JP4873603B2 - Method for producing polymer compound, polymer compound, and organic electronic device using the same - Google Patents
Method for producing polymer compound, polymer compound, and organic electronic device using the sameInfo
- Publication number
- JP4873603B2 JP4873603B2 JP2005191645A JP2005191645A JP4873603B2 JP 4873603 B2 JP4873603 B2 JP 4873603B2 JP 2005191645 A JP2005191645 A JP 2005191645A JP 2005191645 A JP2005191645 A JP 2005191645A JP 4873603 B2 JP4873603 B2 JP 4873603B2
- Authority
- JP
- Japan
- Prior art keywords
- electronic device
- organic electronic
- compound
- polymer compound
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000001875 compounds Chemical class 0.000 title claims description 102
- 229920000642 polymer Polymers 0.000 title claims description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 claims description 71
- 238000006243 chemical reaction Methods 0.000 claims description 45
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 32
- 239000000178 monomer Substances 0.000 claims description 31
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 229910052763 palladium Inorganic materials 0.000 claims description 11
- 125000000962 organic group Chemical group 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 125000000623 heterocyclic group Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 description 60
- 238000003786 synthesis reaction Methods 0.000 description 55
- 238000005481 NMR spectroscopy Methods 0.000 description 47
- 239000000047 product Substances 0.000 description 32
- 238000005259 measurement Methods 0.000 description 24
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 21
- -1 paraphenylene) Chemical class 0.000 description 21
- 230000005669 field effect Effects 0.000 description 18
- 238000000921 elemental analysis Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 17
- 229920000547 conjugated polymer Polymers 0.000 description 16
- 238000006116 polymerization reaction Methods 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 16
- 239000012265 solid product Substances 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000005384 cross polarization magic-angle spinning Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- FANCTJAFZSYTIS-IQUVVAJASA-N (1r,3s,5z)-5-[(2e)-2-[(1r,3as,7ar)-7a-methyl-1-[(2r)-4-(phenylsulfonimidoyl)butan-2-yl]-2,3,3a,5,6,7-hexahydro-1h-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol Chemical compound C([C@@H](C)[C@@H]1[C@]2(CCCC(/[C@@H]2CC1)=C\C=C\1C([C@@H](O)C[C@H](O)C/1)=C)C)CS(=N)(=O)C1=CC=CC=C1 FANCTJAFZSYTIS-IQUVVAJASA-N 0.000 description 6
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- YLEIFZAVNWDOBM-ZTNXSLBXSA-N ac1l9hc7 Chemical compound C([C@H]12)C[C@@H](C([C@@H](O)CC3)(C)C)[C@@]43C[C@@]14CC[C@@]1(C)[C@@]2(C)C[C@@H]2O[C@]3(O)[C@H](O)C(C)(C)O[C@@H]3[C@@H](C)[C@H]12 YLEIFZAVNWDOBM-ZTNXSLBXSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000004009 13C{1H}-NMR spectroscopy Methods 0.000 description 5
- TUCRZHGAIRVWTI-UHFFFAOYSA-N 2-bromothiophene Chemical compound BrC1=CC=CS1 TUCRZHGAIRVWTI-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000010898 silica gel chromatography Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- JRTIUDXYIUKIIE-KZUMESAESA-N (1z,5z)-cycloocta-1,5-diene;nickel Chemical compound [Ni].C\1C\C=C/CC\C=C/1.C\1C\C=C/CC\C=C/1 JRTIUDXYIUKIIE-KZUMESAESA-N 0.000 description 3
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 3
- 239000007818 Grignard reagent Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006069 Suzuki reaction reaction Methods 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000004795 grignard reagents Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910052751 metal Chemical group 0.000 description 3
- 239000002184 metal Chemical group 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 229920002577 polybenzoxazole Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- QKLXBIHSGMPUQS-FGZHOGPDSA-M (3r,5r)-7-[4-(4-fluorophenyl)-2,5-dimethyl-1-phenylpyrrol-3-yl]-3,5-dihydroxyheptanoate Chemical compound CC1=C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C=2C=CC(F)=CC=2)=C(C)N1C1=CC=CC=C1 QKLXBIHSGMPUQS-FGZHOGPDSA-M 0.000 description 2
- LVEYOSJUKRVCCF-UHFFFAOYSA-N 1,3-bis(diphenylphosphino)propane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCCP(C=1C=CC=CC=1)C1=CC=CC=C1 LVEYOSJUKRVCCF-UHFFFAOYSA-N 0.000 description 2
- QJSOQHMVFRHVEL-UHFFFAOYSA-N 2-(5-bromothiophen-2-yl)-1H-pyridazine Chemical compound BrC1=CC=C(S1)N1NC=CC=C1 QJSOQHMVFRHVEL-UHFFFAOYSA-N 0.000 description 2
- PSWDQTMAUUQILQ-UHFFFAOYSA-N 2-[(6-methoxy-4-methylquinazolin-2-yl)amino]-5,6-dimethyl-1h-pyrimidin-4-one Chemical compound N1=C(C)C2=CC(OC)=CC=C2N=C1NC1=NC(=O)C(C)=C(C)N1 PSWDQTMAUUQILQ-UHFFFAOYSA-N 0.000 description 2
- HLTDBMHJSBSAOM-UHFFFAOYSA-N 2-nitropyridine Chemical compound [O-][N+](=O)C1=CC=CC=N1 HLTDBMHJSBSAOM-UHFFFAOYSA-N 0.000 description 2
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 2
- VMSBCZLYJOAVIG-UHFFFAOYSA-N 3,4-dichloro-2-pyridin-2-ylpyridine;nickel Chemical compound [Ni].ClC1=CC=NC(C=2N=CC=CC=2)=C1Cl VMSBCZLYJOAVIG-UHFFFAOYSA-N 0.000 description 2
- GCWQCOJUXICJQX-UHFFFAOYSA-N 3,6-dithiophen-2-ylpyridazine Chemical compound C1=CSC(C=2N=NC(=CC=2)C=2SC=CC=2)=C1 GCWQCOJUXICJQX-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- LUTLBDSZMGWBKD-UHFFFAOYSA-N BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCC Chemical compound BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCC LUTLBDSZMGWBKD-UHFFFAOYSA-N 0.000 description 2
- AYFXCYOLIZNJSA-UHFFFAOYSA-N BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCCCCCC Chemical compound BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCCCCCC AYFXCYOLIZNJSA-UHFFFAOYSA-N 0.000 description 2
- AKPBVGUQZSICFT-UHFFFAOYSA-N BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCCCCCCCC Chemical compound BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCCCCCCCC AKPBVGUQZSICFT-UHFFFAOYSA-N 0.000 description 2
- RJBPWKKPJCMRNJ-UHFFFAOYSA-N BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCCCCCCCCCC Chemical compound BrC1=CC(=C(S1)N1NC=CC=C1)CCCCCCCCCCCCCC RJBPWKKPJCMRNJ-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- RNRSMFWNZQDZLN-UHFFFAOYSA-N C(CCCCC)C1=C(SC=C1)N1NC=CC=C1 Chemical compound C(CCCCC)C1=C(SC=C1)N1NC=CC=C1 RNRSMFWNZQDZLN-UHFFFAOYSA-N 0.000 description 2
- UVSHKTCELAGKTG-UHFFFAOYSA-N C(CCCCCCCCC)C1=C(SC=C1)N1NC=CC=C1 Chemical compound C(CCCCCCCCC)C1=C(SC=C1)N1NC=CC=C1 UVSHKTCELAGKTG-UHFFFAOYSA-N 0.000 description 2
- AOMNTSYRMXMETN-UHFFFAOYSA-N C(CCCCCCCCCCC)C1=C(SC=C1)N1NC=CC=C1 Chemical compound C(CCCCCCCCCCC)C1=C(SC=C1)N1NC=CC=C1 AOMNTSYRMXMETN-UHFFFAOYSA-N 0.000 description 2
- SMXGNIJHQCSVIZ-UHFFFAOYSA-N C(CCCCCCCCCCCCC)C1=C(SC=C1)N1NC=CC=C1 Chemical compound C(CCCCCCCCCCCCC)C1=C(SC=C1)N1NC=CC=C1 SMXGNIJHQCSVIZ-UHFFFAOYSA-N 0.000 description 2
- CYSWUSAYJNCAKA-FYJFLYSWSA-N ClC1=C(C=CC=2N=C(SC=21)OCC)OC1=CC=C(C=N1)/C=C/[C@H](C)NC(C)=O Chemical compound ClC1=C(C=CC=2N=C(SC=21)OCC)OC1=CC=C(C=N1)/C=C/[C@H](C)NC(C)=O CYSWUSAYJNCAKA-FYJFLYSWSA-N 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- SRVFFFJZQVENJC-IHRRRGAJSA-N aloxistatin Chemical compound CCOC(=O)[C@H]1O[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)NCCC(C)C SRVFFFJZQVENJC-IHRRRGAJSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- OSVHLUXLWQLPIY-KBAYOESNSA-N butyl 2-[(6aR,9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydrobenzo[c]chromen-3-yl]-2-methylpropanoate Chemical compound C(CCC)OC(C(C)(C)C1=CC(=C2[C@H]3[C@H](C(OC2=C1)(C)C)CC[C@H](C3)CO)O)=O OSVHLUXLWQLPIY-KBAYOESNSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229940125796 compound 3d Drugs 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 238000007644 letterpress printing Methods 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000813 microcontact printing Methods 0.000 description 2
- QAPTWHXHEYAIKG-RCOXNQKVSA-N n-[(1r,2s,5r)-5-(tert-butylamino)-2-[(3s)-2-oxo-3-[[6-(trifluoromethyl)quinazolin-4-yl]amino]pyrrolidin-1-yl]cyclohexyl]acetamide Chemical compound CC(=O)N[C@@H]1C[C@H](NC(C)(C)C)CC[C@@H]1N1C(=O)[C@@H](NC=2C3=CC(=CC=C3N=CN=2)C(F)(F)F)CC1 QAPTWHXHEYAIKG-RCOXNQKVSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000002940 palladium Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- RWWYLEGWBNMMLJ-YSOARWBDSA-N remdesivir Chemical compound NC1=NC=NN2C1=CC=C2[C@]1([C@@H]([C@@H]([C@H](O1)CO[P@](=O)(OC1=CC=CC=C1)N[C@H](C(=O)OCC(CC)CC)C)O)O)C#N RWWYLEGWBNMMLJ-YSOARWBDSA-N 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000002174 soft lithography Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- CCRMAATUKBYMPA-UHFFFAOYSA-N trimethyltin Chemical compound C[Sn](C)C.C[Sn](C)C CCRMAATUKBYMPA-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- MWEXRLZUDANQDZ-RPENNLSWSA-N (2s)-3-hydroxy-n-[11-[4-[4-[4-[11-[[2-[4-[(2r)-2-hydroxypropyl]triazol-1-yl]acetyl]amino]undecanoyl]piperazin-1-yl]-6-[2-[2-(2-prop-2-ynoxyethoxy)ethoxy]ethylamino]-1,3,5-triazin-2-yl]piperazin-1-yl]-11-oxoundecyl]-2-[4-(3-methylsulfanylpropyl)triazol-1-y Chemical compound N1=NC(CCCSC)=CN1[C@@H](CO)C(=O)NCCCCCCCCCCC(=O)N1CCN(C=2N=C(N=C(NCCOCCOCCOCC#C)N=2)N2CCN(CC2)C(=O)CCCCCCCCCCNC(=O)CN2N=NC(C[C@@H](C)O)=C2)CC1 MWEXRLZUDANQDZ-RPENNLSWSA-N 0.000 description 1
- PHDIJLFSKNMCMI-ITGJKDDRSA-N (3R,4S,5R,6R)-6-(hydroxymethyl)-4-(8-quinolin-6-yloxyoctoxy)oxane-2,3,5-triol Chemical compound OC[C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)OCCCCCCCCOC=1C=C2C=CC=NC2=CC=1)O PHDIJLFSKNMCMI-ITGJKDDRSA-N 0.000 description 1
- PNHBRYIAJCYNDA-VQCQRNETSA-N (4r)-6-[2-[2-ethyl-4-(4-fluorophenyl)-6-phenylpyridin-3-yl]ethyl]-4-hydroxyoxan-2-one Chemical compound C([C@H](O)C1)C(=O)OC1CCC=1C(CC)=NC(C=2C=CC=CC=2)=CC=1C1=CC=C(F)C=C1 PNHBRYIAJCYNDA-VQCQRNETSA-N 0.000 description 1
- VIMMECPCYZXUCI-MIMFYIINSA-N (4s,6r)-6-[(1e)-4,4-bis(4-fluorophenyl)-3-(1-methyltetrazol-5-yl)buta-1,3-dienyl]-4-hydroxyoxan-2-one Chemical compound CN1N=NN=C1C(\C=C\[C@@H]1OC(=O)C[C@@H](O)C1)=C(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 VIMMECPCYZXUCI-MIMFYIINSA-N 0.000 description 1
- JNPGUXGVLNJQSQ-BGGMYYEUSA-M (e,3r,5s)-7-[4-(4-fluorophenyl)-1,2-di(propan-2-yl)pyrrol-3-yl]-3,5-dihydroxyhept-6-enoate Chemical compound CC(C)N1C(C(C)C)=C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)C(C=2C=CC(F)=CC=2)=C1 JNPGUXGVLNJQSQ-BGGMYYEUSA-M 0.000 description 1
- YCWPDFSNGOICAB-UHFFFAOYSA-N 2-bromo-3-decylthiophene Chemical group CCCCCCCCCCC=1C=CSC=1Br YCWPDFSNGOICAB-UHFFFAOYSA-N 0.000 description 1
- IMILVTHOOISGRW-UHFFFAOYSA-N 2-bromo-3-dodecylthiophene Chemical group CCCCCCCCCCCCC=1C=CSC=1Br IMILVTHOOISGRW-UHFFFAOYSA-N 0.000 description 1
- XQJNXCHDODCAJF-UHFFFAOYSA-N 2-bromo-3-hexylthiophene Chemical group CCCCCCC=1C=CSC=1Br XQJNXCHDODCAJF-UHFFFAOYSA-N 0.000 description 1
- GOUPSYVDGUEWMF-UHFFFAOYSA-N 2-bromo-3-tetradecylthiophene Chemical group CCCCCCCCCCCCCCC=1C=CSC=1Br GOUPSYVDGUEWMF-UHFFFAOYSA-N 0.000 description 1
- GUSWJGOYDXFJSI-UHFFFAOYSA-N 3,6-dichloropyridazine Chemical compound ClC1=CC=C(Cl)N=N1 GUSWJGOYDXFJSI-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- HIHOEGPXVVKJPP-JTQLQIEISA-N 5-fluoro-2-[[(1s)-1-(5-fluoropyridin-2-yl)ethyl]amino]-6-[(5-methyl-1h-pyrazol-3-yl)amino]pyridine-3-carbonitrile Chemical compound N([C@@H](C)C=1N=CC(F)=CC=1)C(C(=CC=1F)C#N)=NC=1NC=1C=C(C)NN=1 HIHOEGPXVVKJPP-JTQLQIEISA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000003747 Grignard reaction Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229940125907 SJ995973 Drugs 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- OQNGCCWBHLEQFN-UHFFFAOYSA-N chloroform;hexane Chemical compound ClC(Cl)Cl.CCCCCC OQNGCCWBHLEQFN-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940125872 compound 4d Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005695 dehalogenation reaction Methods 0.000 description 1
- 125000003963 dichloro group Chemical group Cl* 0.000 description 1
- 238000006251 dihalogenation reaction Methods 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GVOISEJVFFIGQE-YCZSINBZSA-N n-[(1r,2s,5r)-5-[methyl(propan-2-yl)amino]-2-[(3s)-2-oxo-3-[[6-(trifluoromethyl)quinazolin-4-yl]amino]pyrrolidin-1-yl]cyclohexyl]acetamide Chemical compound CC(=O)N[C@@H]1C[C@H](N(C)C(C)C)CC[C@@H]1N1C(=O)[C@@H](NC=2C3=CC(=CC=C3N=CN=2)C(F)(F)F)CC1 GVOISEJVFFIGQE-YCZSINBZSA-N 0.000 description 1
- XZMHJYWMCRQSSI-UHFFFAOYSA-N n-[5-[2-(3-acetylanilino)-1,3-thiazol-4-yl]-4-methyl-1,3-thiazol-2-yl]benzamide Chemical compound CC(=O)C1=CC=CC(NC=2SC=C(N=2)C2=C(N=C(NC(=O)C=3C=CC=CC=3)S2)C)=C1 XZMHJYWMCRQSSI-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- KFBKRCXOTTUAFS-UHFFFAOYSA-N nickel;triphenylphosphane Chemical compound [Ni].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 KFBKRCXOTTUAFS-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000001107 thermogravimetry coupled to mass spectrometry Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electroluminescent Light Sources (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Thin Film Transistor (AREA)
- Light Receiving Elements (AREA)
Description
本発明は、ジハロゲン化合物をモノマーとして重合させる高分子化合物の製造方法と、その製造方法により得られる高分子化合物、並びにその高分子化合物を用いた有機電子デバイスに関する。 The present invention relates to a method for producing a polymer compound obtained by polymerizing a dihalogen compound as a monomer, a polymer compound obtained by the production method, and an organic electronic device using the polymer compound.
共役二重結合を有するπ共役系ポリマーは、導電機能、半導体機能、電気化学機能、光機能など多様な機能を有するため、従来の高分子とは全く異なった分野、即ち、電線、大面積太陽電池、ダイオード、表示素子、二次電池などへの応用研究と開発が進められ、帯電防止フィルム、機能性高分子コンデンサ、発光素子から電池まで幅広い分野に応用が展開している。 Since π-conjugated polymers with conjugated double bonds have various functions such as conductive function, semiconductor function, electrochemical function, and optical function, they are completely different from conventional polymers, ie, electric wires, large area solar Research and development of applications for batteries, diodes, display elements, secondary batteries, etc. are progressing, and applications are expanding in a wide range of fields from antistatic films, functional polymer capacitors, light emitting elements to batteries.
これらの共役二重結合を有するπ共役系ポリマーとしては、ポリアセチレン系、ポリアセン系、ポリ芳香族ビニレン系、ポリピロール系、ポリアニリン系、ポリチオフェン系等が挙げられる。中でも、ポリアニリン系、ポリピロール系、ポリチオフェン系が注目されている。 Examples of π-conjugated polymers having these conjugated double bonds include polyacetylene-based, polyacene-based, polyaromatic vinylene-based, polypyrrole-based, polyaniline-based, and polythiophene-based polymers. Of these, polyaniline, polypyrrole, and polythiophene are attracting attention.
従来、このようなπ共役系ポリマーを合成する手法としては、有機金属的な手法が一般に用いられている。 Conventionally, as a method for synthesizing such a π-conjugated polymer, an organometallic method is generally used.
例えば、X−Ar−X(ここで、Arはアリーレン基を表わし、Xはハロゲン原子を表わす。)で表わされる芳香族ジハロゲン化合物をモノマーとして用い、縮合剤として、Ni(cod)2+2,2′−ビピリジル(ここで「Ni(cod)2」は、ビス(1,5−シクロオクタジエン)ニッケルを表わす。)等のニッケルゼロ価錯体を等量用いる脱ハロゲン化重縮合法により、ポリ(パラフェニレン)、ポリ(チオフェン−2,5−ジイル)、ポリ(ピリジン−2,5−ジイル)等のπ共役系高分子化合物が合成されている。 For example, an aromatic dihalogen compound represented by X—Ar—X (wherein Ar represents an arylene group and X represents a halogen atom) is used as a monomer, and Ni (cod) 2 +2, 2 is used as a condensing agent. By polyhalogenation using a dehalogenated polycondensation method using an equivalent amount of a nickel zero-valent complex such as' -bipyridyl (where “Ni (cod) 2 ” represents bis (1,5-cyclooctadiene) nickel)). Π-conjugated polymer compounds such as paraphenylene), poly (thiophene-2,5-diyl), and poly (pyridine-2,5-diyl) have been synthesized.
また、芳香族ジハロゲン化合物の片側のハロゲン原子を特定の脱離基で置換した、X−Ar−Y(ここで、Yは、MgX、ZnX、SnR3、B(OR)2、C≡CH等の基を表わす。但し、Rはアルキル基を表わす。)で表わされる化合物をモノマーとして用い、パラジウム錯体やニッケル錯体を触媒として用いるカップリング反応によっても、種々のπ共役系高分子化合物を合成することができる(非特許文献1参照)。 In addition, X-Ar-Y (wherein Y is MgX, ZnX, SnR 3 , B (OR) 2 , C≡CH, etc.) in which a halogen atom on one side of the aromatic dihalogen compound is substituted with a specific leaving group Where R represents an alkyl group), and various π-conjugated polymer compounds are synthesized by a coupling reaction using a palladium complex or a nickel complex as a catalyst. (See Non-Patent Document 1).
特に、上記式X−Ar−YにおいてYがB(OR)2である化合物(有機ホウ素化合物)を用い、触媒としてニッケル錯体やパラジウム錯体を用いたカップリング反応(鈴木カップリング反応)は、炭素−炭素結合を生成する方法として、有機合成において最も有用な方法の一つであると言える。しかしながら、温和な条件での鈴木カップリング反応は、これまで殆ど知られていなかったのが実情である(非特許文献2、非特許文献3参照)。
In particular, a coupling reaction (Suzuki coupling reaction) using a compound (organoboron compound) in which Y is B (OR) 2 in the above formula X-Ar-Y and using a nickel complex or a palladium complex as a catalyst is carbon. -It can be said that it is one of the most useful methods in organic synthesis as a method for generating carbon bonds. However, the fact is that the Suzuki coupling reaction under mild conditions has been hardly known so far (see Non-Patent
また、上記式X−Ar−YにおいてYがMgXである化合物(グリニャール試薬)を用い、グリニャール反応を用いるクロスカップリング法も、共役二重結合を有するπ共役系ポリマーの合成法としては一般的である。しかしながら、鈴木カップリング法やクロスカップリング法では、ポリマー重合に際して反応活性化できるモノマーの種類が限られており、合成できるポリマーのバリエーションは決して多いとは言えない状況であった。 A cross-coupling method using a compound (Grignard reagent) in which Y is MgX in the above formula X-Ar-Y and using a Grignard reaction is also a general method for synthesizing a π-conjugated polymer having a conjugated double bond. It is. However, in the Suzuki coupling method and the cross coupling method, the types of monomers that can be activated during polymer polymerization are limited, and it cannot be said that there are many variations of polymers that can be synthesized.
また、これらのπ共役高分子の合成法には、(1)触媒や縮合剤として用いたニッケルを系中から除去するのが困難である、(2)上記式X−Ar−Yで表わされる型のモノマーは、合成が比較的困難であり、また、モノマー化合物が不安定な場合がある、(3)通常、X−Ar−Xというモノマー化合物とY−Ar−Yというモノマー化合物とをカップリングさせて−Ar−Ar−という構造を合成する場合、触媒や縮合剤としてニッケル錯体やパラジウム錯体を用いただけでは反応しないものがあり、合成できる分子が限られる、などの課題があった。 Moreover, in the synthesis method of these π-conjugated polymers, (1) it is difficult to remove nickel used as a catalyst or a condensing agent from the system, and (2) it is represented by the above formula X-Ar-Y. Type monomers are relatively difficult to synthesize, and the monomer compound may be unstable. (3) Usually, a monomer compound of X-Ar-X and a monomer compound of Y-Ar-Y are cupped. In the case of synthesizing a structure of -Ar-Ar- by ringing, there are some that do not react only by using a nickel complex or a palladium complex as a catalyst or a condensing agent, and there is a problem that a molecule that can be synthesized is limited.
一方、上述の式X−Ar−Yで表わされるモノマーを、ジボラン化合物を縮合剤として用いて、パラジウム錯体などの触媒存在下で重合させる方法も検討されている(非特許文献4、非特許文献5参照)。しかしながら、このジボラン化合物を縮合剤として用いる方法では、合成できるポリマー骨格が限定されてしまう。即ち、Arがフェニレン等のモノマーを重合させることはできるものの、Arが複素環等のモノマーについては、反応が進行せず、又は収率が悪い傾向があった。
On the other hand, a method of polymerizing a monomer represented by the above formula X-Ar-Y in the presence of a catalyst such as a palladium complex using a diborane compound as a condensing agent has been studied (Non-Patent
以上の背景から、温和な条件の下、高い収率で高分子化合物を得ることができ、且つ、新規な構造のπ共役系高分子化合物を合成することが可能な、高分子化合物の製造方法が求められていた。 From the above background, a method for producing a polymer compound that can obtain a polymer compound in a high yield under mild conditions and that can synthesize a π-conjugated polymer compound having a novel structure Was demanded.
本発明は、上記課題に鑑みてなされたものである。即ち、本発明の目的は、温和な条件の下、高い収率で高分子化合物を得ることが可能な、高分子化合物の製造方法と、新規な構造を有するπ共役系の高分子化合物を提供すること、並びに、その高分子化合物を用いた有機電子デバイスを提供することにある。本発明の目的は、有機電子デバイスなどに応用可能なπ共役高分子を簡便かつ効率的に合成する新規な手法を提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a polymer compound production method and a π-conjugated polymer compound having a novel structure capable of obtaining a polymer compound in a high yield under mild conditions. It is another object of the present invention to provide an organic electronic device using the polymer compound. An object of the present invention is to provide a novel method for easily and efficiently synthesizing a π-conjugated polymer applicable to an organic electronic device or the like.
本発明者らは、上記実情に鑑み鋭意検討した結果、モノマーとしてジハロゲン化合物を用いるとともに、その重合反応時に縮合剤としてビス(トリアルキル錫)を共存させることによって、温和な条件の下、高い収率で高分子化合物を得ることができ、且つ、新規な構造を有するπ共役系の高分子化合物を合成することが可能になるのを見出して、本発明に到達した。 As a result of intensive investigations in view of the above circumstances, the present inventors have used a dihalogen compound as a monomer, and coexisting bis (trialkyltin) as a condensing agent at the time of the polymerization reaction. The present inventors have found that a polymer compound can be obtained at a high rate and that a π-conjugated polymer compound having a novel structure can be synthesized.
即ち、本発明の要旨は、下記一般式(1)で表わされる化合物を縮合剤として用い、下記一般式(2)で表わされるモノマーを、パラジウム錯体及び/又はニッケル錯体の存在下で重合することを特徴とする、高分子化合物の製造方法に存する(請求項1)。
上記一般式(2)において、R7が、π共役構造を有する2価の有機基であることが好ましい(請求項2)。 In the general formula (2), R 7 is preferably a divalent organic group having a π-conjugated structure (claim 2).
中でも、上記一般式(2)において、R7が、π共役構造を有し、複素環構造を含む、2価の有機基であるであることが好ましい(請求項3)。 Among them, in the general formula (2), R 7 has a π-conjugated structure, including heterocyclic structures, it is preferable that it is a divalent organic group (Claim 3).
また、本発明の別の要旨は、上述の高分子化合物の製造方法により製造され、下記一般式(3)で表わされることを特徴とする、高分子化合物に存する(請求項4)。
また、本発明の別の要旨は、上述の高分子化合物を用いたことを特徴とする、有機電子デバイスに存する(請求項5)。 Still another subject matter of the present invention is characterized by using the above-described polymer compound consists in an organic electronic device (claim 5).
ここで、上述の有機電子デバイスは、スイッチング素子、発光素子、光電変換素子、光導電性を利用した光センサー素子、又は太陽電池素子であることが好ましい(請求項6〜10)。
また、本発明の別の要旨は、上述の高分子化合物の製造方法により高分子化合物を製造する工程を含むことを特徴とする、有機電子デバイスの製造方法に存する(請求項11)。
ここで、上述の有機電気デバイスは、スイッチング素子、発光素子、光電変換素子、光導電性を利用した光センサー素子、又は太陽電池素子であることが好ましい(請求項12〜16)。
Here, the organic electronic device described above is preferably a switching element, a light emitting element, a photoelectric conversion element, a photosensor element utilizing photoconductivity, or a solar cell element (
Another subject matter of the present invention lies in a method for producing an organic electronic device, comprising the step of producing a polymer compound by the method for producing a polymer compound described above (claim 11).
Here, the organic electrical device described above is preferably a switching element, a light emitting element, a photoelectric conversion element, a photosensor element utilizing photoconductivity, or a solar cell element (claims 12 to 16).
本発明によれば、有機電子デバイスなどに応用可能なπ共役高分子を簡便かつ効率的に合成することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to synthesize | combine easily and efficiently the (pi) conjugated polymer applicable to an organic electronic device etc.
以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、その要旨の範囲内において種々に変更して実施することができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description, and various modifications can be made within the scope of the gist of the present invention.
〔I.高分子化合物の製造方法〕
本発明に係る高分子化合物の製造方法(以下適宜「本発明の製造方法」と略称する。)は、以下に説明する縮合剤とモノマーとを触媒の存在下で反応させ、モノマーを重合させて高分子化合物を得るものである。
[I. Method for producing polymer compound)
The method for producing a polymer compound according to the present invention (hereinafter abbreviated as “the production method of the present invention” as appropriate) comprises reacting a condensing agent and a monomer described below in the presence of a catalyst to polymerize the monomer. A polymer compound is obtained.
[I−1.縮合剤]
本発明の製造方法において使用される縮合剤は、下記一般式(1)で表わされる化合物(ビス(トリアルキル錫))である。なお、「縮合剤」とは縮合反応を促進するもので、本発明においては脱ハロゲン縮合反応を効率良く行なう為に必要なものである。
[I-1. Condensing agent]
The condensing agent used in the production method of the present invention is a compound (bis (trialkyltin)) represented by the following general formula (1). The “condensation agent” is a substance that accelerates the condensation reaction, and is necessary in the present invention for efficiently carrying out the dehalogenation condensation reaction.
上記一般式(1)中、R1〜R6は各々独立に、アルキル基を表わす。アルキル基は直鎖状でも分岐鎖状でも環状でもよく、それらの結合であってもよいが、直鎖状又は分岐鎖状であることが好ましく、直鎖状であることがより好ましい。アルキル基の炭素数は小さい方が好ましく、具体的には通常C6以下、中でもC4以下が好ましい。特に好ましいのはメチル基である。R1〜R6は互いに同じでもよく、異なっていてもよいが、R1=R4、R2=R5、R3=R6であることが好ましく、R1=R2=R3=R4=R5=R6であることがより好ましい。特に、R1〜R6が何れもメチル基であることが好ましく、即ち、縮合剤としてはヘキサメチルジスタンナンが最も好ましい。 In the general formula (1), R 1 to R 6 each independently represents an alkyl group. The alkyl group may be linear, branched or cyclic, and may be a bond thereof, but is preferably linear or branched, and more preferably linear. The alkyl group preferably has a smaller number of carbon atoms, specifically, generally C6 or less, and particularly preferably C4 or less. Particularly preferred is a methyl group. R 1 to R 6 may be the same as or different from each other, but preferably R 1 = R 4 , R 2 = R 5 , R 3 = R 6 , and R 1 = R 2 = R 3 = More preferably, R 4 = R 5 = R 6 . In particular, it is preferable that all of R 1 to R 6 are methyl groups, that is, hexamethyl distannane is most preferable as the condensing agent.
縮合剤としては、一般式(1)で表わされる化合物のうち、何れか一種を単独で用いても良く、二種以上を任意の組み合わせ及び比率で併用しても良い。 As the condensing agent, any one of the compounds represented by the general formula (1) may be used alone, or two or more may be used in any combination and ratio.
縮合剤の使用量は、後述のモノマーの総量に対するモル比の値で、通常1倍以上、また、通常4倍以下、好ましくは3倍以下、更に好ましくは2倍以下の範囲である。二種以上の縮合剤を併用する場合には、これらの合計の量が上記範囲に収まるようにする。 The amount of the condensing agent used is a molar ratio with respect to the total amount of monomers described later, and is usually 1 or more, usually 4 or less, preferably 3 or less, more preferably 2 or less. When two or more kinds of condensing agents are used in combination, the total amount of these condensing agents is set within the above range.
[I−2.モノマー]
本発明の製造方法において使用されるモノマーは、下記一般式(2)で表わされる化合物(ジハロゲン化合物)である。
[I-2. monomer]
The monomer used in the production method of the present invention is a compound (dihalogen compound) represented by the following general formula (2).
上記一般式(2)中、Xは、ハロゲン原子を表わす。具体的にはフッ素原子、臭素原子、塩素原子等が挙げられるが、中でも臭素原子が好ましい。 In the general formula (2), X represents a halogen atom. Specific examples include a fluorine atom, a bromine atom, and a chlorine atom. Among them, a bromine atom is preferable.
上記一般式(2)中、R7は、2価の有機基を表わす。
中でも、R7は、π共役構造を有する2価の有機基であることが好ましい。ここで「π共役構造」は、多重結合が単結合と交互に連なった構造を表わす。
特に、R7は、複素環構造を含む基であることが好ましい。
In the general formula (2), R 7 represents a divalent organic group.
Among these, R 7 is preferably a divalent organic group having a π-conjugated structure. Here, the “π conjugate structure” represents a structure in which multiple bonds are alternately connected to single bonds.
In particular, R 7 is preferably a group containing a heterocyclic structure.
R7の好ましい例としては、以下の式(I)〜(XIII)で表わされる構造が挙げられる。但し、これらはあくまでも例示であり、本発明の高分子化合物に適用可能なR7は、以下の式(I)〜(XIII)の構造に限定される訳ではない。 Preferable examples of R 7 include structures represented by the following formulas (I) to (XIII). However, these are merely examples, and R 7 applicable to the polymer compound of the present invention is not limited to the structures of the following formulas (I) to (XIII).
上記式(I)〜(XIII)において、各符号の定義はそれぞれ以下の通りである。 In the above formulas (I) to (XIII), the definition of each symbol is as follows.
R11〜R80は、各々独立に、
H、
F、
CH3−、
CH3(CH2)n−(nは1以上23以下の整数を表わす。)、
CH3(CH2)n(CF2)m−(n及びmは各々独立に、1以上23以下の整数を表わす。)、
CF3−、
CF3(CF2)n−(nは1以上23以下の整数を表わす。)、
CF3(CH2)n(CF2)m−(n及びmは各々独立に、1以上23以下の整数を表わす。)、
フェニル基、
ニトロ基、
アミノ基、
シアノ基、
カルボキシル基、
スルホン酸基、
水酸基、又は
アルコキシ基を表わす。
R 11 to R 80 are each independently
H,
F,
CH 3− ,
CH 3 (CH 2 ) n — (n represents an integer of 1 to 23),
CH 3 (CH 2 ) n (CF 2 ) m — (n and m each independently represents an integer of 1 to 23),
CF 3 −,
CF 3 (CF 2 ) n — (n represents an integer of 1 to 23),
CF 3 (CH 2 ) n (CF 2 ) m — (n and m each independently represents an integer of 1 to 23),
Phenyl group,
Nitro group,
An amino group,
A cyano group,
Carboxyl group,
Sulfonic acid groups,
Represents a hydroxyl group or an alkoxy group.
A3〜A30は、各々独立に、炭素原子又は窒素原子を表わす。 A 3 to A 30 each independently represents a carbon atom or a nitrogen atom.
Q1〜Q7は、各々独立に、−CR81R82−、−NR83−、−N−、−S−、−SiR84R85−、又は−Se−を表わす(R81〜R85は、各々独立に、水素原子、炭素数1以上23以下の直鎖状、分岐鎖状若しくは環状のアルキル基、又はそのアルキル基が1又は2以上のフッ素原子で置換されたフッ素置換アルキル基を表わす。)。 Q 1 to Q 7 each independently represent —CR 81 R 82 —, —NR 83 —, —N—, —S—, —SiR 84 R 85 —, or —Se— (R 81 to R 85). Each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 23 carbon atoms, or a fluorine-substituted alkyl group in which the alkyl group is substituted with 1 or 2 or more fluorine atoms. Represent.)
E1は、窒素原子又は
n1は、0以上6以下の整数を表わす。
n2は、1以上6以下の整数を表わす。
n3及びn4は、各々独立に、1以上8以下の整数を表わす。
n5及びn10は、各々独立に、1以上10以下の整数を表わす。
n6〜n9及びn11〜n14は、各々独立に、0以上10以下の整数を表わす。
n 1 represents an integer of 0 or more and 6 or less.
n 2 represents an integer of 1 to 6.
n 3 and n 4 each independently represents an integer of 1 or more and 8 or less.
n 5 and n 10 each independently represents an integer of 1 or more and 10 or less.
n 6 ~n 9 and n 11 ~n 14 each independently represent an integer of 0 to 10.
中でもR7としては、下記一般式(3)で表わされる構造が好ましい。
上記式(3)中、R8及びR9は各々独立に、水素原子又はアルキル基を表わす。中でもアルキル基が好ましい。アルキル基としては鎖状でも環状でもよく、それらが結合したものでもよいが、鎖状アルキル基が好ましい。鎖状の場合、直鎖状でも分岐鎖状でもよい。アルキル基の炭素数は、通常C1以上、中でもC4以上、更にはC6以上が好ましく、また、通常C16以下、中でもC14以下、更にはC12以下が好ましい。また、R8とR9とは同一でも異なっていてもよいが、同一であることが好ましい。 In the above formula (3), R 8 and R 9 each independently represents a hydrogen atom or an alkyl group. Of these, an alkyl group is preferred. The alkyl group may be a chain or a ring and may be a combination of them, but a chain alkyl group is preferred. In the case of a chain, it may be linear or branched. The carbon number of the alkyl group is usually C1 or more, preferably C4 or more, more preferably C6 or more, and usually C16 or less, particularly C14 or less, and more preferably C12 or less. R 8 and R 9 may be the same or different, but are preferably the same.
上記式(3)中、nは、4以上の整数を表わす。好ましくは6以上、更に好ましくは10以上である。nの値が小さすぎると、半導体として塗布する際の成膜性が悪化するので好ましくない。一方、nの上限としては、好ましくは200以下、より好ましくは180以下、更に好ましくは150以下の範囲である。nの値が大きすぎると、溶解性が悪化するので好ましくない。 In the above formula (3), n represents an integer of 4 or more. Preferably it is 6 or more, More preferably, it is 10 or more. If the value of n is too small, the film formability when applied as a semiconductor deteriorates, which is not preferable. On the other hand, the upper limit of n is preferably 200 or less, more preferably 180 or less, and still more preferably 150 or less. If the value of n is too large, the solubility is deteriorated.
上述の非特許文献1〜5に記載の技術に代表される従来のπ共役系高分子の重合法では、上記式(3)の構造を有するモノマーを重合させることは困難であった。しかし、本発明の製造方法によれば、このような構造のモノマーをも効率的に重合させることが可能となり、従来合成が困難だった新規な構造のπ共役系高分子化合物が得られるので、上記式(3)の構造を有するモノマーを用いることが好ましい。
In the conventional polymerization method of π-conjugated polymer represented by the techniques described in
本発明のモノマーとしては、上述の一般式(2)で表わされる化合物のうち、一種を単独で用いても良く、二種以上を任意の組み合わせで併用しても良い。二種以上のモノマーを併用する場合、その比率も特に制限されず、目的とする高分子化合物の構造に応じて、適宜調整すればよい。 As a monomer of this invention, 1 type may be used independently among the compounds represented by the above-mentioned general formula (2), and 2 or more types may be used in any combination. When two or more types of monomers are used in combination, the ratio is not particularly limited, and may be appropriately adjusted according to the structure of the target polymer compound.
[I−3.触媒]
本発明の製造方法において使用される触媒は、ニッケル錯体及び/又はパラジウム錯体である。
[I-3. catalyst]
The catalyst used in the production method of the present invention is a nickel complex and / or a palladium complex.
ニッケル錯体の例としては、ビス(1,5−シクロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、ジクロロ(2,2′−ビピリジン)ニッケルなどが挙げられる。中でも、式(2)の化合物に対する重合能力が高いという点で、ビス(1,5−シクロオクタジエン)ニッケル等のニッケル(0価)錯体が好ましい。なお、ニッケル錯体は、何れか一種を単独で用いても良く、二種以上を任意の組成及び組み合わせで用いても良い。また、ジクロロ(2,2′−ビピリジン)ニッケル(2価)と脱ハロゲン化剤としてマグネシウムや亜鉛を併用することもできる。 Examples of the nickel complex include bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, dichloro (2,2'-bipyridine) nickel and the like. Among these, a nickel (zero-valent) complex such as bis (1,5-cyclooctadiene) nickel is preferable in that the polymerization ability with respect to the compound of the formula (2) is high. In addition, a nickel complex may be used individually by 1 type, and may use 2 or more types by arbitrary compositions and combinations. Further, dichloro (2,2′-bipyridine) nickel (divalent) and magnesium or zinc as a dehalogenating agent can be used in combination.
パラジウム錯体の例としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロ{1,3−ビス(ジフェニルホスフィン)プロパン}パラジウムなどが挙げられる。中でも、式(3)の化合物に対する重合能力が高いという点で、テトラキス(トリフェニルホスフィン)パラジウムが好ましい。なお、これらのパラジウム錯体は、何れか一種を単独で用いても良く、二種以上を任意の組成及び組み合わせで用いても良い。 Examples of the palladium complex include tetrakis (triphenylphosphine) palladium and dichloro {1,3-bis (diphenylphosphine) propane} palladium. Among these, tetrakis (triphenylphosphine) palladium is preferable because it has a high polymerization ability with respect to the compound of formula (3). In addition, any one of these palladium complexes may be used alone, or two or more thereof may be used in any composition and combination.
ニッケル錯体とパラジウム錯体は、何れか一方のみを用いても良いが、一種又は二種以上のニッケル錯体と、一種又は二種以上のパラジウム錯体とを、任意の組み合わせ及び比率で併用しても良い。 Only one of the nickel complex and the palladium complex may be used, but one or more nickel complexes and one or more palladium complexes may be used in any combination and ratio. .
触媒の使用量は、原料となる全モノマーに対するモル比の値で、通常5×10-3倍以上、5×10-2倍以下の範囲である。二種以上の触媒を併用する場合には、これらの合計の量が上記範囲に収まるようにする。 The amount of the catalyst used is a value of a molar ratio with respect to all monomers as a raw material, and is usually in the range of 5 × 10 −3 times or more and 5 × 10 −2 times or less. When two or more kinds of catalysts are used in combination, the total amount of these is set within the above range.
[I−4.反応手順]
重合反応の手順は特に制限されないが、通常は反応容器中で、上述の縮合剤(一般式(1)で表わされる化合物)及びモノマー(一般式(2)で表わされる化合物)を、溶剤を用いて溶解又は分散させ、そこに触媒(ニッケル錯体及び/又はパラジウム錯体)を加えて反応を開始する。
[I-4. Reaction procedure]
The procedure of the polymerization reaction is not particularly limited. Usually, in the reaction vessel, the above-mentioned condensing agent (compound represented by the general formula (1)) and monomer (compound represented by the general formula (2)) are used in a solvent. Then, the catalyst (nickel complex and / or palladium complex) is added thereto to start the reaction.
溶剤としては、縮合剤及びモノマーを好適に溶解又は分散させることができ、且つ、縮合剤やモノマー及び得られる高分子化合物との間に好ましからぬ反応を生じないものであれば、その種類は特に制限されない。例としては、N,N−ジメチルホルムアミド、テトラヒドロフラン、トルエン、NMP(N−メチル−2−ピロリドン)、ジイソプロピルアミンなどが挙げられる。溶剤は一種を単独で用いても良く、二種以上を任意の組み合わせ及び比率で混合して用いても良い。
As the solvent, the kind is particularly suitable as long as it can dissolve or disperse the condensing agent and the monomer suitably and does not cause an undesirable reaction between the condensing agent and the monomer and the resulting polymer compound. Not limited. Examples include N, N-dimethylformamide, tetrahydrofuran, toluene, NMP (N-methyl-2-pyrrolidone), diisopropylamine and the like. A solvent may be used individually by 1 type, and may mix and
重合反応時の雰囲気は特に限定されないが、通常は空気中又は不活性雰囲気下、好ましくは不活性雰囲気下で行なう。不活性雰囲気の例としては窒素ガス雰囲気が挙げられる。 Although the atmosphere during the polymerization reaction is not particularly limited, it is usually carried out in air or under an inert atmosphere, preferably under an inert atmosphere. An example of the inert atmosphere is a nitrogen gas atmosphere.
重合反応時の温度に特に制限はないが、通常20℃以上、好ましくは40℃以上、また、通常100℃以下、好ましくは80℃以下の範囲である。
重合反応時の圧力にも特に制限はないが、通常は常圧で行なう。
Although there is no restriction | limiting in particular in the temperature at the time of a polymerization reaction, Usually, 20 degreeC or more, Preferably it is 40 degreeC or more, and is 100 degrees C or less normally, Preferably it is the range of 80 degrees C or less.
Although there is no restriction | limiting in particular also in the pressure at the time of a polymerization reaction, Usually, it carries out at a normal pressure.
重合反応の時間は、使用するモノマーや触媒の種類、重合時の温度や圧力等によっても異なるが、通常1時間以上、好ましくは5時間以上、また、通常200時間以下、好ましくは100時間以下、更に好ましくは80時間以下の範囲である。 The polymerization reaction time varies depending on the type of monomer and catalyst used, the temperature and pressure during polymerization, etc., but usually 1 hour or more, preferably 5 hours or more, and usually 200 hours or less, preferably 100 hours or less, More preferably, it is the range for 80 hours or less.
重合反応の終了後、得られた高分子化合物を任意の方法で回収し、必要に応じて後処理を行なう。反応溶液から高分子化合物を回収する方法としては、再沈殿等の方法が挙げられる。また、後処理としては、キレート化剤等を用いた洗浄による金属錯体の除去等が挙げられる。 After completion of the polymerization reaction, the obtained polymer compound is recovered by an arbitrary method, and post-treatment is performed as necessary. Examples of a method for recovering the polymer compound from the reaction solution include a method such as reprecipitation. Examples of the post-treatment include removal of the metal complex by washing with a chelating agent or the like.
[I−5.高分子化合物]
本発明の製造方法によって得られる高分子化合物(以下適宜「本発明の高分子化合物」と略称する。)は、上記一般式(2)のR7の構造(2価の有機基)を繰り返し単位として含有するものである。中でも、R7の繰り返し単位がπ共役構造を有する構造であることが好ましく、更には、複素環構造を含むものであることが好ましい。この様な構造を有する高分子化合物は、半導体としての性質を示し、後述する有機半導体デバイス等の分野に好適に使用することができる。
[I-5. Polymer compound]
The polymer compound obtained by the production method of the present invention (hereinafter abbreviated as “the polymer compound of the present invention” as appropriate) is a repeating unit of the structure of R 7 (divalent organic group) of the above general formula (2). It is contained as Among them, the repeating unit of R 7 is preferably a structure having a π conjugated structure, and further preferably includes a heterocyclic structure. The polymer compound having such a structure exhibits properties as a semiconductor and can be suitably used in the field of organic semiconductor devices and the like described later.
特に、本発明の高分子化合物としては、上記式(3)の構造を繰り返し単位として有するものが好ましい。式(3)の構造を有する高分子化合物は、新規骨格のπ共役系高分子化合物であって、上述の様に、従来の高分子化合物の製造方法では得られなかったものである。また、このような高分子化合物は、電気特性や耐熱性に優れ、電気的安定性が良いという利点があり、半導体材料として好適に使用できる。更に、酸化・還元が可逆で生じるので、両極性の半導体材料にも応用できる可能性がある。 In particular, the polymer compound of the present invention preferably has a structure of the above formula (3) as a repeating unit. The polymer compound having the structure of the formula (3) is a π-conjugated polymer compound having a novel skeleton, and as described above, cannot be obtained by a conventional method for producing a polymer compound. Moreover, such a high molecular compound has the advantage that it is excellent in electrical characteristics and heat resistance and has good electrical stability, and can be suitably used as a semiconductor material. Furthermore, since oxidation / reduction occurs reversibly, it may be applicable to bipolar semiconductor materials.
なお、本発明の高分子化合物の構造は、核磁気共鳴(以下「NMR」と略す。)スペクトル、赤外(以下「IR」と略す。)スペクトル、元素分析法、質量分析法(以下「MS」と略す。)等の方法で分析し、同定することが可能である。 The structure of the polymer compound of the present invention has a nuclear magnetic resonance (hereinafter abbreviated as “NMR”) spectrum, infrared (hereinafter abbreviated as “IR”) spectrum, elemental analysis method, mass spectrometry (hereinafter referred to as “MS”). It is possible to analyze and identify by a method such as “.
例としては、本発明の高分子化合物を含有する有機電子デバイス等から、洗浄等の方法によって本発明の高分子化合物を分離し、更に、熱重量分析−質量分析(以下「TG−MS」と略す。)法によって分解物の構造から繰り返し単位の構造(例えば上記式(3)の構造など)を同定する、元素分析法で元素の組成比を定量する、NMRスペクトル測定やIRスペクトル測定で結合状態を同定する等の手法によって、繰り返し単位の構造(例えば上記式(3)の構造など)を同定することが可能である。具体例としては、Polymer Journal, Vol. 32, No. 11, p.991-994, 2000に記載のポリ−ニトロピリジンでの測定と同様の方法で行なうことができる。 For example, the polymer compound of the present invention is separated from an organic electronic device containing the polymer compound of the present invention by a method such as washing, and further, thermogravimetric analysis-mass spectrometry (hereinafter referred to as “TG-MS”). The structure of the repeating unit (for example, the structure of the above formula (3), etc.) is identified from the structure of the decomposition product by the method, the composition ratio of the element is quantified by the elemental analysis method, and is combined by the NMR spectrum measurement or IR spectrum measurement. The structure of the repeating unit (for example, the structure of the above formula (3)) can be identified by a technique such as identifying the state. As a specific example, it can be carried out by the same method as the measurement with poly-nitropyridine described in Polymer Journal, Vol. 32, No. 11, p.991-994, 2000.
本発明の高分子化合物の分子量としては、特に制限はなく、その用途に応じて適切な範囲となるように選択すればよい。例えば、本発明の高分子化合物を、後述する有機電子デバイス等の電荷輸送層として使用する場合には、通常はこれを成膜するために、高分子を溶媒に溶解して塗布する方法を行うが、その際に、高分子化合物の分子量が高いほど、成膜後の膜強度や均一性に優れた膜を得ることができる。その一方で、高分子の分子量が高過ぎると、溶媒に溶け難くなったりする虞があり好ましくない。従って、本発明の高分子化合物の分子量は、その加工性、用途等によって最適値が異なり、それぞれに使い分けることが好ましい。 There is no restriction | limiting in particular as molecular weight of the high molecular compound of this invention, What is necessary is just to select so that it may become a suitable range according to the use. For example, when the polymer compound of the present invention is used as a charge transport layer for an organic electronic device or the like, which will be described later, usually, a method of coating the polymer by dissolving it in a solvent is performed in order to form the film. However, at this time, the higher the molecular weight of the polymer compound, the more excellent the film strength and uniformity after film formation can be obtained. On the other hand, if the molecular weight of the polymer is too high, it may be difficult to dissolve in a solvent, which is not preferable. Accordingly, the molecular weight of the polymer compound of the present invention varies depending on its processability, application, etc., and is preferably used separately.
一般的に、本発明の高分子化合物の分子量、GPCによる分子量測定で得られる重量平均分子量の値で、通常300以上、中でも1000以上であることが好ましい。上限は特に制限されないが、通常10万以下である。中でも、本発明の高分子化合物が式(3)の構造を繰り返し単位とするものである場合、その分子量は、GPCによる分子量測定で得られる数平均分子量の値で、通常5000以上、中でも1万以上、更には2万以上、また、通常10万以下、中でも5万以下、更には3万以下の範囲であることが好ましい。 In general, the molecular weight of the polymer compound of the present invention and the weight average molecular weight value obtained by molecular weight measurement by GPC are usually 300 or more, preferably 1000 or more. The upper limit is not particularly limited, but is usually 100,000 or less. In particular, when the polymer compound of the present invention has a structure represented by the formula (3) as a repeating unit, the molecular weight is a number average molecular weight value obtained by molecular weight measurement by GPC and is usually 5000 or more, especially 10,000. More preferably, it is in the range of 20,000 or more, usually 100,000 or less, especially 50,000 or less, and further 30,000 or less.
なお、本発明の高分子化合物の分子量は、例えばゲルパーミエーションクロマトグラフィー(以下「GPC」と略す。)等の液体クロマトグラフィーにより測定することができる。具体的には、例えば、Polymer Journal, 2000, Vol.32, No.11, p.991-994に記載のポリ−ニトロピリジンでの測定と同様に、ジメチルホルムアミド、クロロホルム、トリフルオロ酢酸等の溶媒に溶解し、GPCにより測定することができる。 The molecular weight of the polymer compound of the present invention can be measured by liquid chromatography such as gel permeation chromatography (hereinafter abbreviated as “GPC”). Specifically, for example, as in the measurement with poly-nitropyridine described in Polymer Journal, 2000, Vol. 32, No. 11, p. 991-994, a solvent such as dimethylformamide, chloroform, trifluoroacetic acid or the like. And can be measured by GPC.
また、本発明の高分子化合物が半導体としての性質を示すことは、電気測定により確認することができる。具体的には、高分子化合物を用いて電界効果トランジスタ素子を作製することにより、確認することができる。 Moreover, it can confirm by the electrical measurement that the high molecular compound of this invention shows the property as a semiconductor. Specifically, it can be confirmed by producing a field effect transistor element using a polymer compound.
〔II.有機電子デバイス〕
次に、本発明の有機電子デバイスについて説明する。
本発明の有機電子デバイスは、上述した本発明の高分子化合物を用いて形成されたことを特徴としている。本発明の高分子化合物を適用可能なものであれば、有機電子デバイスの種類に特に制限はない。例としては、発光素子、スイッチング素子、光電変換素子、光電導性を利用した光センサー、太陽電池等が挙げられる。
[II. Organic electronic devices)
Next, the organic electronic device of the present invention will be described.
The organic electronic device of the present invention is formed using the above-described polymer compound of the present invention. There are no particular restrictions on the type of organic electronic device as long as the polymer compound of the present invention is applicable. Examples include a light emitting element, a switching element, a photoelectric conversion element, a photosensor utilizing photoelectric conductivity, a solar cell, and the like.
発光素子としては、表示デバイスに用いられる各種の発光素子が挙げられる。具体例としては、液晶表示素子、高分子分散型液晶表示素子、電気泳動表示素子、エレクトロルミネッセント(EL)素子、エレクトロクロミック素子等が挙げられる。 Examples of the light emitting element include various light emitting elements used for display devices. Specific examples include a liquid crystal display element, a polymer dispersion type liquid crystal display element, an electrophoretic display element, an electroluminescent (EL) element, an electrochromic element, and the like.
スイッチング素子の具体例としては、ダイオード(pn接合ダイオード、ショットキー・ダイオード、MOSダイオード等)、トランジスタ(バイポーラートランジスタ、電界効果トランジスタ(FET)等)、サイリスタ、更にはそれらの複合素子(例えばTTL等)等が挙げられる。 Specific examples of the switching element include a diode (pn junction diode, Schottky diode, MOS diode, etc.), a transistor (bipolar transistor, field effect transistor (FET), etc.), a thyristor, and a composite element thereof (for example, TTL). Etc.).
光電変換素子の具体例としては、電荷結合素子(CCD)、光電子増倍管、フォトカプラ等が挙げられる。また、光電導性を利用した光センサーとしては、これらの光電変換素子を利用したものが挙げられる。 Specific examples of the photoelectric conversion element include a charge coupled device (CCD), a photomultiplier tube, and a photocoupler. Moreover, what utilized these photoelectric conversion elements is mentioned as an optical sensor using photoelectric conductivity.
本発明の高分子化合物を有機電子デバイスのどの部位に用いるかは特に制限されず、半導体としての特性を生かすことができる部位であれば、任意の部位に用いることが可能であるが、通常は有機電子デバイスの電荷輸送層(電荷輸送膜)に使用される。また、ドーピング処理を施すことにより、電気伝導度が上昇し、導電性を有する高分子化合物となるので、有機電子デバイスの電極配線に使用することもできる。 There is no particular limitation on which part of the organic electronic device the polymer compound of the present invention is used, and any part can be used as long as it can take advantage of the characteristics as a semiconductor. Used in the charge transport layer (charge transport film) of organic electronic devices. In addition, the doping treatment increases the electrical conductivity and becomes a conductive polymer compound, so that it can be used for electrode wiring of an organic electronic device.
本発明の有機電子デバイスの例として、スイッチング素子の一種である電界効果トランジスタ(FET)を挙げて説明する。図1〜3はそれぞれ、本発明の有機電子デバイスの一種である電界効果トランジスタ(以下「本発明の電界効果トランジスタ」或いは「本発明のFET」と略する場合がある。)の構成例を模式的に示す断面図である。本発明の電界効果トランジスタの基本的な構造は、図1〜3に示すように、支持基板1上に、絶縁体層3と、この絶縁体層3により隔離されたゲート電極2及び電荷輸送性層4と、この電荷輸送性層4に接するように設けられたソース電極5及びドレイン電極6とを有するものである。各層が積層される順番は特に制限されず、図1〜3の何れの順序で積層されていてもよい。更には、本発明の電界効果トランジスタは何ら図1〜3に示す構造の電界効果トランジスタに限定されず、更に図1〜3に示される層以外の層が形成されていても良い。
As an example of the organic electronic device of the present invention, a field effect transistor (FET) which is a kind of switching element will be described. FIGS. 1 to 3 each schematically illustrate a configuration example of a field effect transistor (hereinafter, may be abbreviated as “the field effect transistor of the present invention” or “the FET of the present invention”) which is a kind of the organic electronic device of the present invention. FIG. As shown in FIGS. 1 to 3, the basic structure of the field effect transistor of the present invention is that an insulating
本発明の高分子化合物を有機電子デバイスに用いる場合には、基板等の上に成膜して電荷輸送膜として用いることが適当である。 When the polymer compound of the present invention is used in an organic electronic device, it is appropriate to form a film on a substrate or the like and use it as a charge transport film.
