JP4877126B2 - Method for producing shotcrete, shotcrete, cross-section repair method using shotcrete - Google Patents
Method for producing shotcrete, shotcrete, cross-section repair method using shotcrete Download PDFInfo
- Publication number
- JP4877126B2 JP4877126B2 JP2007192387A JP2007192387A JP4877126B2 JP 4877126 B2 JP4877126 B2 JP 4877126B2 JP 2007192387 A JP2007192387 A JP 2007192387A JP 2007192387 A JP2007192387 A JP 2007192387A JP 4877126 B2 JP4877126 B2 JP 4877126B2
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- recycled
- shotcrete
- quality value
- relative quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011378 shotcrete Substances 0.000 title claims description 79
- 238000000034 method Methods 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 230000008439 repair process Effects 0.000 title claims description 17
- 239000004567 concrete Substances 0.000 claims description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 238000002156 mixing Methods 0.000 claims description 37
- 238000010521 absorption reaction Methods 0.000 claims description 27
- 230000000704 physical effect Effects 0.000 claims description 25
- 239000004568 cement Substances 0.000 claims description 15
- 238000005507 spraying Methods 0.000 claims description 15
- 238000004898 kneading Methods 0.000 claims description 13
- 238000011156 evaluation Methods 0.000 claims description 9
- 210000000988 bone and bone Anatomy 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 238000006386 neutralization reaction Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 238000009472 formulation Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000006148 magnetic separator Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、吹付けコンクリートの製造方法、吹付けコンクリート、吹付けコンクリートを用いた断面修復方法の技術に関する。 The present invention relates to a shotcrete manufacturing method, shotcrete, and a technique of a cross-section repair method using shotcrete.
建設廃棄物の再資源化が進められている。コンクリート塊の再資源化の手法としては、路盤材等へ適用することが知られている。しかしながら、新設道路工事等は減少傾向にあり、今後の大幅な需要増加は期待できない。また、コンクリート塊には、解体前の原コンクリート中のセメント分に含まれている六価クロム等の有害物質が含まれていることがあり、土壌汚染等への影響が懸念されている。このような事情に鑑みて、コンクリート塊をコンクリート用骨材(再生骨材)として利用することが行われている。但し、再生骨材をコンクリートに用いる場合には普通骨材と同等の品質を確保する必要があることから、従来においては、骨材の製造段階において、再生骨材中の原モルタルを除去することが一般的であった。 Recycling of construction waste is being promoted. As a method for recycling concrete lumps, it is known to apply to roadbed materials. However, new road construction is on a downward trend, and a significant increase in demand cannot be expected in the future. In addition, the concrete block may contain harmful substances such as hexavalent chromium contained in the cement content of the raw concrete before demolition, and there is concern about the impact on soil contamination. In view of such circumstances, it has been practiced to use a concrete block as a concrete aggregate (recycled aggregate). However, when recycled aggregate is used for concrete, it is necessary to ensure the same quality as ordinary aggregate. Therefore, in the past, the original mortar in the recycled aggregate should be removed at the aggregate production stage. Was common.
しかしながら、再生骨材中の原モルタルを除去するためには、原モルタルを除去するための専用設備を用いた高度な処理が必要となる。従って、再生骨材のコスト及び環境負荷が高くなることが懸念されていた。そこで、原モルタルの除去を行わずに再生骨材を利用できるいくつかの技術が開発されている。例えば特許文献1には、建設現場から排出されるコンクリートを粗骨材として利用可能な寸法のコンクリート塊に粉砕し、粉砕することで製造される再生粗骨材を建設現場に到着したコンクリートミキサー車のアジデータ内に投入し、混練する技術が開示されている。また、特許文献2には、相対品質値に基づいて普通骨材の一部を再生骨材に置換することで、再生骨材を含むコンクリート二次製品を製造する技術が開示されている。
原モルタルの除去を行わずに再生骨材を利用できる技術がいくつか開示されており、コンクリートを再利用可能な用途は徐々に広がりつつある。しかし、コンクリートの再利用の要求は大きく、更なる用途の拡大が求められている。 Several techniques that can use recycled aggregates without removing the original mortar have been disclosed, and the applications for reusing concrete are gradually expanding. However, there is a great demand for reuse of concrete, and further expansion of applications is required.
一方、コンクリートの一つとして、吹付けコンクリートが知られている。吹付けコンクリートとは、圧縮空気を利用して圧送したコンクリートを所定場所に吹付け形成させるものである。このような吹付けコンクリートは、例えば、塩害、中性化、凍結融解等によって損傷を受けたコンクリート構造物の断面修復に用いられている。また、吹付けコンクリートは、コンクリート構造物や部材の耐久性等の回復や向上を目的とする床版の下面増厚や柱部材の増厚等の補強として用いられている。 On the other hand, shotcrete is known as one of concrete. The shotcrete is to spray and form concrete that has been pumped using compressed air. Such shotcrete is used, for example, for cross-sectional repair of a concrete structure damaged by salt damage, neutralization, freezing and thawing. In addition, shotcrete is used as reinforcement for increasing the bottom surface of a slab and increasing the thickness of a column member for the purpose of restoring and improving the durability and the like of concrete structures and members.
そこで、吹付けコンクリートについても再生骨材を利用することができれば、再生骨材の用途の更なる拡大を図ることが可能となる。しかしながら、吹付けコンクリートは、一般的なコンクリート打設に比べて高い圧力で送り出して吹付けるといった特徴を有する。また、吹付け後の吹付けコンクリートは、一般的なコンクリートに比べて強度が劣るといったことも懸念されていた。従って、再生骨材を吹付けコンクリートに用いる場合には、吹付けコンクリートの特徴に十分配慮した配合調整が必要となる。しかし、従来、吹付け
コンクリートに再生骨材を用いる技術は確立されておらず、吹付けコンクリートに再生骨材を利用する技術の開発が求められていた。
Therefore, if recycled aggregate can be used for shotcrete, it is possible to further expand the application of recycled aggregate. However, shotcrete has the characteristic that it is sent out and sprayed at a higher pressure than general concrete placing. In addition, there was a concern that the shotcrete after spraying was inferior in strength to general concrete. Therefore, when using recycled aggregate for shotcrete, it is necessary to make blending adjustments that fully consider the characteristics of shotcrete. However, conventionally, a technique for using recycled aggregate for shotcrete has not been established, and development of a technique for using recycled aggregate for shotcrete has been demanded.
本発明は、上記問題に鑑みてなされたものであり、再生骨材を吹付けコンクリートに利用する技術を提供することを課題とする。 This invention is made | formed in view of the said problem, and makes it a subject to provide the technique which utilizes recycled aggregate for shotcrete.
本発明では、上記の課題を解決するために、以下の手段を採用した。すなわち、本発明は、吹付けコンクリートの製造方法であって、普通骨材の物性値と該普通骨材の絶対容積の積と、再生骨材の物性値と該再生骨材の絶対容積の積との和を、前記普通骨材の絶対容積と前記再生骨材の絶対容積との和で除すことで、該普通骨材と該再生骨材とを含む骨材の品質の評価指標としての相対品質値を算出する相対品質値算出工程と、前記相対品質値算出工程において算出される相対品質値と、前記普通骨材と前記再生骨材とを含む骨材の所定の物性であって、該骨材の付着強度を少なくとも含む所定の物性との相関関係に基づいて、前記吹付けコンクリートを構成する水と、セメントと、普通骨材と、再生骨材の配合調整を行う配合調整工程と、前記配合調整工程で調整された配合に応じた水とセメントと普通骨材と再生骨材とを混練する混練工程と、を備える。 The present invention employs the following means in order to solve the above-described problems. That is, the present invention is a method for producing shotcrete, which is a product of the physical property value of ordinary aggregate and the absolute volume of the ordinary aggregate, and the product of the property value of recycled aggregate and the absolute volume of the recycled aggregate. Is divided by the sum of the absolute volume of the normal aggregate and the absolute volume of the regenerated aggregate as an evaluation index of the quality of the aggregate including the normal aggregate and the regenerated aggregate A relative quality value calculating step for calculating a relative quality value; a relative quality value calculated in the relative quality value calculating step; and a predetermined physical property of the aggregate including the normal aggregate and the recycled aggregate, Based on the correlation with the predetermined physical properties including at least the adhesion strength of the aggregate, a blending adjustment step for blending and adjusting the water, cement, ordinary aggregate, and recycled aggregate constituting the shotcrete , Water and cement according to the blending adjusted in the blending adjustment step and ordinary aggregate And a kneading step for kneading the recycled aggregate.
本発明は、相対品質値に基づいてコンクリートの配合調整を行うことで、再生骨材コンクリートを含む吹付けコンクリートの製造を可能とするものである。相対品質値とは、使用する骨材の品質と使用量(絶対容積)から算出される骨材の品質に関する指標である。このような相対品質値と、強度、弾性、乾燥収縮といったコンクリートの主要な物性、との間には明確な相関関係が認められており、このような明確な相関関係が成立する場合には、相対品質値を用いて所定の要求品質に応じた計画調合を行うことが知られている。なお、このような技術は、相対品質値法と呼ばれている。本発明においても、この相対品質値法をベースとして、従来、再生骨材を利用することが行われていなかった吹付けコンクリートについて、再生骨材を含む吹付けコンクリートを製造するものである。 The present invention makes it possible to produce shotcrete containing recycled aggregate concrete by adjusting the blending of concrete based on the relative quality value. The relative quality value is an index related to the quality of the aggregate calculated from the quality of the aggregate to be used and the amount used (absolute volume). There is a clear correlation between these relative quality values and the main physical properties of concrete, such as strength, elasticity, and drying shrinkage. When such a clear correlation is established, It is known to perform planned blending according to a predetermined required quality using a relative quality value. Such a technique is called a relative quality value method. Also in the present invention, a shotcrete containing recycled aggregate is manufactured for shotcrete that has not been used in the past based on this relative quality value method.
相対品質値算出工程では、相対品質値が算出される。具体的には、相対品質値は、骨材の品質を評価する指標であり、数1により算出することができる。なお、数1では、普通骨材が普通粗骨材と普通細骨材とに区分けされ、再生骨材が再生粗骨材と再生細骨材とに区分けされている。QvGは普通粗骨材物性値、QrGは再生粗骨材物性値、QvNは普通細骨材物性値、QrNは再生細骨材物性値であり、a、b、c、dは各使用骨材の絶対容積(l/m3)である。
In the relative quality value calculation step, a relative quality value is calculated. Specifically, the relative quality value is an index for evaluating the quality of the aggregate, and can be calculated by
配合調整工程では、相対品質値算出工程において算出される相対品質値に基づいて配合調整(計画調合)が行われる。なお、このような配合調整は、上述したように相対品質値と所定の物性との間に明確な相関関係が必須となる。従来から、一般的なコンクリートの相対品質値と強度等の間には、明確な相関関係が確認されていた。しかしながら、吹付けコンクリートは、打設時(吹付け時)に通常の打設よりも強い圧力で圧送するなど、一般的なコンクリートとは異なる特徴を有している。また、打設後(吹付け後)の吹付けコンクリートは、一般的なコンクリートに比べて強度が劣るといったことが懸念されていた。従って、いわゆる相対品質値法を用いて配合調整を行うに当たっては、これらの吹付けコ
ンクリートの特徴を十分に考慮する必要があり、このような特徴を考慮した物性も踏まえ、更にこの要素が相対品質値と明確な相関関係を有していることを確認しなければならない。
In the blending adjustment step, blending adjustment (planned blending) is performed based on the relative quality value calculated in the relative quality value calculation step. In addition, such a blending adjustment requires a clear correlation between the relative quality value and the predetermined physical property as described above. Conventionally, a clear correlation has been confirmed between the relative quality value of general concrete and strength. However, shotcrete has characteristics that are different from general concrete, such as being pumped at a pressure stronger than that of normal placing when placing (when spraying). Moreover, there has been a concern that the shotcrete after pouring (after spraying) is inferior in strength to general concrete. Therefore, when adjusting the formulation using the so-called relative quality value method, it is necessary to fully consider the characteristics of these shotcretes. It must be confirmed that there is a clear correlation with the value.
そこで、本発明では、吹付けコンクリートにおいて特に重要な物性であると考えられる付着強度に着目した。そして、再生骨材を含む吹付けコンクリートの相対品質値と付着強度との間にも相関関係が成立することを見出した。また、圧縮強度、ヤング係数、促進中性化深さ等のその他の物性についても、相対品質値との間に相関関係が成立することを見出した。以上を踏まえ、本発明によれば、相対品質値に基づく配合調整が実現される。なお、吹付けコンクリートには、水、セメント、普通骨材、再生骨材の他、混和材を含めてもよい。 Therefore, in the present invention, attention is paid to the adhesion strength considered to be a particularly important physical property in shotcrete. And it discovered that a correlation was materialized also between the relative quality value and adhesion strength of shotcrete containing recycled aggregate. In addition, it has been found that a correlation is established between the relative quality values of other physical properties such as compressive strength, Young's modulus, and accelerated neutralization depth. Based on the above, according to the present invention, blending adjustment based on the relative quality value is realized. The shotcrete may contain admixtures in addition to water, cement, ordinary aggregate, and recycled aggregate.
混練工程では、配合調整工程で配合調整された配合に応じた水とセメントと普通骨材と再生骨材が混練(ミキシング)される。以上により、再生骨材を含む吹付けコンクリートが製造される。 In the kneading step, water, cement, ordinary aggregate, and recycled aggregate are mixed (mixed) according to the blending adjusted in the blending adjustment step. Thus, the shotcrete containing the recycled aggregate is manufactured.
また、本発明において、前記再生骨材には、再生粗骨材と再生細骨材とを含めてもよい。すなわち、本発明によれば、再生粗骨材と再生細骨材とを含む吹付けコンクリートを製造することが可能となる。その結果、本発明によれば、全ての再生骨材の用途を拡大することが可能となる。 In the present invention, the recycled aggregate may include a recycled coarse aggregate and a recycled fine aggregate. That is, according to the present invention, it is possible to manufacture shotcrete containing recycled coarse aggregate and recycled fine aggregate. As a result, according to the present invention, applications of all recycled aggregates can be expanded.
また、本発明は、水と、セメントと、骨材と、を含む吹付けコンクリートであって、前記骨材には、コンクリート構造物の解体コンクリート塊から製造される再生粗骨材と、該解体コンクリート塊から製造される再生細骨材と、のうち少なくともいずれか一方が含まれるものとしてもよい。本発明の吹付けコンクリートは、再生骨材が含まれることから、再生骨材の用途を拡大することが可能となる。なお、上記本発明の吹付けコンクリートは、上述した製造方法によって製造することができる。 Further, the present invention is a shotcrete containing water, cement, and aggregate, wherein the aggregate includes a recycled coarse aggregate produced from a demolished concrete lump of a concrete structure, and the dismantling It is good also as what contains at least any one among the reproduction | regeneration fine aggregates manufactured from a concrete lump. Since the shotcrete of the present invention includes recycled aggregate, the use of recycled aggregate can be expanded. In addition, the shotcrete of the said invention can be manufactured with the manufacturing method mentioned above.
また、本発明は、吹付けコンクリートを用いた断面修復方法であって、普通骨材の物性値と該普通骨材の絶対容積の積と、再生骨材の物性値と該再生骨材の絶対容積の積との和を、前記普通骨材の絶対容積と前記再生骨材の絶対容積との和で除すことで、該普通骨材と該再生骨材とを含む骨材の品質の評価指標としての相対品質値を算出する相対品質値算出工程と、前記相対品質値算出工程において算出される相対品質値と、前記普通骨材と前記再生骨材とを含む骨材の所定の物性であって、該骨材の付着強度を少なくとも含む所定の物性との相関関係に基づいて、前記吹付けコンクリートを構成する水と、セメントと、普通骨材と、再生骨材の配合調整を行う配合調整工程と、前記配合調整工程で調整された配合に応じた水とセメントと普通骨材と再生骨材とを混練する混練工程と、前記混練工程において混練されることで製造された吹付けコンクリートを所定の断面修復箇所に吹付ける吹付け工程と、を備える。 Further, the present invention is a method of repairing a cross section using shotcrete, which is a product of a physical property value of ordinary aggregate and an absolute volume of the ordinary aggregate, a physical property value of recycled aggregate, and an absolute value of the recycled aggregate By dividing the sum of the volume products by the sum of the absolute volume of the normal aggregate and the absolute volume of the regenerated aggregate, the quality of the aggregate including the normal aggregate and the regenerated aggregate is evaluated. A relative quality value calculating step for calculating a relative quality value as an index; a relative quality value calculated in the relative quality value calculating step; and a predetermined physical property of the aggregate including the normal aggregate and the recycled aggregate A composition for adjusting the composition of water, cement, ordinary aggregate, and recycled aggregate constituting the shotcrete based on a correlation with predetermined physical properties including at least the adhesive strength of the aggregate Adjustment process, water and cement according to the formulation adjusted in the formulation adjustment process Comprising a kneading step of kneading the aggregate and recycled aggregate, and a spraying step of spraying the shotcrete produced by being kneaded into a predetermined cross-sectional repair locations in the kneading step.
本発明によれば、再生骨材を含む吹付けコンクリートを用いて、塩害、中性化、凍結融解等によって損傷を受けたコンクリート構造物の断面修復を行うことが可能となる。従って、本発明によれば、再生骨材の更なる用途を拡大すると共に、コンクリートの構造物の断面修復を行うことが可能となる。なお、本発明は、断面修復の他、コンクリート構造物や部材の耐久性等の回復や向上を目的とする床版の下面増厚や柱部材の増厚等の補強として用いてもよい。 According to the present invention, it is possible to repair a cross section of a concrete structure damaged by salt damage, neutralization, freeze-thawing, or the like, using shotcrete containing recycled aggregate. Therefore, according to the present invention, it is possible to expand the application of the recycled aggregate and to repair the cross section of the concrete structure. The present invention may be used for reinforcing the bottom surface of the floor slab and the thickness of the column member for the purpose of recovering and improving the durability and the like of the concrete structure and the member in addition to the repair of the cross section.
本発明によれば、再生骨材を吹付けコンクリートに利用する技術を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the technique which utilizes a recycled aggregate for shotcrete can be provided.
次に本発明の吹付けコンクリートの製造方法について図面に基づいて説明する。なお、以下の説明においては、吹付けコンクリートの製造方法について説明すると共に製造された吹付けコンクリートをコンクリート構造物の断面修復に用いる場合を例に説明する。 Next, the manufacturing method of the shotcrete of this invention is demonstrated based on drawing. In addition, in the following description, the manufacturing method of shotcrete is demonstrated and the case where the shotcrete manufactured is used for the cross-section repair of a concrete structure is demonstrated to an example.
図1は、再生骨材を含む吹付けコンクリートを使用した断面修復の工程を示す。まず、ステップS01では、再生骨材の製造が行われる。図2は、再生骨材の製造フローの一例を示す。具体的には、コンクリート構造物のコンクリート塊1がホッパ2に投入される。ホッパ2に投入されたコンクリート塊1は、グリズリーフィーダ3によって破砕機としてのジョークラッシャ4に投入される。ジョークラッシャ4に投入されたコンクリート塊1は、直径5mmから20mmあるいは25mmの球石状に粉砕される。すなわち、ジョークラッシャ4によって、再生粗骨材50が製造される。なお、コンクリート塊1の破砕は、ジョークラッシャを搭載した解体コンクリート破砕機(汎用型可動式)によって行ってもよい。また、ジョークラッシャ4に換えてインパクトクラッシャを用いてもよい。ジョークラッシャ4の後段には、鉄筋やボルト等の金属を吸引する磁選機5が設けられている。磁選機5の後段には振動スクリーン6が設けられ、破砕されたコンクリートの粒径が選別される。選別基準は、直径5mmから20mmあるいは25mm(再生粗骨材50)と、直径0mmから5mm(再生細骨材60)と、直径20mmあるいは25mm以上である。直径20mmあるいは25mm以上のものについては、インパクトクラッシャ7にかけられ後、再度ジョークラッシャ4に投入される。以上により、コンクリート塊1から再生粗骨材50及び再生細骨材60が製造される。再生粗骨材50及び再生細骨材60が製造が完了すると次のステップへ進む。なお、上述した再生骨材の製造フローは、あくまで例示すぎない。グリズリーフィーダ、破砕機器、ふるい機器を備えることで、再生骨材が製造できればよい。
FIG. 1 shows the process of cross-sectional repair using shotcrete containing recycled aggregate. First, in step S01, a recycled aggregate is manufactured. FIG. 2 shows an example of the production flow of recycled aggregate. Specifically, a
ステップS02では、コンクリート塊1から製造された再生粗骨材50と再生細骨材60とを用いて、相対品質値法に基づく配合調整が行われる。ここで、相対品質値法について説明する。相対品質値とは、数1によって求められる骨材品質の評価指標である。なお、QvGは、普通粗骨材物性値、QrGは再生粗骨材物性値、QvNは普通細骨材物性値、QrNは再生細骨材物性値であり、a、b、c、dは各使用骨材の絶対容積(l/m3
)である。相対品質値には、吸水率や密度等を用いることができるが、本実施形態においては吸水率を用いた相対吸水率で評価することとした。相対吸水率とは、再生骨材の混入率を骨材全体の平均的な吸水率で表すものである。
In step S02, blending adjustment based on the relative quality value method is performed using the recycled
). As the relative quality value, a water absorption rate, a density, or the like can be used, but in this embodiment, the relative water absorption rate is used for evaluation. The relative water absorption rate represents the mixing rate of recycled aggregate as an average water absorption rate of the aggregate as a whole.
なお、従来から、相対品質値と再生骨材コンクリートの圧縮強度等の主要な性質との間には、明確な相関関係があることが既に知られていた。しかしながら、吹付けコンクリートは、打設時(吹付け時)に通常の打設よりも強い圧力で圧送するなど、一般的なコンクリートとは異なる特徴を有している。また、打設後(吹付け後)の吹付けコンクリートは、一般的なコンクリートに比べて強度が劣るといったことも懸念されていた。従って、いわゆる相対品質値法を用いて配合調整を行うに当たっては、これらの吹付けコンクリートの特徴を十分に考慮する必要があり、このような特徴を考慮した物性も踏まえ、更にこの物性が相対品質値と明確な相関関係を有していることを確認しなければならない。そこで
、本発明では、吹付けコンクリートにおいて特に重要な物性であると考えられる付着強度に着目した。そして、再生骨材を含む吹付けコンクリートの相対品質値と付着強度との間にも相関関係が成立することを見出した。また、圧縮強度、ヤング係数、促進中性化深さ等のその他の物性についても、相対品質値との間に相関関係が成立することを見出した。なお、このような各要素と相対品質値との相関関係は、試験において確認を行った。試験の内容、結果については、後述する。相対品質値法に基づく配合調整が完了すると次のステップへ進む。
Conventionally, it has already been known that there is a clear correlation between the relative quality value and main properties such as the compressive strength of recycled aggregate concrete. However, shotcrete has characteristics that are different from general concrete, such as being pumped at a pressure stronger than that of normal placing when placing (when spraying). In addition, there is a concern that the shotcrete after placing (after spraying) is inferior in strength to general concrete. Therefore, in making blending adjustments using the so-called relative quality value method, it is necessary to fully consider the characteristics of these shotcrete concretes. It must be confirmed that there is a clear correlation with the value. Therefore, in the present invention, attention is paid to the adhesion strength considered to be a particularly important physical property in shotcrete. And it discovered that a correlation was materialized also between the relative quality value and adhesion strength of shotcrete containing recycled aggregate. In addition, it has been found that a correlation is established between the relative quality values of other physical properties such as compressive strength, Young's modulus, and accelerated neutralization depth. The correlation between each element and the relative quality value was confirmed in the test. The contents and results of the test will be described later. When blending adjustment based on the relative quality value method is completed, the process proceeds to the next step.
ステップS03では、相対品質値法に基づく配合調整に応じて、材料の計量及び混練が行われる。すなわち、配合調整に従ってセメント、水、混和材等がホッパに投入される。続いて再生骨材(再生粗骨材50、再生細骨材60)と普通骨材が軽量され、ホッパに投入され混練される。計量、混練が完了すると次のステップへ進む。ステップS04では、製造された吹付けコンクリートが断面修復箇所といった所定の吹付け箇所に吹付けられる。以上により、再生骨材を含む吹付けコンクリートによる断面修復作業が完了する。
In step S03, the materials are weighed and kneaded according to the blending adjustment based on the relative quality value method. That is, cement, water, admixture and the like are put into the hopper according to the blending adjustment. Subsequently, the recycled aggregate (recycled
次に、上述した実施形態について、実験例に基づいて更に詳細に説明する。
<実験例>
[目的]
本試験は、所定の建物から発生したコンクリート塊から製造される再生骨材を断面修復用吹付けコンクリート(以下、単に吹付けコンクリートとする。)に使用することを想定して行うことで、吹付けコンクリートの施工性、各種物性値を評価して、吹付けコンクリートへの適用性を確認することを目的とする。
Next, the embodiment described above will be described in more detail based on experimental examples.
<Experimental example>
[the purpose]
This test was conducted on the assumption that recycled aggregate produced from concrete blocks generated from a given building was used for shotcrete for cross-section repair (hereinafter simply referred to as shotcrete). The purpose of this study is to evaluate the applicability to shotcrete by evaluating the workability and various physical properties of glued concrete.
[使用材料]
本試験では、普通ポルトランドセメント、普通細骨材(静岡県小笠郡浜岡町産)、普通粗骨材(茨城県西茨城郡岩瀬長町産)、経過年数約40年の事務所建物の内壁を用いて製造した再生骨材を用いた。図3は、使用した骨材の物性を示す。なお、再生粗骨材の粒径は、吹付けノズルの径の制限により、5mmから15mmとした。
[Materials used]
In this test, ordinary Portland cement, ordinary fine aggregate (produced in Hamaoka-cho, Ogasa-gun, Shizuoka Prefecture), ordinary coarse aggregate (produced in Iwase-Nagacho, Nishi-Ibaraki-gun, Ibaraki Prefecture), and the inner wall of an office building that has been around 40 years old. The manufactured recycled aggregate was used. FIG. 3 shows the physical properties of the aggregate used. The particle diameter of the recycled coarse aggregate was set to 5 mm to 15 mm due to the limitation of the diameter of the spray nozzle.
[配合調整]
吹付けコンクリートの配合検討では、図4に示す四つの配合を用いた。すなわち、四つの配合とは、(1)普通粗骨材100%・普通細骨材100%(GN100−SN100)、(2)再生粗骨材100%・再生細骨材40%・普通細骨材60%(GR100−SR40、SN60)、(3)再生粗骨材100%・再生細骨材70%・普通細骨材30%(GR100−SR70、SN30)、(4)再生粗骨材100%・再生細骨材100%(GR100−SR100)である。
[Combination adjustment]
In the study of the blending of shotcrete, the four blends shown in FIG. 4 were used. That is, the four blends are: (1) 100% ordinary coarse aggregate, 100% ordinary fine aggregate (GN100-SN100), (2) 100% recycled coarse aggregate, 40% recycled fine aggregate, ordinary
設計基準強度は、一般的な躯体コンクリートと同等の24N/mm2とした。配合強度
は、設計基準強度に安全係数1.3を乗じて設定した。ベースコンクリートの配合強度は、(1)急結剤添加の影響、(2)供試体のばらつき、(3)試験室とプラントの違い等を考慮し、配合強度に割増係数1.4を乗じて設定した。なお、急結剤の量は、セメント量の7%とした。
The design standard strength was set to 24 N / mm 2 which is equivalent to that of general concrete. The compounding strength was set by multiplying the design standard strength by a safety factor of 1.3. The blending strength of the base concrete is calculated by multiplying the blending strength by an additional factor of 1.4, taking into account (1) the effect of the addition of rapid setting agent, (2) variation in specimens, and (3) differences between the laboratory and plant. Set. The amount of the quick setting agent was 7% of the cement amount.
[ベースコンクリートの性質]
吹付け前のベースモルタルについて施工試験を行ったところ次のような結果を得た。すなわち、フレッシュ性状についてみると、スランプ及び空気量ともに所定の値を満足した。また、目視観測の結果、図4に示すいずれの配合においても適度な流動性、材料分離抵抗性を有しており良好な吹付けが可能であると判断された。また、硬化性状についてみると、再生骨材を用いたものは、普通骨材を用いたものと比較して圧縮強度が低下することが確認された。図5は、ベースコンクリートの材齢と圧縮強度の関係を示す。
[Properties of base concrete]
When a construction test was performed on the base mortar before spraying, the following results were obtained. That is, regarding the fresh properties, both the slump and the air amount satisfied predetermined values. Further, as a result of visual observation, it was determined that any of the formulations shown in FIG. 4 had appropriate fluidity and material separation resistance, and good spraying was possible. Further, regarding the curable properties, it was confirmed that the compression strength of the one using the regenerated aggregate was lower than that using the ordinary aggregate. FIG. 5 shows the relationship between the age of the base concrete and the compressive strength.
[試験方法]
次に上記ベースコンクリートの配合検討結果を踏まえて、新たに配合調整を実施した。図6は、新たな配合を示す。新たな四つの配合とは、(1)普通粗骨材100%・普通細骨材100%(GN100−SN100)、(2)再生粗骨材100%・再生細骨材40%・普通細骨材60%(GR100−SR40、SN60)、(3)製造粗骨材100%・再生細骨材70%・普通細骨材30%(GR100−SR70、SN30)、(4)再生粗骨材100%・再生細骨材100%(GR100−SR100)である。なお、新たな配合では、再生骨材と普通骨材との割合には変更を加えず、水やセメントの単位量を適宜調節している。
[Test method]
Next, based on the results of the above-mentioned study on blending base concrete, blending was newly adjusted. FIG. 6 shows the new formulation. The four new blends are: (1) 100% ordinary coarse aggregate, 100% ordinary fine aggregate (GN100-SN100), (2) 100% recycled coarse aggregate, 40% recycled fine aggregate, ordinary
次に、上述した新たな配合に基づき、施工性の試験を行った。ここで、図7は、施工性試験の概略構成を示す。同図に示すように、施工性の試験を行う装置として、コンプレッサ11、ドレンセパレータ12、吹付け機(260型)13、除湿機14、急結剤供給機15、ノズル16、型枠17が設けられている。夫々の装置は、エアホースやマテリアルホースによって接続されており、コンプレッサ11から供給される圧送力によって、吹付け機13内の吹付けコンクリートが型枠に対して吹付けられる。施工性の試験では、まず施工性について目視観察により評価した。また、吹付けコンクリートからコア供試体(JIS A 1107及びJSCE−K561)を作成し、圧縮強度(JIS A 1107)、静弾性係数(JIS A 1149)、付着強度(JSCE−K5651)、促進中性化(JIS A 1153)の各種試験を行った。
Next, a workability test was performed based on the above-described new formulation. Here, FIG. 7 shows a schematic configuration of the workability test. As shown in the figure, a
[試験結果]
図8は、施工試験結果を示す。同図に示すように、再生骨材を用いた場合のフレッシュ性状は、普通骨材を用いたものと大差がないことが確認された。また、目視による施工性評価についても、ホースの脈動がなく急結剤の混合性も良好であることが確認された。
[Test results]
FIG. 8 shows a construction test result. As shown in the figure, it was confirmed that the fresh properties when using recycled aggregates were not significantly different from those using ordinary aggregates. In addition, regarding the visual evaluation of workability, it was confirmed that there was no pulsation of the hose and the mixing property of the quick setting agent was good.
図9は、吹付けコンクリートの材齢と圧縮強度との関係を示す。同図に示すように、再生骨材を用いた吹付けコンクリートの圧縮強度は、材齢に関わらず、普通骨材を用いたものより小さくなることが確認された。また、再生骨材を用いた吹付けコンクリートの圧縮強度は、再生細骨材の混入量の増大に伴い小さくなることが確認された。なお、材齢28日の圧縮強度は、いずれの配合も吹付けコンクリートの配合強度(31.2N/mm2)
を満たすことが確認された。
FIG. 9 shows the relationship between the age of the shotcrete and the compressive strength. As shown in the figure, it was confirmed that the compressive strength of shotcrete using recycled aggregate was smaller than that using ordinary aggregate regardless of age. In addition, it was confirmed that the compressive strength of shotcrete using recycled aggregate decreases as the amount of recycled fine aggregate increases. The compressive strength at the age of 28 days is the blended strength of shotcrete (31.2 N / mm 2 ) for all blends.
It was confirmed that
図10は、促進中性化深さ及び中性化速度係数を示す。同図に示すように、再生細骨材の置換率が大きくなるに従って、促進中性化深さ及び中性化速度係数が大きくなる傾向があることが確認された。 FIG. 10 shows the accelerated neutralization depth and the neutralization rate coefficient. As shown in the figure, it was confirmed that the accelerated neutralization depth and the neutralization rate coefficient tend to increase as the replacement ratio of the regenerated fine aggregate increases.
[材料設計]
次に、吹付けコンクリートについて相対品質値法に基づく材料設計が可能であるかについて検討した。相対品質値とは、以下に示すように数1によって求められる骨材品質の評価指標であるが、本試験では吸水率を用いた相対吸水率によって評価することとした。なお、QvGは、普通粗骨材物性値、QrGは再生粗骨材物性値、QvNは普通細骨材物性値、QrNは再生細骨材物性値であり、a、b、c、dは各使用骨材の絶対容積(l/m3)である。相対吸水率とは、再生骨材の混入率を骨材全体の平均的な吸水率で表すもの
である。
[Material design]
Next, we investigated whether it is possible to design materials for shotcrete based on the relative quality value method. The relative quality value is an evaluation index of aggregate quality obtained by
図11から図14は、吹付けコンクリートの相対吸水率と各物性値との関係を示す。図11は、相対吸水率と4週圧縮強度との関係を示す。図12は、相対吸水率とヤング係数との関係を示す。図13は、相対吸水率と付着強度との関係を示す。図14は、相対吸水率と26週促進中性化深さとの関係を示す。これらの図に示されるように、相対吸水率と各物性値との間には明確な相関関係が認められることが確認された。特に、吹付けコンクリートにおいては、付着強度が所定の要件を満たすことが重要となるが、付着強度についても相対吸水率との間に明確な相関関係が認められた。また、付着強度は、1.31N/mm2以上を示し、土木学会指針の規定値(1〜1.3N/mm2)を満たすことが確認された。 11 to 14 show the relationship between the relative water absorption rate of each shotcrete and each physical property value. FIG. 11 shows the relationship between relative water absorption and 4-week compressive strength. FIG. 12 shows the relationship between relative water absorption and Young's modulus. FIG. 13 shows the relationship between relative water absorption and adhesion strength. FIG. 14 shows the relationship between the relative water absorption rate and the 26-week accelerated neutralization depth. As shown in these figures, it was confirmed that a clear correlation was recognized between the relative water absorption rate and each physical property value. In particular, in shotcrete, it is important that the bond strength meets a predetermined requirement, but a clear correlation was also found between the bond strength and the relative water absorption rate. Further, the adhesion strength was 1.31 N / mm 2 or more, and it was confirmed that the specified value (1 to 1.3 N / mm 2 ) of the Japan Society of Civil Engineers guidelines was satisfied.
図15は、相対吸水率と相対品質値法に基づく評価方法の概念図を示す。同図には、相対品質値法に基づく品質評価方法の一例として、骨材の相対品質値(本試験における相対吸水率)とコンクリートの品質(促進中性化深さ、長さ変化率、圧縮強度)との関係が示されている。上述したように、本試験によって吹付けコンクリートの相対吸水率と各物性値との間には、明確な相関関係が確認された。従って、図15に示すような相対品質値法に基づく材料設計が可能となる。 FIG. 15 shows a conceptual diagram of an evaluation method based on the relative water absorption rate and the relative quality value method. In the figure, as an example of the quality evaluation method based on the relative quality value method, the aggregate relative quality value (relative water absorption rate in this test) and concrete quality (accelerated neutralization depth, length change rate, compression) Strength). As described above, a clear correlation was confirmed between the relative water absorption rate of the shotcrete and each physical property value by this test. Therefore, material design based on the relative quality value method as shown in FIG. 15 is possible.
<効果>
本実施形態の吹付けコンクリートの製造方法によれば、相対品質値法に基づいて配合調整を行うことで、再生骨材を含む吹付けコンクリートの配合調整を容易に行うことができる。また、本実施形態の吹付けコンクリートの製造方法によれば、原モルタルの除去を行うことなく、施工性及び品質に優れた再生骨材を含む吹付けコンクリートを製造することができる。すなわち、本実施形態の吹付けコンクリートの製造方法によれば、低コストで再生骨材を含む吹付けコンクリートを製造することができる。その結果、再生骨材の用途の拡大が図られる。
<Effect>
According to the method for producing shotcrete of the present embodiment, blending adjustment of shotcrete containing recycled aggregate can be easily performed by blending adjustment based on the relative quality value method. Moreover, according to the manufacturing method of the shotcrete of this embodiment, shotcrete containing the reproduction | regeneration aggregate excellent in workability and quality can be manufactured, without removing original mortar. That is, according to the shot concrete manufacturing method of the present embodiment, shot concrete containing recycled aggregate can be manufactured at low cost. As a result, the use of recycled aggregate can be expanded.
また、試験結果より、吹付けコンクリートに再生骨材を含ませた場合において、各配合とも適度な流動性及び材料分離抵抗性を有することが確認された。その結果、吹付け状況(施工状況)も良好であることが確認された。また、はね返り率も普通骨材を用いたコンクリートとそれほど変わらないことが確認された。 Moreover, from the test results, when recycled aggregate was included in the shotcrete, it was confirmed that each blend had appropriate fluidity and material separation resistance. As a result, it was confirmed that the spraying condition (construction condition) was also good. It was also confirmed that the rebound rate was not so different from that of concrete using ordinary aggregate.
更に、吹付けコンクリートの圧縮強度及び付着強度は、設計値を満たすことが確認された。また、再生骨材を100%置換した場合であっても、断面修復用の吹付けコンクリートとして適用可能であることが確認された。 Furthermore, it was confirmed that the compressive strength and adhesion strength of shotcrete satisfy the design values. Further, it was confirmed that even when 100% of the recycled aggregate was replaced, it could be applied as shot concrete for cross-sectional repair.
1・・・コンクリート塊
2・・・ホッパ
3・・・グリズリーフィーダ
4・・・ジョークラッシャ
5・・・磁選機
6・・・振動スクリーン
7・・・インパクトクラッシャ
11・・・コンプレッサ
12・・・ドレンセパレータ
13・・・吹付け機
14・・・除湿機
15・・・急結剤供給機
16・・・ノズル
17・・・型枠
50・・・再生粗骨材
60・・・再生細骨材
DESCRIPTION OF
Claims (4)
普通骨材の物性値と該普通骨材の絶対容積の積と、再生骨材の物性値と該再生骨材の絶対容積の積との和を、前記普通骨材の絶対容積と前記再生骨材の絶対容積との和で除すことで、該普通骨材と該再生骨材とを含む骨材の品質の評価指標としての相対品質値であって、前記骨材の吸水率を含む相対品質値を算出する相対品質値算出工程と、
前記相対品質値算出工程において算出される相対品質値としての前記骨材の吸水率と、前記骨材の所定の物性としての、前記骨材の付着強度との相関関係に基づいて、前記吹付けコンクリートを構成する水と、セメントと、普通骨材と、再生骨材の配合調整を行う配合調整工程と、
前記配合調整工程で配合調整された配合に応じた水とセメントと普通骨材と再生骨材とを混練する混練工程と、
を備える吹付けコンクリートの製造方法。 A method for producing shotcrete,
The product of the physical property value of the normal aggregate and the absolute volume of the normal aggregate, and the sum of the product of the physical property value of the regenerated aggregate and the absolute volume of the regenerated aggregate is defined as the absolute volume of the normal aggregate and the regenerated bone. By dividing by the sum of the absolute volume of the aggregate, the relative quality value as an evaluation index of the quality of the aggregate including the normal aggregate and the recycled aggregate, the relative quality value including the water absorption rate of the aggregate relative quality value calculation step of calculating the quality value,
Wherein the water absorption of the aggregate of the relative quality value calculated in the relative quality value calculating step, as a predetermined physical properties of the aggregate, based on the correlation between the adhesion strength of the aggregate, the spray Mixing adjustment process for adjusting the mixing of concrete, water, cement, ordinary aggregate, and recycled aggregate,
A kneading step of kneading water, cement, ordinary aggregate, and recycled aggregate according to the blending adjusted in the blending adjustment step;
A method for producing shotcrete comprising:
普通骨材の物性値と該普通骨材の絶対容積の積と、再生骨材の物性値と該再生骨材の絶対容積の積との和を、前記普通骨材の絶対容積と前記再生骨材の絶対容積との和で除すことで、該普通骨材と該再生骨材とを含む骨材の品質の評価指標としての相対品質値であって、前記骨材の吸水率を含む相対品質値を算出する相対品質値算出工程と、
前記相対品質値算出工程において算出される相対品質値としての前記骨材の吸水率と、前記骨材の所定の物性としての、前記骨材の付着強度との相関関係に基づいて、前記吹付けコンクリートを構成する水と、セメントと、普通骨材と、再生骨材の配合調整を行う配合調整工程と、
前記配合調整工程で調整された配合に応じた水とセメントと普通骨材と再生骨材とを混練する混練工程と、
前記混練工程において混練されることで製造された吹付けコンクリートを所定の断面修復箇所に吹付ける吹付け工程と、
を備える吹付けコンクリートを用いた断面修復方法。 A cross-section repair method using shotcrete,
The product of the physical property value of the normal aggregate and the absolute volume of the normal aggregate, and the sum of the product of the physical property value of the regenerated aggregate and the absolute volume of the regenerated aggregate is defined as the absolute volume of the normal aggregate and the regenerated bone. By dividing by the sum of the absolute volume of the aggregate, the relative quality value as an evaluation index of the quality of the aggregate including the normal aggregate and the recycled aggregate, the relative quality value including the water absorption rate of the aggregate relative quality value calculation step of calculating the quality value,
Wherein the water absorption of the aggregate of the relative quality value calculated in the relative quality value calculating step, as a predetermined physical properties of the aggregate, based on the correlation between the adhesion strength of the aggregate, the spray Mixing adjustment process for adjusting the mixing of concrete, water, cement, ordinary aggregate, and recycled aggregate,
A kneading step of kneading water, cement, ordinary aggregate, and recycled aggregate according to the blending adjusted in the blending adjustment step;
A spraying step of spraying sprayed concrete produced by being kneaded in the kneading step onto a predetermined cross-sectional repair location;
A cross-section repair method using shotcrete comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007192387A JP4877126B2 (en) | 2007-07-24 | 2007-07-24 | Method for producing shotcrete, shotcrete, cross-section repair method using shotcrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007192387A JP4877126B2 (en) | 2007-07-24 | 2007-07-24 | Method for producing shotcrete, shotcrete, cross-section repair method using shotcrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009029640A JP2009029640A (en) | 2009-02-12 |
JP4877126B2 true JP4877126B2 (en) | 2012-02-15 |
Family
ID=40400565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007192387A Expired - Fee Related JP4877126B2 (en) | 2007-07-24 | 2007-07-24 | Method for producing shotcrete, shotcrete, cross-section repair method using shotcrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4877126B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241164A (en) * | 2001-02-13 | 2002-08-28 | Shimizu Corp | Cement blend |
JP2006334946A (en) * | 2005-06-02 | 2006-12-14 | Tokyo Electric Power Co Inc:The | Method for producing secondary concrete product |
-
2007
- 2007-07-24 JP JP2007192387A patent/JP4877126B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009029640A (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Flores-Medina et al. | Static mechanical properties of waste rests of recycled rubber and high quality recycled rubber from crumbed tyres used as aggregate in dry consistency concretes | |
CN106061918B (en) | Use chilling steel reducing slag powder as the road repair of jointing material rapid-hardening concrete composition and the method for using rapid-hardening concrete composition repairing road | |
KR101620842B1 (en) | Reinforcing metal fiber and pva fiber concrete and manufactuaring method thereof, repair process of pavement using the same thing | |
US10294155B2 (en) | Recycled plastic aggregate for use in concrete | |
KR101654128B1 (en) | Reinforcing pva fiber concrete composite and manufactuaring method thereof | |
CN106522456A (en) | Green and environmentally-friendly concrete hollow block and production method thereof | |
Volz et al. | Recycled concrete aggregate (RCA) for infrastructure elements. | |
US9382160B2 (en) | Waste crumb-rubber augmented masonry blocks | |
JP5081426B2 (en) | Method and apparatus for producing granular solid using coal ash as raw material | |
Murugan et al. | Investigation on the use of waste tyre crumb rubber in concrete paving blocks | |
JP4877126B2 (en) | Method for producing shotcrete, shotcrete, cross-section repair method using shotcrete | |
JP5812623B2 (en) | High-strength porous concrete composition and high-strength porous concrete cured body | |
JP2004345885A (en) | Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground | |
Gaikwad et al. | Use of waste rubber chips for the production of concrete paver block | |
Al Bakri et al. | Comparison of rubber as aggregate and rubber as filler in concrete | |
Meddah et al. | Experimental study of compaction quality for roller compacted concrete pavement containing rubber tire wastes | |
Kumar | Mechanical properties, shrinkage, abrasion resistance and carbonation of concrete containing recycled coarse aggregate of different size range | |
JP2008179993A (en) | Rubber latex mortar construction method | |
JP5192140B2 (en) | Concrete materials and concrete products using waste tile recycled aggregate | |
JP7014556B2 (en) | How to make concrete pavement | |
JP3930895B1 (en) | High-strength resin mortar, high-strength resin consolidated body, and structures using the same, high-strength resin solidified secondary products | |
Premkumar | Self-compacting concrete properties of recycled coarse aggregate | |
Sam et al. | Self compacting concrete with recycled coarse aggregates | |
Ranpise et al. | Recycling of Demolished Concrete and Mortar in Manufacturing of Aggregate | |
Resmi et al. | Experimental study on mechanical properties of concrete incorporating waste foundry sand with destructive and non-destructive test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4877126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |