JP4877390B2 - PTC device - Google Patents

PTC device Download PDF

Info

Publication number
JP4877390B2
JP4877390B2 JP2009517763A JP2009517763A JP4877390B2 JP 4877390 B2 JP4877390 B2 JP 4877390B2 JP 2009517763 A JP2009517763 A JP 2009517763A JP 2009517763 A JP2009517763 A JP 2009517763A JP 4877390 B2 JP4877390 B2 JP 4877390B2
Authority
JP
Japan
Prior art keywords
cross
sectional area
ptc
terminal
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009517763A
Other languages
Japanese (ja)
Other versions
JPWO2008149645A1 (en
Inventor
豊 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009517763A priority Critical patent/JP4877390B2/en
Publication of JPWO2008149645A1 publication Critical patent/JPWO2008149645A1/en
Application granted granted Critical
Publication of JP4877390B2 publication Critical patent/JP4877390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Resistance Heating (AREA)

Description

本発明は、正の温度特性を持つPTC素子を有するPTC装置に関する。   The present invention relates to a PTC device having a PTC element having a positive temperature characteristic.

従来、一定の温度範囲において抵抗値が温度とともに急増する正の温度特性を持つサーミスタ(Positive Temperature Coefficient Thermistor)素子(以下、「PTC素子」という。)は、暖房器具などの発熱体として利用されている。   Conventionally, a thermistor (Positive Temperature Coefficient Thermistor) element (hereinafter referred to as “PTC element”) having a positive temperature characteristic in which a resistance value rapidly increases with temperature in a certain temperature range has been used as a heating element such as a heating appliance. Yes.

PTC素子は、正の温度特性の領域では、温度が上がると抵抗値が大きくなり電流が制限されて発熱が抑制され、逆に温度が下がると抵抗値が小さくなり電流が多く流れて発熱が促進されることにより、発熱時には略一定の温度に保たれるので、発熱体として利用しやすい。   In the region of positive temperature characteristics, when the temperature rises, the resistance value of the PTC element increases and the current is limited to restrict the heat generation. Conversely, when the temperature decreases, the resistance value decreases and a large amount of current flows to promote heat generation. By doing so, it is kept at a substantially constant temperature during heat generation, so that it can be easily used as a heating element.

しかし、正の温度特性の領域よりも高温領域では負の温度特性を持つため、負の温度特性領域では、温度が上がるほど抵抗値が小さくなり電流がより多く流れ発熱が促進され、いわゆる熱暴走状態となる。   However, since it has a negative temperature characteristic in the high temperature region than in the positive temperature characteristic region, in the negative temperature characteristic region, as the temperature rises, the resistance value decreases and more current flows to promote heat generation, so-called thermal runaway It becomes a state.

そのため、PTC素子を用いたPTC装置では、PTC素子に電流を供給する端子板に部分的に横断面の断面積が小さい断面積減少部を形成し、異常に大きい電流(以下、「異常過電流」という。)が流れた場合に、断面積減少部が選択的に発熱して溶断し、ヒューズとして機能するように構成されている(例えば、特許文献1参照)。
実開昭52−171738号公報
Therefore, in a PTC device using a PTC element, a terminal area for supplying current to the PTC element is partially formed with a cross-sectional area reduction portion having a small cross-sectional area, and an abnormally large current (hereinafter referred to as “abnormal overcurrent”). ”), The cross-sectional area reducing portion selectively generates heat and melts and functions as a fuse (see, for example, Patent Document 1).
Japanese Utility Model Publication No. 52-171738

例えば温風ヒーターでは、図1(a)の平面図、図1(b)の正面図、図1(c)の底面図に示すように、一対の端子板4,6の間に、PTC素体2aの端子板4,6側の表面に外部電極2b,2cが形成された複数のPTC素子2が挟持され、その外側に、図2の断面図に示すように、絶縁板8を介して放熱フィン5が配置されているPTC装置1が組み込まれ、放熱フィン5に風を当て、PTC素子2で発生した熱を放熱フィン5から取り出す。   For example, in a warm air heater, as shown in the plan view of FIG. 1A, the front view of FIG. 1B, and the bottom view of FIG. A plurality of PTC elements 2 in which external electrodes 2b and 2c are formed are sandwiched on the surface of the body 2a on the side of the terminal plates 4 and 6, and on the outside thereof, as shown in the sectional view of FIG. The PTC device 1 in which the radiating fins 5 are arranged is incorporated, wind is applied to the radiating fins 5, and the heat generated in the PTC elements 2 is taken out from the radiating fins 5.

図1に示すように、端子板4,6は、PTC素子2を挟持する主要部4a,6aと、電源に接続される引出し端部4c,6cとの間に、幅(横断面)が部分的に狭い断面積減少部4b,6bが形成されている。引出し端部4c,6c間に異常過電流が流れた場合に、断面積減少部4b,6bの抵抗値が他の部分よりも大きいため、断面積減少部4b,6bが選択的に発熱し、溶け、最終的には溶断する。これによって、異常過電流が遮断される。   As shown in FIG. 1, the terminal plates 4 and 6 have a width (cross section) between the main portions 4a and 6a sandwiching the PTC element 2 and the lead-out ends 4c and 6c connected to the power source. Narrow cross-sectional area decreasing portions 4b and 6b are formed. When an abnormal overcurrent flows between the drawing end portions 4c and 6c, the cross-sectional area reducing portions 4b and 6b are selectively heated because the resistance values of the cross-sectional area reducing portions 4b and 6b are larger than the other portions. Melts and eventually melts. Thereby, the abnormal overcurrent is interrupted.

ところで、PTC素子は、常温(例えば25℃)から発熱が安定する温度(例えば100℃程度)に達するまでの間に、抵抗値が一旦低下する温度−抵抗特性を有する。そのため、断面積減少部4b,6bには、運転開始直後に、発熱が安定しているときよりも大きな電流(突入電流)が一時的に流れる。例えば100V、1200Wで定格運転するPTC装置の場合、最大20Aの突入電流が流れる。PTC装置の断面積減少部は、突入電流で溶断しないことが要求されるため、断面積減少部の許容電流は、例えば25Aに設定する。   By the way, the PTC element has a temperature-resistance characteristic in which the resistance value temporarily decreases from normal temperature (for example, 25 ° C.) to a temperature at which heat generation is stabilized (for example, about 100 ° C.). Therefore, a larger current (inrush current) temporarily flows through the cross-sectional area reducing portions 4b and 6b than immediately when the heat generation is stable immediately after the start of operation. For example, in the case of a PTC device that is rated at 100 V and 1200 W, a maximum inrush current of 20 A flows. Since the cross-sectional area reduction part of the PTC device is required not to be melted by the inrush current, the allowable current of the cross-sectional area reduction part is set to 25 A, for example.

図3に示すように、このように断面積減少部の許容電流が25AのPTC装置94を温風ヒーターのセット92に組み込んだ場合、温風ヒーターのセット92が接続される100V系の配電盤90には、20Aのブレーカーが設置されており、温風ヒーターのセット92内にも20Aのガラス管ヒューズ96が設けられている。   As shown in FIG. 3, when the PTC device 94 with the allowable current of the cross-sectional area reduction portion of 25 A is incorporated in the hot air heater set 92 as described above, a 100 V system switchboard 90 to which the hot air heater set 92 is connected. Is provided with a 20A breaker, and a 20A glass tube fuse 96 is also provided in a set 92 of hot air heaters.

そのため、PTC装置94に異常過電流が流れても、PTC装置94の断面積減少部よりも先に、ガラス管ヒューズ96や、配電盤90のブレーカーが電流を遮断してしまい、PTC装置94の断面積減少部は機能することがない。換言すると、温風ヒーターのセット92は、20A以上という大電流が流れるまで、異常を検知して停止することができない。   Therefore, even if an abnormal overcurrent flows in the PTC device 94, the glass tube fuse 96 or the breaker of the switchboard 90 cuts off the current before the cross-sectional area reduction portion of the PTC device 94, and the PTC device 94 is disconnected. The area reduction part does not function. In other words, the hot air heater set 92 cannot detect and stop an abnormality until a large current of 20 A or more flows.

定格の小さいPTC装置を複数組み合わせて用いればこのような問題を回避できるが、それでは、部品点数が増え、構成が複雑になるなどの不都合が生じる。   Such a problem can be avoided by using a combination of a plurality of low-rated PTC devices, but this causes problems such as an increase in the number of parts and a complicated configuration.

本発明は、かかる実情に鑑み、異常過電流で溶断する断面積減少部の許容電流を小さくすることができる、PTC装置を提供しようとするものである。   In view of such a situation, the present invention intends to provide a PTC device capable of reducing the allowable current of the cross-sectional area reduction portion that is melted by an abnormal overcurrent.

本発明は、上記課題を解決するために、以下のように構成したPTC装置を提供する。   In order to solve the above-mentioned problems, the present invention provides a PTC device configured as follows.

PTC装置は、互いに対向する一対の端子板と、前記一対の端子板に沿って一列に並び、前記一対の端子板間に挟持され、前記一対の端子板間に電気的に並列に接続されている複数のPTC素子と、を有し、前記一対の前記端子板の引出し端部がそれぞれ電源に接続されるタイプのものである。前記一対の端子板のそれぞれには、当該端子板の前記引出し端部と最も当該端子板の前記引出し端部側に位置する前記PTC素子との間及び前記複数のPTC素子の間のうち、2箇所以上に、断面積が部分的に小さい断面積減少部が形成されている。前記一対の端子板のそれぞれにおいて、前記引出し端部から離れる位置に存在する前記断面積減少部ほど、前記断面積が小さい。 The PTC device is arranged in a row along the pair of terminal plates and the pair of terminal plates, sandwiched between the pair of terminal plates, and electrically connected in parallel between the pair of terminal plates. A plurality of PTC elements that are connected to a power source. Each of the pair of terminal plates includes two of the lead end of the terminal plate and the PTC element located closest to the lead end of the terminal plate and between the plurality of PTC elements. A cross-sectional area decreasing portion having a partially small cross-sectional area is formed in more than the portion. In each of the pair of terminal plates, the cross-sectional area decreases as the cross-sectional area decreasing portion exists at a position away from the drawer end.

上記構成において、端子板の断面積減少部は、例えば、端子板に切り欠き溝や貫通穴を形成したり、端子板の幅方向を削ったり、厚み方向に削ったりして、端子板の幅や厚みを小さくした部分である。複数のPTC素子は、直線状、曲線状、ジグザグなど、任意の形状で一列に並べることができる。   In the above configuration, the cross-sectional area reduction portion of the terminal plate is formed by, for example, forming a notch groove or a through hole in the terminal plate, cutting the width direction of the terminal plate, or cutting the width direction of the terminal plate. It is a part where the thickness is reduced. The plurality of PTC elements can be arranged in a line in an arbitrary shape such as a straight line, a curved line, or a zigzag.

上記構成によれば、断面積減少部は、異常過電流が流れると溶断し、ヒューズとして機能する。隣接するPTC素子間に設けた端子板の断面積減少部には、断面積減少部に関していずれか片側に配置されているPTC素子に流れる電流のみが流れ、PTC装置を流れる全電流のうちの一部のみが流れる。そのため、PTC装置を流れる全電流が断面積減少部を流れる場合よりも、許容電流を小さくすることができる。   According to the said structure, a cross-sectional area reduction | decrease part will melt | fuse when an abnormal overcurrent flows, and functions as a fuse. Only the current flowing through the PTC element disposed on either side of the cross-sectional area reducing portion flows through the cross-sectional area reducing portion of the terminal plate provided between the adjacent PTC elements, and is one of the total currents flowing through the PTC device. Only the part flows. Therefore, the allowable current can be reduced as compared with the case where the total current flowing through the PTC device flows through the cross-sectional area reducing portion.

一対の端子板のそれぞれに複数個の断面積減少部が形成されることにより、断面積減少部の許容電流を小さく設定したとしても十分に突入電流に耐えうることから、断面積減少部の断面積をより小さく設計することができる。このため、PTC素子のいずれかにおいて異常過電流が生じた場合に、より小さい電流で断面積減少部が溶断するようにできる。 By several area reduction portion birefringence is formed in each of the pair of terminal plates, since it can withstand sufficiently inrush current even if an allowable current area reduction portion smaller, the area reduction portion The cross-sectional area can be designed to be smaller. For this reason, when an abnormal overcurrent occurs in any of the PTC elements, the cross-sectional area reduction portion can be blown with a smaller current.

好ましくは、前記一対の端子板は、それぞれ、前記引出し端部と最も前記引出し端部側に位置するPTC素子との間及び複数のPTC素子の全ての間に、断面積減少部が形成されている。また、断面積減少部は、前記引出し端部から離れる位置に存在する断面積減少部ほど、前記断面積が小さい。   Preferably, each of the pair of terminal plates has a cross-sectional area reduction portion formed between the drawer end portion and the PTC element located closest to the drawer end portion and between all of the plurality of PTC elements. Yes. Further, the cross-sectional area decreasing portion has a smaller cross-sectional area as the cross-sectional area decreasing portion existing at a position away from the drawer end portion.

この場合、PTC素子の1個ごとについて、異常過電流が流れると、そのPTC素子に隣接するいずれかの断面積減少部が溶断するようにできる。複数個のPTC素子についてまとめて断面積減少部を設ける場合よりも、小さい電流で断面積減少部が溶断するようにでき、溶断する部分も増えるため、安全性をより向上することができる。   In this case, when an abnormal overcurrent flows for each of the PTC elements, any one of the cross-sectional area decreasing portions adjacent to the PTC element can be melted. Compared with the case where a plurality of PTC elements are collectively provided with a reduced cross-sectional area, the reduced cross-sectional area can be blown with a small current, and the number of parts to be fused is increased, so that safety can be further improved.

好ましくは、隣接する少なくとも1組の前記PTC素子の間に、前記端子板の前記断面積減少部から前記PTC素子を離すスペーサーが配置されている。   Preferably, a spacer that separates the PTC element from the reduced cross-sectional area of the terminal plate is disposed between at least one pair of adjacent PTC elements.

この場合、端子板の断面積減少部がPTC素子に接触しないようにすることができる。これによって、端子板の断面積減少部の機能が端子板の断面積減少部とPTC素子との接触によって低下するのを防ぐことができる。また、端子板の断面積減少部が溶断したときに、その影響がPTC素子に及ぶのをスペーサーで防ぎ、ダメージを極力小さくすることができる。   In this case, it is possible to prevent the cross-sectional area reduction portion of the terminal plate from contacting the PTC element. Accordingly, it is possible to prevent the function of the cross-sectional area reducing portion of the terminal plate from being deteriorated due to contact between the cross-sectional area reducing portion of the terminal plate and the PTC element. Further, when the reduced cross-sectional area of the terminal plate is melted, the influence of the influence on the PTC element can be prevented by the spacer, and the damage can be minimized.

好ましくは、前記端子板の前記断面積減少部の許容電流は、前記端子板の前記引出し端部と前記電源との間に接続される過電流保護部品の定格電流よりも小さい。   Preferably, the allowable current of the cross-sectional area reducing portion of the terminal plate is smaller than the rated current of an overcurrent protection component connected between the lead-out end portion of the terminal plate and the power source.

PTC装置が、過電流を抑制するヒューズやブレーカなどの過電流保護部品を介して電源に接続されている場合、端子板の断面積減少部の許容電流を過電流保護部品の定格電流よりも小さくすることにより、過電流保護部品の定格電流よりも小さい異常過電流を断面積減少部で遮断することができる。これによって、過電流保護部品の定格電流よりも小さい異常過電流を抑制することができ、より安全性を高めることができる。   When the PTC device is connected to the power supply via an overcurrent protection component such as a fuse or breaker that suppresses overcurrent, the allowable current at the reduced cross-sectional area of the terminal plate is smaller than the rated current of the overcurrent protection component. By doing so, an abnormal overcurrent smaller than the rated current of the overcurrent protection component can be interrupted by the cross-sectional area reducing portion. Thereby, an abnormal overcurrent smaller than the rated current of the overcurrent protection component can be suppressed, and safety can be further improved.

本発明によれば、異常過電流で溶断する断面積減少部の許容電流を小さくすることができる。   According to the present invention, it is possible to reduce the allowable current of the cross-sectional area reducing portion that is melted by an abnormal overcurrent.

端子板間にPTC素子を挟持した状態を示す、(a)上面図、(b)正面図、(c)底面図である。It is the (a) top view, (b) front view, and (c) bottom view which show the state which pinched the PTC element between the terminal boards. PTC装置の断面図である。It is sectional drawing of a PTC apparatus. PTC装置の使用状態を示すブロック図である。It is a block diagram which shows the use condition of a PTC apparatus. PTC装置の断面図である。(実施例1)It is sectional drawing of a PTC apparatus. Example 1 (a)図4の線A−Aに沿って見た平面図、(b)図4の線B−Bに沿って見た平面図である。(実施例1)(A) The top view seen along line AA of FIG. 4, (b) The top view seen along line BB of FIG. Example 1 PTC装置の要部構成図である。(実施例1)It is a principal part block diagram of a PTC apparatus. Example 1 図4の線C−Cに沿って見た断面図である。(実施例1)It is sectional drawing seen along line CC of FIG. Example 1 端子板の平面図である。(実施例2)It is a top view of a terminal board. (Example 2) 端子板の平面図である。(実施例3)It is a top view of a terminal board. (Example 3) 端子板の平面図である。(実験例)It is a top view of a terminal board. (Experimental example)

符号の説明Explanation of symbols

10 PTC装置
11,11A〜11D,11X,11Y PTC素子
20 端子板
20c,20d 断面積減少部
22 端子板
22c,22d 断面積減少部
40 端子板
40x 断面積減少部
50 端子板
50c〜50f 断面積減少部
52 端子板
52c〜52f 断面積減少部
80 端子板
80x 断面積減少部
82 端子板
82x 断面積減少部
DESCRIPTION OF SYMBOLS 10 PTC apparatus 11, 11A-11D, 11X, 11Y PTC element 20 Terminal board 20c, 20d Cross-sectional area reduction part 22 Terminal board 22c, 22d Cross-sectional area reduction part 40 Terminal board 40x Cross-sectional area reduction part 50 Terminal board 50c-50f Cross-sectional area Reduced portion 52 Terminal plate 52c to 52f Reduced cross-sectional area 80 Terminal plate 80x Reduced cross-sectional area 82 Terminal plate 82x Reduced cross-sectional area

以下、本発明の実施の形態について、図4〜図10を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<実施例1> 実施例1のPTC装置について、図4〜図7を参照しながら説明する。図4は断面図、図5(a)は図4の線A−Aに沿って見た平面図、図5(b)は図4の線B−Bに沿って見た平面図、図6は要部構成図、図7は図4の線C−Cに沿って切断した横断面図である。   Example 1 A PTC device of Example 1 will be described with reference to FIGS. 4 is a sectional view, FIG. 5 (a) is a plan view taken along line AA in FIG. 4, FIG. 5 (b) is a plan view seen along line BB in FIG. 4, and FIG. FIG. 7 is a cross-sectional view taken along line CC in FIG.

図4に示すように、PTC装置10は、一対の端子板20,22の間に複数(図では4個)のPTC素子11が挟持され、その外側に、絶縁板24,25を介して、放熱フィン30を有するケース部材12,14が配置されている。なお、PTC素子11としては図5及び図6に示すように、例えばBaTiO系半導体セラミックからなるPTC素体11aの端子板側の表面全体に、例えばNi等からなる第1の外部電極11bが形成され、さらにその上に、PTC素子11の周縁より一周り小さい周縁を有する例えばAg等などからなる第2の外部電極11cが形成される。As shown in FIG. 4, the PTC device 10 includes a plurality of (four in the figure) PTC elements 11 sandwiched between a pair of terminal plates 20 and 22, and insulating plates 24 and 25 on the outside thereof. Case members 12 and 14 having radiating fins 30 are arranged. As shown in FIGS. 5 and 6, as the PTC element 11, a first external electrode 11b made of, for example, Ni is formed on the entire surface of the terminal plate side of the PTC element body 11a made of, for example, a BaTiO 3 based semiconductor ceramic. A second external electrode 11 c made of, for example, Ag having a peripheral edge that is slightly smaller than the peripheral edge of the PTC element 11 is formed thereon.

図5及び図6に示すように、端子板20,22の主要部20a,22aに沿ってPTC素子11が配置され、PTC素子11の第2の外部電極11cが、それぞれ、端子板20,22の主要部20a,22aに当接し、電気的に並列に接続されている。   As shown in FIGS. 5 and 6, the PTC element 11 is disposed along the main portions 20 a and 22 a of the terminal plates 20 and 22, and the second external electrodes 11 c of the PTC element 11 are respectively connected to the terminal plates 20 and 22. The main parts 20a and 22a are in contact with each other and are electrically connected in parallel.

端子板20,22は、ステンレス、銅合金、アルミ等を用いて形成する。端子板20,22の主要部20a,22aと引出し端部20b,22bとの間には、幅(すなわち横断面)が部分的に小さい断面積減少部20c,22cが形成されている。端子板20,22の主要部20a,22aの中間位置にも、幅(すなわち横断面)が部分的に小さい断面積減少部20d,22dが形成されている。主要部20a,22aの中間位置の断面積減少部20d,22dは、引出し端部20b,22b側の断面積減少部20c,20cよりも、幅(すなわち横断面)が小さい。   The terminal plates 20 and 22 are formed using stainless steel, copper alloy, aluminum, or the like. Between the main portions 20a and 22a of the terminal plates 20 and 22 and the drawn end portions 20b and 22b, cross-sectional area reducing portions 20c and 22c having a partially small width (that is, a transverse cross section) are formed. Cross-sectional area decreasing portions 20d and 22d having a small width (that is, a cross section) are also formed at intermediate positions between the main portions 20a and 22a of the terminal plates 20 and 22. The cross-sectional area decreasing portions 20d and 22d at the intermediate positions of the main portions 20a and 22a are smaller in width (that is, cross-sectional area) than the cross-sectional area decreasing portions 20c and 20c on the drawer end portions 20b and 22b side.

一列に並んだPTC素子11の中央に、スペーサー28が配置されている。スペーサー28は、端子板20,22の主要部20a,22aの中間位置に設けられた断面積減少部20d,22dに対向し、断面積減少部20d,22dに対向してPTC素子11が配置されることを防ぐ。スペーサー28には貫通穴29が形成され、断面積減少部20d,22dは貫通穴29に露出している。スペーサー28は、例えば、耐熱性が高く難燃性の材料であるマイカを打ち抜き加工することによって形成する。   A spacer 28 is arranged in the center of the PTC elements 11 arranged in a line. The spacer 28 is opposed to the cross-sectional area decreasing portions 20d and 22d provided at the intermediate positions of the main portions 20a and 22a of the terminal plates 20 and 22, and the PTC element 11 is disposed so as to oppose the cross-sectional area decreasing portions 20d and 22d. To prevent it. A through hole 29 is formed in the spacer 28, and the cross-sectional area reducing portions 20 d and 22 d are exposed in the through hole 29. The spacer 28 is formed, for example, by punching mica, which is a heat-resistant and flame-retardant material.

端子板20,22の主要部20a,22aに設けた断面積減少部20d,22dは、PTC素子11に接触することなく、スペーサー28の貫通穴29に露出しているので、異常過電流が流れて発熱したときにPTC素子11に熱が奪われないため、迅速かつ確実に溶断する。また、断面積減少部20d,22dはスペーサー28内で溶断し、スペーサー28は、溶断した断面積減少部20d,22dが他へ飛び散るのを防ぐ。なお、スペーサー28を設けない構成とすることも可能であるが、その場合でも、端子板20,22の断面積減少部20d,22dにPTC素子11が接触しないようにする。端子板20,22の断面積減少部20d,22dにPTC素子11が接触してしまうと、PTC素子表面に形成された第1の外部電極11bが断面積減少部20d,22dと重なり、実質的にPTC素子の第1の外部電極11bを介して導通してしまい、断面積減少部20d,22dの領域が減少し、効果が小さくなる。   Since the cross-sectional area reduction portions 20d and 22d provided in the main portions 20a and 22a of the terminal plates 20 and 22 are exposed to the through holes 29 of the spacer 28 without contacting the PTC element 11, an abnormal overcurrent flows. When the heat is generated, the PTC element 11 is not deprived of heat, so that it is melted quickly and reliably. Further, the cross-sectional area reducing portions 20d and 22d are melted in the spacer 28, and the spacer 28 prevents the melted cross-sectional area reducing portions 20d and 22d from being scattered. Although it is possible to employ a configuration in which the spacer 28 is not provided, even in such a case, the PTC element 11 is prevented from contacting the cross-sectional area reducing portions 20d and 22d of the terminal plates 20 and 22. When the PTC element 11 comes into contact with the cross-sectional area reducing portions 20d and 22d of the terminal plates 20 and 22, the first external electrode 11b formed on the surface of the PTC element overlaps with the cross-sectional area reducing portions 20d and 22d. To the first external electrode 11b of the PTC element, the area of the cross-sectional area reducing portions 20d and 22d is reduced, and the effect is reduced.

図4に示すように、PTC素子11を挟持する端子板20,22の主要部20a,22aは、絶縁板24,25を間に挟んでケース部材12,14の間に配置され、端子板20,22の引出し端部20b,22bは、ケース部材12,14から外側に、互いに反対側に突出する。絶縁板24,25は、熱を伝えやすい絶縁性の板、例えばアルミナ板である。   As shown in FIG. 4, the main portions 20 a and 22 a of the terminal plates 20 and 22 that sandwich the PTC element 11 are disposed between the case members 12 and 14 with the insulating plates 24 and 25 interposed therebetween. , 22 protrudes outward from the case members 12, 14 to the opposite sides. The insulating plates 24 and 25 are insulating plates that easily conduct heat, such as alumina plates.

鎖線で示すように、端子板20,22の引出し端部20b,22bには、電源を供給するための端子部材34が固定される。PTC装置10がヒーターシステムに組み込まれる場合、例えば図3と同様に、端子部材34は、過電流保護部品であるヒューズやブレーカーを介して電源に接続される。また、端子部材34とケース部材12,14との間には、ケース部材12,14の引出し端部に嵌合するキャップ32が配置される。キャップ32の内側には突起(図示せず)が設けられ、この突起で端子板20,22に沿って並んでいるPTC素子11及びスペーサー28の列の両側を押さえ、位置決めするようになっている。キャップ32は、樹脂やゴムなどの弾力性を有する絶縁材料を用いて形成する。   As indicated by a chain line, a terminal member 34 for supplying power is fixed to the drawn end portions 20b and 22b of the terminal plates 20 and 22. When the PTC device 10 is incorporated in a heater system, for example, as in FIG. 3, the terminal member 34 is connected to a power source via a fuse or breaker that is an overcurrent protection component. Further, between the terminal member 34 and the case members 12 and 14, a cap 32 that is fitted to the drawer end portions of the case members 12 and 14 is disposed. A protrusion (not shown) is provided on the inner side of the cap 32, and the protrusions (not shown) are pressed and positioned on both sides of the row of PTC elements 11 and spacers 28 arranged along the terminal plates 20 and 22. . The cap 32 is formed using an elastic insulating material such as resin or rubber.

図7に示すように、ケース部材12,14は、放熱フィン30が設けられた基部12a,14aが互いに対向して配置され、基部12a,14aの間に、それぞれ、基部12a,14aから第1片12b,14b及び第2片12c,14cが断面L字状に延在し、ばね部材16を介して係合している。すなわち、ケース部材12,14の第2片12c,14cが互いに対向し、第2片12c,14cの間に、ばね部材16が配置されている。ばね部材16は、軸方向にスリットが形成された筒状の弾力部材であり、ケース部材12,14の第2片12c,14cを互いに離れる方向に押圧し、これによって、ケース部材12,14の基部12a,14aが互いに接近し、ケース部材12,14の基部12a,14aの間に、PTC素子11及びスペーサー28と、端子板20,22と、絶縁板24,25とを挟持した状態を保持するようになっている。   As shown in FIG. 7, the base members 12a and 14a provided with the heat radiation fins 30 are arranged to face each other, and the case members 12 and 14 are arranged between the base portions 12a and 14a from the base portions 12a and 14a, respectively. The pieces 12 b and 14 b and the second pieces 12 c and 14 c extend in an L-shaped cross section and are engaged via the spring member 16. That is, the second pieces 12c and 14c of the case members 12 and 14 face each other, and the spring member 16 is disposed between the second pieces 12c and 14c. The spring member 16 is a cylindrical elastic member in which a slit is formed in the axial direction. The spring member 16 presses the second pieces 12c and 14c of the case members 12 and 14 in a direction away from each other. The base portions 12a and 14a approach each other, and the state where the PTC element 11 and the spacer 28, the terminal plates 20 and 22 and the insulating plates 24 and 25 are sandwiched between the base portions 12a and 14a of the case members 12 and 14 is maintained. It is supposed to be.

図7に示したように、絶縁板24,25は、端子板20,22よりも幅が広く、端子板20,22、PTC素子11及びスペーサー28の両側には、絶縁部材26,27が配置されている。絶縁部材26,27は、例えばマイカを用いて形成する。絶縁板24,25及び絶縁部材26,27の側面には、ケース部材12,14の第1片12b,14bが対向している。絶縁板24,25及び絶縁部材26,27は、端子板20,22、PTC素子11及びスペーサー28の周囲を覆い、端子板20,22とケース部材12,14を絶縁している。   As shown in FIG. 7, the insulating plates 24 and 25 are wider than the terminal plates 20 and 22, and insulating members 26 and 27 are arranged on both sides of the terminal plates 20 and 22, the PTC element 11 and the spacer 28. Has been. The insulating members 26 and 27 are formed using mica, for example. The first pieces 12 b and 14 b of the case members 12 and 14 face the side surfaces of the insulating plates 24 and 25 and the insulating members 26 and 27. The insulating plates 24 and 25 and the insulating members 26 and 27 cover the periphery of the terminal plates 20 and 22, the PTC element 11 and the spacer 28, and insulate the terminal plates 20 and 22 from the case members 12 and 14.

PTC装置10を組み立てる場合、まず、ケース部材12,14の第2片12c,14cと基部12a,14aとの間に、他方のケース部材12,14の第2片12c,14cが入り込むように、ケース部材12,14を組み合わせる。次いで、ケース部材12,14の基部12a,14a及び第1片12b,14bによって形成される断面矩形の空間に、ケース部材12,14の端部から、PTC素子11及びスペーサー28と、端子板20,22と、絶縁板24,25と、絶縁部材26,27とを、適宜な順序で挿入して所定位置に配置した後、ケース部材12,14の第2片12c,14cの間にばね部材16を挿入し、ばね部材16によって、ケース部材12,14の基部12a,14aが互いに接近するように付勢する。次いで、キャップ32をケース部材12,14の端部に被せ、端子板20,22の引出し端部20b,22bに端子部材34をスポット溶接等により固定する。   When assembling the PTC device 10, first, the second pieces 12c, 14c of the other case members 12, 14 are inserted between the second pieces 12c, 14c of the case members 12, 14 and the base portions 12a, 14a. The case members 12 and 14 are combined. Next, the PTC element 11, the spacer 28, and the terminal plate 20 are formed from the end portions of the case members 12 and 14 into a rectangular space formed by the base portions 12 a and 14 a and the first pieces 12 b and 14 b of the case members 12 and 14. , 22, insulating plates 24, 25, and insulating members 26, 27 are inserted in an appropriate order and arranged at predetermined positions, and then spring members between the second pieces 12 c, 14 c of the case members 12, 14. 16 is inserted, and the base members 12a and 14a of the case members 12 and 14 are biased by the spring member 16 so as to approach each other. Next, the cap 32 is put on the end portions of the case members 12 and 14, and the terminal member 34 is fixed to the drawing end portions 20b and 22b of the terminal plates 20 and 22 by spot welding or the like.

図6において破線で示すように、一方の端子板20の引出し端部20bから、PTC素子11を介して他方の端子板22の引出し端部22bに、電流が流れる。図において左から順にそれぞれのPTC素子11に流れる電流をi,i,i,iとすると、一方の端子板20の断面積減少部20dには、断面積減少部20dよりも図において右側の2個のPTC素子11にそれぞれ流れる電流i,iの合計電流i+iのみが流れる。他方の端子板22の断面積減少部22dには、断面積減少部22dよりも図において左側の2個のPTC素子11にそれぞれ流れる電流i,iの合計電流i+iのみが流れる。端子板20,22の引出し端部20b,22b側の設けた断面積減少部20c,22cには、全てのPTC素子11にそれぞれ流れる電流i,i,i,iの合計電流i+i+i+iが流れる。As indicated by a broken line in FIG. 6, a current flows from the drawing end 20 b of one terminal plate 20 to the drawing end 22 b of the other terminal plate 22 through the PTC element 11. Assuming that the currents flowing through the respective PTC elements 11 in order from the left are i 1 , i 2 , i 3 , i 4 , the cross-sectional area reducing portion 20 d of one terminal plate 20 is more illustrated than the cross-sectional area reducing portion 20 d. , Only the total current i 3 + i 4 of the currents i 3 and i 4 flowing in the two right-hand PTC elements 11 flows. Only the total current i 1 + i 2 of the currents i 1 and i 2 flowing through the two PTC elements 11 on the left side of the cross-sectional area reducing portion 22d flows in the cross-sectional area reducing portion 22d of the other terminal plate 22 in the drawing. . The total current i of currents i 1 , i 2 , i 3 , i 4 flowing in all the PTC elements 11 is provided in the cross-sectional area decreasing portions 20 c, 22 c provided on the lead end portions 20 b, 22 b side of the terminal plates 20, 22. 1 + i 2 + i 3 + i 4 flows.

例えば、キュリー温度260℃、抵抗値100Ωの4個のPTC素子11が端子板20,22の主要部20a,22aに沿って並べられ、定格1200W(定格電流12A)のPTC装置10において、最大20Aの突入電流が流れる場合、端子板20,22の引出し端部20b,22b側の設けた断面積減少部20c,22cの許容電流を30Aに設定しても、端子板20,22の主要部20a,22aに設けた断面積減少部20d,22dの許容電流はその半分の15Aに設定することができる。   For example, in the PTC device 10 having a rated power of 1200 W (rated current of 12 A), four PTC elements 11 having a Curie temperature of 260 ° C. and a resistance value of 100Ω are arranged along the main portions 20 a and 22 a of the terminal plates 20 and 22. When the inrush current flows, the main portion 20a of the terminal plates 20 and 22 is set even if the allowable current of the cross-sectional area reducing portions 20c and 22c provided on the lead end portions 20b and 22b side of the terminal plates 20 and 22 is set to 30A. , 22a, the allowable current of the cross-sectional area reduction portions 20d, 22d can be set to 15A, which is half of the allowable current.

このようなPTC装置10を組み込んだ機器を、20Aのブレーカーが設置された100V系の配電盤に接続した場合、従来のように端子板20,22の引出し端部20b,22b側に設けた断面積減少部20c,22c(許容電流30A)だけでは、PTC装置10に異常過電流が流れたときに20Aのブレーカーや機器に設けた20Aのガラス管ヒューズが異常過電流を先に遮断するが、端子板20,22の主要部20a,22aに断面積減少部20d,22dを設けて許容電流を半分(15A)に設定することにより、PTC装置10に異常過電流が流れたときに、20Aのブレーカーや機器に設けた20Aのガラス管ヒューズよりも先に、断面積減少部20d,22dが異常過電流を遮断する。これによって、より小さな電流で遮断できるため、異常過電流をより安全に遮断することができる。   When a device incorporating such a PTC device 10 is connected to a 100V system switchboard with a 20A breaker installed, the cross-sectional area provided on the lead-out end portions 20b and 22b side of the terminal plates 20 and 22 as in the prior art. With only the decreasing parts 20c and 22c (allowable current 30A), when an abnormal overcurrent flows through the PTC device 10, the 20A glass tube fuse provided in the 20A breaker or equipment cuts off the abnormal overcurrent first. By providing the cross-sectional area decreasing portions 20d and 22d in the main portions 20a and 22a of the plates 20 and 22 and setting the allowable current to half (15A), when an abnormal overcurrent flows through the PTC device 10, a breaker of 20A Further, before the 20A glass tube fuse provided in the device, the cross-sectional area reduction portions 20d and 22d interrupt the abnormal overcurrent. Thereby, since it can interrupt | block with a smaller electric current, abnormal overcurrent can be interrupt | blocked more safely.

<実施例2> 断面積減少部は、隣接するPTC素子の間であれば、どこに設けても許容電流を小さくすることができる。例えば図8に示すように、端子板40に沿って並ぶPTC素子11のうち、図において左側の隣接するPTC素子11X,11Yの間に断面積減少部40xを形成した場合、図において最も左側のPTC素子11Xを流れる電流のみによって、断面積減少部40xの許容電流を決めることができる。すなわち、実施例1では2個のPTC素子にそれぞれ流れる電流の合計について異常過電流を検知して遮断するのに対して、実施例2では、1個のPTC素子11Xに流れる電流について異常過電流を検知して遮断することができる。したがって、安全性をより高めることができる。   <Embodiment 2> The allowable current can be reduced no matter where the cross-sectional area reducing portion is provided between adjacent PTC elements. For example, as shown in FIG. 8, among the PTC elements 11 arranged along the terminal plate 40, when the cross-sectional area reducing portion 40x is formed between the adjacent PTC elements 11X and 11Y on the left side in the figure, the leftmost side in the figure The allowable current of the cross-sectional area reducing portion 40x can be determined only by the current flowing through the PTC element 11X. That is, in the first embodiment, abnormal overcurrent is detected and cut off for the total of the currents flowing through the two PTC elements, whereas in the second embodiment, the abnormal overcurrent is detected for the current flowing through one PTC element 11X. Can be detected and blocked. Therefore, safety can be further improved.

<実施例3> 図9の平面図に示すように、PTC素子11A〜11Dを挟持する一対の端子板50,52は、従来例と同様に主要部50a,52aと引出し端部50b,52bとの間の断面積減少部50c,52cに加え、全ての隣接するPTC素子11A,11B,11C,11Dの間に、断面積減少部50d,50e,50f;52d,52e,52fが設けられている。端子板50;52の断面積減少部50c,50d,50e,50f;52c,52d,52e,52fは、引出し端部50b;52bから遠くなるほど、幅(横断面)が小さくなり、許容電流が小さくなるように形成される。例えば、引出し端部50b,52bから順に、断面積減少部50c,52cの許容電流を24A、断面積減少部50d,52dの許容電流を18A、断面積減少部50e,52eの許容電流を12A、断面積減少部50f,52fの許容電流を6Aとする。   <Embodiment 3> As shown in the plan view of FIG. 9, the pair of terminal plates 50 and 52 sandwiching the PTC elements 11A to 11D includes main portions 50a and 52a and drawer end portions 50b and 52b as in the conventional example. In addition to the cross-sectional area reduction portions 50c and 52c, cross-sectional area reduction portions 50d, 50e and 50f; 52d, 52e and 52f are provided between all adjacent PTC elements 11A, 11B, 11C and 11D. . The cross-sectional area decreasing portions 50c, 50d, 50e, 50f; 52c, 52d, 52e, 52f of the terminal plate 50; 52 have a smaller width (cross section) and a smaller allowable current as the distance from the drawing end 50b; 52b increases. Formed to be. For example, in order from the drawing end portions 50b and 52b, the allowable current of the cross-sectional area reducing portions 50c and 52c is 24A, the allowable current of the cross-sectional area reducing portions 50d and 52d is 18A, and the allowable current of the cross-sectional area reducing portions 50e and 52e is 12A. The allowable current of the cross-sectional area reducing portions 50f and 52f is 6A.

これによって、PTC素子11Aについて異常過電流が流れたときには断面積減少部50fが溶断し、PTC素子11Bについて異常過電流が流れたときには断面積減少部52d又は50eが溶断し、PTC素子11Cについて異常過電流が流れたときには断面積減少部52e又は50dが溶断し、PTC素子11Dについて異常過電流が流れたときには断面積減少部50fが溶断する。   As a result, when an abnormal overcurrent flows in the PTC element 11A, the cross-sectional area reducing portion 50f is blown, and when an abnormal overcurrent flows in the PTC element 11B, the cross-sectional area reducing portion 52d or 50e is blown, and the PTC element 11C is abnormal. When the overcurrent flows, the cross-sectional area reducing portion 52e or 50d is blown, and when the abnormal overcurrent flows for the PTC element 11D, the cross-sectional area reducing portion 50f is blown.

溶断する部分が増え、より小さい電流で断面積減少部を溶断することができるので、安全性をさらに一層高めることができる。   Since the portion to be melted is increased and the cross-sectional area reduced portion can be melted with a smaller current, the safety can be further enhanced.

<実験例> 図10の平面図に示すように、主要部80a,82aと引出し端部80b,82bとを有するステンレスの端子板80,82を用意する。図10(a)に示すように、引出し端部80b側に、許容電流が25Aの断面積減少部80xを設けた端子板80を、サンプル1とする。図10(b)に示すように、主要部82aの中央に、許容電流が12Aの断面積減少部82xを設けた端子板82を、サンプル2とする。   <Experimental Example> As shown in the plan view of FIG. 10, stainless steel terminal plates 80 and 82 having main portions 80 a and 82 a and drawer end portions 80 b and 82 b are prepared. As shown in FIG. 10A, a terminal plate 80 provided with a cross-sectional area reducing portion 80x having a permissible current of 25 A on the drawing end portion 80b side is taken as a sample 1. As shown in FIG. 10B, a terminal plate 82 provided with a cross-sectional area reduction portion 82x having a permissible current of 12A at the center of the main portion 82a is referred to as sample 2.

サンプル1、2について、それぞれ、端子板80,82の主要部80a,82aに沿って4個のPTC素子11A〜11Dを並べて挟持して、100V用、定格電流12AのPTC装置を構成する。サンプル1,2について、それぞれ斜線を付した一つのPTC素子11Cをショートさせ、断面積減少部80x,82xが10秒以内で溶断する電流の大きさを調べた。測定結果は、次の表1のようになった。

Figure 0004877390
表1から、サンプル2は、サンプル1よりも小さな電流で溶断することが分かる。For Samples 1 and 2, four PTC elements 11A to 11D are arranged side by side along the main portions 80a and 82a of the terminal plates 80 and 82, respectively, to constitute a 100 V PTC device with a rated current of 12A. With respect to Samples 1 and 2, one PTC element 11C hatched is short-circuited, and the magnitude of the current at which the cross-sectional area reduction portions 80x and 82x melt within 10 seconds was examined. The measurement results were as shown in Table 1 below.
Figure 0004877390
From Table 1, it can be seen that Sample 2 is fused with a smaller current than Sample 1.

すなわち、サンプル2は、サンプル1よりも引出し電極部から離れる位置に断面積減少部が設けられており、実質流れる電流は、PTC素子11C及び11Dの許容電流を満たしていれば良いことから、断面積減少部の断面積を小さくすることができる。これにより溶断電流自体も小さくすることができる。   That is, the sample 2 is provided with a cross-sectional area reduction portion at a position farther from the extraction electrode portion than the sample 1, and the current that flows substantially only needs to satisfy the allowable current of the PTC elements 11C and 11D. The cross-sectional area of the area reduction portion can be reduced. Thereby, the fusing current itself can be reduced.

<まとめ> 以上に説明したように、PTC素子を挟持する端子板について、隣接するPTC素子の間に断面積減少部を設けることにより、異常過電流で溶断する断面積減少部の許容電流を小さくすることができる。   <Summary> As described above, by providing a cross-sectional area reduction portion between adjacent PTC elements for the terminal plate that sandwiches the PTC element, the allowable current of the cross-sectional area reduction portion that is blown by an abnormal overcurrent is reduced. can do.

なお、本発明は、上記した実施の形態に限定されるものではなく、種々の変形を加えて実施することが可能である。例えば、一対の端子板の引出し端部が互いに反対側に配置される場合を例示したが、一対の端子板の引出し端部が同じ側に配置される構成とすることも可能である。また、PTC素子の表面に形成される外部電極は、必ずしも二層必要ではなく、一層の外部電極をPTC素子の端子板側の表面全体に形成したようなものを用いてもよい。   The present invention is not limited to the above-described embodiment, and can be implemented with various modifications. For example, although the case where the drawer end portions of the pair of terminal plates are arranged on the opposite sides is illustrated, it is also possible to adopt a configuration in which the drawer end portions of the pair of terminal plates are arranged on the same side. Further, the external electrode formed on the surface of the PTC element is not necessarily required to have two layers, and a single external electrode formed on the entire surface on the terminal plate side of the PTC element may be used.

Claims (4)

互いに対向する一対の端子板と、
前記一対の端子板に沿って一列に並び、前記一対の端子板間に挟持され、前記一対の端子板間に電気的に並列に接続されている複数のPTC素子と、
を有し、前記一対の前記端子板の引出し端部がそれぞれ電源に接続される、PTC装置において、
前記一対の端子板のそれぞれには、当該端子板の前記引出し端部と最も当該端子板の前記引出し端部側に位置する前記PTC素子との間及び前記複数のPTC素子の間のうち、2箇所以上に、断面積が部分的に小さい断面積減少部が形成されており、
前記一対の端子板のそれぞれにおいて、前記引出し端部から離れる位置に存在する前記断面積減少部ほど、前記断面積が小さいことを特徴とする、PTC装置。
A pair of terminal plates facing each other;
A plurality of PTC elements arranged in a line along the pair of terminal plates, sandwiched between the pair of terminal plates, and electrically connected in parallel between the pair of terminal plates;
In the PTC device, wherein the drawer ends of the pair of terminal plates are each connected to a power source,
Each of the pair of terminal plates includes two of the lead end of the terminal plate and the PTC element located closest to the lead end of the terminal plate and between the plurality of PTC elements. The cross-sectional area reduction part where the cross-sectional area is partially small is formed above the place,
In each of the pair of terminal boards, the cross-sectional area decreasing portion present at a position away from the drawer end portion has a smaller cross-sectional area .
前記一対の端子板は、それぞれ、前記引出し端部と最も前記引出し端部側に位置する前記PTC素子との間及び前記複数のPTC素子の全ての間に、前記断面積減少部が形成されており、
前記引出し端部から離れる位置に存在する前記断面積減少部ほど、前記断面積が小さいことを特徴とする、請求項1に記載のPTC装置。
Each of the pair of terminal boards has the cross-sectional area reduction portion formed between the drawer end portion and the PTC element located closest to the drawer end portion and between all of the plurality of PTC elements. And
2. The PTC device according to claim 1, wherein the cross-sectional area decreasing portion existing at a position away from the drawer end portion has a smaller cross-sectional area.
隣接する少なくとも1組の前記PTC素子の間に、前記端子板の前記断面積減少部から前記PTC素子を離すスペーサーが配置されていることを特徴とする、請求項1又は2のいずれかに記載のPTC装置。The spacer which separates the said PTC element from the said cross-sectional area reduction | decrease part of the said terminal board is arrange | positioned between the at least 1 set of said PTC elements adjacent, The Claim 1 or 2 characterized by the above-mentioned. PTC device. 前記端子板の前記断面積減少部の許容電流は、前記端子板の前記引出し端部と前記電源との間に接続される過電流保護部品の定格電流よりも小さいことを特徴とする、請求項1乃至のいずれか一項に記載のPTC装置。The allowable current of the cross-sectional area decreasing portion of the terminal plate is smaller than a rated current of an overcurrent protection component connected between the lead-out end portion of the terminal plate and the power source. The PTC device according to any one of 1 to 3 .
JP2009517763A 2007-05-30 2008-05-14 PTC device Expired - Fee Related JP4877390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009517763A JP4877390B2 (en) 2007-05-30 2008-05-14 PTC device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007143916 2007-05-30
JP2007143916 2007-05-30
JP2009517763A JP4877390B2 (en) 2007-05-30 2008-05-14 PTC device
PCT/JP2008/058831 WO2008149645A1 (en) 2007-05-30 2008-05-14 Ptc device

Publications (2)

Publication Number Publication Date
JPWO2008149645A1 JPWO2008149645A1 (en) 2010-08-19
JP4877390B2 true JP4877390B2 (en) 2012-02-15

Family

ID=40093470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517763A Expired - Fee Related JP4877390B2 (en) 2007-05-30 2008-05-14 PTC device

Country Status (5)

Country Link
JP (1) JP4877390B2 (en)
KR (1) KR101025712B1 (en)
CN (1) CN101568977B (en)
TW (1) TWI384499B (en)
WO (1) WO2008149645A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328326A (en) * 2015-06-30 2017-01-11 瑞侃电子(上海)有限公司 Positive-temperature-coefficient circuit protection device capable of being subjected to reflow soldering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129794A (en) * 1985-11-30 1987-06-12 株式会社東芝 Cold trap
JPS6472488A (en) * 1987-09-11 1989-03-17 Murata Manufacturing Co Positive characteristic theermistor device
JPH08138837A (en) * 1994-11-16 1996-05-31 Nippon Tungsten Co Ltd Ptc thin plate unit
JP2003317593A (en) * 2002-04-25 2003-11-07 Tyco Electronics Raychem Kk Temperature protective device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845965C2 (en) * 1978-10-21 1983-01-20 Fritz Eichenauer GmbH & Co KG, 6744 Kandel Electric resistance heating element
JPH0514470Y2 (en) * 1986-02-10 1993-04-16
JP2532502Y2 (en) * 1991-02-20 1997-04-16 株式会社村田製作所 Heating unit
KR960701454A (en) * 1994-01-31 1996-02-24 마츠모토 쇼죠 PTC surface heater and its resistance adjustment method
JPH11317302A (en) * 1998-03-02 1999-11-16 Murata Mfg Co Ltd Positive temperature coefficient thermistor element and heating device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129794A (en) * 1985-11-30 1987-06-12 株式会社東芝 Cold trap
JPS6472488A (en) * 1987-09-11 1989-03-17 Murata Manufacturing Co Positive characteristic theermistor device
JPH08138837A (en) * 1994-11-16 1996-05-31 Nippon Tungsten Co Ltd Ptc thin plate unit
JP2003317593A (en) * 2002-04-25 2003-11-07 Tyco Electronics Raychem Kk Temperature protective device

Also Published As

Publication number Publication date
TWI384499B (en) 2013-02-01
CN101568977B (en) 2011-09-21
KR101025712B1 (en) 2011-03-30
KR20090077839A (en) 2009-07-15
WO2008149645A1 (en) 2008-12-11
CN101568977A (en) 2009-10-28
TW200903528A (en) 2009-01-16
JPWO2008149645A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
TWI390568B (en) Protection element
JP6297028B2 (en) Protective device
JP6417220B2 (en) Protective element
EP3584808B1 (en) Ptc heating module for heating a fluid
JP4119159B2 (en) Temperature protection element
JP4877390B2 (en) PTC device
EP3873171A1 (en) Self-limiting heater
US20170236667A1 (en) Protective element and protective circuit substrate using the same
JP6474640B2 (en) Current detection resistor
US20180082769A1 (en) Protective Element
JP2008112735A (en) Protection device using temperature fuse
JP2009181732A (en) Sheet heating element
WO2013047434A1 (en) Ceramic resistor
KR101547439B1 (en) The complex protection device of blocking the abnormal state of current and voltage
CN1856845B (en) Thermistor
JPS6229102A (en) Positive temperature coefficient thermistor manufacture thereof
CN117672649A (en) Thermal protection metal oxide varistor with heat concentration electrode
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
ITUD20000099A1 (en) RESISTOR DEVICE WITH FUSISTOR FUNCTION
JP6413203B2 (en) Thermally sensitive switch
JPS6242460Y2 (en)
KR20150100344A (en) A heater
JP3954591B2 (en) Thin resistor with fuse function
JPH0850848A (en) Fuse resistor
JPH0928568A (en) Heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees