JP4877837B2 - Tooth profile setting method for the same number of teeth side gear of flat type wave gear device - Google Patents

Tooth profile setting method for the same number of teeth side gear of flat type wave gear device Download PDF

Info

Publication number
JP4877837B2
JP4877837B2 JP2008006646A JP2008006646A JP4877837B2 JP 4877837 B2 JP4877837 B2 JP 4877837B2 JP 2008006646 A JP2008006646 A JP 2008006646A JP 2008006646 A JP2008006646 A JP 2008006646A JP 4877837 B2 JP4877837 B2 JP 4877837B2
Authority
JP
Japan
Prior art keywords
tooth profile
gear
rigid internal
flexible external
internal gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008006646A
Other languages
Japanese (ja)
Other versions
JP2009156462A (en
JP2009156462A5 (en
Inventor
昌一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP2008006646A priority Critical patent/JP4877837B2/en
Priority to US12/273,982 priority patent/US8028603B2/en
Priority to DE102008060428.3A priority patent/DE102008060428B4/en
Publication of JP2009156462A publication Critical patent/JP2009156462A/en
Publication of JP2009156462A5 publication Critical patent/JP2009156462A5/ja
Application granted granted Critical
Publication of JP4877837B2 publication Critical patent/JP4877837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)

Description

本発明はフラット型波動歯車装置に関し、特に正確なゼロバックラッシのかみ合いを実現し、かつ高いラチェティングトルクを有する同歯数側の可撓性外歯車と剛性内歯車の歯形設定方法に関する。   The present invention relates to a flat wave gear device, and more particularly, to a tooth shape setting method for a flexible external gear and a rigid internal gear on the same number of teeth side that achieves accurate zero backlash meshing and has a high ratcheting torque.

波動歯車装置は、剛性内歯車、可撓性外歯車および波動発生器を備えており、波動発生器は一般に楕円形輪郭をしており、波動発生器によって可撓性外歯車は楕円形に撓められ、楕円形の長軸の両端部分が剛性内歯歯車に噛み合っている。可撓性外歯歯車の歯数は剛性内歯歯車の歯数よりも2n枚(nは正の整数)少ない。波動発生器をモータなどによって回転すると、両歯車の噛み合い位置が周方向に移動し、両歯車の歯数差に応じた相対回転が両歯車の間に発生する。波動歯車装置としては、フラット型波動歯車装置と呼ばれるものが知られている。   The wave gear device includes a rigid internal gear, a flexible external gear, and a wave generator. The wave generator generally has an elliptical outline, and the flexible external gear is bent into an oval shape by the wave generator. Thus, both end portions of the elliptical long shaft mesh with the rigid internal gear. The number of teeth of the flexible external gear is 2n less (n is a positive integer) than the number of teeth of the rigid internal gear. When the wave generator is rotated by a motor or the like, the meshing position of both gears moves in the circumferential direction, and relative rotation corresponding to the difference in the number of teeth of both gears is generated between the two gears. As a wave gear device, a so-called flat wave gear device is known.

フラット型波動歯車装置では、剛性内歯車と可撓性外歯車の相対回転を出力するために、2個の剛性内歯車が同軸状態に並列配置され、一方の剛性内歯車の歯数を可撓性外歯歯車と同一とし、他方の剛性内歯歯車の歯数を可撓性外歯歯車の歯数よりも2n枚多くしてある。一方の剛性内歯車を回転しないように固定し、他方の剛性内歯車から回転が出力される。   In the flat type wave gear device, in order to output the relative rotation of the rigid internal gear and the flexible external gear, two rigid internal gears are arranged in parallel in a coaxial state, and the number of teeth of one rigid internal gear is flexible. The number of teeth of the other rigid internal gear is 2n more than that of the flexible external gear. One rigid internal gear is fixed so as not to rotate, and rotation is output from the other rigid internal gear.

波動歯車装置は、創始者C.W.Musser氏の発明(特許文献1:米国特許第2,906,143号)以来、今日まで同氏を始め、本発明者を含め多くの研究者によって各種の発明考案がなされているが、これらは主として可撓性外歯車と剛性内歯車とに歯数差のある場合の歯形に関するものである。   The wave gear device is based on the founder C.I. W. Since the invention of Musser (Patent Document 1: US Pat. No. 2,906,143), various inventions have been devised by many researchers including the present inventor, including the present inventor. The present invention relates to a tooth profile when there is a difference in the number of teeth between the flexible external gear and the rigid internal gear.

フラット型波動歯車装置における歯数差のない可撓性外歯車と剛性内歯車の歯形についての提案は極僅かであり、特許文献2および特許文献3において提案されているに止まる。
米国特許第2,906,143号公報 特公昭38−9157号公報 特許第2503027号公報
There are very few proposals for the tooth shapes of the flexible external gear and the rigid internal gear with no difference in the number of teeth in the flat wave gear device, and only the proposals in Patent Document 2 and Patent Document 3 are proposed.
U.S. Pat. No. 2,906,143 Japanese Examined Patent Publication No. 38-9157 Japanese Patent No. 2503027

現在、フラット型波動歯車装置で、完全なゼロバックラッシを実現しようとするには、可撓性外歯車と剛性内歯車の歯数差のある側とない側との双方でゼロバックラッシを実現する必要がある。特に後者の場合は、実歯数を考慮した歯形そのものの検討が十分になされてこなかった。   Currently, in order to achieve complete zero backlash with a flat wave gear device, it is necessary to achieve zero backlash on both the flexible external gear side and the rigid internal gear side with and without the number of teeth difference. There is. Especially in the latter case, the tooth profile itself considering the actual number of teeth has not been sufficiently studied.

本発明の主な課題は、フラット型波動歯車装置に用いられる歯数が同一の可撓性外歯車と剛性内歯車において、可撓性外歯車のリム中立線の形状との関連で、可撓性外歯車の歯の剛性内歯車の歯に対する移動軌跡を明らかにして、可撓性外歯車の歯形を円弧とした場合の剛性内歯車の正確な歯形を求めることにある。   The main problem of the present invention is that a flexible external gear and a rigid internal gear with the same number of teeth used in a flat wave gear device are flexible in relation to the shape of the rim neutral line of the flexible external gear. It is to clarify the movement trajectory of the teeth of the elastic external gear relative to the teeth of the rigid internal gear, and to obtain an accurate tooth profile of the rigid internal gear when the tooth profile of the flexible external gear is an arc.

上記の課題を達成するために、本発明のフラット型波動歯車装置では、可撓性外歯車に円弧歯形を与え、当該可撓性外歯車の歯形の円弧中心と、実歯数を考慮した可撓性外歯車
および剛性内歯車の相対運動の瞬間中心とから、両歯車の歯形の接触点を求め、当該接触点に基づき、剛性内歯車の被創成歯形を算出している。
In order to achieve the above object, in the flat wave gear device of the present invention, an arc tooth shape is given to the flexible external gear, and the arc center of the tooth shape of the flexible external gear and the number of actual teeth are considered. From the instantaneous center of relative motion of the flexible external gear and the rigid internal gear, the contact point of the tooth profile of both gears is obtained, and the created tooth profile of the rigid internal gear is calculated based on the contact point.

すなわち、本発明は、同軸状態で並列配置したD側剛性内歯車およびS側剛性内歯車と、これらD側およびS側剛性内歯車の内側の同軸状態に配置されたリング状の可撓性外歯車と、可撓性外歯車の軸直角断面を楕円状に撓めてその形状を回転させる波動発生器とを有し、D側剛性内歯車の歯数は可撓性外歯車の歯数と同一であり、S側剛性内歯車の歯数は可撓性外歯車の歯数より2n枚(nは正の整数)多いフラット型波動歯車装置の歯形設定方法であって、
可撓性外歯車およびD側剛性内歯車を共にモジュールmの平歯車とし、
可撓性外歯車の軸直角断面を楕円状に撓ませた場合の歯底リムの厚みの中央を通るリム中立線の長軸の半径方向撓み量をκmn(κ:撓み係数)とし、
可撓性外歯車の歯形の主要部を、点Aを中心とする半径rの凸円弧からなる凸円弧歯形とし、
波動発生器の回転に伴って生ずる可撓性外歯車およびD側剛性内歯車の相対運動の瞬間中心Sを求め、
前記凸円弧の円弧中心と前記瞬間中心を結ぶ線分が当該凸円弧に交わる点を、可撓性外歯車の凸円弧歯形とD側剛性内歯車の歯形との接触点Cとして定め、
波動発生器の回転に伴う可撓性外歯車の凸円弧歯形上の前記接触点の移動軌跡を、D側剛性内歯車の主要部の歯形として採用することを特徴としている。
That is, the present invention relates to a D-side rigid internal gear and an S-side rigid internal gear arranged in parallel in a coaxial state, and a ring-shaped flexible outer gear arranged in a coaxial state inside these D-side and S-side rigid internal gears. A gear generator and a wave generator for rotating the shape of the flexible external gear in a shape perpendicular to the axis of the flexible external gear. The number of teeth of the D-side rigid internal gear is equal to the number of teeth of the flexible external gear. The tooth shape setting method of the flat wave gear device is the same, and the number of teeth of the S-side rigid internal gear is 2n more (n is a positive integer) than the number of teeth of the flexible external gear,
Both the flexible external gear and the D-side rigid internal gear are module m spur gears,
The amount of radial deflection of the long axis of the rim neutral line passing through the center of the thickness of the root rim when the cross section perpendicular to the axis of the flexible external gear is bent elliptically is κmn (κ: deflection coefficient),
The main part of the tooth profile of the flexible external gear is a convex arc tooth profile composed of a convex arc of radius r centered on point A,
Determining an instantaneous center S of relative movement of the flexible external gear and the D-side rigid internal gear that are generated in accordance with the rotation of the wave generator;
A point where a line segment connecting the arc center of the convex arc and the instantaneous center intersects the convex arc is defined as a contact point C between the convex arc tooth profile of the flexible external gear and the tooth profile of the D-side rigid internal gear,
The movement trajectory of the contact point on the convex arc tooth profile of the flexible external gear accompanying the rotation of the wave generator is employed as the tooth profile of the main part of the D-side rigid internal gear.

ここで、D側剛性内歯車の中心Oを原点とする静止直角座標系(O−x,y)を定め、変形前の中立曲線である中立円の半径をrn、wを撓み量、θを中立曲線上に定めた点Pでの中立曲線への接線がx軸となす角、pをその接線に原点Oから下した垂線の長さとし、接線極座標によりpを次式で与え、   Here, a stationary rectangular coordinate system (Ox, y) is defined with the center O of the D-side rigid internal gear as the origin, the radius of the neutral circle, which is the neutral curve before deformation, is rn, w is the amount of deflection, and θ is The angle between the tangent to the neutral curve at the point P defined on the neutral curve and the x-axis, p is the length of the perpendicular to the tangent from the origin O, and p is given by the tangent polar coordinates as

Figure 0004877837
Figure 0004877837

原点Oを共有し、Y軸をy軸に対して時計回りにφだけ回転させて中立曲線上の点Pに対応する仮想の中立円上の点Qを通るようにした回転直角座標系(O−X,Y)を定め、
中立曲線上の点Pで中立曲線に引いた接線をxF軸、それに垂直な直線をyF軸とした直角座標系(P−xF,yF)を定め、
前記瞬間中心Sの静止直角座標系(O−x,y)上の座標(xS、yS)をθの関数として次式で与え、
A rotation rectangular coordinate system (O) that shares the origin O and rotates the Y axis clockwise by φ with respect to the y axis so as to pass through a point Q on a virtual neutral circle corresponding to the point P on the neutral curve. -X, Y)
A rectangular coordinate system (Px F , y F ) is defined with the tangent drawn to the neutral curve at the point P on the neutral curve as the x F axis and the straight line perpendicular to it as the y F axis,
The coordinates (x S , y S ) on the stationary rectangular coordinate system (Ox, y) of the instantaneous center S are given by the following equation as a function of θ:

Figure 0004877837
Figure 0004877837

前記凸円弧の中心Aの座標を直角座標系(P−xF,yF)で(xa,ya)とし、当該中心Aの静止直角座標系(O−x,y)での座標(xA,yA)を次式で与え、 The coordinates of the center A of the convex arc are (x a , y a ) in the rectangular coordinate system (Px F , y F ), and the coordinates of the center A in the stationary rectangular coordinate system (Ox, y) ( x A , y A ) is given by

Figure 0004877837
Figure 0004877837

前記接触点Cの静止座標(xC、yC)を次式で与え、 The stationary coordinates (x C , y C ) of the contact point C are given by

Figure 0004877837
Figure 0004877837

前記のθを可変として、上式から求めた静止座標(xC、yC)を、静止直角座標系(O−x,y)からD側剛性内歯車に固定した回転直角座標系(O−X,Y)に座標変換して、Y軸を歯溝中心としたD側剛性内歯車の主要部の歯形を次式により求めることができる。 Rotation Cartesian coordinate system (O−) in which the above-mentioned θ is variable and the static coordinates (x C , y C ) obtained from the above equation are fixed to the D-side rigid internal gear from the stationary rectangular coordinate system (Ox, y). (X, Y), and the tooth profile of the main part of the D-side rigid internal gear with the Y axis as the center of the tooth gap can be obtained by the following equation.

Figure 0004877837
Figure 0004877837

また、前記の撓み係数κは0.6<κ<1.4の範囲とすることができる。   The deflection coefficient κ can be in the range of 0.6 <κ <1.4.

次に、本発明のフラット型波動歯車装置は、上記の歯形設定方法により可撓性外歯車の歯形の主要部およびD側剛性内歯車の歯形の主要部が設定されていることを特徴としている。   Next, the flat wave gear device of the present invention is characterized in that the main part of the tooth profile of the flexible external gear and the main part of the tooth profile of the D-side rigid internal gear are set by the above-described tooth profile setting method. .

本発明によれば、フラット型波動歯車装置における可撓性外歯車と同一歯数の剛性内歯車(D側剛性内歯車)の歯形を正確に設計できるので、両歯車のかみ合いのゼロバックラッシが実現できる。また、ラチェティングトルクを高め、両歯車の歯形の移動軌跡の広範囲にわたって連続的なかみ合いを実現できる。したがって、本発明によれば、フラット型波動歯車装置の負荷能力を高めることができる。   According to the present invention, since the tooth profile of the rigid internal gear (D-side rigid internal gear) having the same number of teeth as that of the flexible external gear in the flat wave gear device can be accurately designed, zero backlash in meshing between both gears can be realized. it can. Further, the ratcheting torque can be increased, and continuous engagement can be realized over a wide range of the movement trajectories of the tooth shapes of both gears. Therefore, according to the present invention, the load capability of the flat wave gear device can be increased.

以下に、図面を参照して、本発明を適用したフラット型波動歯車装置の歯形の設定方法を説明する。   A method for setting a tooth profile of a flat wave gear device to which the present invention is applied will be described below with reference to the drawings.

(フラット型波動歯車装置の構成)
図1は本発明を適用可能なフラット型波動歯車装置を示す断面図である。フラット型波動歯車装置1は、同軸状態で並列配置した2個の剛性内歯歯車2、3と、これらの内側の同軸状態に配置されているリング状の可撓性外歯車4と、この内側に嵌めた楕円形輪郭の波動発生器5を有している。可撓性外歯車4の歯数に対して、一方の剛性内歯車2の歯数は同一であるが、他方の剛性内歯歯車3の歯数は2n枚(nは正の整数)多い。楕円形輪郭の波動発生器5を回転すると、歯数の異なる可撓性外歯歯車4と剛性内歯車3の間に相対回転が発生する。例えば、剛性内歯車2を回転しないように固定し、他方の剛性内歯車
3を回転可能な状態に支持しておくことにより、当該剛性内歯車3の側から減速回転が出力される。以下の説明においては、可撓性外歯車4と同一歯数の剛性内歯車2をD側剛性内歯車と呼び、他方の剛性内歯車3をS側剛性内歯車と呼ぶ。
(Configuration of flat wave gear device)
FIG. 1 is a cross-sectional view showing a flat wave gear device to which the present invention can be applied. The flat-type wave gear device 1 includes two rigid internal gears 2 and 3 arranged in parallel in a coaxial state, a ring-shaped flexible external gear 4 arranged in a coaxial state inside these, and an inner side thereof And a wave generator 5 having an elliptical profile fitted to. The number of teeth of one rigid internal gear 2 is the same as the number of teeth of the flexible external gear 4, but the number of teeth of the other rigid internal gear 3 is 2n (n is a positive integer). When the wave generator 5 having an elliptical profile is rotated, relative rotation is generated between the flexible external gear 4 and the rigid internal gear 3 having different numbers of teeth. For example, when the rigid internal gear 2 is fixed so as not to rotate and the other rigid internal gear 3 is supported in a rotatable state, reduced rotation is output from the rigid internal gear 3 side. In the following description, the rigid internal gear 2 having the same number of teeth as the flexible external gear 4 is called a D-side rigid internal gear, and the other rigid internal gear 3 is called an S-side rigid internal gear.

剛性内歯車2、3および可撓性外歯車4は共にモジュールmの平歯車である。可撓性外歯車4の半径方向撓み量はκmnである。可撓性外歯車の軸直角断面を楕円状に撓ませた場合の歯底リムの厚みの中央を通る線であるリム中立線の長軸の半径方向撓み量をκmnとする。κは撓み係数であり、κ=1の場合の半径方向撓み量mnは、可撓性外歯車のピッチ円直径を剛性内歯車を固定した場合の減速比で除した値である。撓み係数は、実用されている0.6<κ<1.4の範囲とされる。   The rigid internal gears 2 and 3 and the flexible external gear 4 are both spur gears of the module m. The amount of bending in the radial direction of the flexible external gear 4 is κmn. Let κmn be the amount of bending in the radial direction of the long axis of the rim neutral line, which is a line passing through the center of the thickness of the root rim when the cross section perpendicular to the axis of the flexible external gear is bent in an elliptical shape. κ is a bending coefficient, and the amount of bending mn in the radial direction when κ = 1 is a value obtained by dividing the pitch circle diameter of the flexible external gear by the reduction ratio when the rigid internal gear is fixed. The deflection coefficient is in a range of 0.6 <κ <1.4, which is in practical use.

(可撓性外歯車の中立曲線)
図2は歯形設定方法を説明するための説明図である。この図には可撓性外歯車4の軸直角断面の歯底リムの中立曲線を示してある。D側剛性内歯車2の中心O(変形前の可撓性外歯車4の中心と一致する)を原点とする静止直角座標系(O−x,y)を設定し、可撓性外歯車4のリム厚の中央に想定した近似楕円形状の初期位置の中立曲線の長軸をy軸と一致させ、短軸をx軸と一致させる。変形前の中立曲線、即ち中立円の半径をrn、wを
半径方向撓み量、θを中立曲線上の点Pでの中立曲線への接線がx軸となす角、pをその接線に原点から下した垂線の長さとして、接線極座標を使い、pを(1)式で与える。
(Neutral curve of flexible external gear)
FIG. 2 is an explanatory diagram for explaining a tooth profile setting method. This figure shows a neutral curve of the root rim of the flexible external gear 4 in a cross section perpendicular to the axis. A stationary rectangular coordinate system (Ox, y) having the origin O as the center O of the D-side rigid internal gear 2 (which coincides with the center of the flexible external gear 4 before deformation) is set, and the flexible external gear 4 The long axis of the neutral curve of the initial position of the approximate elliptical shape assumed at the center of the rim thickness is made to coincide with the y axis, and the short axis is made to coincide with the x axis. The neutral curve before deformation, that is, the radius of the neutral circle is r n , w is the amount of radial deflection, θ is the angle formed by the tangent to the neutral curve at the point P on the neutral curve and the x axis, and p is the origin The tangent polar coordinates are used as the length of the perpendicular drawn from, and p is given by equation (1).

Figure 0004877837
Figure 0004877837

この式は楕円に近似の曲線を与えるもので、本発明の解析はすべてこの式に基づくものとする。この中立曲線の形を通常の直角座標(x,y)で表わすと、点Pの静止座標(xP,yP)は(2)式となる(式の誘導は本明細書の末尾に示す)。 This equation gives an approximate curve to an ellipse, and all the analyzes of the present invention are based on this equation. When the shape of this neutral curve is expressed by normal rectangular coordinates (x, y), the static coordinates (x P , y P ) of the point P are expressed by the following equation (2) (the derivation of the equation is shown at the end of this specification). ).

Figure 0004877837
Figure 0004877837

(可撓性外歯車の歯の運動解析)
フラット型波動歯車装置1のD側剛性内歯車2に対する可撓性外歯車4の運動を解析するために、図2に示すように、D側剛性内歯車2と同心で当該D側剛性内歯車2と一体に運動する仮想の変形前の可撓性外歯車の中立円を想定する。
(Motor motion analysis of flexible external gear)
In order to analyze the movement of the flexible external gear 4 with respect to the D-side rigid internal gear 2 of the flat type wave gear device 1, as shown in FIG. 2, the D-side rigid internal gear is concentric with the D-side rigid internal gear 2. Assume a neutral circle of a flexible external gear that moves in unison with 2 and before virtual deformation.

中立曲線上の点Pに対応する可撓性外歯車4の仮想の中立円上の点をQとする。点Pと点Qの対応関係は、点Pが近似楕円の長軸上にあるとき、点Qも同方向の半径上にあり、点Pが等速で中立曲線上を移動するとき、点Qもまた中立円上を同じ等速で移動し、点Pが中立曲線上を一周するとき、点Qも中立円上を一周するという関係にある。   Let Q be the point on the virtual neutral circle of the flexible external gear 4 corresponding to the point P on the neutral curve. The correspondence between the points P and Q is that when the point P is on the long axis of the approximate ellipse, the point Q is also on the radius in the same direction, and when the point P moves on the neutral curve at a constant speed, the point Q Is also moved at the same constant speed on the neutral circle, and when the point P goes around the neutral curve, the point Q goes around the neutral circle.

この点Qの静止座標系の座標(xQ,yQ)を、極座標表示で長軸からの偏角をφとして(3)式で与える。 The coordinates (x Q , y Q ) of this point Q in the stationary coordinate system are given by the expression (3), where the declination from the major axis is φ in polar coordinate display.

Figure 0004877837
Figure 0004877837

ここでφは、中立曲線の長軸から点Pまでの長さと仮想中立円上の対応する弧長sとの等長性から、(4a)式の関係を使って、θとは(4b)式の関係になる。   Here, φ is equal to the length from the long axis of the neutral curve to the point P and the corresponding arc length s on the virtual neutral circle, and θ is expressed as (4b) using the relationship of the equation (4a). It becomes an expression relationship.

Figure 0004877837
Figure 0004877837

Figure 0004877837
Figure 0004877837

次に原点Oを共有し、Y軸をy軸に対して時計回りにφだけ回転させて上記の点Qを通るようにした回転する直角座標系(X,Y)を設ける。座標(x,y)から座標(X,Y)への変換式は(5)式となる。   Next, the origin O is shared, and a rotating rectangular coordinate system (X, Y) is provided in which the Y axis is rotated clockwise by φ with respect to the y axis so as to pass through the point Q described above. The conversion formula from the coordinates (x, y) to the coordinates (X, Y) is the formula (5).

Figure 0004877837
Figure 0004877837

中立曲線上の点Pで中立曲線に引いた接線をxF軸、それに垂直な直線をyF軸とし、この座標系に可撓性外歯車4の歯形を貼り付ける。この座標系から静止座標系(x,y)への座標変換式は、(2)式を参照して次の(6)式となる。 Tangent to x F axis drawn in the neutral curve point P on the neutral curve, it a line perpendicular to the y F axis, paste tooth profile of the flexible external gear 4 in this coordinate system. The coordinate conversion formula from this coordinate system to the stationary coordinate system (x, y) is the following formula (6) with reference to formula (2).

Figure 0004877837
Figure 0004877837

この式を(5)式に代入すると、可撓性外歯車の歯に固定した座標(xF,yF)を仮想の中立円上を移動する回転座標系の値(X,Y)に変換する式が次のように得られる(式の誘導は本明細書の末尾に示す)。 By substituting this equation into equation (5), the coordinates (x F , y F ) fixed to the teeth of the flexible external gear are converted into values (X, Y) of the rotating coordinate system that moves on the virtual neutral circle. Is obtained as follows (derivation of the formula is given at the end of this specification):

Figure 0004877837
Figure 0004877837

ここで座標系(P−xF,yF)の原点Pの仮想の中立円から見た移動軌跡を求めておく。即ち(6)式でxF=0,yF=0として、(4)式を用い、次の(8)式が得られる。 Here coordinate system (P-x F, y F ) is obtained in advance a moving track seen from the virtual neutral circle of origin P of. That is, the following equation (8) is obtained by using equation (4) with x F = 0 and y F = 0 in equation (6).

Figure 0004877837
Figure 0004877837

(可撓性外歯車の剛性内歯車に対する相対運動)
可撓性外歯車4のリムの中立曲線の点Pにおける曲率半径ρは接線極座標の公式から(9)式で与えられる。
(Relative motion of flexible external gear relative to rigid internal gear)
The radius of curvature ρ at the point P of the neutral curve of the rim of the flexible external gear 4 is given by equation (9) from the tangential polar coordinate formula.

Figure 0004877837
Figure 0004877837

従って中立曲線の曲線中心Rの静止座標(xR,yR)は(6)式から次の(10)式となる。 Therefore, the static coordinates (x R , y R ) of the curve center R of the neutral curve are changed from the equation (6) to the following equation (10).

Figure 0004877837
Figure 0004877837

ここで、座標系(P−xF,yF)のyF軸を可撓性外歯車の一歯の歯山中心線に取る。
θ=0の位置では、yF軸はy軸に重なる。今、θで規定される一点Pにある歯を考える
。可撓性外歯車4の一歯の運動は、瞬間的には中立曲線の曲率中心Rを中心とする仮想の角速度ω=ν/ρの回転と見られる。ここにνはリム中立線の周速で、可撓性外歯車
4の仮想の中立円の角速度をωFとすると、ν=rnωFの関係があると見て良い。一方こ
れに対応するD側剛性内歯車2の回転速度は、可撓性外歯車4とD側剛性内歯車2の歯数が等しいことから同じくωFである。
Here, the y F axis of the coordinate system (P-x F , y F ) is taken as the tooth center line of one tooth of the flexible external gear.
At the position of θ = 0, the y F axis overlaps the y axis. Consider a tooth at a point P defined by θ. The movement of one tooth of the flexible external gear 4 is instantaneously seen as a rotation with a virtual angular velocity ω = ν / ρ about the center of curvature R of the neutral curve. Here [nu is at a peripheral speed of the rim neutral line, when the angular velocity of the virtual neutral circle of the flexible external gear 4 and omega F, good looking implicated in ν = r n ω F. On the other hand, the corresponding rotational speed of the D-side rigid internal gear 2 is ω F because the number of teeth of the flexible external gear 4 and the D-side rigid internal gear 2 is equal.

ここで点Pにおける仮想の可撓性外歯車の歯数zをz=zF(ωF/ω)とし
て導入すると、zは(9)式を参照して次の(11)式で与えられる。
Here, when the number of teeth z of the virtual flexible external gear at the point P is introduced as z = z FF / ω ), z can be expressed by the following (11) with reference to the equation (9): It is given by the formula.

Figure 0004877837
Figure 0004877837

一方D側剛性内歯車2も点Oを中心とする角速度ωFの回転を行う。点Oと曲率中心R
を結んだ直線がこの場合の可撓性外歯車4とD側剛性内歯車2の瞬間中心線で、ζを瞬間中心線が−x軸と成す角とすると(10)式から次の(12)式が成り立つ。
On the other hand, the D-side rigid internal gear 2 also rotates at an angular velocity ω F around the point O. Point O and center of curvature R
Is the instantaneous center line of the flexible external gear 4 and the D-side rigid internal gear 2 in this case, and ζ is the angle formed by the instantaneous center line with the −x axis, the following (12) ) Formula holds.

Figure 0004877837
Figure 0004877837

この場合の仮想の中心距離aνは(13)式となる。 In this case, the virtual center distance a v is expressed by equation (13).

Figure 0004877837
Figure 0004877837

従って両者の相対的瞬間中心Sは、aνをzとzFの比に外分する点(ピッチ点)として、その座標(xS,yS)は(14)式で与えられる。 Accordingly, the relative instantaneous center S of both is a point (pitch point) that divides a v into the ratio of z and z F , and the coordinates (x S , y S ) are given by the equation (14).

Figure 0004877837
Figure 0004877837

上の式では、(12)式に基づく次の関係を使っている。   In the above equation, the following relationship based on equation (12) is used.

Figure 0004877837
Figure 0004877837

D側剛性内歯車2と可撓性外歯車4の一歯の仮想のピッチ半径rC,rFは、それぞれ線分OQ,CQとして、(16)式で求められる。 The imaginary pitch radii r C and r F of one tooth of the D-side rigid internal gear 2 and the flexible external gear 4 are obtained by equation (16) as line segments OQ and CQ, respectively.

Figure 0004877837
Figure 0004877837

これから座標(xS,yS)をθの関数として(17)式のように表わすことができる。 From this, the coordinates (x S , y S ) can be expressed as a function of θ as shown in equation (17).

Figure 0004877837
Figure 0004877837

ここで、歯形の接触の条件は歯形の接触点Cにおける法線が点Sを通ることである。従って可撓性外歯車4に一つの歯形を与えれば、点Pの位置に応じて歯形法線がこのときの瞬間中心の点Sを通るという条件で、接触点が定まり、対応するD側剛性内歯車2の歯形が求められることになる。   Here, the contact condition of the tooth profile is that the normal line at the contact point C of the tooth profile passes through the point S. Therefore, if one tooth profile is given to the flexible external gear 4, the contact point is determined on the condition that the tooth profile normal passes through the point S at the moment center according to the position of the point P, and the corresponding D-side rigidity is obtained. The tooth profile of the internal gear 2 is required.

(凸円弧歯形を可撓性外歯車に与える)
本発明では、可撓性外歯車4の主歯形(歯末面を含む部分)に凸円弧を採用する。この凸円弧の円弧中心Aの座標を座標系(P−xF,yF)で(xa,ya)とし、半径をrとする。このときの可撓性外歯車4の円弧歯形上のD側剛性内歯車の歯形との接点Cは、前記の可撓性外歯車の座標系の移動の瞬間中心R(中立曲線の曲率中心と考える)周りの瞬間回転運動とD側剛性内歯車2の原点Oの周りの座標系(O−X,Y)の回転運動との相対瞬間運動の瞬間中心Sに対して、点Sと円弧中心Aとを結ぶ直線が円弧と交わる点として
求められる。A点の静止座標(xA,yA)は(7)式から(18)式で与えられる。
(Give convex arc tooth profile to flexible external gear)
In the present invention, a convex arc is adopted for the main tooth shape (portion including the end surface) of the flexible external gear 4. The coordinates of the arc center A of the convex arc are (x a , y a ) in the coordinate system (P−x F , y F ), and the radius is r. At this time, the contact C with the tooth profile of the D-side rigid internal gear on the arc tooth profile of the flexible external gear 4 is the instantaneous center R (the center of curvature of the neutral curve) of the coordinate system of the flexible external gear. The point S and the arc center relative to the instantaneous center S of the relative instantaneous motion of the instantaneous rotational motion around and the rotational motion of the coordinate system (O-X, Y) around the origin O of the D-side rigid internal gear 2 The straight line connecting A is obtained as the point where the arc intersects. The static coordinates (x A , y A ) of point A are given by equations (7) to (18).

Figure 0004877837
Figure 0004877837

以上のことから、C点の座標は(19)式で与えられる。   From the above, the coordinates of point C are given by equation (19).

Figure 0004877837
Figure 0004877837

(D側剛性内歯車の歯形)
ここで、θを可変として、(19)式で座標(xC,yC)を求め、静止座標系からD側剛性内歯車2に固定した座標系に変換すると、(4)式を使って、Y軸を歯溝中心線としたD側剛性内歯車2の主要部の歯形が(20)式で求められる。D側剛性内歯車2の実際の歯形は、これにすみ肉曲線を補って完成する。
(Tooth profile of D-side rigid internal gear)
Here, when θ is variable, the coordinates (x C , y C ) are obtained by the equation (19), and converted from the stationary coordinate system to the coordinate system fixed to the D-side rigid internal gear 2, the equation (4) is used. The tooth profile of the main part of the D-side rigid internal gear 2 with the Y axis as the tooth gap center line is obtained by the equation (20). The actual tooth profile of the D-side rigid internal gear 2 is completed by supplementing the fillet curve.

Figure 0004877837
Figure 0004877837

図4は、軸直角断面における、可撓性外歯車4の歯によって創成されるD側剛性内歯車2の歯形を示したものである。本図は両歯車の歯数が共に100で、撓み係数が0.805のものである。   FIG. 4 shows the tooth profile of the D-side rigid internal gear 2 created by the teeth of the flexible external gear 4 in a cross section perpendicular to the axis. In this figure, both gears have 100 teeth and a deflection coefficient of 0.805.

図5は、図4の歯形を採用したフラット型波動歯車装置におけるD側剛性内歯車2の側の軸直角断面における両歯車2、4のかみ合いの一例である。   FIG. 5 is an example of meshing of both gears 2 and 4 in a cross section perpendicular to the axis on the side of the D-side rigid internal gear 2 in the flat wave gear device employing the tooth profile of FIG.

((2)式、(7)式の誘導)
(1)式から(2)式の誘導
(Induction of (2) and (7) )
Derivation of equation (2) from equation (1)

Figure 0004877837
Figure 0004877837

(5)式と(6)式からの(7)式の誘導   Derivation of equation (7) from equations (5) and (6)

Figure 0004877837
Figure 0004877837

本発明の対象となるフラット型波動歯車装置の断面図である。It is sectional drawing of the flat type wave gear apparatus used as the object of this invention. 本発明による歯形設定手順を示す説明図である。It is explanatory drawing which shows the tooth profile setting procedure by this invention. 図1の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of FIG. 可撓性外歯車の円弧歯形によって創成されるD側剛性内歯車の歯形の例を示す説明図である。It is explanatory drawing which shows the example of the tooth profile of the D side rigid internal gear created with the circular arc tooth profile of a flexible external gear. 図4の歯形を採用したフラット型波動歯車装置の両歯車のかみ合い例を示す説明図である。It is explanatory drawing which shows the meshing example of both the gears of the flat type wave gear apparatus which employ | adopted the tooth profile of FIG.

符号の説明Explanation of symbols

1 フラット型波動歯車装置
2 D側剛性内歯車
3 S側剛性内歯車
4 可撓性外歯車
5 波動発生器
S D側剛性内歯車と可撓性外歯車の歯形の相対運動の瞬間中心
A 可撓性外歯車の円弧歯形の中心
C 可撓性外歯車の円弧歯形上のD側剛性内歯車の歯形との接点
DESCRIPTION OF SYMBOLS 1 Flat type wave gear apparatus 2 D side rigid internal gear 3 S side rigid internal gear 4 Flexible external gear 5 Wave generator SD Instantaneous center of relative movement of tooth profile of D side rigid internal gear and flexible external gear A Possible Center of the arc tooth profile of the flexible external gear C Contact point with the tooth profile of the D-side rigid internal gear on the arc tooth profile of the flexible external gear

Claims (4)

同軸状態で並列配置したD側剛性内歯車およびS側剛性内歯車と、これらD側およびS側剛性内歯車の内側の同軸状態に配置されたリング状の可撓性外歯車と、可撓性外歯車の軸直角断面を楕円状に撓めてその形状を回転させる波動発生器とを有し、D側剛性内歯車の歯数は可撓性外歯車の歯数と同一であり、S側剛性内歯車の歯数は可撓性外歯車の歯数より2n枚(nは正の整数)多いフラット型波動歯車装置の歯形設定方法であって、
可撓性外歯車およびD側剛性内歯車を共にモジュールmの平歯車とし、
可撓性外歯車の軸直角断面を楕円状に撓ませた場合の歯底リムの厚みの中央を通るリム中立線の長軸の半径方向撓み量をκmn(κ:撓み係数)とし、
可撓性外歯車の歯形の主要部を、点Aを中心とする半径rの凸円弧からなる凸円弧歯形とし、
波動発生器の回転に伴って生ずる可撓性外歯車およびD側剛性内歯車の相対運動の瞬間中心Sを求め、
前記凸円弧の円弧中心と前記瞬間中心を結ぶ線分が当該凸円弧に交わる点を、可撓性外歯車の凸円弧歯形とD側剛性内歯車の歯形との接触点Cとして定め、
波動発生器の回転に伴う可撓性外歯車の凸円弧歯形上の前記接触点の移動軌跡を、D側剛性内歯車の主要部の歯形として採用することを特徴とするフラット型波動歯車装置の歯形設定方法。
A D-side rigid internal gear and an S-side rigid internal gear arranged in parallel in a coaxial state; a ring-shaped flexible external gear arranged in a coaxial state inside the D-side and S-side rigid internal gears; And a wave generator that rotates the shape of the external gear perpendicular to the axis to be elliptical, and the number of teeth of the D-side rigid internal gear is the same as the number of teeth of the flexible external gear. The number of teeth of the rigid internal gear is 2n (n is a positive integer) more than the number of teeth of the flexible external gear, and is a tooth shape setting method for a flat wave gear device,
Both the flexible external gear and the D-side rigid internal gear are module m spur gears,
The amount of radial deflection of the long axis of the rim neutral line passing through the center of the thickness of the root rim when the cross section perpendicular to the axis of the flexible external gear is bent elliptically is κmn (κ: deflection coefficient),
The main part of the tooth profile of the flexible external gear is a convex arc tooth profile composed of a convex arc of radius r centered on point A,
Determining an instantaneous center S of relative movement of the flexible external gear and the D-side rigid internal gear that are generated in accordance with the rotation of the wave generator;
A point where a line segment connecting the arc center of the convex arc and the instantaneous center intersects the convex arc is defined as a contact point C between the convex arc tooth profile of the flexible external gear and the tooth profile of the D-side rigid internal gear,
A flat type wave gear device characterized in that the movement locus of the contact point on the convex arc tooth profile of the flexible external gear accompanying the rotation of the wave generator is adopted as the tooth profile of the main part of the D-side rigid internal gear. Tooth profile setting method.
請求項1に記載のフラット型波動歯車装置の歯形設定方法において、
D側剛性内歯車の中心Oを原点とする静止直角座標系(O−x,y)を定め、
変形前の中立曲線である中立円の半径をrn、wを撓み量、θを中立曲線上に定めた点Pでの中立曲線への接線がx軸となす角、pをその接線に原点Oから下した垂線の長さとし、接線極座標によりpを次式で与え、
Figure 0004877837
原点Oを共有し、Y軸をy軸に対して時計回りにφだけ回転させて中立曲線上の点Pに対応する仮想の中立円上の点Qを通るようにした回転直角座標系(O−X,Y)を定め、
中立曲線上の点Pで中立曲線に引いた接線をxF軸、それに垂直な直線をyF軸とした直角座標系(P−xF,yF)を定め、
前記瞬間中心Sの静止直角座標系(O−x,y)上の座標(xS、yS)をθの関数として次式で与え、
Figure 0004877837
前記凸円弧の中心Aの座標を直角座標系(P−xF,yF)で(xa,ya)とし、当該中心Aの静止直角座標系(O−x,y)での座標(xA,yA)を次式で与え、
Figure 0004877837
前記接触点Cの静止座標(xC、yC)を次式で与え、
Figure 0004877837
前記のθを可変として、上式から求めた静止座標(xC、yC)を、静止直角座標系(O−x,y)からD側剛性内歯車に固定した回転直角座標系(O−X,Y)に座標変換して、Y軸を歯溝中心としたD側剛性内歯車の主要部の歯形を次式により求めることを特徴とするフラット型波動歯車装置の歯形設定方法。
Figure 0004877837
In the tooth profile setting method of the flat type wave gear device according to claim 1,
A stationary rectangular coordinate system (Ox, y) with the center O of the D-side rigid internal gear as the origin is defined,
The radius of the neutral circle that is the neutral curve before deformation is rn, w is the amount of deflection, θ is the angle that the tangent to the neutral curve at the point P defined on the neutral curve is the x axis, and p is the origin O The length of the perpendicular line drawn from, and p is given by the tangent polar coordinates as
Figure 0004877837
A rotation rectangular coordinate system (O) that shares the origin O and rotates the Y axis clockwise by φ with respect to the y axis so as to pass through a point Q on a virtual neutral circle corresponding to the point P on the neutral curve. -X, Y)
A rectangular coordinate system (Px F , y F ) is defined with the tangent drawn to the neutral curve at the point P on the neutral curve as the x F axis and the straight line perpendicular to it as the y F axis,
The coordinates (x S , y S ) on the stationary rectangular coordinate system (Ox, y) of the instantaneous center S are given by the following equation as a function of θ:
Figure 0004877837
The coordinates of the center A of the convex arc are (x a , y a ) in the rectangular coordinate system (Px F , y F ), and the coordinates of the center A in the stationary rectangular coordinate system (Ox, y) ( x A , y A ) is given by
Figure 0004877837
The stationary coordinates (x C , y C ) of the contact point C are given by
Figure 0004877837
Rotation Cartesian coordinate system (O−) in which the above-mentioned θ is variable and the static coordinates (x C , y C ) obtained from the above equation are fixed to the D-side rigid internal gear from the stationary rectangular coordinate system (Ox, y). A method for setting a tooth profile of a flat wave gear device, wherein the tooth profile of the main part of the D-side rigid internal gear having the Y axis as the center of the tooth gap is obtained by the following equation after coordinate conversion to X, Y).
Figure 0004877837
請求項2に記載のフラット型波動歯車装置の歯形設定方法において、
前記の撓み係数κを0.6<κ<1.4の範囲としたことを特徴とするフラット型波動歯車装置の歯形設定方法。
In the tooth profile setting method of the flat type wave gear device according to claim 2,
A tooth profile setting method for a flat wave gear device, wherein the deflection coefficient κ is in a range of 0.6 <κ <1.4.
請求項1ないし3のうちのいずれかの項に記載の歯形設定方法により可撓性外歯車の歯形の主要部およびD側剛性内歯車の歯形の主要部が設定されていることを特徴とするフラット型波動歯車装置。   The main part of the tooth profile of the flexible external gear and the main part of the tooth profile of the D-side rigid internal gear are set by the tooth profile setting method according to any one of claims 1 to 3. Flat type wave gear device.
JP2008006646A 2007-12-04 2008-01-16 Tooth profile setting method for the same number of teeth side gear of flat type wave gear device Active JP4877837B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008006646A JP4877837B2 (en) 2007-12-04 2008-01-16 Tooth profile setting method for the same number of teeth side gear of flat type wave gear device
US12/273,982 US8028603B2 (en) 2007-12-04 2008-11-19 Method for setting gear tooth profile in flat wave gear device on side where gears have same number of teeth
DE102008060428.3A DE102008060428B4 (en) 2007-12-04 2008-12-04 Procedure for creating a tooth profile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007313630 2007-12-04
JP2007313630 2007-12-04
JP2008006646A JP4877837B2 (en) 2007-12-04 2008-01-16 Tooth profile setting method for the same number of teeth side gear of flat type wave gear device

Publications (3)

Publication Number Publication Date
JP2009156462A JP2009156462A (en) 2009-07-16
JP2009156462A5 JP2009156462A5 (en) 2010-12-02
JP4877837B2 true JP4877837B2 (en) 2012-02-15

Family

ID=40960687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006646A Active JP4877837B2 (en) 2007-12-04 2008-01-16 Tooth profile setting method for the same number of teeth side gear of flat type wave gear device

Country Status (1)

Country Link
JP (1) JP4877837B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163710B2 (en) 2012-05-31 2015-10-20 Harmonic Drive Systems Inc. Wave gear device and flexible externally toothed gear
DE112012000188B4 (en) 2012-05-31 2023-07-13 Harmonic Drive Systems Inc. Wave gear and flexible internally toothed gear
JP6030981B2 (en) 2013-03-27 2016-11-24 株式会社三共製作所 Wave gear device
CN104937309B (en) 2013-09-24 2017-06-23 谐波传动系统有限公司 Wave gear device
CN107237875B (en) 2013-11-19 2019-05-10 谐波传动系统有限公司 Wavegenerator
JP6150746B2 (en) 2014-02-26 2017-06-21 株式会社ハーモニック・ドライブ・システムズ Flexible external gear of wave gear device and manufacturing method thereof
KR102257216B1 (en) * 2014-06-27 2021-06-02 주식회사 에스비비테크 Harmonic reducer
JP6218692B2 (en) * 2014-07-23 2017-10-25 株式会社ハーモニック・ドライブ・システムズ Dual type wave gear device
JP6324832B2 (en) * 2014-07-23 2018-05-16 株式会社ハーモニック・ドライブ・システムズ Dual type wave gear device
JP6218690B2 (en) * 2014-07-23 2017-10-25 株式会社ハーモニック・ドライブ・システムズ Dual type wave gear device
JP6370624B2 (en) * 2014-07-23 2018-08-08 株式会社ハーモニック・ドライブ・システムズ Dual type wave gear device
JP6218691B2 (en) 2014-07-23 2017-10-25 株式会社ハーモニック・ドライブ・システムズ Dual type wave gear device
JP6218693B2 (en) * 2014-07-23 2017-10-25 株式会社ハーモニック・ドライブ・システムズ Dual type wave gear device
TWI572796B (en) * 2015-05-15 2017-03-01 Harmonic gear differential gearbox
WO2017006441A1 (en) 2015-07-07 2017-01-12 株式会社ハーモニック・ドライブ・システムズ Rotation transmission mechanism provided with strain-wave gearing
US11118668B2 (en) 2017-08-09 2021-09-14 Harmonic Drive Systems Inc. Strain wave gearing
US11092224B2 (en) * 2017-10-10 2021-08-17 Hamilton Sundstrand Corporation Method of developing spline profile
CN114110136B (en) * 2021-11-30 2024-01-26 重庆大学 Method for designing internal tooth profile of complex wave type movable tooth speed reducer and two-stage speed reducer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503027B2 (en) * 1987-09-21 1996-06-05 株式会社ハーモニック・ドライブ・システムズ Flexible mesh gear
JP4135830B2 (en) * 1998-11-04 2008-08-20 株式会社ハーモニック・ドライブ・システムズ Deflection meshing gear device having a deviating meshing arc tooth profile
JP4357054B2 (en) * 1999-11-22 2009-11-04 株式会社ハーモニック・ドライブ・システムズ Negative displacement flexure meshing gear system having overtake type maximum tooth profile
JP4165810B2 (en) * 2001-03-29 2008-10-15 株式会社ハーモニック・ドライブ・システムズ Wave gear device having a three-dimensional displacement meshing tooth profile

Also Published As

Publication number Publication date
JP2009156462A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4877837B2 (en) Tooth profile setting method for the same number of teeth side gear of flat type wave gear device
US8028603B2 (en) Method for setting gear tooth profile in flat wave gear device on side where gears have same number of teeth
EP2003368A2 (en) Flexible meshing-type gear device and steering device for vehicle
JP2503027B2 (en) Flexible mesh gear
JP3942249B2 (en) Flexible meshing gear system having a three-dimensional non-interfering wide-area meshing tooth profile
JP5138783B2 (en) Wave gear device having dislocation tooth profile capable of three-dimensional contact
JPH0784896B2 (en) Flexible mesh type gear device
JP5165120B2 (en) Wave gear device having three-dimensional continuous contact tooth profile
JP4392771B2 (en) Flexure-meshing gear device having a displacement meshing involute tooth profile
JP5275265B2 (en) Wave gear device having positive deviation tooth profile with three-dimensional contact
KR101485863B1 (en) Wave gear device having three-dimensional-contact tooth profile
JP4392787B2 (en) Wave gear device having wide area three-dimensional meshing tooth profile
EP3306132B1 (en) Strain wave gearing device with compound meshing that involves congruity of tooth surfaces
TWI638105B (en) Harmonic gear device with negative offset tooth profile with 2 degree contact
WO2002079667A1 (en) Wave gearing with three-dimensional deviatedly meshed tooth profile
JPWO2005043006A1 (en) Wave gear device having a wide meshing tooth profile
WO2005121597A1 (en) Wave gear device having high ratcheting torque tooth profile
JP6104474B1 (en) 2 stress separation wave gear device
JP3230596B2 (en) Method of forming three-dimensional non-displacement tooth profile of flexible meshing gear device
JP4135830B2 (en) Deflection meshing gear device having a deviating meshing arc tooth profile
JPH0438121Y2 (en)
RU2730295C1 (en) Stressed wave gear and wave generator
KR100224512B1 (en) Wave gear drive
JP3323502B2 (en) Non-displacement two-arc composite tooth profile flexing gear system
JP3323501B2 (en) Non-shifting tooth profile three-dimensional negative deflection flexing meshing gear device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

R150 Certificate of patent or registration of utility model

Ref document number: 4877837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250