JP4873705B2 - Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition - Google Patents

Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition Download PDF

Info

Publication number
JP4873705B2
JP4873705B2 JP2006230308A JP2006230308A JP4873705B2 JP 4873705 B2 JP4873705 B2 JP 4873705B2 JP 2006230308 A JP2006230308 A JP 2006230308A JP 2006230308 A JP2006230308 A JP 2006230308A JP 4873705 B2 JP4873705 B2 JP 4873705B2
Authority
JP
Japan
Prior art keywords
inn
indium
growth
layer
ingan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230308A
Other languages
Japanese (ja)
Other versions
JP2008053589A (en
Inventor
芳樹 佐久間
永昭 姚
隆史 関口
直樹 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006230308A priority Critical patent/JP4873705B2/en
Publication of JP2008053589A publication Critical patent/JP2008053589A/en
Application granted granted Critical
Publication of JP4873705B2 publication Critical patent/JP4873705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、InNあるいは高いIn組成のInGaNエピタキシャル薄膜の形成方法に関し、より詳しくは、GaNバッファ層上へのInNあるいは高In組成のInGaNのエピタキシャル成長方法に関する。   The present invention relates to a method for forming InN or a high In composition InGaN epitaxial thin film, and more particularly to a method for epitaxial growth of InN or a high In composition InGaN on a GaN buffer layer.

GaNやAlGaNなど広いバンドギャップを持った窒化物半導体材料のエピタキシャル成長技術が大きく進展し、発光ダイオード(LED)やレーザダイオード、GaNとAlGANのヘテロ界面に発生する2次元電子ガスを利用した電界効果トランジスタ(HEMT, HFET)などの研究開発が活発になり、一部実用化も始まっている。特に、GaNやAlGaNをベースにした発光デバイスでは、原子濃度で10%〜20%程度のインジウム(In)を添加したGaInNやAlInN、AlGaInNのような混晶材料の果たす役割がきわめて重要になっている。それは、Inを添加することでバンドギャップが変化して所望の発光波長が得られるほか、結晶の平均的な格子定数が制御できエピタキシャル成長の下地となる基板結晶との格子不整合率を小さく出来るなどの利点があるからである。さらに、添加したIn原子が結晶中で自然に不均一に分布するため、ミクロな視点で見た際にIn濃度が多い部分のバンドギャップが小さくなってそこに自由な電子と正孔が局在し、その後再結合して発光に寄与する。そのため、発光領域が窒化物系の結晶中に多く存在する転位や欠陥から空間的に隔絶される確率が大きくなるので、転位と欠陥密度が高いにも関わらず実用化に値する高い発光効率が得られる。   Field-effect transistors using two-dimensional electron gas generated at light emitting diodes (LEDs), laser diodes, and heterointerfaces of GaN and AlGAN, as the epitaxial growth technology for nitride semiconductor materials with wide band gaps such as GaN and AlGaN has advanced greatly Research and development such as (HEMT, HFET) has become active, and some commercialization has begun. In particular, in light-emitting devices based on GaN and AlGaN, the role of mixed crystal materials such as GaInN, AlInN, and AlGaInN doped with indium (In) at an atomic concentration of about 10% to 20% becomes extremely important. Yes. In addition to changing the band gap by adding In, the desired emission wavelength can be obtained, the average lattice constant of the crystal can be controlled, and the lattice mismatch rate with the substrate crystal as the base of epitaxial growth can be reduced. Because there is an advantage of. In addition, since the added In atoms are naturally distributed non-uniformly in the crystal, the band gap of the portion with a large In concentration becomes small when viewed from a microscopic viewpoint, and free electrons and holes are localized there. Then, it recombines and contributes to light emission. This increases the probability that the light-emitting region is spatially isolated from dislocations and defects that are present in a large amount in nitride-based crystals, resulting in high luminous efficiency worthy of practical use despite the high dislocation and defect density. It is done.

上記のように従来は、In濃度の比較的小さな窒化物結晶材料が研究されてきたが、最近になってInNやIn濃度の大きなInGaNに注目が集まっている。歴史的な詳しい経緯は省略するが、InNのバンドギャップは従来まで2.1eVあるいは1.9eVの可視の発光波長域にあるとされてきた。しかし、ごく最近になって結晶成長技術の進展に伴って比較的良質なInN結晶が得られるようになり、そのバンドギャップは近赤外領域の0.7eV付近にあるという重要な報告が相次いだ。精度の高いバンドギャップの値の決定のため、現在でも詳しい調査が進行中である。InNのバンドギャップが0.7eV付近にあるという事実は、GaNやAlGaNが紫外域に対応するバンドギャップを持つことを合わせて考えると、紫外〜近赤外という極めて広い波長範囲を窒化物系材料だけでカバーできることになり、その技術的な意味は大きい。つまり、従来InGaAsやInGaAsPのようなAs, P系材料でしか得られなかった波長1.3−1.55μmの光通信波長帯への適用も視野に入ったのである。   As described above, conventionally, a nitride crystal material having a relatively low In concentration has been studied, but recently, attention has been focused on InN and InGaN having a high In concentration. Although historical details are omitted, the band gap of InN has hitherto been considered to be in the visible light emission wavelength region of 2.1 eV or 1.9 eV. However, recently, with the progress of crystal growth technology, relatively good quality InN crystals have been obtained, and many important reports have been reported that the band gap is around 0.7 eV in the near infrared region. . Detailed investigations are still in progress to determine a highly accurate band gap value. The fact that the band gap of InN is in the vicinity of 0.7 eV is a combination of the fact that GaN and AlGaN have a band gap corresponding to the ultraviolet region. It can be covered with just that, and its technical meaning is great. In other words, application to an optical communication wavelength band with a wavelength of 1.3 to 1.55 μm, which has been obtained only with conventional As and P-based materials such as InGaAs and InGaAsP, has also come into view.

また、InNの電子有効質量が非常に小さいこともあり、電子デバイスへの適用を考えた場合にも高周波動作が期待できるので大きな魅力がある。このような背景のため、InNあるいはIn組成の大きいInGaNに対する研究開発が近年大いに盛り上がっている状況にある。
しかしながら、InNあるいは高いIn組成のInGaNのエピタキシャル薄膜成長技術はまだ成熟した状況とは言えず、InNが本来持っている潜在能力(優れた物性値)を充分引き出して利用するに至っていない。InNは原子の結合力が弱く大気圧下での解離温度も約600℃と低いため、結晶中のNの抜け(Vacancy)に関連した欠陥の形成を抑制するため600℃以下の低温で成長することが望まれる。現在では、RF−MBE(radio frequency−molecular beam epitaxy)と呼ばれる成長技術を用いることで比較的純度と結晶性の高いInN結晶が得られるようになってきている。RF−MBEでは、13.56MHzの高周波コイルを設けたラズマ室にNガスを供給して原子状のNラジカルや電子励起状態にあるN分子を生成し、これを基板上に照射して窒素元素の原料として用いる。一方、インジウム元素の供給には一般的なクヌードセンセル(Kセル)が使われる。ところで、InNのエピタキシャル成長を行う場合、格子整合の取れる基板結晶が存在しない。そのため、GaNと同様にサファイア(Al)を基板として用いてその上に直接InNを成長したり、サファイア上にまずGaNバッファ層を成長し、その後InNの成長を行うなどの方法がある。一般的にはGaNのバッファ層を成長してからInNを成長するほうが、成長面内での回転ドメインの形成が抑えられるため結晶性が高いとされる。しかし、GaNバッファ層を用いる場合にも、GaNバッファ層の平坦性や結晶性などがその後成長するInNの結晶性に大きく影響するため、GaNバッファ層の成長条件を最適化し精密に制御する必要があった。
In addition, since the effective electron mass of InN is very small, high frequency operation can be expected when considering application to an electronic device, which is very attractive. Due to such a background, research and development for InN or InGaN having a large In composition has recently been greatly promoted.
However, the epitaxial thin film growth technology of InN or InGaN with a high In composition is not yet matured, and the potential (excellent physical property value) inherent in InN has not been fully utilized. Since InN has a weak atomic bonding force and a dissociation temperature under atmospheric pressure of about 600 ° C., it grows at a low temperature of 600 ° C. or lower in order to suppress the formation of defects related to N vacancy in the crystal. It is desirable. At present, an InN crystal having relatively high purity and crystallinity is obtained by using a growth technique called RF-MBE (radio frequency-molecular beam epitaxy). In RF-MBE, generates N 2 molecules in supplying the N 2 gas to the atomic N radicals and excited states to flop plasma chamber provided with the 13.56MHz high-frequency coil, which is irradiated onto the substrate And used as a raw material for elemental nitrogen. On the other hand, a general Knudsen cell (K cell) is used to supply the indium element. By the way, when epitaxial growth of InN is performed, there is no substrate crystal that can take lattice matching. For this reason, there are methods such as using sapphire (Al 2 O 3 ) as a substrate and growing InN directly on the substrate, or growing a GaN buffer layer on sapphire, and then growing InN. . In general, it is said that growing InN after growing a GaN buffer layer has higher crystallinity because formation of rotational domains in the growth plane is suppressed. However, even when a GaN buffer layer is used, since the flatness and crystallinity of the GaN buffer layer greatly affect the crystallinity of InN that grows thereafter, it is necessary to optimize and precisely control the growth conditions of the GaN buffer layer. there were.

本発明は、表面の平坦性や結晶構造の完全性に優れ、かつ光学特性の良好なInNエピタキシャル薄膜を得るのに有用で簡便な成長方法を提供するものである。
上記のようにGaNバッファ層上にInNエピタキシャル薄膜を成長するに当たって、InNの成長層表面の平坦性が数原子層オーダー以下の凹凸であり、かつ結晶性や光学特性に優れたInN薄膜を得るには、GaNバッファ層の平坦性や結晶性が重要になる。しかし、GaNの結晶性は成長温度、V族元素(N)とIII族元素(Ga)の供給比であるV/III比、その他いろいろな成長条件に左右されるためその制御は難しい。このため、GaNバッファ層上への良質なInNエピタキシャル成長を行うにあたって、できるだけ簡便で効果があり、再現性と制御性に優れた手法の開発が望まれていた。
The present invention provides a useful and simple growth method for obtaining an InN epitaxial thin film having excellent surface flatness and crystal structure integrity and excellent optical characteristics.
As described above, in growing an InN epitaxial thin film on a GaN buffer layer, an InN thin film having flatness on the surface of the growth layer of InN with irregularities of the order of several atomic layers and excellent in crystallinity and optical characteristics is obtained. In this case, the flatness and crystallinity of the GaN buffer layer are important. However, the crystallinity of GaN is difficult to control because it depends on the growth temperature, the V / III ratio, which is the supply ratio of the group V element (N) and the group III element (Ga), and various other growth conditions. For this reason, it has been desired to develop a technique that is as simple and effective as possible and has excellent reproducibility and controllability in performing good-quality InN epitaxial growth on the GaN buffer layer.

本発明の重要なポイントは、InN薄膜をGaNバッファ層上にエピタキシャル成長するに先立ち、GaNバッファ層表面上に窒素のプラズマソースの供給がない状態で1原子層−2原子層(ML)の厚さのIn金属を供給することにある。これによって、InNエピタキシャル成長層の表面モルフォロジが原子層オーダーで平坦になり、加えてX線により調べた回折強度の増大と半値幅の減少が実現される。また、フォトルミネッセンス(PL)強度が増大して結晶性の改善も起こる。
具体的には、
The important point of the present invention is that the thickness of one atomic layer to two atomic layers (ML) is obtained without supplying a plasma source of nitrogen on the surface of the GaN buffer layer prior to epitaxial growth of the InN thin film on the GaN buffer layer. It is to supply In metal. As a result, the surface morphology of the InN epitaxial growth layer becomes flat on the atomic layer order, and in addition, an increase in diffraction intensity and a decrease in half-value width investigated by X-ray are realized. In addition, the photoluminescence (PL) intensity is increased and crystallinity is improved.
In particular,

発明1のエピタキシャル成長方法は、InNあるいは高In組成のInGaN層の成長に先立ちGaNバッファ層上に1−2MLのIn金属層を堆積することを特徴とする構成を採用した。
The epitaxial growth method of the invention 1 employs a configuration characterized by depositing a 1-2 ML In metal layer on the GaN buffer layer prior to the growth of the InN or high In composition InGaN layer.

また、発明1において、GaNバッファ層の極性がN極性((000−1)面、−c面)であることを特徴とする構成を採用した。
In the invention 1, a configuration is adopted in which the polarity of the GaN buffer layer is N polarity ((000-1) plane, -c plane).

更に、発明1において、成長技術として窒素原子の供給手段として、高周波コイルを設けたプラズマ室にN ガスを供給して、ガスから発生するプラズマを用い、GaとInの供給手段としてKセル内でInあるいはGa金属元素を高温加熱して生成される原子ビームを利用することを特徴とする構成を採用した。(RF−MBEと呼ばれる手法)。
Furthermore, in the invention 1, as a growth technique, nitrogen atom is supplied as a means for supplying N 2 gas to a plasma chamber provided with a high frequency coil, and plasma generated from the N 2 gas is used, and Ga and In are supplied as means for supplying K A configuration characterized by using an atomic beam generated by heating In or Ga metal element at a high temperature in the cell was adopted. (Method called RF-MBE).

上記のように、本発明によってGaNバッファ層上に1−2ML相当の金属In層を堆積し、その後InNのエピタキシャル薄膜を成長すると、InN成長層の表面平坦性が数原子層レベルの凹凸まで改善される。
将来、InN層上に再度GaNやAlGaN、あるいはInGaAlNのようなバンドギャップの大きな窒化物材料をヘテロ成長する場合、その界面の平坦性は光デバイスや電子デバイスの性能に大きく影響するので、原子層レベルで平坦なInN表面を作製することは極めて需要である。また、本発明によってInNの結晶性も大いに向上するから、同じくInNを活性層に用いる光デバイスや電子デバイスの性能向上に大きく寄与する。なお、説明ではInN結晶を例にとったが、In組成の大きなInGaNでも同様の効果が期待できる。また、InNの成長方法としてRF−MBEを例にとって説明したが、本手法はMOCVD(MOVPE)やHVPEなど他のエピタキシャル成長方を用いたInNとIn組成のInGaNの成長にも有効であることは容易に想像できる。

As described above, according to the present invention, when a metal In layer equivalent to 1-2 ML is deposited on a GaN buffer layer and then an epitaxial thin film of InN is grown, the surface flatness of the InN growth layer is improved to unevenness of several atomic layers. Is done.
In the future, when a nitride material having a large band gap such as GaN, AlGaN, or InGaAlN is hetero-growth on the InN layer, the flatness of the interface greatly affects the performance of the optical device and the electronic device. It is extremely in demand to produce a flat InN surface at the level. In addition, since the crystallinity of InN is greatly improved by the present invention, it greatly contributes to the improvement of the performance of optical devices and electronic devices using InN in the active layer. In the description, an InN crystal is taken as an example, but the same effect can be expected even with InGaN having a large In composition. Further, it has been described as an example RF-MBE as the growth method of InN, this method is also effective MOCVD (MOVPE) or HVPE such other epitaxial growth how InN and InGaN growth high In composition with Is easy to imagine.

本発明の適用例をRF−MBEを例に述べる。図1は本発明の実施に用いたRF−MBEの図を示す。図2にRF−MBEの成長に用いた温度プログラムを示す。MBEチャンバー中にc面のサファイア基板をセットし、880℃で1時間真空中で加熱することでクリーニングを行った。引き続き、30分間窒素のRFプラズマソースを照射して、サファイア基板の窒化処理を行った。窒素のRFガンへの投入電力は500Wであり、N2の流量は0.5sccmとした。この時、MBEチャンバーの圧力は2.5×10−6Torrであった。その後、同じく880℃の条件でGaNを約300 nm成長した。 An application example of the present invention will be described using RF-MBE as an example. FIG. 1 shows a diagram of RF-MBE used in the practice of the present invention. FIG. 2 shows a temperature program used for the growth of RF-MBE. The c-plane sapphire substrate was set in the MBE chamber, and cleaning was performed by heating in a vacuum at 880 ° C. for 1 hour. Subsequently, the sapphire substrate was nitrided by irradiation with a nitrogen RF plasma source for 30 minutes. The input power of nitrogen to the RF gun was 500 W, and the flow rate of N2 was 0.5 sccm. At this time, the pressure in the MBE chamber was 2.5 × 10 −6 Torr. Thereafter, GaN was grown to about 300 nm under the same condition of 880 ° C.

なお、このGaNはN安定化面(−c面)で成長していることをKOHによるエッチングにより確認している。GaNの成長に引き続き、KセルのGaビームとNのRFラジカルビームを止めて、真空中で500℃まで基板温度を下げた。本発明の効果を調べるため、500℃で100nmのInNを成長する前にGaNバッファ層上にIn金属層を1.8ML堆積したもの、0.9ML堆積したもの、および全く堆積しないものの3種類を作製した。InNの成長は500℃で行い、InN結晶からのN元素の解離を防止するためInとNの原子供給比率をややNリッチの条件で行った。その後、InNの表面モルフォロジーを原子間力顕微鏡(AFM)で調べ、InNの結晶性を調べるためPLスペクトルをサンプル温度77Kの条件で測定した。PLの励起レーザにはArイオンレーザの514.5nmを用い、PL発光の検出にはGeのpinダイオードを用いた。   It has been confirmed by etching with KOH that this GaN has grown on the N stabilization plane (-c plane). Subsequent to the growth of GaN, the Ga cell of the K cell and the RF radical beam of N were stopped, and the substrate temperature was lowered to 500 ° C. in a vacuum. In order to examine the effect of the present invention, three types of the In metal layer deposited on the GaN buffer layer before the growth of 100 nm InN at 500 ° C., 1.8 ML, 0.9 ML deposited, and none deposited at all. Produced. The growth of InN was performed at 500 ° C., and the atomic supply ratio of In and N was slightly N-rich to prevent the dissociation of N element from the InN crystal. Thereafter, the surface morphology of InN was examined with an atomic force microscope (AFM), and a PL spectrum was measured at a sample temperature of 77K in order to examine the crystallinity of InN. An Ar ion laser of 514.5 nm was used as a PL excitation laser, and a Ge pin diode was used for detection of PL emission.

図3に3つのサンプルのAFM像を示す。InN層とGaNバッファ層界面にIn金属層を1.8ML挿入した(a)のサンプルでは、表面に約0.55nmのステップが観察され平坦性は極めて高い。0.55 nmはInN結晶のc軸方向の格子定数とほぼ一致している。c軸の格子定数の半分(c/2)=0.285nmはInとN原子層のペアであるバイレイヤー層と呼ばれることもあり、0.55 nmの表面ステップは2バイレイヤーに相当する。このように約2MLのIn金属層を挿入することで2次元成長が起こっていることがわかる。(b)は同様に0.9MLのIn金属層を挿入したもので、この場合にも1.10 nm, 1.65 nm, 2.2 nmの段差が観察された。この1.10 nm, 1.65 nm, 2.2 nmはそれぞれ4バイレイヤー、6バイレイヤー、8バイレイヤーに対応すると考えられる。このように、表面に観察される段差はいずれも原子層ステップを単位とした規則的な段差となっており、In金属層の挿入によって成長表面での原子の動きが活発化して2次元の平坦な成長が促進されていると言える。一方、全くIn層を挿入しない(c)のサンプルでは、表面に深さ50 nmもの大きな穴が所々に観察され、2次元成長ではなく3次元的な結晶成長モードが起こっていると考えられる。   FIG. 3 shows AFM images of three samples. In the sample of (a) in which an In metal layer of 1.8 ML is inserted at the interface between the InN layer and the GaN buffer layer, a step of about 0.55 nm is observed on the surface, and the flatness is extremely high. 0.55 nm substantially coincides with the lattice constant in the c-axis direction of the InN crystal. Half of the c-axis lattice constant (c / 2) = 0.285 nm is sometimes referred to as a bilayer layer that is a pair of In and N atomic layers, and a surface step of 0.55 nm corresponds to two bilayers. Thus, it can be seen that two-dimensional growth occurs by inserting an approximately 2 ML In metal layer. Similarly, (b) was obtained by inserting a 0.9 ML In metal layer. In this case, steps of 1.10 nm, 1.65 nm, and 2.2 nm were observed. These 1.10 nm, 1.65 nm, and 2.2 nm are considered to correspond to 4 bilayer, 6 bilayer, and 8 bilayer, respectively. Thus, the steps observed on the surface are all regular steps in units of atomic layer steps, and the movement of atoms on the growth surface is activated by the insertion of the In metal layer, resulting in a two-dimensional flat surface. It can be said that proper growth is promoted. On the other hand, in the sample (c) in which the In layer is not inserted at all, large holes as deep as 50 nm are observed on the surface, and it is considered that a three-dimensional crystal growth mode occurs instead of two-dimensional growth.

このように、GaNバッファ層上に1−2MLのごく薄いIn金属層を堆積してからInNを成長すると、表面モルフォロジーが原子レベルで平坦化することが確認された。なお、本発明に効果的なIn金属層の堆積量の範囲であるが、3ML程度のInを挿入すると成長速度が低下してしまい、あまり良いInN結晶層は得られていない。このため、金属In層の堆積量は1ML〜2ML付近が最も効果的と言える。
図4は図3で説明したサンプルから得られたPLスペクトルである。作製したInNエピタキシャル薄膜の発光波長はいずれも0.75eV付近にあり、InN結晶層が比較的高純度であることを示している。重要なことは、Inの金属層を挿入することでその発光強度がIn金属層を挿入しないものに比べて劇的に改善されたことである。これは、In金属層の挿入によってInNエピタキシャル成長層の結晶性が大きく改善されていることを示している。Inの堆積量が0.9MLと1.8MLのものを比較した場合、1.8MLのサンプルのほうが発光強度は強く、図2に示した表面の平坦性の改善の具合とも良く一致している。
As described above, it was confirmed that when InN is grown after depositing a very thin In metal layer of 1-2 ML on the GaN buffer layer, the surface morphology is flattened at the atomic level. In addition, although it is the range of the deposition amount of the In metal layer effective in the present invention, when about 3 ML of In is inserted, the growth rate is lowered, and a very good InN crystal layer is not obtained. For this reason, it can be said that the deposition amount of the metal In layer is most effective in the vicinity of 1 ML to 2 ML.
FIG. 4 is a PL spectrum obtained from the sample described in FIG. All of the produced InN epitaxial thin films have an emission wavelength in the vicinity of 0.75 eV, indicating that the InN crystal layer has a relatively high purity. What is important is that the light emission intensity is dramatically improved by inserting an In metal layer, compared to the case where the In metal layer is not inserted. This indicates that the insertion of the In metal layer greatly improves the crystallinity of the InN epitaxial growth layer. When comparing the amounts of In deposited between 0.9 and 1.8 ML, the 1.8 ML sample has higher emission intensity, which is in good agreement with the improvement in surface flatness shown in FIG. .

実施例のRF−MBEを実施する為の装置の模式図Schematic diagram of an apparatus for carrying out RF-MBE of the embodiment 実施例のRF−MBEの成長に用いた温度プログラムTemperature program used for growth of RF-MBE in Example 実施サンプルを示すAFM像の写真とその表面の凹凸を示すグラフPhotograph of AFM image showing working sample and graph showing surface irregularities 実施サンプルから得られたPLスペクトルを示すグラフGraph showing the PL spectrum obtained from the working sample

Claims (1)

GaNバッファ層上へのInNあるいは高In組成のInGaNのエピタキシャル成長において、
成長技術として窒素原子の供給手段として、高周波コイルを設けたプラズマ室にN ガスを供給して、ガスから発生するプラズマを用い、GaとInの供給手段としてKセル内でInあるいはGa金属元素を高温加熱して生成される原子ビームを利用し、
GaNバッファ層の極性がN極性((000−1)面、−c面)であり、
InNあるいは高In組成のInGaN層の成長に先立ちGaNバッファ層上に1−2原子層のIn金属層を堆積することを特徴としたエピタキシャル成長方法。
In the epitaxial growth of InN or high In composition InGaN on the GaN buffer layer,
As supply means nitrogen atom as the growth technique, by supplying N 2 gas to a plasma chamber in which a high-frequency coil, using a plasma generated from a N 2 gas, In in the K cell as a means for supplying Ga and In or Ga Utilizing atomic beams generated by heating metal elements at high temperatures,
The polarity of the GaN buffer layer is N polarity ((000-1) plane, -c plane),
An epitaxial growth method characterized by depositing a 1-2 atomic layer In metal layer on a GaN buffer layer prior to the growth of an InN or high In composition InGaN layer.
JP2006230308A 2006-08-28 2006-08-28 Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition Expired - Fee Related JP4873705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230308A JP4873705B2 (en) 2006-08-28 2006-08-28 Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230308A JP4873705B2 (en) 2006-08-28 2006-08-28 Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition

Publications (2)

Publication Number Publication Date
JP2008053589A JP2008053589A (en) 2008-03-06
JP4873705B2 true JP4873705B2 (en) 2012-02-08

Family

ID=39237323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230308A Expired - Fee Related JP4873705B2 (en) 2006-08-28 2006-08-28 Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition

Country Status (1)

Country Link
JP (1) JP4873705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897677B (en) * 2021-09-30 2023-04-28 中国科学院苏州纳米技术与纳米仿生研究所 Indium nitride crystal and method for growing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546531B2 (en) * 1994-02-09 1996-10-23 株式会社日立製作所 Semiconductor laminated structure, semiconductor device and manufacturing method thereof
JP2003273019A (en) * 2002-03-19 2003-09-26 National Institute Of Advanced Industrial & Technology Method of protecting nitride semiconductor crystal growth surface, and method of manufacturing nitride semiconductor thin-film device

Also Published As

Publication number Publication date
JP2008053589A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US8148712B2 (en) Group III nitride compound semiconductor stacked structure
JP5812166B2 (en) Method for crystal growth of nitride semiconductor
US20120187366A1 (en) Growth method of nitride semiconductor layer and light emitting device using the growth method
US20070221948A1 (en) Group III nitride semiconductor thin film and group III semiconductor light emitting device
JP2007142437A (en) Semiconductor device and method of manufacturing same
JPH10312971A (en) Iii-v compound semiconductor film and growth method, gan system semiconductor film and its formation, gan system semiconductor stacked structure and its formation, and gan system semiconductor element and its manufacture
US8026523B2 (en) Nitride semiconductor free-standing substrate and device using the same
US10665753B2 (en) Vertical-type ultraviolet light-emitting diode
JP4452252B2 (en) Method for producing gallium nitride semiconductor
EP2071053B1 (en) Filming method for iii-group nitride semiconductor laminated structure
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
WO2020050159A1 (en) Nitride semiconductor device and substrate thereof, method of forming rare earth element-added nitride layer, and red light emitting device and method of manufacturing same
JP4974635B2 (en) Film forming method of group III nitride compound semiconductor multilayer structure
JP5814131B2 (en) Structure and manufacturing method of semiconductor substrate
JP2005303250A (en) Semiconductor device and its manufacturing method
JP2008115463A (en) Layered structure of semiconductor of group iii nitride, production method therefor, semiconductor light-emitting element and lamp
KR100935974B1 (en) Manufacturing method of Nitride semiconductor light emitting devide
JP2001148348A (en) Gab SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD
JP3504851B2 (en) Method for manufacturing compound semiconductor film
JP4873705B2 (en) Method for forming indium gallium nitride (InGaN) epitaxial thin film having indium nitride (InN) or high indium composition
JP2008214132A (en) Group iii nitride semiconductor thin film, group iii nitride semiconductor light-emitting element, and method for manufacturing group iii nitride semiconductor thin film
JP2008098245A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP3876323B2 (en) Crystal growth method of indium aluminum nitride semiconductor
JP2005260093A (en) Heteroepitaxial growth method of gallium nitride
RU135186U1 (en) SEMICONDUCTOR LIGHT-RADIATING DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees