JP4878299B2 - Rim assembly tire assembly state measurement method - Google Patents

Rim assembly tire assembly state measurement method Download PDF

Info

Publication number
JP4878299B2
JP4878299B2 JP2007019824A JP2007019824A JP4878299B2 JP 4878299 B2 JP4878299 B2 JP 4878299B2 JP 2007019824 A JP2007019824 A JP 2007019824A JP 2007019824 A JP2007019824 A JP 2007019824A JP 4878299 B2 JP4878299 B2 JP 4878299B2
Authority
JP
Japan
Prior art keywords
tire
rim
ray
tangential direction
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007019824A
Other languages
Japanese (ja)
Other versions
JP2008185476A (en
Inventor
直哉 柏熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007019824A priority Critical patent/JP4878299B2/en
Publication of JP2008185476A publication Critical patent/JP2008185476A/en
Application granted granted Critical
Publication of JP4878299B2 publication Critical patent/JP4878299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

本発明は、X線照射手段を用いたタイヤ内部の測定方法にかかり、特に、リムにタイヤを組付けた状態で、リムとタイヤの組付部の測定が可能な、リム組付けタイヤの組付状態測定方法に関する。   The present invention relates to a method for measuring the inside of a tire using X-ray irradiation means, and in particular, a set of rim-attached tires capable of measuring a rim and a tire-attached portion in a state where the tire is attached to a rim. The present invention relates to an attached state measuring method.

タイヤは、車体を支え、駆動力を伝達し、内部にためた空気で乗り心地を良くし、前輪は操舵も行う重要な部品である。このため、車の安全はタイヤが負っているともいえる。 ここに、リムとタイヤの組付部はタイヤをホイールにしっかりと固定する重要な部分である。   The tire is an important part that supports the vehicle body, transmits driving force, improves the riding comfort with the air accumulated inside, and the front wheels also steer. For this reason, it can be said that the safety of the car is borne by the tires. Here, the assembly part of the rim and the tire is an important part for firmly fixing the tire to the wheel.

このため、リムとタイヤの組付状態を把握することは重要である。しかし、リムとタイヤの組付部は、リム組付けタイヤの内部に位置しているため、外から直接に目視で観察ができないという問題がある。
このような状況を背景に、リム組付けタイヤの内部を可視化する技術として、CTスキャンを使用する方法が提案されている(特許文献1)。
For this reason, it is important to grasp the assembled state of the rim and the tire. However, since the assembly part of a rim and a tire is located inside the rim assembly tire, there is a problem that it cannot be visually observed directly from the outside.
Against this backdrop, a method using CT scan has been proposed as a technique for visualizing the inside of a rim-assembled tire (Patent Document 1).

しかし、提案されたCTスキャンによる方法は、回転させたリム組付けタイヤの外側に配置した放射線源から放射線をリム組付けタイヤの径方向に照射し、リム組付けタイヤの回転中心部に配置した放射線検出器で放射された放射線の減衰量を検出し、検出された透過率データに基づいて、画像形成処理部でリムとタイヤの組付状態の断面図を形成するというものである。このため、撮影を開始してから被撮影部分の断面画像ができるまでに長時間を要する欠点があり、リム組付けタイヤの組付状態を、タイヤの一周に渡り、短時間で連続的に測定するには適さない。
特公平8―1377号公報
However, the proposed CT scan method radiates radiation from the radiation source arranged outside the rotated rim-attached tire in the radial direction of the rim-attached tire, and arranges it at the center of rotation of the rim-attached tire. The attenuation amount of the radiation radiated by the radiation detector is detected, and a cross-sectional view of the assembled state of the rim and the tire is formed by the image forming processing unit based on the detected transmittance data. For this reason, there is a drawback that it takes a long time from the start of photographing until a cross-sectional image of the portion to be photographed can be obtained, and the assembled state of the rim assembled tire is continuously measured in a short time over the entire circumference of the tire. Not suitable for.
Japanese Patent Publication No.8-1377

本発明は、上記問題を解決すべく成されたもので、リムとタイヤの組付状態を、タイヤの一周に渡り短時間で連続的に測定できる、リム組付けタイヤの組付状態測定方法の提供を目的とする。   The present invention has been made to solve the above problem, and is a method for measuring an assembled state of a rim-attached tire, which can continuously measure the assembled state of a rim and a tire over a circumference of the tire in a short time. For the purpose of provision.

請求項1に記載の発明は、リムにタイヤを組み付けたリム組付けタイヤにX線照射手段から出射されたX線を照射し、前記リム組付けタイヤを透過したX線をX線検知手段で検知し、検知されたX線透過情報に基づき画像処理手段でX線透過画像を形成し、前記リムと前記タイヤとの組み付け状態を測定するリム組付けタイヤの組付状態測定方法であって、前記リム組付けタイヤを、押圧負荷のない無負荷状態で回転させ、前記X線を前記リムの接線方向に照射し、前記X線検知手段により、前記リムと前記タイヤとの組付部のX線透過情報を所定のタイミングで取り込み、前記X線透過情報に基づいて、前記画像処理手段で接線方向透過画像を形成し、前記接線方向透過画像を用いて、前記リムと前記タイヤの特定部位の位置情報を得ることを特徴としている。   According to the first aspect of the present invention, X-rays emitted from the X-ray irradiating means are irradiated to a rim-attached tire in which a tire is attached to a rim, and X-rays transmitted through the rim-attached tire are detected by the X-ray detecting means. An assembly state measurement method for a rim-attached tire that detects and forms an X-ray transmission image by an image processing unit based on detected X-ray transmission information, and measures an assembly state of the rim and the tire, The rim assembly tire is rotated in a no-load state without a pressing load, the X-ray is irradiated in a tangential direction of the rim, and the X-ray detection means causes X of the assembly portion of the rim and the tire to be radiated. The line transmission information is captured at a predetermined timing, and based on the X-ray transmission information, a tangential direction transmission image is formed by the image processing means, and the rim and the specific part of the tire are used by using the tangential direction transmission image. Get location information It is characterized in.

請求項1に記載の発明では、X線照射手段からX線がリム組付けタイヤのリムの接線方向に照射され、リムの接線方向を透過したX線をX線検知手段で検知し、検知されたX線透過情報に基づいて、画像処理手段で、1枚の接線方向透過画像を得ることができる。   In the first aspect of the present invention, X-rays are radiated from the X-ray irradiation means in the tangential direction of the rim of the rim assembly tire, and X-rays transmitted through the rim tangential direction are detected and detected by the X-ray detection means. Based on the obtained X-ray transmission information, one tangential direction transmission image can be obtained by the image processing means.

これにより、得られた接線方向透過画像を解析することで、リム組付けタイヤの無荷重状態における、リムとタイヤの特定部位の位置情報を得ることができる。また、接線方向透過画像を得るだけなので、CTスキャンのように複雑な画像処理は必要でない。従って、タイヤの一周分に渡り、短時間で連続的にリムとタイヤの特定部位を測定できる。   Thus, by analyzing the obtained tangential direction transmission image, it is possible to obtain positional information of the specific portion of the rim and the tire in the unloaded state of the rim-assembled tire. Further, since only a tangential direction transmission image is obtained, complicated image processing as in a CT scan is not necessary. Therefore, it is possible to measure a specific portion of the rim and the tire continuously in a short time over one round of the tire.

請求項2に記載の発明は、請求項1に記載のリム組付けタイヤの組付状態測定方法において、前記リムの特定部位を、前記リムのリムフランジの外側面に設けた第1測定点とし、前記タイヤの特定部位を、前記タイヤのビードコアの内側面に設けた第2測定点とし、前記リム組付けタイヤの回転軸と平行な面上における、前記第1測定点と前記第2測定点との距離を測定することを特徴としている。   According to a second aspect of the present invention, in the assembled state measuring method for a rim assembled tire according to the first aspect, the specific portion of the rim is a first measurement point provided on the outer surface of the rim flange of the rim. The specific portion of the tire is a second measurement point provided on the inner surface of the bead core of the tire, and the first measurement point and the second measurement point on a plane parallel to the rotation axis of the rim-attached tire. It is characterized by measuring the distance.

請求項2に記載の発明では、リムのリムフランジの外側面に設けた第1測定点と、タイヤのビードコアの内側面に設けた第2測定点との間の距離情報を、接線方向透過画像を用いて、所定のタイミングで得る。
これにより、リム組付けタイヤにおける、特定部位である第1測定点と第2測定点との間の距離をタイヤの一周分に渡り連続的に測定して、リムとタイヤの組付状態を評価できる。
In the invention according to claim 2, distance information between the first measurement point provided on the outer side surface of the rim flange of the rim and the second measurement point provided on the inner side surface of the bead core of the tire is obtained as a tangential direction transmission image. Is obtained at a predetermined timing.
Thereby, in the rim-assembled tire, the distance between the first measurement point and the second measurement point, which are specific parts, is continuously measured over the entire circumference of the tire to evaluate the assembled state of the rim and the tire. it can.

請求項3に記載の発明は、請求項1に記載のリム組付けタイヤの組付状態測定方法において、前記リムと前記タイヤの特定部位は、前記リムと前記タイヤの間に生じた隙間であり、前記隙間の面積を測定することを特徴としている。
請求項3に記載の発明では、リムとタイヤの間に生じた隙間の面積情報を、接線方向透過画像を用いて、所定のタイミングで得る。
これにより、リム組付けタイヤにおける、特定部位であるリムとタイヤの間に生じた隙間の面積をタイヤの一周分に渡り連続的に測定して、リムとタイヤの組付状態を評価できる。
According to a third aspect of the present invention, in the method for measuring an assembled state of the rim assembled tire according to the first aspect, the specific part of the rim and the tire is a gap generated between the rim and the tire. , Measuring the area of the gap.
In the invention according to claim 3, the area information of the gap formed between the rim and the tire is obtained at a predetermined timing using the tangential direction transmission image.
Thereby, in the rim-assembled tire, the area of the gap formed between the rim, which is a specific portion, and the tire can be continuously measured over the entire circumference of the tire to evaluate the assembled state of the rim and the tire.

以上説明したように本発明によれば、リムとタイヤの組付状態を、タイヤの一周に渡り短時間で連続的に測定できるリム組付けタイヤの組付状態測定方法を提供できる。   As described above, according to the present invention, it is possible to provide a method for measuring an assembled state of a rim-attached tire that can continuously measure the assembled state of the rim and the tire over a circumference of the tire in a short time.

以下、図1を用いて本発明のリム組付けタイヤの組付状態測定方法を説明する。   Hereinafter, the assembled state measuring method of the rim assembled tire of the present invention will be described with reference to FIG.

リム組付けタイヤの組付状態測定方法で使用するタイヤ内部構造測定装置10は、X線透視部にエクスロン・インターナショナル株式会社製のX線透視装置「ホイル付タイヤ検査システムMU2000」を利用した装置である。   The tire internal structure measuring device 10 used in the method for measuring the assembled state of a rim-attached tire is a device that uses an X-ray fluoroscopic device “tire inspection system with wheels MU2000” manufactured by Exlon International Co., Ltd. for the X-ray fluoroscopic part. is there.

タイヤ内部構造測定装置10は、被試験体であるリム組付けタイヤ12を回転可能に支持した状態で、リム組付けタイヤ12を回転させるタイヤ走行回転機構16と、床面に垂直に設けられた支柱21と、支柱21に取り付けられたX線照射装置支持具25と、X線照射装置支持具25で支持され点状の焦点から錐状にX線を出射するX線管等を含むX線照射装置20と、リム組付けタイヤ12を挟んでX線照射装置20と対向配置され、図示しない支持体で支持され、X線照射装置20から照射されたX線を検知するX線検知装置22と、支柱21に取り付けられリム組付けタイヤ12を回転可能に支持するタイヤ支持具27と、支柱21に取り付けられ負荷荷重機構14を支持する負荷荷重機構支持具29と、負荷荷重機構支持具29で支持されリム組付けタイヤ12に負荷としての荷重を加える負荷荷重機構14とを有している。   The tire internal structure measuring device 10 is provided perpendicularly to the floor surface and a tire travel rotation mechanism 16 that rotates the rim assembly tire 12 in a state in which the rim assembly tire 12 as a test object is rotatably supported. X-rays including a column 21, an X-ray irradiation device support 25 attached to the column 21, an X-ray tube supported by the X-ray irradiation device support 25 and emitting X-rays in a cone shape from a point-like focus An X-ray detection device 22 that is disposed opposite to the X-ray irradiation device 20 with the irradiation device 20 and the rim assembly tire 12 interposed therebetween, is supported by a support (not shown), and detects X-rays emitted from the X-ray irradiation device 20. A tire support 27 that is attached to the support column 21 and rotatably supports the rim-attached tire 12, a load load mechanism support tool 29 that is attached to the support column 21 and supports the load load mechanism 14, and a load load mechanism support tool 29 so It is lifting and a load loading mechanism 14 to apply a load of a load to the rim assembling the tire 12.

更に、タイヤ内部構造測定装置10は、リム組付けタイヤ12内の空気の圧力を可変させるタイヤ内圧可変機構18と、リム組付けタイヤの回転速度を検出するタイヤ回転速度検出器24と、負荷荷重機構14、タイヤ走行回転機構16、タイヤ内圧可変機構18及びX線照射装置支持具25の駆動制御、X線照射装置20からのX線の出力制御を行う駆動制御部26と、X線検知装置22で検知されたX線透過情報に基づいてX線透過画像を形成する画像形成処理部28と、を備えている。   Further, the tire internal structure measuring device 10 includes a tire internal pressure varying mechanism 18 that varies the pressure of air in the rim assembled tire 12, a tire rotational speed detector 24 that detects the rotational speed of the rim assembled tire, and a load load. A drive control unit 26 that performs drive control of the mechanism 14, the tire running rotation mechanism 16, the tire internal pressure variable mechanism 18, and the X-ray irradiation apparatus support 25, and X-ray output control from the X-ray irradiation apparatus 20, and an X-ray detection apparatus And an image formation processing unit 28 that forms an X-ray transmission image based on the X-ray transmission information detected at 22.

タイヤ支持具27から水平方向に延ばしたアーム23の先端には、リム30にタイヤ56を組付けたリム組付けタイヤ12が回転可能に支持されている。
タイヤ走行回転機構16は、リム組付けタイヤ12を回転させるための機構で、リム組付けタイヤ12におけるタイヤ56の接地面と接触する位置にベルト機構34を配置している。ベルト機構34は、2つのプーリ36、38と、プーリ36、38との間に設けられリム組付けタイヤ12の接地面に接触し、接触した状態で捲回され、リム組付けタイヤ12を回転させるベルト部材40を有している。ベルト部材40は、モータ44により、ベルト42を介してプーリ38が駆動されることによって駆動される。
A rim assembly tire 12 in which a tire 56 is assembled to the rim 30 is rotatably supported at the tip of an arm 23 extending in the horizontal direction from the tire support 27.
The tire travel rotation mechanism 16 is a mechanism for rotating the rim assembly tire 12, and the belt mechanism 34 is disposed at a position in contact with the ground contact surface of the tire 56 in the rim assembly tire 12. The belt mechanism 34 is provided between the two pulleys 36, 38 and the pulleys 36, 38, contacts the ground contact surface of the rim assembly tire 12, is wound in the contact state, and rotates the rim assembly tire 12. A belt member 40 is provided. The belt member 40 is driven by the motor 44 by driving the pulley 38 via the belt 42.

リム組付けタイヤ12には、タイヤ回転速度検出器24が設けられ、タイヤ回転速度検出器24で検出されたタイヤ回転速度情報で、タイヤ走行回転機構16の走行速度が制御されている。   The rim assembled tire 12 is provided with a tire rotation speed detector 24, and the traveling speed of the tire traveling rotation mechanism 16 is controlled by the tire rotation speed information detected by the tire rotation speed detector 24.

X線照射装置20は、リム組付けタイヤ12のリム30の接線方向に向けてX線を照射する。X線の照射出力、X線の照射タイミング、X線検知装置22で検知されたX線透過情報の出力タイミング等は駆動制御部26で制御されている。
X線検知装置22は、X線検出面が平面状とされており、リム組付けタイヤ12を透過したX線の透過量を検出する。このようなX線検知装置22としては、例えば、イメージインテンシファイアー、フラットパネルディテクター等がある。また、X線検知装置22に代えてX線フィルムを用いても良い。
本実施形態では、X線透過画像の歪みを小さくするために、X線照射装置20から照射されるX線の中心軸を、X線検知装置22のX線検知面に対して直角に設定している。
The X-ray irradiation device 20 irradiates X-rays in the tangential direction of the rim 30 of the rim assembly tire 12. The drive control unit 26 controls the X-ray irradiation output, the X-ray irradiation timing, the output timing of the X-ray transmission information detected by the X-ray detection device 22, and the like.
The X-ray detection device 22 has a flat X-ray detection surface and detects the amount of X-ray transmitted through the rim assembly tire 12. Examples of such an X-ray detection device 22 include an image intensifier and a flat panel detector. Further, an X-ray film may be used in place of the X-ray detector 22.
In the present embodiment, in order to reduce the distortion of the X-ray transmission image, the central axis of the X-ray irradiated from the X-ray irradiation device 20 is set to be perpendicular to the X-ray detection surface of the X-ray detection device 22. ing.

リム組付けタイヤ12に押圧負荷をかける負荷荷重機構14は、本発明の測定方法では使用しないので、詳細な説明は省略する。
タイヤ内圧可変機構18は、リム組付けタイヤ12の回転停止時に、リム組付けタイヤ12にエアノズル74からエアを供給するための機構で、エアポンプ76を有している。
駆動制御部26は、ベルト機構34のモータ44、負荷荷重機構14のモータ72、タイヤ12にエアを注入するエアポンプ76の駆動制御を行なう駆動コントローラ78と、X線照射装置20からのX線照射出力制御を行う制御部80とを有している。
Since the load-load mechanism 14 that applies a pressing load to the rim assembly tire 12 is not used in the measurement method of the present invention, a detailed description thereof is omitted.
The tire internal pressure variable mechanism 18 is a mechanism for supplying air from the air nozzle 74 to the rim-attached tire 12 when the rim-attached tire 12 stops rotating, and has an air pump 76.
The drive control unit 26 includes a motor 44 for the belt mechanism 34, a motor 72 for the load / load mechanism 14, a drive controller 78 that controls the drive of the air pump 76 that injects air into the tire 12, and X-ray irradiation from the X-ray irradiation device 20. And a control unit 80 that performs output control.

画像形成処理部28は、X線検知装置22で検知されたX線透過情報に基づいて接線方向透過画像を生成するものであり、マイクロコンピュータ等で構成される計算機82と、X線透過情報を収集するデータ収集部84、X線透過情報を前処理する前処理部86、前処理されたX線透過情報を再構成する再構成部88、画像メモリ部90、接線方向透過画像を表示するCRT表示装置92、生成された画像を記憶する補助記憶装置94で構成されている。   The image formation processing unit 28 generates a tangential direction transmission image based on the X-ray transmission information detected by the X-ray detection device 22, and a computer 82 constituted by a microcomputer or the like and the X-ray transmission information. A data collection unit 84 to collect, a preprocessing unit 86 for preprocessing X-ray transmission information, a reconstruction unit 88 for reconstructing preprocessed X-ray transmission information, an image memory unit 90, and a CRT for displaying a tangential direction transmission image The display device 92 includes an auxiliary storage device 94 that stores the generated image.

ここに、データ収集部84は、制御部80から計算機82を介して供給されたデータ収集信号に従ってX線検知装置22で検知されたX線透過情報を収集する。   Here, the data collection unit 84 collects the X-ray transmission information detected by the X-ray detection device 22 in accordance with the data collection signal supplied from the control unit 80 via the computer 82.

前処理部86は、計算機82の制御のもとに、データ収集部84から計算機82に供給されたX線透過情報に対して補正などの前処理を行う。前処理部86で前処理されたX線透過情報は、画像メモリ部90に一時的に記憶される。   The preprocessing unit 86 performs preprocessing such as correction on the X-ray transmission information supplied from the data collection unit 84 to the computer 82 under the control of the computer 82. The X-ray transmission information preprocessed by the preprocessing unit 86 is temporarily stored in the image memory unit 90.

再構成部88は、前処理されたX線透過情報に基づき接線方向透過画像を再構成する。この再構成された画像データは計算機82を介して補助記憶装置94に記憶されるとともに、CRT表示装置92に供給され、CRT表示装置92に接線方向透過画像として表示される。   The reconstruction unit 88 reconstructs a tangential direction transmission image based on the preprocessed X-ray transmission information. The reconstructed image data is stored in the auxiliary storage device 94 via the computer 82, supplied to the CRT display device 92, and displayed on the CRT display device 92 as a tangential direction transmission image.

次に、タイヤ内部構造測定装置10を用いた、リム組付けタイヤ12の組付け状態の測定手順を説明する。
先ず、リム組付けタイヤ12をタイヤ支持具27のアーム23に回転可能に装着する。装着後、エアポンプ76を作動させ、リム組付けタイヤ12内にエアノズル74からエアを供給し、所望の内圧に調整する。
Next, a procedure for measuring the assembled state of the rim assembled tire 12 using the tire internal structure measuring apparatus 10 will be described.
First, the rim assembly tire 12 is rotatably mounted on the arm 23 of the tire support 27. After the mounting, the air pump 76 is operated to supply air from the air nozzle 74 into the rim assembly tire 12 and adjust to a desired internal pressure.

次に、X線照射装置20とX線検知装置22とをリム組付けタイヤ12を挟んで対向配置する。X線照射装置20とX線検知装置22はリム組付けタイヤ12におけるリム30の接線方向の透過画像が得られる位置に調節し、それぞれを固定する。   Next, the X-ray irradiation device 20 and the X-ray detection device 22 are disposed to face each other with the rim assembly tire 12 interposed therebetween. The X-ray irradiation device 20 and the X-ray detection device 22 are adjusted to positions where a transmission image in the tangential direction of the rim 30 in the rim-attached tire 12 is obtained, and are fixed.

モータ44を運転し、ベルト42を介してベルト部材40を駆動させ、ベルト部材40の駆動によってリム組付けタイヤ12を無負荷状態で、所定の回転数で回転させる。
なお、リム組付けタイヤ12の回転数は、タイヤ回転数検出器24により検知され、その検知結果は回転速度に対応するパルス信号として駆動コントローラ78を介して制御部80へ出力される。これにより、リム組付けタイヤ12の回転速度が検出でき、回転速度が所定の速度となるように制御される。
The motor 44 is operated to drive the belt member 40 via the belt 42, and the belt member 40 is driven to rotate the rim assembly tire 12 at a predetermined rotational speed in a no-load state.
The rotation speed of the rim-assembled tire 12 is detected by the tire rotation speed detector 24, and the detection result is output to the control unit 80 via the drive controller 78 as a pulse signal corresponding to the rotation speed. Thereby, the rotational speed of the rim assembly tire 12 can be detected, and the rotational speed is controlled to be a predetermined speed.

次に、X線照射装置20から、リム30の接線方向に向けて所定のタイミングでX線を照射する。同時にリム組込みタイヤ12を透過したX線は、X線検知装置22で検知され、X線透過情報は画像形成処理部28に出力される。
画像形成処理部28に取り込まれたX線透過情報は、前述の処理手段に従って所定のタイミングで連続して処理され、処理結果はリムとタイヤの組付け状態の接線方向透過画像として順次補助記憶装置94に記憶されると共に、CRT表示装置92に表示される。
Next, X-rays are irradiated from the X-ray irradiation apparatus 20 at a predetermined timing toward the tangential direction of the rim 30. At the same time, X-rays transmitted through the rim built-in tire 12 are detected by the X-ray detection device 22, and X-ray transmission information is output to the image forming processing unit 28.
The X-ray transmission information captured by the image forming processing unit 28 is continuously processed at a predetermined timing according to the processing means described above, and the processing result is sequentially stored as a tangential direction transmission image of the assembled state of the rim and the tire. 94 and displayed on the CRT display device 92.

以上の手順により得られた接線方向透過画像は、図2に示すように、X線を照射されたリム30の接線方向におけるリム30、リムフランジ52、ビード54、タイヤ56の組付け状態を示すものとなり、これらの位置情報を得ることができる。
これにより、リムとタイヤの組付け状態を、リム組込みタイヤ12の一周分について、接線方向透過画像として、短時間に記録していく。
The tangential direction transmission image obtained by the above procedure shows the assembled state of the rim 30, the rim flange 52, the bead 54, and the tire 56 in the tangential direction of the rim 30 irradiated with X-rays, as shown in FIG. Therefore, the position information can be obtained.
As a result, the assembled state of the rim and the tire is recorded in a short time as a tangential direction transmission image for one turn of the rim built-in tire 12.

なお、X線検知装置22から画像形成処理部28へのX線透過情報の取り込みタイミングは、リム組込みタイヤ12の回転速度が早過ぎても、X線透過情報の取り込み周波数が小さ過ぎても、データが鈍り、好ましくない。一方、リム組込みタイヤ12の回転速度が遅過ぎても測定に長時間を要し好ましくない。   Note that the X-ray transmission information capture timing from the X-ray detection device 22 to the image forming processing unit 28 is such that the rotational speed of the rim built-in tire 12 is too fast, or the X-ray transmission information capture frequency is too small. Data is dull and unfavorable. On the other hand, even if the rotational speed of the rim built-in tire 12 is too slow, it takes a long time for measurement, which is not preferable.

このため、リム組込みタイヤ12の回転速度は、一周が12秒、X線透過情報の取り込み周波数は30枚/秒での撮影が適当である。この結果、リム組込みタイヤ12が1度回転する毎に1枚、一周で360枚の接線方向透過画像を作成する。   For this reason, it is appropriate that the rim-incorporated tire 12 has a rotational speed of 12 seconds for one rotation and an X-ray transmission information capturing frequency of 30 frames / second. As a result, each time the rim built-in tire 12 rotates once, 360 tangential direction transmission images are created, one round.

次に、作成された接線方向透過画像を用いて、ビードコア54の組付け状態を測定し、評価する方法について説明する。
ビードコア54は、タイヤ56をリム30に固定する部材であり、所定の位置に、所定の状態で取り付けられている必要がある。ビードコア54の取り付け状態を、ビードコア54とリムフランジ52との間の相対位置を測定することで評価する。
Next, a method of measuring and evaluating the assembled state of the bead core 54 using the created tangential direction transmission image will be described.
The bead core 54 is a member that fixes the tire 56 to the rim 30 and needs to be attached at a predetermined position in a predetermined state. The attachment state of the bead core 54 is evaluated by measuring the relative position between the bead core 54 and the rim flange 52.

図3に示すように、先ず、リムフランジ52の外側(矢印Bの方向)の面に第1の特定部位L1を設け、ビードコア54の内側(矢印Aの方向)の面に第2の特定部位L2を設ける。
次に、画面上に表示したリム組込みタイヤ12の回転軸に平行な面(P1若しくはP2)上における第1の特定部位L1と、第2の特定部位L2との間の距離Lを座標から求める。
As shown in FIG. 3, first, a first specific portion L1 is provided on the outer surface (in the direction of arrow B) of the rim flange 52, and a second specific portion is provided on the inner surface (in the direction of arrow A) of the bead core 54. L2 is provided.
Next, the distance L between the first specific part L1 and the second specific part L2 on the plane (P1 or P2) parallel to the rotation axis of the rim built-in tire 12 displayed on the screen is obtained from the coordinates. .

最後に、寸法の知られている基準試料を同一条件で測定し、予め求めておいた接線方向透過画像の基準データを用いて、実際に測定して得られた接線方向透過画像上の距離Lの値を、実寸法の値に換算する。この換算作業により、画像上の距離ではなく、リム組込みタイヤ12の実際の第1の特定部位L1と第2の特定部位L2との間の距離Lを得ることができる。   Finally, a reference sample with known dimensions is measured under the same conditions, and the distance L on the tangential transmission image actually obtained by using the reference data of the tangential transmission image obtained in advance is measured. The value of is converted into the actual size value. By this conversion work, not the distance on the image, but the distance L between the actual first specific part L1 and the second specific part L2 of the rim built-in tire 12 can be obtained.

ここで、タイヤ一周分に渡り得られた360枚の接線方向透過画像上で、第1の特定部位L1と第2の特定部位L2の位置を自動的に抽出する方法には、接線方向透過画像における画面上の濃淡(輝度差)を利用したパターン認識を用いている。   Here, a method of automatically extracting the positions of the first specific portion L1 and the second specific portion L2 on 360 tangential direction transmission images obtained over the entire circumference of the tire includes a tangential direction transmission image. The pattern recognition using shading (brightness difference) on the screen is used.

即ち、リムフランジ52はアルミ合金で製造され、X線を透過させにくいので接線方向透過画像上では黒く表現される。一方、リムフランジ52の外側は空間となっておりX線をよく透過させるため、接線方向透過画像上では白く表現される。この濃淡の差を利用して、画像上にリム組込みタイヤ12の回転軸に平行に形成した面P1と、左側が黒く、右側が白い境界との交差点を第1の特定部位L1としている。   That is, the rim flange 52 is made of an aluminum alloy and hardly transmits X-rays, so that the rim flange 52 is expressed in black on the tangential direction transmission image. On the other hand, the outside of the rim flange 52 is a space and transmits X-rays well, so that it is expressed in white on the tangential direction transmission image. Using this difference in shading, an intersection of a surface P1 formed on the image parallel to the rotation axis of the rim-incorporating tire 12 and a boundary where the left side is black and the right side is white is defined as a first specific portion L1.

同様に、ビードコア54は鋼線で製造されX線を透過しにくいので接線方向透過画像上では黒く撮影され、周囲のタイヤ56はX線を透過させるので薄黒く撮影される。この画面上の濃淡を利用して、ビードコア54が存在するリム組込みタイヤ12の回転軸に平行に面P2を形成し、左側が薄黒く、右側が黒い境界との交差点を第2の特定部位L2としている。
同様の処理をタイヤ一周分に渡り、連続して行うことで、リムとタイヤの組付部の特定部位間の画像を、タイヤの一周分に渡り取得できる。
Similarly, since the bead core 54 is made of steel wire and hardly transmits X-rays, the bead core 54 is photographed black on the tangential direction transmission image, and the surrounding tire 56 is photographed lightly black because it transmits X-rays. Using the shading on the screen, a plane P2 is formed parallel to the rotation axis of the rim-incorporating tire 12 in which the bead core 54 is present, and an intersection with the boundary where the left side is dark and the right side is black is defined as the second specific portion L2. It is said.
By performing the same process continuously for one round of the tire, an image between the specific parts of the rim and the tire assembly portion can be acquired for one round of the tire.

図4は、前述した寸法の知られている基準試料を取り付けた状態でX線を照射し、接線方向透過画像を求め、得られた接線方向透過画像を用いてビードコア54の変位量を測定した測定例を示している。   FIG. 4 shows a tangential direction transmission image obtained by irradiating X-rays with a reference sample having a known size described above, and measuring the displacement amount of the bead core 54 using the obtained tangential direction transmission image. An example of measurement is shown.

図4の横軸は、タイヤ一周分の位置を起点位置からの角度(deg)で示しており、縦軸は、リムフランジ52の特定位置とビードコア54の特定位置との間の距離の変位量(mm)を示している。縦軸において、プラス側は、ビードコア54がタイヤの内側(矢印Aの方向)へ変位した状態を示し、マイナス側は、ビードコア54がタイヤの外側(矢印Bの方向)へ変位した状態を示す。   The horizontal axis in FIG. 4 indicates the position of the entire tire circumference in terms of an angle (deg) from the starting position, and the vertical axis indicates the amount of displacement of the distance between the specific position of the rim flange 52 and the specific position of the bead core 54. (Mm) is shown. In the vertical axis, the plus side indicates a state where the bead core 54 is displaced toward the inside of the tire (in the direction of arrow A), and the minus side indicates a state where the bead core 54 is displaced toward the outside of the tire (in the direction of arrow B).

図4に示す測定結果は、ビードコア54の内側の一部に、基準試料(金属板、厚さ2mm、3mm)を挿入し、上記の手順でビードコア54の変位量をタイヤ一周分に渡り測定した条件での結果である。実線96は3mmの金属板の特性を、破線98は2mmの金属板の特性である。   The measurement results shown in FIG. 4 were obtained by inserting a reference sample (metal plate, thickness 2 mm, 3 mm) into a part of the inside of the bead core 54 and measuring the displacement amount of the bead core 54 over the entire circumference of the tire by the above procedure. It is the result in the condition. A solid line 96 is a characteristic of a 3 mm metal plate, and a broken line 98 is a characteristic of a 2 mm metal plate.

図4に示すように、金属板を挿入した位置(横軸の225(deg)の位置)で実線96、破線98のいずれも、ビードコア54の内側への変位量が最大値を示している。また、横軸の180〜270(deg)の範囲は金属板を挿入した影響が現れているが、この範囲を除く範囲では、ビードコア54の変位量はゼロ付近で推移しており、大きな変位は見られない。このことから、ビードコア54にズレが生じている場合には、そのズレ位置で変位が生じ、この変位が生じている位置を正確に測定できるといえる。   As shown in FIG. 4, the solid line 96 and the broken line 98 both show the maximum amount of displacement inside the bead core 54 at the position where the metal plate is inserted (position of 225 (deg) on the horizontal axis). In addition, in the range of 180 to 270 (deg) on the horizontal axis, the influence of inserting the metal plate appears, but in the range excluding this range, the displacement amount of the bead core 54 has changed around zero, and the large displacement is can not see. From this, it can be said that when a deviation occurs in the bead core 54, a displacement occurs at the deviation position, and the position where the displacement occurs can be measured accurately.

またこのときの接線方向透過画像から求めたビードコア54の変位量は、挿入した金属板が厚さ3mmのときは、実線96において約1.9mmを示し、挿入した金属板が厚さ2mmのときは破線98において、約1.2mmを示している。   Further, the displacement amount of the bead core 54 obtained from the tangential direction transmission image at this time is about 1.9 mm at the solid line 96 when the inserted metal plate is 3 mm thick, and when the inserted metal plate is 2 mm thick. Indicates about 1.2 mm in a broken line 98.

この測定結果を基準試料の実寸法と対比すると、図5に示すように、基準試料の実寸法と、測定結果で得られたビードコア54の変位量との間には強い相関(寄与率95.8%)が見られる。このことから、接線方向透過画像から求めた測定値を適正に補正することで、ビードコア変位量を正確に測定できるといえる。   When this measurement result is compared with the actual size of the reference sample, as shown in FIG. 5, there is a strong correlation between the actual size of the reference sample and the displacement amount of the bead core 54 obtained from the measurement result (contribution rate 95. 8%). From this, it can be said that the bead core displacement can be accurately measured by appropriately correcting the measurement value obtained from the tangential direction transmission image.

次に、接線方向透過画像を用いて、リムとタイヤの間に生じる隙間の面積を測定する方法について説明する。
図6に示すように、リム30とリムフランジ52の立ち上り部でできる角部とタイヤ56の角部との間には、タイヤ56が空気圧を加えられることにより生じる変形に伴う隙間Sが生じる。この隙間Sは小さい方が望ましく、その面積を測定し、評価する必要がある。
Next, a method for measuring the area of the gap generated between the rim and the tire using a tangential direction transmission image will be described.
As shown in FIG. 6, a gap S is generated between the corner portion formed by the rising portions of the rim 30 and the rim flange 52 and the corner portion of the tire 56 due to deformation caused by the tire 56 being subjected to air pressure. The gap S is desirably small, and the area needs to be measured and evaluated.

なお、接線方向透過画像上で隙間SはX線を透過させるため白く撮影され、隙間Sの周囲のリムフランジ52、タイヤ56はX線を透過させにくいため黒く撮影される。この接線方向透過画像上の濃淡(輝度差)を利用して、隙間Sと周囲とは容易に区別ができる。   In the tangential direction transmission image, the gap S is photographed white because X-rays are transmitted, and the rim flange 52 and the tire 56 around the gap S are photographed black because they are difficult to transmit X-rays. Using the shading (luminance difference) on the tangential direction transmission image, the gap S and the surroundings can be easily distinguished.

先ず、接線方向透過画像上に測定範囲を定める。具体的には図6に示すように、リム30からリムフランジ52が立ち上がる角部を中心とした領域60を定める。これは、図7(A)に示すように、接線方向透過画像上では、破線60の領域以外にも、同じように高い輝度の領域(網かけ部分)が生じるので、そのような領域を解析の対象から除外するためである。   First, a measurement range is defined on the tangential direction transmission image. Specifically, as shown in FIG. 6, a region 60 centering on a corner where the rim flange 52 rises from the rim 30 is defined. As shown in FIG. 7A, on the tangential direction transmission image, a region with high brightness (shaded portion) is generated in addition to the region indicated by the broken line 60. Therefore, such a region is analyzed. This is because it is excluded from the target.

次に、図7(B)に示すように、隙間Sは接線方向透過画像では画像が白く抜けることを利用して、撮影した破線60内の輝度情報から適当な閾値を用いて、ターゲットとする隙間Sとその他の部分とを2値化処理をして区分けする。
次に、図7(C)に示すように、区分けされた隙間Sを構成する白い部分にあるドット数を求める。実際の測定結果で得られた隙間Sのドット数と、予め求めておいた基準面積を構成するドット数とを対比して、測定結果を校正することで実際の隙間Sの面積を算出できる。
同様の処理をタイヤ一周分に渡り連続して行う。このことにより、リムとタイヤの組付部の隙間Sをタイヤ一周分に渡り連続して測定し、評価できる。
Next, as shown in FIG. 7B, the gap S is set as a target using an appropriate threshold value from luminance information in the photographed broken line 60 using the fact that the image is white in the tangential direction transmission image. The gap S and other portions are binarized and divided.
Next, as shown in FIG. 7C, the number of dots in the white part constituting the divided gap S is obtained. The area of the actual gap S can be calculated by calibrating the measurement result by comparing the number of dots of the gap S obtained from the actual measurement result with the number of dots constituting the reference area obtained in advance.
The same process is continuously performed for one round of the tire. Thus, the gap S between the rim and the tire mounting portion can be continuously measured and evaluated over the entire circumference of the tire.

尚、本実施形態では、リム組付けタイヤ12におけるビードコア54の位置の変位量と、リムフランジ52の立ち上り部とタイヤ56の間に生じる隙間Sの面積を測定し、評価した。しかし、本発明はこれらに限定されることはなく、X線の透過率の違いがあれば、これら以外の部分を測定し、評価することもできる。   In this embodiment, the displacement amount of the position of the bead core 54 in the rim-assembled tire 12 and the area of the gap S generated between the rising portion of the rim flange 52 and the tire 56 were measured and evaluated. However, the present invention is not limited to these, and if there is a difference in the transmittance of X-rays, other portions can be measured and evaluated.

本発明の一実施形態に係るタイヤ内部構造測定装置の構成図である。It is a lineblock diagram of a tire internal structure measuring device concerning one embodiment of the present invention. リム組付けタイヤの接線方向透過画像を示す図である。It is a figure which shows the tangential direction transmission image of a rim | limb assembly | attachment tire. 接線方向透過画像から、ビードコア位置とリムフランジの距離を測定する方法を示す図である。It is a figure which shows the method of measuring the distance of a bead core position and a rim flange from a tangential direction transmission image. 接線方向透過画像から、ビードコア位置とリムフランジの間の距離の測定例を示す図である。It is a figure which shows the example of a measurement of the distance between a bead core position and a rim flange from a tangential direction transmission image. 金属板厚さとビードコア変位量の関係を示す図である。It is a figure which shows the relationship between a metal plate thickness and a bead core displacement amount. 接線方向透過画像から、リムフランジの立ち上がり角部とタイヤとでできる隙間を測定する方法を示す図である。It is a figure which shows the method of measuring the clearance gap formed by the standup | rising corner | angular part of a rim flange, and a tire from a tangential direction transmission image. リムフランジの立ち上がり角部とタイヤとでできる隙間の面積を求める方法を示す図である。It is a figure which shows the method of calculating | requiring the area of the clearance gap which can be made by the standup | rising angle part of a rim flange, and a tire.

符号の説明Explanation of symbols

10 タイヤ内部構造測定装置
12 リム組付けタイヤ
20 X線照射手段(X線照射装置)
22 X線検知手段(X線検知装置)
28 画像処理手段(画像形成処理部)
30 リム
52 リムフランジ
54 ビードコア
56 タイヤ
L1 第1測定点
L2 第2測定点
S リムフランジの立ち上り部とタイヤとの間に生じた隙間
DESCRIPTION OF SYMBOLS 10 Tire internal structure measuring device 12 Rim | attachment tire 20 X-ray irradiation means (X-ray irradiation apparatus)
22 X-ray detection means (X-ray detection device)
28 Image processing means (image formation processing section)
30 rim 52 rim flange 54 bead core 56 tire L1 first measurement point L2 second measurement point
S Clearance created between the rim flange riser and the tire

Claims (3)

リムにタイヤを組み付けたリム組付けタイヤにX線照射手段からX線を照射し、前記リム組付けタイヤを透過したX線をX線検知手段で検知し、検知されたX線透過情報に基づき画像処理手段でX線透過画像を形成し、前記リムと前記タイヤとの組み付け状態を測定するリム組付けタイヤの組付状態測定方法であって、
前記リム組付けタイヤを、押圧負荷のない無負荷状態で回転させ、
前記X線を前記リムの接線方向に照射し、
前記X線検知手段により、前記リムと前記タイヤとの組付部のX線透過情報を所定のタイミングで取り込み、
前記X線透過情報に基づいて、前記画像処理手段で接線方向透過画像を形成し、
前記接線方向透過画像を用いて、前記リムと前記タイヤの特定部位の位置情報を得ることを特徴とするリム組付けタイヤの組付状態測定方法。
The X-ray irradiating means irradiates X-rays from the X-ray irradiating means to the rim-attached tire in which the tire is assembled to the rim, and the X-ray detecting means detects the X-rays transmitted through the rim-attached tire. An assembled state measuring method for a rim-attached tire, wherein an X-ray transmission image is formed by an image processing means, and an assembled state of the rim and the tire is measured,
The rim assembly tire is rotated in a no-load state without a pressing load,
Irradiating the X-ray in the tangential direction of the rim;
By the X-ray detection means, X-ray transmission information of the assembly part of the rim and the tire is captured at a predetermined timing,
Based on the X-ray transmission information, the image processing means forms a tangential direction transmission image,
Using the tangential direction transmission image, position information of a specific part of the rim and the tire is obtained.
前記リムの特定部位を、前記リムのリムフランジの外側面に設けた第1測定点とし、
前記タイヤの特定部位を、前記タイヤのビードコアの内側面に設けた第2測定点とし、
前記リム組付けタイヤの回転軸と平行な面上における、前記第1測定点と前記第2測定点との距離を測定することを特徴とする請求項1に記載のリム組付けタイヤの組付状態測定方法。
The specific part of the rim is a first measurement point provided on the outer surface of the rim flange of the rim,
The specific part of the tire is a second measurement point provided on the inner surface of the bead core of the tire,
2. The assembly of a rim assembly tire according to claim 1, wherein a distance between the first measurement point and the second measurement point on a plane parallel to the rotation axis of the rim assembly tire is measured. State measurement method.
前記リムと前記タイヤの特定部位は、前記リムと前記タイヤの間に生じた隙間であり、
前記隙間の面積を測定することを特徴とする請求項1に記載のリム組付けタイヤの組付状態測定方法。
The specific part of the rim and the tire is a gap generated between the rim and the tire,
The method for measuring an assembled state of a rim-attached tire according to claim 1, wherein an area of the gap is measured.
JP2007019824A 2007-01-30 2007-01-30 Rim assembly tire assembly state measurement method Expired - Fee Related JP4878299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019824A JP4878299B2 (en) 2007-01-30 2007-01-30 Rim assembly tire assembly state measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019824A JP4878299B2 (en) 2007-01-30 2007-01-30 Rim assembly tire assembly state measurement method

Publications (2)

Publication Number Publication Date
JP2008185476A JP2008185476A (en) 2008-08-14
JP4878299B2 true JP4878299B2 (en) 2012-02-15

Family

ID=39728627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019824A Expired - Fee Related JP4878299B2 (en) 2007-01-30 2007-01-30 Rim assembly tire assembly state measurement method

Country Status (1)

Country Link
JP (1) JP4878299B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912992B2 (en) * 2012-08-17 2016-04-27 株式会社ブリヂストン Tire inspection apparatus and tire inspection method
CN102928446A (en) * 2012-11-10 2013-02-13 福建省豪用环保科技有限公司 Computed tomography imaging method and imaging device special for rim or tire rim
FR3029628A1 (en) * 2014-12-05 2016-06-10 Peugeot Citroen Automobiles Sa METHOD FOR VERIFYING THE POSITIONING OF A TIRE ON A RIM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799121B2 (en) * 1992-02-21 1998-09-17 住友ゴム工業株式会社 Pneumatic tire
JPH10217705A (en) * 1996-12-02 1998-08-18 Sumitomo Rubber Ind Ltd Rim for pneumatic tire
JP2001280903A (en) * 2000-03-30 2001-10-10 Bridgestone Corp Method for measuring position of bead core in rim- assembled tire, rim for measuring position of bead core, and measuring instrument for measuring position of bead core

Also Published As

Publication number Publication date
JP2008185476A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US7583781B2 (en) X-Ray CT apparatus and method of controlling the same
CN105937888B (en) Method and apparatus for detecting eccentricity of tire
US4785354A (en) Tire load test CT scanner
US7856133B2 (en) X-ray attenuation correction method, image generating apparatus, X-ray CT apparatus, and image generating method
EP3037040B1 (en) X-ray imaging device
WO2003093761A1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
KR100975417B1 (en) Digital radiographic inspection system and method
JP2006308316A (en) Method and device for observing tire internal structure
US8804908B2 (en) Mobile X-ray apparatus
US11860111B2 (en) Image reconstruction method for X-ray measuring device, structure manufacturing method, image reconstruction program for X-ray measuring device, and X-ray measuring device
JP4878299B2 (en) Rim assembly tire assembly state measurement method
JP2015001501A (en) Nondestructive inspection system and mobile body for nondestructive inspection
EP3267183B1 (en) Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
KR102715302B1 (en) Control method of a device that inspects of pipe weldzone
US20160307313A1 (en) Tire Inspection Method and Device Therefor
JP2007029733A (en) Method for generating computed tomogram image during intervention
JP3942786B2 (en) Bonding inspection apparatus and method
JP2011047795A (en) Wheel balancer device for vehicle, and mounting method of balance weight
JP4585080B2 (en) Nuclear pressure vessel seat surface inspection system
JP2013152128A (en) Surface inspection method and apparatus therefor
CN107782752B (en) Welding seam ray detection equipment and detection method thereof
JP3857002B2 (en) X-ray tomography method and apparatus
CN117969565B (en) Pump case surface flaw detection device
CN105738381A (en) Detection device for flexible base material for flexible circuit board
JPH1183462A (en) Wheel measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4878299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees