878801B2 - Substrate processing apparatus and semiconductor device manufacturing method - Google Patents

Substrate processing apparatus and semiconductor device manufacturing method Download PDF

Info

Publication number
JP4878801B2
JP4878801B2 JP2005278771A JP2005278771A JP4878801B2 JP 4878801 B2 JP4878801 B2 JP 4878801B2 JP 2005278771 A JP2005278771 A JP 2005278771A JP 2005278771 A JP2005278771 A JP 2005278771A JP 4878801 B2 JP4878801 B2 JP 4878801B2
Authority
JP
Japan
Prior art keywords
temperature
measured
zones
temperature sensor
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005278771A
Other languages
Japanese (ja)
Other versions
JP2007088394A (en
JP2007088394A5 (en
Inventor
和夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005278771A priority Critical patent/JP4878801B2/en
Publication of JP2007088394A publication Critical patent/JP2007088394A/en
Publication of JP2007088394A5 publication Critical patent/JP2007088394A5/ja
Application granted granted Critical
Publication of JP4878801B2 publication Critical patent/JP4878801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、基板処理装置に係り、特に温度センサ故障時に処理室内の温度を有効に制御するための装置に関する。   The present invention relates to a substrate processing apparatus, and more particularly to an apparatus for effectively controlling the temperature in a processing chamber when a temperature sensor fails.

基板処理装置では、基板を処理する処理シーケンスの実行中に、ゾーン分割された炉内を温度制御している。炉内の温度制御は、温度センサの測定温度に基づいてヒータへの電力値を制御することで行っている。処理シーケンスの実行中に、温度センサが故障した場合、フェイルセーフの思想から、故障が発生したゾーンのヒータへの電力供給をゼロとする処理を行う。   In the substrate processing apparatus, the temperature of the zone-divided furnace is controlled during execution of a processing sequence for processing a substrate. Temperature control in the furnace is performed by controlling the power value to the heater based on the temperature measured by the temperature sensor. If the temperature sensor fails during execution of the processing sequence, the power supply to the heater in the zone where the failure has occurred is set to zero based on the concept of fail-safe.

温度センサの故障が、一連の処理シーケンス中の後半の降温ステップまたは基板引出しステップで発生したならば、成膜処理等のプロセス処理が正常に終了している可能性もあるが、予備加熱処理から本加熱処理を含むプロセス処理中の間で発生した場合には、ヒータへの電力供給をゼロとする処理を行っても、プロセス処理が正常に終了せず、処理シーケンス終了時の基板が不良品となる場合がある。そのため、温度センサが故障した場合でも、不良品の発生を低減させることができる技術が求められていた。   If a temperature sensor failure occurs in the lower temperature drop step or substrate pull-out step in the second half of a series of processing sequences, there is a possibility that process processing such as film formation processing has ended normally. If it occurs during the process including the main heating process, even if the process of setting the power supply to the heater to zero is performed, the process process does not end normally, and the substrate at the end of the process sequence becomes defective. There is a case. Therefore, there has been a demand for a technique that can reduce the occurrence of defective products even when the temperature sensor fails.

そこで、従来、2つの近接配置された温度センサを切替え可能に設け、一方の温度センサが故障した場合には、一方の温度センサの代替えとして他方の温度センサを用いて、他方の温度センサの測定温度をそのまま、一方の温度センサのときに設定した設定温度と一致するように制御させるようにした装置が提案されている(たとえば、特許文献1参照)。
特開平10−270454号公報
Therefore, conventionally, two adjacently arranged temperature sensors are provided so as to be switchable, and when one of the temperature sensors breaks down, the other temperature sensor is used as an alternative to one of the temperature sensors, and the other temperature sensor is measured. An apparatus has been proposed in which the temperature is controlled so as to coincide with the set temperature set for one of the temperature sensors (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-270454

しかしながら、上述した特許文献1に記載の技術では、2つの温度センサは近接配置されているとはいえ測定箇所が異なるため、一方の温度センサの代替えとして他方の温度センサの測定温度をそのまま設定温度となるように制御すると、本来温度制御したい一方の温度センサの測定温度と設定温度とに食い違いが発生することとなり、安定な温度制御の継続を行うことが困難になる。
本発明は、温度センサが故障した場合でも、温度制御の安定継続が可能な基板処理装置を提供することにある。
However, in the technique described in Patent Document 1 described above, the two temperature sensors are arranged close to each other, but the measurement locations are different. Therefore, as an alternative to one temperature sensor, the measurement temperature of the other temperature sensor is used as it is as the set temperature. When the control is performed, a difference occurs between the measured temperature and the set temperature of one of the temperature sensors that the temperature control is originally intended to perform, and it is difficult to continue the stable temperature control.
An object of the present invention is to provide a substrate processing apparatus capable of stably maintaining temperature control even when a temperature sensor fails.

第1の発明は、基板を処理する処理室と、該処理室を加熱する加熱手段と、前記処理室外に配置され前記加熱手段の温度を測定する第1の温度センサと、該第1の温度センサよりも前記基板近傍に配置され前記処理室内の温度を測定する第2の温度センサと、前記第1及び第2の温度センサでそれぞれの測定する温度に基づき前記加熱手段を制御する制御手段とを備え、前記処理室を前記加熱手段で加熱する際、前記制御手段が、設定温度と前記第2の温度センサで測定する温度との偏差に基づき第1の演算を行い、該第1の演算結果と前記第1の温度センサで測定する温度との偏差に基づき第2の演算を行い、該第2の演算結果に基づき前記加熱手段を制御する基板処理装置であって、前記第2の温度センサが正常に温度測定できなくなる前に、前記設定温度にて温度が安定した際の前記第1及び第2の温度センサでそれぞれの測定した温度により温度差を求めて記憶しておき、前記処理室内で基板を処理するよう前記制御手段が前記加熱手段を制御している際に、前記第2の温度センサが正常に温度測定できなくなったとき、前記制御手段は、前記第2の温度センサで測定する温度と設定温度との偏差に基づき第1の演算をすることに替えて、前記記憶された温度差により前記設定温度を補正し、該補正結果と前記第1の温度センサで測定する温度との偏差に基づき第2の演算を行い、該第2の演算結果に基づき前記加熱手段を制御することを特徴とする基板処理装置である。   According to a first aspect of the present invention, there is provided a processing chamber for processing a substrate, a heating unit for heating the processing chamber, a first temperature sensor disposed outside the processing chamber for measuring the temperature of the heating unit, and the first temperature. A second temperature sensor that is disposed nearer to the substrate than the sensor and measures the temperature in the processing chamber; and a control unit that controls the heating unit based on the temperatures measured by the first and second temperature sensors. And when the processing chamber is heated by the heating unit, the control unit performs a first calculation based on a deviation between a set temperature and a temperature measured by the second temperature sensor, and the first calculation A substrate processing apparatus that performs a second calculation based on a deviation between a result and a temperature measured by the first temperature sensor, and controls the heating unit based on the second calculation result, wherein the second temperature Sensor cannot measure temperature normally In addition, the temperature difference is obtained and stored based on the temperature measured by the first and second temperature sensors when the temperature is stabilized at the set temperature, and the control is performed so that the substrate is processed in the processing chamber. When the second temperature sensor cannot measure the temperature normally while the means is controlling the heating means, the control means detects the deviation between the temperature measured by the second temperature sensor and the set temperature. In place of performing the first calculation based on the above, the set temperature is corrected by the stored temperature difference, and the second calculation is performed based on the deviation between the correction result and the temperature measured by the first temperature sensor. And the heating means is controlled based on the second calculation result.

本発明によれば、第2の温度センサが故障する前に、設定温度にて温度が安定した際の第1及び第2の温度センサでそれぞれの測定した温度により温度差を求めて記憶しておき、記憶された温度差により設定温度を補正し、この補正結果を、第1の演算結果に替えて使用するので、第2の温度センサで測定する温度と設定温度との偏差に基づき行う第1の演算と、擬似的ではあるが略同等の演算を行うことが可能となる。したがって、本処理中に、第2の温度センサが故障して、第2の温度センサによる温度測定が不可能になった場合でも、使用可能な第1の温度センサを使用して加熱手段の制御を継続でき、安定な温度制御を行うことができる。   According to the present invention, before the second temperature sensor breaks down, the temperature difference is obtained and stored based on the temperatures measured by the first and second temperature sensors when the temperature is stabilized at the set temperature. Then, the set temperature is corrected based on the stored temperature difference, and this correction result is used in place of the first calculation result, so that the second measurement is performed based on the deviation between the temperature measured by the second temperature sensor and the set temperature. It is possible to perform a calculation that is substantially equivalent to the calculation of 1. Therefore, even when the second temperature sensor fails during the process and temperature measurement by the second temperature sensor becomes impossible, the heating means is controlled using the usable first temperature sensor. And stable temperature control can be performed.

ここで、第2の温度センサが正常に温度測定できなくなる前とは、求めた温度差を、加熱手段の制御継続可能な補正結果として使用することが可能となるタイミングをいい、例えば、処理室内で基板を処理するに先立って行う先行処理で、制御手段が加熱手段を制御して、処理室内を基板処理時の設定温度にて温度を安定させ、この温度が安定している際(温度安定時)を挙げることができる。この温度安定時の他に、第2の温度センサの故障直前、又は処理室内での基板処理開始時などを挙げることができる。   Here, the time before the second temperature sensor cannot measure the temperature normally refers to a timing at which the obtained temperature difference can be used as a correction result capable of continuing control of the heating means. In the preceding process that is performed prior to processing the substrate, the control unit controls the heating unit to stabilize the temperature at the set temperature during the substrate processing in the processing chamber, and when this temperature is stable (temperature stabilization Time). In addition to the time when the temperature is stabilized, it may be just before the failure of the second temperature sensor, or when the substrate processing is started in the processing chamber.

第2の発明は、基板を処理する処理室と、該処理室を加熱する加熱手段と、前記処理室外に配置され前記加熱手段の温度を測定する第1の温度センサと、該第1の温度センサよりも前記基板近傍に配置され前記処理室内の温度を測定する第2の温度センサと、前記加熱手段の異常加熱を検出する第3の温度センサと、前記第1及び第2の温度センサでそれぞれの測定する温度に基づき前記加熱手段を制御する制御手段とを備え、前記処理室を前記加熱手段で加熱する際、前記制御手段が、設定温度と前記第2の温度センサで測定する温度との偏差に基づき第1の演算を行い、該第1の演算結果と前記第1の温度センサで測定する温度との偏差に基づき第2の演算を行い、該第2の演算結果に基づき前記加熱手段を制御する基板処理装置であって、前記第1の温度センサが正常に温度測定できなくなる前に、前記設定温度にて温度が安定した際の前記第1及び第3の温度センサでそれぞれの測定した温度により温度差を求めて記憶しておき、前記処理室内で基板を処理する本処理で、前記制御手段が前記加熱手段を制御している際に、前記第1の温度センサが正常に温度測定できなくなったとき、前記制御手段は、前記第1の演算結果と第1の温度センサで測定する温度との偏差に基づき第2の演算をすることに替えて、前記記憶された温度差により前記第3の温度センサで測定する温度を補正し、該補正結果と前記第1の演算結果とに基づき第2の演算を行い、該第2の演算結果に基づき前記加熱手段を制御することを特徴とする基板処理装置である。   According to a second aspect of the present invention, there is provided a processing chamber for processing a substrate, a heating unit for heating the processing chamber, a first temperature sensor disposed outside the processing chamber for measuring the temperature of the heating unit, and the first temperature. A second temperature sensor that is disposed nearer to the substrate than the sensor and measures the temperature in the processing chamber; a third temperature sensor that detects abnormal heating of the heating means; and the first and second temperature sensors Control means for controlling the heating means based on the respective measured temperatures, and when the processing chamber is heated by the heating means, the control means measures a set temperature and a temperature measured by the second temperature sensor. The first calculation is performed based on the deviation of the first calculation, the second calculation is performed based on the deviation between the first calculation result and the temperature measured by the first temperature sensor, and the heating is performed based on the second calculation result. It is a substrate processing apparatus that controls the means. Before the temperature of the first temperature sensor cannot be measured normally, a temperature difference is obtained and stored based on the temperatures measured by the first and third temperature sensors when the temperature is stabilized at the set temperature. In the main processing for processing a substrate in the processing chamber, when the control unit is controlling the heating unit, the control unit is not able to measure the temperature normally. Is measured by the third temperature sensor based on the stored temperature difference, instead of performing a second calculation based on a deviation between the first calculation result and the temperature measured by the first temperature sensor. In the substrate processing apparatus, the temperature is corrected, a second calculation is performed based on the correction result and the first calculation result, and the heating unit is controlled based on the second calculation result.

本発明によれば、第1の温度センサが故障する前に、設定温度にて温度が安定した際の第1及び第3の温度センサでそれぞれの測定した温度により温度差を求めて記憶しておき、記憶された温度差により設定温度を補正し、この補正結果を、故障した第1の温度センサで測定するべき温度の代りに使用するので、本来第1の温度センサで測定する温度と第1の演算結果との偏差に基づき行う第2の演算と、擬似的ではあるが略同等の演算を行うことが可能となる。したがって、本処理中に、第1の温度センサが故障して、第1の温度センサによる温度測定が不可能になった場合でも、使用可能な第3の温度センサを使用して加熱手段の制御を継続でき、安定な温度制御を行うことができる。   According to the present invention, before the failure of the first temperature sensor, the temperature difference is obtained and stored based on the temperatures measured by the first and third temperature sensors when the temperature is stabilized at the set temperature. Then, the set temperature is corrected by the stored temperature difference, and this correction result is used in place of the temperature to be measured by the failed first temperature sensor. It is possible to perform a pseudo but substantially equivalent operation to the second operation performed based on the deviation from the operation result of 1. Therefore, even if the first temperature sensor fails during the process and temperature measurement by the first temperature sensor becomes impossible, the control of the heating means is performed using the usable third temperature sensor. And stable temperature control can be performed.

本発明においても、第1の温度センサが正常に温度測定できなくなる前とは、求めた温度差を、加熱手段の制御継続可能な補正結果として使用することが可能となるタイミングをいい、例えば、処理室内で基板を処理するに先立って行う先行処理で、制御手段が加熱手段を制御して、処理室内を基板処理時の設定温度にて温度を安定させ、この温度が安定している際(温度安定時)を挙げることができる。この温度安定時の他に、第1の温度センサの故障直前、又は処理室内での基板処理開始時などを挙げることができる。   Also in the present invention, the time before the first temperature sensor can not measure the temperature normally refers to the timing at which the obtained temperature difference can be used as a correction result capable of continuing control of the heating means. In the preceding process that is performed prior to processing the substrate in the processing chamber, the control unit controls the heating unit to stabilize the temperature at the set temperature at the time of substrate processing in the processing chamber, and when this temperature is stable ( (When temperature is stable). In addition to the time when the temperature is stabilized, it may be just before the failure of the first temperature sensor, or when the substrate processing is started in the processing chamber.

第3の発明は、第1又は第2の発明において、前記加熱手段が処理室を分割加熱するために複数のゾーンに分割され、前記制御手段はゾーン毎に設けられていることを特徴とする基板処理装置である。ゾーン分割された加熱手段をゾーン毎に制御できるので、処理室内の温度制御をより安定に継続制御できる。   A third invention is characterized in that, in the first or second invention, the heating means is divided into a plurality of zones to divide and heat the processing chamber, and the control means is provided for each zone. A substrate processing apparatus. Since the zone-divided heating means can be controlled for each zone, temperature control in the processing chamber can be continuously controlled more stably.

第4の発明は、第3の発明において、前記温度センサが正常に温度測定できなくなる前に、各温度センサでそれぞれの測定した温度により求める温度差を前記ゾーン毎に記憶しておき、この記憶手段が、ゾーン毎に前記温度差をそれぞれ記憶するルックアップテーブルであることを特徴とする基板処理装置である。所望の温度差をルックアップテーブルで求められるので、制御の高速化が可能となる。   According to a fourth invention, in the third invention, before the temperature sensor becomes unable to measure the temperature normally, a temperature difference obtained from the temperature measured by each temperature sensor is stored for each zone, and this memory is stored. The substrate processing apparatus is characterized in that the means is a lookup table that stores the temperature difference for each zone. Since a desired temperature difference can be obtained by a look-up table, the speed of control can be increased.

本発明によれば、温度センサが故障した場合でも、温度制御の安定継続を行うことができる。   According to the present invention, stable temperature control can be continued even when a temperature sensor fails.

以下に本発明の実施の形態を説明する。
基板処理装置として、たとえば半導体装置を製造する半導体製造装置があるが、そのうち、化学反応(CVD反応)を利用して複数の基板を一括処理する縦型CVD炉について図面を用いて説明する。なお、ここでは、いずれの図面及び説明とも、縦型炉を例として用いているが、本発明はその他の炉にも応用できる。
Embodiments of the present invention will be described below.
As a substrate processing apparatus, for example, there is a semiconductor manufacturing apparatus that manufactures a semiconductor device. Among them, a vertical CVD furnace that collectively processes a plurality of substrates using a chemical reaction (CVD reaction) will be described with reference to the drawings. Here, in any of the drawings and description, a vertical furnace is used as an example, but the present invention can be applied to other furnaces.

図7に実施の形態の縦型CVD炉の構造例を示す。図7に示した縦型CVD炉は、内部に処理室100を形成する反応管104と、反応管104内を加熱する加熱手段としてのヒータ101とから主に構成される。反応管104内には熱処理するための基板103を搭載したボート106が挿入される。   FIG. 7 shows a structural example of the vertical CVD furnace of the embodiment. The vertical CVD furnace shown in FIG. 7 mainly includes a reaction tube 104 that forms a processing chamber 100 therein, and a heater 101 that serves as a heating means for heating the inside of the reaction tube 104. A boat 106 having a substrate 103 for heat treatment is inserted into the reaction tube 104.

この縦型CVD炉の温度を制御する温度制御システムは、第1の温度センサとしての外部熱電対102と、第2の温度センサとしての内部熱電対105と、第3の温度センサとしての過温保護熱電対109とを備える。さらに、設定温度を指定する装置操作部108と、ヒータ101への操作量Z(電力値)を求める温度コントローラ107と、温度コントローラ107の出力値に応じた電力をヒータ101に供給する電力調整器110とを備える。上述した温度コントローラ107、装置操作部108及び電力調整器110から制御手段111が構成される。   The temperature control system for controlling the temperature of the vertical CVD furnace includes an external thermocouple 102 as a first temperature sensor, an internal thermocouple 105 as a second temperature sensor, and an overheat as a third temperature sensor. And a protective thermocouple 109. Furthermore, a device operation unit 108 for designating a set temperature, a temperature controller 107 for obtaining an operation amount Z (power value) for the heater 101, and a power regulator for supplying power to the heater 101 according to an output value of the temperature controller 107. 110. The temperature controller 107, the apparatus operation unit 108, and the power regulator 110 described above constitute a control unit 111.

ヒータ101は、炉内温度をより高精度に制御するためにゾーン分割されており、たとえば4ゾーン分割の場合には、反応管104の軸方向に沿って、各ゾーンは上部から順にU、CU、CL、Lゾーンなどと呼ばれる。分割されたヒータ101のそれぞれのゾーンに対応して、外部熱電対102、内部熱電対105、及び過温保護熱電対109が上下に区分して配置されている。   The heater 101 is divided into zones in order to control the furnace temperature with higher accuracy. For example, in the case of a four-zone division, the zones are arranged in the order of U and CU from the top along the axial direction of the reaction tube 104. , CL, and L zones. Corresponding to each zone of the divided heater 101, an external thermocouple 102, an internal thermocouple 105, and an overheat protection thermocouple 109 are arranged separately in the vertical direction.

外部熱電対102は処理室100の外であって、ヒータ101の近傍に配置されて、ヒータ101近傍の温度を測定することによりヒータ101の温度を測定する。内部熱電対105は、外部熱電対102よりも基板103の近傍、たとえば図示例のように反応管104内に配置され、処理室100内の温度(単に炉内温度ともいう)を測定する。過温保護熱電対109は、ヒータ101の近傍に配置され、強制的にヒータ電源を遮断するなどして装置保護を行うためにヒータ101の異常加熱を検出する。   The external thermocouple 102 is disposed outside the processing chamber 100 and in the vicinity of the heater 101, and measures the temperature of the heater 101 by measuring the temperature in the vicinity of the heater 101. The internal thermocouple 105 is disposed closer to the substrate 103 than the external thermocouple 102, for example, in the reaction tube 104 as in the illustrated example, and measures the temperature in the processing chamber 100 (also simply referred to as the furnace temperature). The overheat protection thermocouple 109 is disposed in the vicinity of the heater 101, and detects abnormal heating of the heater 101 in order to protect the apparatus by forcibly shutting off the heater power supply.

この縦型CVD炉における温度制御の目的は、熱処理するための基板103近傍に設置された内部熱電対105の測定温度を、設定温度Yと一致させることである。上述した温度制御システムは、装置操作部108から温度コントローラ107に設定温度Yを設定し、内部熱電対105の測定温度を、この設定温度Yと一致するように、温度コントローラ107が、外部熱電対102、内部熱電対105(及び過温保護熱電対109)の測定温度に基づいてヒータ101に供給すべき操作量(電力値)Zを演算し、その演算結果を電力調整器110に出力して、その出力値に応じた電力をヒータ101に供給する。   The purpose of temperature control in this vertical CVD furnace is to make the measurement temperature of the internal thermocouple 105 installed in the vicinity of the substrate 103 for heat treatment coincide with the set temperature Y. In the temperature control system described above, the temperature controller 107 sets the set temperature Y to the temperature controller 107 from the apparatus operation unit 108, and the temperature controller 107 sets the external thermocouple so that the measured temperature of the internal thermocouple 105 matches the set temperature Y. 102, the operation amount (power value) Z to be supplied to the heater 101 is calculated based on the measured temperature of the internal thermocouple 105 (and the overheat protection thermocouple 109), and the calculation result is output to the power regulator 110. Then, electric power corresponding to the output value is supplied to the heater 101.

図8に示すように、温度コントローラ107は、カスケード制御ループを構成している。カスケード制御ループは、設定温度Yと内部熱電対105からの測定温度との偏差(第1の偏差)を出力する第1の加算器401と、第1の加算器401の出力に応じてPID演算して、外部熱電対102からの測定温度が追従すべき値を指示する第1のPID調節部402と、第1のPID調節部402の出力と外部熱電対102からの測定温度との偏差(第2の偏差)を出力する第2の加算器403と、第2の加算器403の出力に応じてPID演算して、ヒータ101への操作量Zを指示する第2のPID調節部404とで構成される。
なお、図8は、1つのゾーンのみを記述しているが、4ゾーン分割される場合は、同様の構成がそれぞれのゾーンごとに存在する。また、図8では、便宜上、電力調整器110を省略しているが、以下に説明する図1、図4でも同様に省略している。
As shown in FIG. 8, the temperature controller 107 constitutes a cascade control loop. The cascade control loop includes a first adder 401 that outputs a deviation (first deviation) between the set temperature Y and the measured temperature from the internal thermocouple 105, and a PID calculation according to the output of the first adder 401. Then, the first PID adjustment unit 402 that indicates the value that the measured temperature from the external thermocouple 102 should follow, and the deviation between the output of the first PID adjustment unit 402 and the measured temperature from the external thermocouple 102 ( A second adder 403 that outputs a second deviation), a second PID adjustment unit 404 that performs a PID calculation according to the output of the second adder 403, and instructs the operation amount Z to the heater 101; Consists of.
Note that FIG. 8 describes only one zone, but when four zones are divided, a similar configuration exists for each zone. In FIG. 8, the power regulator 110 is omitted for convenience, but is omitted in FIGS. 1 and 4 described below.

図9に示すように、装置操作部108は、作業者が装置の動作情報を確認したり、各種設定を行ったりするための操作画面部201と、レシピ(処理シーケンス情報)を保存するためのレシピ保存部202と、温度コントローラ107との間でデータの送受信を行う温度コントローラ間通信部203と、これらを制御する制御部204とから構成される。   As shown in FIG. 9, the device operation unit 108 is used for an operator to confirm operation information of the device and make various settings, and an operation screen unit 201 for saving a recipe (processing sequence information). It is comprised from the recipe preservation | save part 202, the communication part 203 between temperature controllers which transmits / receives data between the temperature controllers 107, and the control part 204 which controls these.

装置操作部108は、温度コントローラ107に対して、作業者が設定した設定温度やパラメータ設定を送信するとともに、温度データやヒータ電力値などのデータを受信して、受信したデータを装置情報として操作画面部201に表示させたり、制御部204内に設けた記憶領域205に記憶させたりする。   The device operation unit 108 transmits the set temperature and parameter settings set by the operator to the temperature controller 107, receives data such as temperature data and heater power value, and operates the received data as device information. They are displayed on the screen unit 201 or stored in the storage area 205 provided in the control unit 204.

次に、縦型CVD炉で使用される処理シーケンスについて説明する。図10は、縦型CVD炉で行われるプロセス処理の一例のフローチャートを示し、図11は、そのときの炉内の温度変化の概略を示したものである。
ステップS1では、炉内の温度を比較的低い温度T0で安定させる予備加熱処理を行う。ここではボート106はまだ炉内へ挿入されていない。ステップS2ではボート106を炉内に挿入する処理(ボートロード)を行う。ステップS3では設定温度T0から、基板103に成膜処理等のプロセス処理を施すための前記温度T0よりも高い設定温度T1まで徐々に炉内の温度を上昇させる処理(ランプアップ)を行う。ステップS4では基板103にプロセス処理を施すために炉内の温度を基板処理時の設定温度T1で安定させる本加熱処理を行う。ステップS5では設定温度T1から再び比較的低い設定温度T0まで徐々に炉内の温度を下降させる処理(ランプダウン)を行う。ステップS6ではプロセス処理が施された基板103を搭載しているボート106を炉内から引き出す処理(ボートアンロード)を行う。
Next, a processing sequence used in the vertical CVD furnace will be described. FIG. 10 shows a flowchart of an example of a process performed in a vertical CVD furnace, and FIG. 11 shows an outline of temperature changes in the furnace at that time.
In step S1, the pre-heat treatment to stabilize at a relatively low temperature T 0 of the temperature in the furnace. Here, the boat 106 has not yet been inserted into the furnace. In step S2, a process of inserting the boat 106 into the furnace (boat loading) is performed. In step S3, a process (ramp up) for gradually increasing the temperature in the furnace from the set temperature T 0 to a set temperature T 1 higher than the temperature T 0 for performing a process such as a film forming process on the substrate 103 is performed. Do. To step S4 in the substrate 103 to a temperature in the furnace in order to perform the process treatment conduct the heat treatment to stabilize at the set temperature T 1 of the at substrate processing. In step S5, a process (ramp down) for gradually lowering the temperature in the furnace from the set temperature T 1 to the relatively low set temperature T 0 again is performed. In step S6, a process (boat unloading) is performed to pull out the boat 106 on which the process-processed substrate 103 is mounted from the furnace.

上記の処理シーケンスは、作業者が装置操作部108の操作画面部201から随時設定し、レシピ保存部202に保存したあと、実行される。通常、ステップS1からステップS6の処理は繰り返し行われるが、処理シーケンスの実行中に、外部熱電対102、または内部熱電対105が故障し、内部熱電対105による温度測定が不可能となる場合がある。通常そのような場合、温度制御に必要な情報が欠落して制御継続が不可能となるため、故障が発生したゾーンは安全方向へ移行、つまりヒータ101への操作量Zを0%とする処理を行う。   The above processing sequence is executed after the operator sets from the operation screen unit 201 of the apparatus operation unit 108 as needed and saves it in the recipe storage unit 202. Normally, the processing from step S1 to step S6 is repeatedly performed, but the external thermocouple 102 or the internal thermocouple 105 may fail during execution of the processing sequence, and temperature measurement by the internal thermocouple 105 may become impossible. is there. Usually, in such a case, information necessary for temperature control is lost and control cannot be continued, so that the zone where the failure has occurred is shifted to a safe direction, that is, the operation amount Z for the heater 101 is set to 0%. I do.

しかし、上記の故障現象が、図11のステップS5(温度降下)またはステップS6(基板引出し)で発生したならば、成膜処理等のプロセス処理が正常に終了している可能性もあるが、ステップS1(設定温度T0維持)からステップS4(設定温度T1維持)の間で発生した場合、ヒータ101への操作量Zを0%とする処理を行っても、プロセス処理が正常に終了せず、処理シーケンス終了時の基板が不良品となる場合がある。
そこで、本発明者は、温度センサが故障した場合でも、不良品の発生を低減させることが可能なカスケード制御ループを有する次のような基板処理装置を創案した。
However, if the above failure phenomenon occurs in step S5 (temperature drop) or step S6 (substrate pullout) in FIG. 11, there is a possibility that process processing such as film formation processing has ended normally. If it occurs between step S1 (maintenance of set temperature T 0 ) and step S4 (maintenance of set temperature T 1 ), the process ends normally even if the operation amount Z to the heater 101 is set to 0%. In some cases, the substrate at the end of the processing sequence becomes a defective product.
Therefore, the present inventor has devised the following substrate processing apparatus having a cascade control loop that can reduce the occurrence of defective products even when the temperature sensor fails.

[第1の実施の形態]
図1はそのような基板処理装置の第1の実施の形態を示すカスケード制御ループの構成図を示す。カスケード制御ループの基本的な構成は、図8と同じである。
図8の構成と異なる点は、処理室100をヒータ101で加熱する際、すなわち温度制御中に、内部熱電対105が故障し、内部熱電対105による温度測定が不可能となったことを温度コントローラ107が判断した場合、内部熱電対105を制御ループから外し、ルックアップテーブルとしての安定時温度差テーブル406に記憶した温度差を、設定温度に加えて補正した値を第1の演算結果の代替として制御ループに組み入れた構成となっている点である。
[First Embodiment]
FIG. 1 is a configuration diagram of a cascade control loop showing a first embodiment of such a substrate processing apparatus. The basic configuration of the cascade control loop is the same as in FIG.
8 differs from the configuration of FIG. 8 in that the temperature of the internal thermocouple 105 becomes impossible when the processing chamber 100 is heated by the heater 101, that is, during temperature control, and the internal thermocouple 105 cannot measure the temperature. When the controller 107 determines, the internal thermocouple 105 is removed from the control loop, and a value obtained by correcting the temperature difference stored in the stable temperature difference table 406 as a lookup table in addition to the set temperature is calculated as the first calculation result. As an alternative, the configuration is incorporated in the control loop.

ここで、外部熱電対102の測定温度を、装置操作部108から指定された設定温度Yとなるようヒータ101を制御する構成とすることも考えられるが、外部熱電対102と内部熱電対105とは測定箇所が異なるため、外部熱電対102の測定温度を、そのまま装置操作部108から指定された設定温度Yとなるように制御した場合、本来温度制御したい内部熱電対105の測定温度と、設定温度Yとに大きな食い違いが発生することとなり、プロセス処理の品質低下の原因となる可能性がある。   Here, it is conceivable that the heater 101 is controlled so that the measured temperature of the external thermocouple 102 becomes the set temperature Y specified from the apparatus operation unit 108. However, the external thermocouple 102 and the internal thermocouple 105 Since the measurement location is different, when the measurement temperature of the external thermocouple 102 is controlled to be the set temperature Y designated from the device operation unit 108 as it is, the measurement temperature of the internal thermocouple 105 that is originally desired to be temperature controlled and the setting are set. A large discrepancy occurs between the temperature Y and the quality of the process process may be reduced.

そこで、内部熱電対105を制御ループから外した後、装置操作部108から指定された設定温度Yに、安定時温度差テーブル406から読み出した温度差を、第3の加算器405で加算することにより、前記設定温度Yを補正し、この補正結果を第1の演算結果の替わりとし、外部熱電対102の測定温度と、第2の加算器403で加算することにより、第2の偏差を求め、この第2の偏差に基づき第2のPID調節部404で第2の演算を行い、この第2の演算結果(操作量Z)に基づき、補正された設定温度となるようにヒータ101を制御する構成としている。   Therefore, after removing the internal thermocouple 105 from the control loop, the third adder 405 adds the temperature difference read from the stable temperature difference table 406 to the set temperature Y specified from the apparatus operation unit 108. Then, the set temperature Y is corrected, and the correction result is used as a substitute for the first calculation result, and the measured temperature of the external thermocouple 102 is added to the second adder 403 to obtain the second deviation. Based on the second deviation, the second calculation is performed by the second PID adjustment unit 404, and the heater 101 is controlled so that the set temperature is corrected based on the second calculation result (operation amount Z). It is configured to do.

なお、装置操作部108の記憶領域205(図9参照)に設けられた前記安定時温度差テーブル406には、事前に、すなわち処理室内で基板を処理するに先立って行う先行処理や温度データ取得するため、前述の処理シーケンスを基板やプロセスガスを用いずに模擬的に行う際に、温度コントローラ107がヒータ101を制御して、処理室100内を基板処理時の予備加熱処理および本加熱処理時等処理シーケンスにて設定されるそれぞれの設定温度Yにて温度を安定させ、この温度が安定しているときに、外部熱電対102と内部熱電対105とで求めた温度差が、ゾーンごとおよび設定温度ごとに記憶されている。図2に、そのような温度差を記憶した安定時温度差テーブル406の例を示す。   Note that the stable temperature difference table 406 provided in the storage area 205 (see FIG. 9) of the apparatus operation unit 108 is stored in advance, that is, prior processing or temperature data acquisition performed before processing a substrate in the processing chamber. Therefore, when performing the above-described processing sequence in a simulated manner without using a substrate or process gas, the temperature controller 107 controls the heater 101 so that the inside of the processing chamber 100 is pre-heated during the substrate processing and the main heating processing. The temperature is stabilized at each set temperature Y set in the time processing sequence, and when this temperature is stable, the temperature difference obtained between the external thermocouple 102 and the internal thermocouple 105 is different for each zone. And stored for each set temperature. FIG. 2 shows an example of the stable temperature difference table 406 storing such temperature differences.

次に、図3を用いて上記カスケード制御ループを含む制御手段111の作用を説明する。
処理室100内で基板103を処理するに先立って行う先行処理で、制御手段111がヒータ101を制御して(ステップ301)、処理室100内を基板処理時の予備加熱処理および本加熱処理等処理シーケンスにて設定されたそれぞれの設定温度Tにて温度が安定したか否か判断し(ステップ303)、温度が安定している際に、外部熱電対102及び内部熱電対105でそれぞれの測定した温度により温度差を求めて記憶しておく(ステップ305)。
Next, the operation of the control means 111 including the cascade control loop will be described with reference to FIG.
In the preceding process performed before processing the substrate 103 in the processing chamber 100, the control unit 111 controls the heater 101 (step 301), and the processing chamber 100 is preheated during the substrate processing, the main heating process, and the like. It is determined whether or not the temperature is stabilized at each set temperature T set in the processing sequence (step 303), and when the temperature is stabilized, the external thermocouple 102 and the internal thermocouple 105 measure each. A temperature difference is obtained from the measured temperature and stored (step 305).

処理室100内で基板103を実際に処理する本処理で、制御手段111がヒータ101を制御している際に(ステップ307)、内部熱電対105が正常か否か判断し(ステップ309)、正常であれば内部熱電対105で測定する温度と設定温度Yとの第1の偏差に基づき第1の演算をする(ステップ311)。一方、内部熱電対105が正常に温度測定できなくなったとき、制御手段111は、内部熱電対105で測定する温度と設定温度Yとの第1の偏差に基づき第1の演算をすることに替えて、安定時温度差テーブル406に記憶された同じ設定温度に対応する温度差により設定温度Yを補正し(ステップ313)、補正結果と外部熱電対102で測定する温度との第2の偏差に基づき第2の演算を行い(ステップ314)、本処理が終了するまで(ステップ315)、この第2の演算結果に基づきヒータ101を制御する。   In the main processing for actually processing the substrate 103 in the processing chamber 100, when the control unit 111 controls the heater 101 (step 307), it is determined whether or not the internal thermocouple 105 is normal (step 309). If normal, a first calculation is performed based on the first deviation between the temperature measured by the internal thermocouple 105 and the set temperature Y (step 311). On the other hand, when the temperature of the internal thermocouple 105 cannot be measured normally, the control unit 111 switches to performing the first calculation based on the first deviation between the temperature measured by the internal thermocouple 105 and the set temperature Y. Then, the set temperature Y is corrected by the temperature difference corresponding to the same set temperature stored in the stable temperature difference table 406 (step 313), and the second deviation between the correction result and the temperature measured by the external thermocouple 102 is obtained. Based on the second calculation result (step 314), the heater 101 is controlled based on the second calculation result until the present process is completed (step 315).

このように、内部熱電対105が故障した場合、処理室100内の温度が安定したときの外部熱電対102と内部熱電対105との温度差で補正した設定温度になるよう外部熱電対102の測定温度を制御することで、擬似的に内部熱電対105の測定温度を本来の設定温度Yとなるように温度制御を安定継続することができる。   Thus, when the internal thermocouple 105 fails, the temperature of the external thermocouple 102 is adjusted to a set temperature corrected by the temperature difference between the external thermocouple 102 and the internal thermocouple 105 when the temperature in the processing chamber 100 is stabilized. By controlling the measured temperature, the temperature control can be stably continued so that the measured temperature of the internal thermocouple 105 becomes the original set temperature Y in a pseudo manner.

なお、上述した内部熱電対102、及び外部熱電対105は、複数にゾーン分割されたヒータ101のそれぞれに対応して上下に区分けして設けられており、そのうちの一つのゾーンに対応する内部熱電対105が断線や故障等し温度測定できなくなった場合には、実施の形態のカスケード制御ループと同様の構成がそれぞれのゾーンごとに存在するので、故障した内部熱電対105により温度測定できなくなったゾーンのみを記憶された温度差により設定温度を補正するよう制御するが、その他のゾーンに対応する内部熱電対105は正常に温度測定できるので、制御手段111の温度コントローラ107は、図8に示すカスケード制御ループを構成して、そのまま内部熱電対105で測定する温度と設定温度との第1の偏差に基づき第1の演算をするよう制御する。   The internal thermocouple 102 and the external thermocouple 105 described above are divided into upper and lower portions corresponding to the respective heaters 101 divided into a plurality of zones, and the internal thermocouple corresponding to one of the zones is provided. When the temperature cannot be measured due to disconnection or failure, the pair 105 has the same configuration as the cascade control loop of the embodiment for each zone, so the temperature cannot be measured by the failed internal thermocouple 105. Although only the zone is controlled to correct the set temperature based on the stored temperature difference, the internal thermocouple 105 corresponding to the other zone can normally measure the temperature, so the temperature controller 107 of the control means 111 is shown in FIG. A cascade control loop is formed, and the first deviation is determined based on the first deviation between the temperature measured by the internal thermocouple 105 and the set temperature. It controls to the operation.

[第2の実施の形態]
図4に、本発明の第2の実施の形態を示すカスケード制御ループの構成図を示す。基本的な構成は図1と同じであり、異なる点は、温度制御中に、外部熱電対102が故障し、外部熱電対102による温度測定が不可能となった場合、外部熱電対102を制御ループから外し、過温保護熱電対109の測定温度を、外部熱電対102の測定温度の代替として制御ループに組み入れた構成となっている点である。
[Second Embodiment]
FIG. 4 shows a configuration diagram of a cascade control loop showing the second embodiment of the present invention. The basic configuration is the same as in FIG. 1 except that the external thermocouple 102 is controlled when the external thermocouple 102 fails during temperature control and temperature measurement by the external thermocouple 102 becomes impossible. The configuration is such that the measurement temperature of the overheat protection thermocouple 109 is incorporated into the control loop as an alternative to the measurement temperature of the external thermocouple 102 by removing from the loop.

ここで、外部熱電対102と過温保護熱電対109は測定箇所が異なるため、過温保護熱電対109の測定温度を、そのまま外部熱電対102の測定温度の代替として制御した場合、温度制御が不安定となり、プロセス処理の品質低下の原因となる可能性がある。   Here, since the measurement location is different between the external thermocouple 102 and the overheat protection thermocouple 109, when the measurement temperature of the overheat protection thermocouple 109 is directly controlled as an alternative to the measurement temperature of the external thermocouple 102, the temperature control is performed. It may become unstable and cause a reduction in process processing quality.

そこで、過温保護熱電対109の測定温度に、安定時温度差テーブル408から読み出した温度差を、第4の加算器407で加算することにより、過温保護熱電対109の測定温度を補正し、第2の加算器403で、第1のPID調節部402で演算した第1の演算結果にこの補正結果を加算して第2の偏差を求め、この第2の偏差に基づき第2のPID調節部404で第2の演算を行い、この第2の演算結果(操作量Z)に基づき、ヒータ101を制御する構成としている。
なお、安定時温度差テーブル408には、事前に、予備加熱処理および本加熱処理等処理シーケンスにて設定さるそれぞれの設定温度にて温度が安定したときの外部熱電対102と過温保護熱電対109との温度差が、ゾーンごとおよび設定温度ごとに記憶されている。図5に、そのような温度差を記憶した安定時温度差テーブル406の例を示す。
Therefore, the temperature difference read from the stable temperature difference table 408 is added to the measured temperature of the overheat protection thermocouple 109 by the fourth adder 407 to correct the measurement temperature of the overheat protection thermocouple 109. The second adder 403 adds the correction result to the first calculation result calculated by the first PID adjustment unit 402 to obtain a second deviation, and the second PID is based on the second deviation. The adjustment unit 404 performs a second calculation, and the heater 101 is controlled based on the second calculation result (operation amount Z).
The stable temperature difference table 408 includes an external thermocouple 102 and an overheat protection thermocouple when the temperature is stabilized at each set temperature set in the processing sequence such as the preheating process and the main heating process in advance. The temperature difference from 109 is stored for each zone and for each set temperature. FIG. 5 shows an example of a stable temperature difference table 406 storing such temperature differences.

次に、図6を用いて上記カスケード制御ループを含む制御手段111の作用を説明する。
処理室100内で基板103を処理するに先立って行う先行処理で、制御手段111がヒータ101を制御して(ステップ601)、処理室100内を基板処理時の予備加熱処理および本加熱処理等処理シーケンスにて設定される設定温度のそれぞれにに対して温度が安定したか否か判断し(ステップ603)、温度が安定している際に、外部熱電対102及び内部熱電対105でそれぞれの測定した温度により温度差を求めて記憶しておく(ステップ605)。
Next, the operation of the control means 111 including the cascade control loop will be described with reference to FIG.
In the preceding process performed prior to processing the substrate 103 in the processing chamber 100, the control unit 111 controls the heater 101 (step 601), and the processing chamber 100 is preheated during the substrate processing, the main heating process, and the like. It is determined whether or not the temperature is stable with respect to each of the set temperatures set in the processing sequence (step 603). When the temperature is stable, the external thermocouple 102 and the internal thermocouple 105 respectively A temperature difference is obtained from the measured temperature and stored (step 605).

処理室100内で基板103を実際に処理する本処理で、制御手段111がヒータ101を制御している際に(ステップ607)、内部熱電対105で測定する温度と設定温度Yとの第1の偏差に基づき第1の演算を行い(ステップ609)、その後、外部熱電対102が正常か否か判断し(ステップ611)、正常であれば第1の演算結果と外部熱電対で測定する温度との第2の偏差に基づき第2の演算をする(ステップ613)。一方、外部熱電対102が正常に温度測定できなくなったとき、制御手段111は、第1の演算結果と外部熱電対で測定する温度との第2の偏差に基づき第2の演算をすることに替えて、安定時温度差テーブル406に記憶された同じ設定温度に対応する温度差により過温保護熱電対109で測定する温度を補正し、この補正結果と第1の演算結果とに基づき第2の演算(補正演算)を行い(ステップ614)、本処理が終了するまで(ステップ615)、この補正演算結果に基づきヒータ101を制御する。   In the main processing for actually processing the substrate 103 in the processing chamber 100, when the control unit 111 controls the heater 101 (step 607), the first of the temperature measured by the internal thermocouple 105 and the set temperature Y is set. The first calculation is performed based on the deviation (step 609), and then it is determined whether the external thermocouple 102 is normal (step 611). If normal, the first calculation result and the temperature measured by the external thermocouple are determined. The second calculation is performed based on the second deviation (step 613). On the other hand, when the temperature of the external thermocouple 102 cannot be measured normally, the control unit 111 performs the second calculation based on the second deviation between the first calculation result and the temperature measured by the external thermocouple. Instead, the temperature measured by the overheat protection thermocouple 109 is corrected based on the temperature difference corresponding to the same set temperature stored in the stable temperature difference table 406, and the second value is calculated based on the correction result and the first calculation result. (Correction calculation) is performed (step 614), and the heater 101 is controlled based on the correction calculation result until this processing is completed (step 615).

これにより、外部熱電対102が故障した場合であっても、過温保護熱電対109の測定温度に、安定時温度差テーブル408の値を加えた温度を、外部熱電対102の測定温度の代替として使用することで、温度制御を安定継続することができる。   As a result, even if the external thermocouple 102 fails, the temperature obtained by adding the value of the stable temperature difference table 408 to the measured temperature of the overheat protection thermocouple 109 is substituted for the measured temperature of the external thermocouple 102. As a result, temperature control can be continued stably.

なお、上述した内部熱電対102、外部熱電対105、及び過温保護熱電対109は、複数にゾーン分割されたヒータ101のそれぞれに対応して上下に区分けして設けられており、そのうちの一つのゾーンに対応する外部熱電対102が断線や故障等して温度測定できなくなった場合には、実施の形態のカスケード制御ループと同様の構成がそれぞれのゾーンごとに存在するので、故障した外部熱電対102により温度測定できなくなったゾーンのみを記憶された温度差により過温保護熱電対109の測定を補正するよう制御するが、その他のゾーンに対応する外部熱電対102は正常に温度測定できるので、制御手段111の温度コントローラ107は、図8に示すカスケード制御ループを構成して、そのまま第1の演算結果と外部熱電対102で測定する温度との第2の偏差に基づき第2の演算をするよう制御する。   Note that the internal thermocouple 102, the external thermocouple 105, and the overheat protection thermocouple 109 described above are provided in a vertically divided manner corresponding to each of the heaters 101 divided into a plurality of zones. When the external thermocouple 102 corresponding to one zone becomes unable to measure temperature due to disconnection or failure, the same configuration as the cascade control loop of the embodiment exists for each zone. Only the zone in which the temperature cannot be measured by the pair 102 is controlled to correct the measurement of the overheat protection thermocouple 109 by the stored temperature difference, but the external thermocouple 102 corresponding to the other zone can normally measure the temperature. The temperature controller 107 of the control means 111 constitutes a cascade control loop shown in FIG. It controls to the second operation based on a second difference between the temperature measured in 102.

以上詳細に説明したように、本発明によれば、処理シーケンス実行中に、温度センサが故障して、その温度センサによる温度測定が不可能となった場合でも、使用可能な温度センサを使用して制御を継続するので、成膜処理等のプロセス処理を正常に終了することで、不良品の発生を低減させることができる。   As described above in detail, according to the present invention, even when a temperature sensor breaks down and the temperature measurement by the temperature sensor becomes impossible during execution of the processing sequence, the usable temperature sensor is used. Therefore, the generation of defective products can be reduced by ending the process such as the film forming process normally.

以下、第1の実施の形態を具体例を挙げて説明する。ここでの本処理、及び上記温度差を取得するために本処理に先立って行う先行処理は、予備加熱処理にも本加熱処理にもともに含まれる。
まず、先行処理を行って、安定時温度差テーブル406に、温度安定したときの外部熱電対102と内部熱電対105の温度差を取得する。温度差は、制御するゾーンごとに違いがある場合があるので、実行する処理シーケンスのゾーンにあわせて取得する。たとえば、図11の処理シーケンスにおいて、予備加熱処理での設定温度T0が300℃、本加熱処理での設定温度T1が500℃の場合、300℃と500℃の2点でそれぞれ取得する。取得方法は、たとえば、設定温度T0の場合には、300℃±1℃以内の状態が20分間継続したときを、ヒータ101の制御継続可能な補正結果として使用することが可能となるタイミングと制御手段111が判断する。
そのときの
(外部熱電対102の測定温度:たとえば290℃)−(内部熱電対105の測定温度たとえば300℃)=−10℃
を300℃安定時の温度差として、安定時温度差テーブル406に記憶する。安定時温度差は同様にゾーンごとに記憶する。また、同様に、設定温度T1の場合には、500℃に安定したときの温度差を、ゾーンごとに記憶する。
Hereinafter, the first embodiment will be described with a specific example. The main process here and the preceding process performed prior to the main process in order to acquire the temperature difference are included in both the preliminary heating process and the main heating process.
First, prior processing is performed, and the temperature difference between the external thermocouple 102 and the internal thermocouple 105 when the temperature is stabilized is acquired in the stable temperature difference table 406. Since the temperature difference may be different for each zone to be controlled, the temperature difference is acquired according to the zone of the processing sequence to be executed. For example, in the processing sequence of FIG. 11, when the set temperature T 0 in the preheating process is 300 ° C. and the set temperature T 1 in the main heating process is 500 ° C., two points of 300 ° C. and 500 ° C. are acquired. As an acquisition method, for example, in the case of the set temperature T 0 , the timing at which the state within 300 ° C. ± 1 ° C. continues for 20 minutes can be used as a correction result that allows the heater 101 to continue control. The control means 111 determines.
(Measurement temperature of external thermocouple 102: 290 ° C., for example) − (measurement temperature of internal thermocouple 105, eg 300 ° C.) = − 10 ° C.
Is stored in the stable temperature difference table 406 as a temperature difference when stable at 300 ° C. Similarly, the temperature difference at the time of stabilization is stored for each zone. Similarly, in the case of the set temperature T 1 , the temperature difference when stabilized at 500 ° C. is stored for each zone.

上記先行処理後、本処理を実行する。図11の処理シーケンス中の、ステップS1(設定温度T0維持)実行中に、内部熱電対105が故障した場合、内部熱電対105を制御ループから外す。そして、修正された設定温度である、
設定温度Y=(T0:300℃)+(安定時温度差テーブルの300℃安定時の温度差:−10℃)
=290℃
に向けて、外部熱電対102の測定温度を制御する。これにより、擬似的に内部熱電対105の測定温度を、設定温度Y=T0:300℃になるよう制御することが可能となる。
This process is executed after the preceding process. If the internal thermocouple 105 fails during execution of step S1 (maintaining the set temperature T 0 ) in the processing sequence of FIG. 11, the internal thermocouple 105 is removed from the control loop. And the corrected set temperature,
Set temperature Y = (T 0 : 300 ° C.) + (Temperature difference when stable at 300 ° C. in stable temperature difference table: −10 ° C.)
= 290 ° C
For this, the measured temperature of the external thermocouple 102 is controlled. Thereby, it becomes possible to control the measured temperature of the internal thermocouple 105 in a pseudo manner so that the set temperature becomes Y = T 0 : 300 ° C.

同様に、図11の処理シーケンス中の、S4実行中に、内部熱電対105が故障した場合は、設定温度Y=T1:500℃に、安定時温度差テーブルの500℃安定時の温度差を加えて、外部熱電対102の測定温度を制御する。
以上により、予備加熱処理や本加熱処理の処理シーケンス実行中に、内部熱電対105が故障した場合であっても、温度制御を安定継続することが可能となる。
Similarly, if the internal thermocouple 105 fails during the execution of S4 in the processing sequence of FIG. 11, the temperature difference when the stable temperature difference table of 500 ° C. is set to the set temperature Y = T 1 : 500 ° C. Is added to control the measured temperature of the external thermocouple 102.
As described above, even when the internal thermocouple 105 fails during the processing sequence of the preheating process and the main heating process, the temperature control can be stably continued.

以下、第2の実施の形態を具体例を挙げて説明する。
まず、処理シーケンスを実行する前に先行処理を行って、安定時温度差テーブル408に、温度安定したときの外部熱電対102と過温保護熱電対109との温度差を取得する。温度差は、制御する温度帯ごとに違いがある場合があるので、実行する処理シーケンスの温度帯にあわせて取得する。たとえは、図11の処理シーケンスにおいて、T0が300℃、T1が500℃の場合、300℃と500℃の2点でそれぞれ取得する。取得方法は、たとえば、300℃±1℃以内の状態が20分間継続したときの、
(外部熱電対102の測定温度:たとえば290℃)−(過温保護熱電対109の測定温度:たとえば285℃)
=+5℃
を、300℃安定時の温度差として、安定時温度差テーブル408に記憶する。同様にゾーンごとに記憶する。同様に、500℃に安定した場合の温度差を、ゾーンごとに記憶する。
安定時温度差テーブルの取得は、前述した外部熱電対102と内部熱電対105の温度差と、外部熱電対102と過温保護熱電対109との温度差を同時に取得することも可能である。
Hereinafter, the second embodiment will be described with a specific example.
First, prior processing is performed before the processing sequence is executed, and the temperature difference between the external thermocouple 102 and the overheat protection thermocouple 109 when the temperature is stabilized is acquired in the stable temperature difference table 408. The temperature difference may be different depending on the temperature range to be controlled, and is acquired according to the temperature range of the processing sequence to be executed. For example, in the processing sequence of FIG. 11, when T 0 is 300 ° C. and T 1 is 500 ° C., the data are acquired at two points of 300 ° C. and 500 ° C., respectively. The acquisition method is, for example, when a state within 300 ° C. ± 1 ° C. continues for 20 minutes.
(Measurement temperature of external thermocouple 102: 290 ° C., for example)-(Measurement temperature of overheat protection thermocouple 109: 285 ° C., for example)
= + 5 ° C
Is stored in the stable temperature difference table 408 as a temperature difference when stable at 300 ° C. Similarly, it is stored for each zone. Similarly, the temperature difference when stabilized at 500 ° C. is stored for each zone.
The stable temperature difference table can be acquired simultaneously with the temperature difference between the external thermocouple 102 and the internal thermocouple 105 and the temperature difference between the external thermocouple 102 and the overheat protection thermocouple 109 described above.

次に、処理シーケンスである本処理を実行する。図11の処理シーケンス中の、S1実行中に、外部熱電対102が故障した場合、外部熱電対102を制御ループから外し、
(過温保護熱電対109の測定温度285℃)+(安定時温度差テーブルの300℃安定時の温度差:+5℃)
=290℃
を、外部熱電対102の測定温度の代替として使用して制御する。
Next, this processing which is a processing sequence is executed. If the external thermocouple 102 fails during the execution of S1 in the processing sequence of FIG. 11, the external thermocouple 102 is removed from the control loop,
(Measured temperature of overheat protection thermocouple 109 285 ° C.) + (Temperature difference when stable at 300 ° C. of stable temperature difference table: + 5 ° C.)
= 290 ° C
Is used as an alternative to the measured temperature of the external thermocouple 102.

同様に、図11の処理シーケンス中の、S4実行中に、外部熱電対102が故障した場合は、過温保護熱電対109の測定温度に、安定時温度差テーブルの500℃安定時の温度差を加えた値を、外部熱電対102の測定温度の代替として使用して制御する。   Similarly, when the external thermocouple 102 fails during the execution of S4 in the processing sequence of FIG. 11, the temperature difference at the stable temperature difference table of 500 ° C. is added to the measured temperature of the overheat protection thermocouple 109. Is used as an alternative to the measured temperature of the external thermocouple 102 to control.

これにより、予備加熱処理や本加熱処理の処理シーケンス実行中に、外部熱電対102が故障した場合でも、温度制御を安定継続することが可能となる。   This makes it possible to continue temperature control stably even when the external thermocouple 102 fails during execution of the preheating process or the main heating process.

上述した実施の形態の説明では、事前に、温度安定時の熱電対間の温度差を取得し、この取得した温度差を一方の熱電対が故障した場合の補正に使用していたが、温度差の取得タイミングはこれに限定されず、温度センサが正常に温度測定できなくなる前に取得した温度差を、熱電対が故障したときのヒータ制御継続可能な補正結果として使用できればよい。例えば、故障直前の熱電対間の温度差を故障した場合の補正に使用したり、処理シーケンス開始時(処理室内での基板処理開始時)の熱電対間の温度差を故障した場合の補正に使用したりすることも可能である。   In the description of the embodiment described above, the temperature difference between the thermocouples when the temperature is stable is acquired in advance, and this acquired temperature difference is used for correction when one of the thermocouples fails. The difference acquisition timing is not limited to this, and it is only necessary to use the temperature difference acquired before the temperature sensor cannot measure the temperature normally as a correction result that allows the heater control to be continued when the thermocouple fails. For example, it can be used to correct the temperature difference between the thermocouples just before the failure, or to correct the temperature difference between the thermocouples at the start of the processing sequence (at the start of substrate processing in the processing chamber). It is also possible to use it.

本発明の基板処理装置の温度を制御する第1の実施の形態を示すカスケード制御ループ(温度コントローラ)の構成図である。It is a block diagram of the cascade control loop (temperature controller) which shows 1st Embodiment which controls the temperature of the substrate processing apparatus of this invention. 第1の実施の形態における安定時温度差テーブルの説明図である。It is explanatory drawing of the temperature difference table at the time of stability in 1st Embodiment. 第1の実施の形態におけるフローチャートである。It is a flowchart in a 1st embodiment. 第2の実施の形態を示すカスケード制御ループの構成図である。It is a block diagram of the cascade control loop which shows 2nd Embodiment. 第2の実施の形態における安定時温度差テーブルの説明図である。It is explanatory drawing of the temperature difference table at the time of stability in 2nd Embodiment. 第2の実施の形態におけるフローチャートである。It is a flowchart in 2nd Embodiment. 実施の形態における縦型CVD炉の構造例を示す図である。It is a figure which shows the structural example of the vertical type CVD furnace in embodiment. 実施の形態における基本的なカスケード制御ループの構成図である。It is a block diagram of the basic cascade control loop in an embodiment. 実施の形態における装置操作部の構造例を示す図である。It is a figure which shows the structural example of the apparatus operation part in embodiment. 実施の形態における縦型CVD炉で行われるプロセス処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process processing performed with the vertical CVD furnace in embodiment. 実施の形態における縦型CVD炉で行われるプロセス処理の炉内温度の一例を示す図である。It is a figure which shows an example of the furnace temperature of the process process performed with the vertical type CVD furnace in embodiment.

符号の説明Explanation of symbols

101 ヒータ(加熱手段)
102 外部熱電対(第1の温度センサ)
105 内部熱電対(第2の温度センサ)
107 温度コントローラ(制御部)
402 補正結果に基づき第1の演算を行う第1のPID調節部
403 第2の偏差を出力する第2の加算器
404 第2の偏差に基づき第2の演算を行う第2のPID調節部
405 補正結果を出力する第3の加算器
406 安定時温度差テーブル406
Y 設定温度
101 Heater (heating means)
102 External thermocouple (first temperature sensor)
105 Internal thermocouple (second temperature sensor)
107 Temperature controller (control unit)
402 1st PID adjustment part 403 which performs 1st calculation based on correction result 2nd adder 404 which outputs 2nd deviation 2nd PID adjustment part 405 which performs 2nd calculation based on 2nd deviation Third adder 406 for outputting the correction result Stable temperature difference table 406
Y set temperature

Claims (2)

複数のゾーンに分割され基板を処理する処理室と、
前記複数のゾーン毎に分割され前記処理室を加熱する加熱手段と、
前記処理室外に配置され前記複数のゾーン毎に前記加熱手段の温度を測定する第1の温度センサと、
該第1の温度センサよりも前記基板近傍に配置され前記複数のゾーン毎に前記処理室内の温度を測定する第2の温度センサと、
前記第1及び第2の温度センサでそれぞれの測定する温度に基づき前記処理室内で設定温度にて基板を処理するよう前記加熱手段を前記複数のゾーン毎にそれぞれ制御する制御手段とを備え、
前記制御手段は、
前記第2の温度センサが正常に温度測定できなくなる前に求めた、前記設定温度にて温度が安定した際の前記第1及び第2の温度センサで測定したそれぞれの温度の温度差を記憶する安定時温度差テーブルを有し、
前記加熱手段を制御している際に、前記複数のゾーンのうち正常に温度測定できなくなった前記第2の温度センサに対応するゾーンに対して、前記第2の温度センサで測定する温度と前記設定温度との偏差に基づき第1の演算をすることに替えて、前記安定時温度差テーブルに記憶された温度差により前記設定温度を補正し、該補正結果と前記第1の温度センサで測定する温度との偏差に基づき第2の演算を行い、該第2の演算結果に基づき前記加熱手段を前記複数のゾーン毎にそれぞれ制御することを特徴とする基板処理装置。
A processing chamber for processing a substrate divided into a plurality of zones ;
Heating means are divided into each of the plurality of zones to heat the inside of the processing chamber,
A first temperature sensor disposed outside the processing chamber and measuring the temperature of the heating means for each of the plurality of zones ;
A second temperature sensor that is disposed near the substrate than the first temperature sensor and measures the temperature in the processing chamber for each of the plurality of zones ;
Control means for controlling the heating means for each of the plurality of zones so as to process the substrate at a set temperature in the processing chamber based on the temperatures measured by the first and second temperature sensors,
The control means includes
The temperature difference between the temperatures measured by the first and second temperature sensors when the temperature is stabilized at the set temperature, obtained before the second temperature sensor cannot normally measure the temperature, is stored. It has a stable temperature difference table,
While controlling the heating means , the temperature measured by the second temperature sensor with respect to the zone corresponding to the second temperature sensor that has become unable to measure the temperature normally among the plurality of zones, Instead of performing the first calculation based on the deviation from the set temperature, the set temperature is corrected by the temperature difference stored in the stable temperature difference table, and the correction result and the first temperature sensor are measured. A substrate processing apparatus, wherein a second calculation is performed based on a deviation from a temperature to be controlled, and the heating unit is controlled for each of the plurality of zones based on the second calculation result.
複数のゾーンに分割された処理室内を前記複数のゾーン毎に分割された加熱手段により加熱して設定温度にて基板を処理するよう、前記複数のゾーン毎に前記加熱手段の温度を測定する第1の温度センサの測定する温度と該第1の温度センサよりも前記基板近傍に配置され前記複数のゾーン毎に前記処理室内の温度を測定する第2の温度センサの測定する温度と、に基づき前記加熱手段を前記複数のゾーン毎にそれぞれ制御している際に、
前記第2の温度センサのいずれかが正常に温度測定できなくなったとき、正常に温度測定できなくなった前記第2の温度センサに対応するゾーンに対して、前記第2の温度センサで測定する温度と前記設定温度との偏差に基づき第1の演算をすることに替えて、該第2の温度センサが正常に温度測定できなくなる前に予め求めて安定時温度差テーブルに記憶しておいた前記設定温度にて温度が安定した際の前記第1及び第2の温度センサで測
定したそれぞれの温度の温度差により前記設定温度を補正し、該補正結果と前記第1の温度センサで測定する温度との偏差に基づき第2の演算を行い、該第2の演算結果に基づき前記加熱手段を前記複数のゾーン毎にそれぞれ制御することを特徴とする半導体装置の製造方法。
The temperature of the heating means is measured for each of the plurality of zones so that the processing chamber divided into the plurality of zones is heated by the heating means divided for each of the plurality of zones and the substrate is processed at a set temperature. a temperature measuring of the first temperature sensor, a temperature measuring of the second temperature sensor than the temperature sensor of the first is disposed on the substrate near to measure the temperature of the processing chamber to each of the plurality of zones, the When controlling the heating means for each of the plurality of zones based on,
When any one of the second temperature sensors cannot measure the temperature normally, the temperature measured by the second temperature sensor for the zone corresponding to the second temperature sensor that cannot measure the temperature normally. Instead of performing the first calculation based on the deviation between the temperature and the set temperature, the second temperature sensor was obtained in advance and stored in the stable temperature difference table before the temperature could not be measured normally . The set temperature is corrected by the temperature difference between the temperatures measured by the first and second temperature sensors when the temperature is stabilized at the set temperature, and the correction result and the first temperature sensor are measured. A method of manufacturing a semiconductor device, wherein a second calculation is performed based on a deviation from a temperature, and the heating means is controlled for each of the plurality of zones based on the second calculation result.
JP2005278771A 2005-09-26 2005-09-26 Substrate processing apparatus and semiconductor device manufacturing method Active JP4878801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005278771A JP4878801B2 (en) 2005-09-26 2005-09-26 Substrate processing apparatus and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278771A JP4878801B2 (en) 2005-09-26 2005-09-26 Substrate processing apparatus and semiconductor device manufacturing method

Publications (3)

Publication Number Publication Date
JP2007088394A JP2007088394A (en) 2007-04-05
JP2007088394A5 JP2007088394A5 (en) 2008-10-30
JP4878801B2 true JP4878801B2 (en) 2012-02-15

Family

ID=37975043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278771A Active JP4878801B2 (en) 2005-09-26 2005-09-26 Substrate processing apparatus and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4878801B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510991B2 (en) * 2007-09-06 2014-06-04 株式会社日立国際電気 Semiconductor manufacturing apparatus and substrate processing method
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US8880227B2 (en) * 2010-05-27 2014-11-04 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
JP5539449B2 (en) * 2012-06-29 2014-07-02 東京エレクトロン株式会社 Program, heat treatment apparatus, and operation detection method of heat treatment apparatus
JP7154116B2 (en) * 2018-11-28 2022-10-17 東京エレクトロン株式会社 Raw material tank monitoring device and raw material tank monitoring method
JP6917495B1 (en) 2020-03-04 2021-08-11 株式会社Kokusai Electric Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR102520584B1 (en) * 2020-10-14 2023-04-10 세메스 주식회사 Process measurement apparatus and method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134886A (en) * 1995-11-08 1997-05-20 Kokusai Electric Co Ltd Method for controlling lapping temperature of semiconductor manufacturing equipment
JPH1025577A (en) * 1996-07-12 1998-01-27 Tokyo Electron Ltd Formed film treating device
JP4358915B2 (en) * 1997-03-21 2009-11-04 株式会社日立国際電気 Semiconductor manufacturing system
WO1999059196A1 (en) * 1998-05-11 1999-11-18 Semitool, Inc. Temperature control system for a thermal reactor
JP4286514B2 (en) * 2002-09-27 2009-07-01 株式会社日立国際電気 Semiconductor manufacturing apparatus, temperature control method, and semiconductor manufacturing method
US7006900B2 (en) * 2002-11-14 2006-02-28 Asm International N.V. Hybrid cascade model-based predictive control system
JP2005123308A (en) * 2003-10-15 2005-05-12 Hitachi Kokusai Electric Inc Substrate processor

Also Published As

Publication number Publication date
JP2007088394A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4878801B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4949192B2 (en) Operation method of dental kiln and combustion kiln
JP2008262492A (en) Heat treatment device, automatic adjustment method for control constant and storage medium
JP2002515648A (en) Heating reactor temperature control system
WO2018100826A1 (en) Substrate processing device, method of manufacturing semiconductor device, and program
JP3776297B2 (en) Control system
JP2013161857A (en) Thermal treatment apparatus and method of controlling thermal treatment apparatus
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
TWI595578B (en) Substrate processing method, storage media, control device, substrate processing apparatus, and substrate processing system
JP4847803B2 (en) Temperature control method, heat treatment apparatus, and semiconductor device manufacturing method
US10999896B2 (en) Temperature control apparatus and method for the industrial heater having auto-correction of soak time and self-diagnosis of abnormal heating function
JP2000181549A (en) Method for controlling temperature of heat treating furnace
JPH09260294A (en) Temperature control method of electric furnace
JP4797736B2 (en) Billet heating apparatus and heating method
JP4463633B2 (en) Substrate processing apparatus and substrate manufacturing method
JP6433375B2 (en) Temperature correction method for hot isostatic pressurizer
JP2006155169A (en) Temperature control method, temperature controller and heat treatment system
TWI618150B (en) Heat treatment apparatus, heat treatment method, and program
CN113110644B (en) Temperature control method and temperature control system for electrostatic chuck
KR100849012B1 (en) Heat treatment system and heat treatment method
JP2010080818A (en) Heat treatment equipment
JP4021826B2 (en) Substrate processing apparatus and substrate manufacturing method
JP2006093573A (en) Substrate processor
JP2001237186A (en) Semiconductor manufacturing equipment
JP2006093377A (en) Substrate treatment device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4878801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250