成膜対象となる基板の材料は、電界効果トランジスタ及びその上に作製される表示素子、表示パネル等を支持できるものであれば、その種類は特に制限されない。例としては、ガラス等の無機基板やポリマーからなるプラスチック基板が挙げられる。中でも好ましくは、ポリエステル、ポリカーボネート、ポリイミド、ポリエーテルスルフォン、アモルファスポリオレフィン、エポキシ樹脂、ポリアミド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ビニル系ポリマー、ポリパラバン酸、ポリシルセスキオキサン、及びシロキサンよりなる群から選択されるプラスチック基板が好適である。更に、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル類やポリカーボネート等の汎用樹脂が強度やコストの点から好ましく、また、ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリパラバン酸等の縮合系高分子や、熱処理などにより不溶化が行なえるポリビニルフェノール等の架橋体が耐熱性や耐溶剤性の点から好ましい。支持基板の構成材料としては、特に、ポリエステル、ポリカーボネート、ポリイミド、ポリベンゾオキサゾールが好ましく、最も好ましいのはポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル及びポリイミドである。 The material of the substrate to be deposited is not particularly limited as long as it can support a field effect transistor and a display element, a display panel, or the like manufactured thereon. Examples include an inorganic substrate such as glass and a plastic substrate made of a polymer. Among these, preferably selected from the group consisting of polyester, polycarbonate, polyimide, polyether sulfone, amorphous polyolefin, epoxy resin, polyamide, polybenzoxazole, polybenzothiazole, vinyl polymer, polyparabanic acid, polysilsesquioxane, and siloxane. A plastic substrate is preferred. Further, general-purpose resins such as polyesters such as polyethylene terephthalate and polyethylene naphthalate and polycarbonate are preferable from the viewpoint of strength and cost, and condensation polymers such as polyimide, polyamide, polybenzoxazole, polybenzothiazole, polyparabanic acid, and the like A crosslinked product such as polyvinylphenol that can be insolubilized by heat treatment or the like is preferable from the viewpoint of heat resistance and solvent resistance. As a constituent material of the support substrate, polyester, polycarbonate, polyimide, and polybenzoxazole are particularly preferable, and polyester and polyimide such as polyethylene terephthalate and polyethylene naphthalate are most preferable.
塗布の方法としては、溶液をたらして乾燥するだけのキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を用いることができる。更に、塗布に類似の技術として、水面上に形成した単分子膜を基板に移し積層するラングミュア・ブロジェット法、液晶や融液状態を2枚の基板で挟んだり毛管現象で基板間に導入したりする方法等も挙げられる。 Application methods include casting by simply dropping the solution and drying, coating methods such as spin coating, dip coating, blade coating, wire bar coating, spray coating, ink jet printing, screen printing, offset printing, letterpress printing, etc. A printing lithography method, a soft lithography method such as a microcontact printing method, and a combination of these methods can be used. Furthermore, as a technique similar to coating, the Langmuir-Blodgett method, in which a monomolecular film formed on the water surface is transferred to a substrate and laminated, the liquid crystal or melt state is sandwiched between two substrates or introduced between the substrates by capillary action. And the like.
本発明の高分子化合物から作製される電荷輸送膜の膜厚は特に制限されない。先に例示した電界効果トランジスタの場合、素子の特性は必要な膜厚以上であれば膜厚には依存しない。膜厚が厚くなると漏れ電流が増加してくることが多い。従って、好ましい膜厚は、通常1nm以上、好ましくは10nm以上である。また、通常10μm以下、中でも500nm以下が望ましい。また、本発明の高分子化合物は、それを単独で用いることはもちろんであるが、他の材料との混合で用いることもできるし、更には他の層との積層構造で用いることも出来る。 The thickness of the charge transport film produced from the polymer compound of the present invention is not particularly limited. In the case of the field effect transistor exemplified above, the characteristics of the element do not depend on the film thickness as long as it is greater than the required film thickness. As the film thickness increases, the leakage current often increases. Therefore, the preferable film thickness is usually 1 nm or more, preferably 10 nm or more. Further, it is usually 10 μm or less, and preferably 500 nm or less. In addition, the polymer compound of the present invention can be used alone, but can also be used by mixing with other materials, and can also be used in a laminated structure with other layers.
本発明の高分子化合物から作製された電荷輸送膜は、後処理により特性を改良することが可能である。例えば、加熱処理により、成膜時に生じた膜中の歪みを緩和することができ、特性の向上や安定化を図ることができる。更に、酸素や水素等の酸化性あるいは還元性の気体や液体にさらすことにより、酸化あるいは還元による特性変化を誘起することもできる。これは例えば膜中のキャリア密度の増加あるいは減少の目的で利用することができる。 The charge transport film produced from the polymer compound of the present invention can be improved in properties by post-treatment. For example, the heat treatment can relieve distortion in the film generated during film formation, and can improve and stabilize characteristics. Furthermore, a change in characteristics due to oxidation or reduction can be induced by exposure to an oxidizing or reducing gas or liquid such as oxygen or hydrogen. This can be used for the purpose of increasing or decreasing the carrier density in the film, for example.
有機電子デバイスを作製する際の電極や配線には、本発明の高分子化合物をドーピング処理して用いることができる。ドーピング材料としては、塩酸、硫酸、スルホン酸等の酸、PF6、AsF5、FeCl3等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などが用いられる。その他の電極や配線の材料としては、金、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム、ナトリウム等の金属、InO2、SnO2、ITO等の導電性の酸化物、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子及びそれに塩酸、硫酸、スルホン酸等の酸、PF6、AsF5、FeCl3等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子等のドーピングされた材料、シリコン、ゲルマニウム、ガリウム砒素、等の半導体及びそのドーピングされた材料、フラーレン、カーボンナノチューブ、グラファイト等の炭素材料や金属粒子を分散した導電性の複合材料等の、導電性を有する材料が用いられる。これらを形成する方法も、真空蒸着法、スパッタ法、塗布法、印刷法、ゾルゲル法等を用いることができる。また、そのパターニング方法も、フォトレジストのパターニングとエッチング液や反応性のプラズマでのエッチングを組み合わせたフォトリソグラフィー法、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法及びこれらの手法を複数組み合わせた手法を利用することができる。また、レーザーや電子線等のエネルギー線を照射して材料を除去したり材料の導電性を変化させたりすることにより、直接パターンを作製することも利用できる。 For the electrodes and wirings for producing the organic electronic device, the polymer compound of the present invention can be used after doping treatment. As the doping material, acids such as hydrochloric acid, sulfuric acid and sulfonic acid, Lewis acids such as PF 6 , AsF 5 and FeCl 3 , halogen atoms such as iodine, and metal atoms such as sodium and potassium are used. As the material of the other electrode, a wiring, gold, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, metals such as sodium, InO 2, SnO 2, conductive oxide such as ITO , Conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene and polydiacetylene, and acids such as hydrochloric acid, sulfuric acid and sulfonic acid, Lewis acids such as PF 6 , AsF 5 and FeCl 3 , halogen atoms such as iodine, sodium Conductive composite in which semiconductor materials such as silicon, germanium, gallium arsenide, etc., and doped materials such as potassium, metal atoms, etc., carbon materials such as fullerenes, carbon nanotubes, graphite, and metal particles are dispersed. A material having conductivity, such as a material, is used. As a method for forming them, a vacuum deposition method, a sputtering method, a coating method, a printing method, a sol-gel method, or the like can be used. The patterning method is also a photolithography method combining photoresist patterning and etching with an etchant or reactive plasma, ink-jet printing, screen printing, offset printing, letterpress printing and other printing methods, micro-contact printing method, etc. The soft lithography method and a combination of these methods can be used. In addition, it is also possible to use a direct pattern production by irradiating an energy beam such as a laser or an electron beam to remove the material or change the conductivity of the material.
形成した電荷輸送膜や電極、配線等の表面には、外気の影響を最小限にするために、保護膜を形成することができる。これには、エポキシ樹脂、アクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール等のポリマー膜、酸化珪素、窒化珪素、酸化アルミニウム等の無機酸化膜や窒化膜等が挙げられる。ポリマー膜の形成方法としては、ポリマー溶液を塗布、乾燥する方法や、モノマーを塗布あるいは蒸着して重合する方法等が挙げられる。更には、架橋処理を施したり、多層膜を形成することも可能である。無機物の膜の形成には、スパッタ法、蒸着法等の真空プロセスでの形成方法や、ゾルゲル法に代表される溶液プロセスでの形成方法も用いることができる。 A protective film can be formed on the surface of the formed charge transport film, electrode, wiring or the like in order to minimize the influence of outside air. Examples thereof include polymer films such as epoxy resin, acrylic resin, polyurethane, polyimide, and polyvinyl alcohol, inorganic oxide films such as silicon oxide, silicon nitride, and aluminum oxide, and nitride films. Examples of the method for forming the polymer film include a method in which a polymer solution is applied and dried, and a method in which a monomer is applied or vapor-deposited for polymerization. Furthermore, it is possible to perform a crosslinking treatment or to form a multilayer film. For the formation of the inorganic film, a formation method using a vacuum process such as a sputtering method or a vapor deposition method, or a formation method using a solution process typified by a sol-gel method can be used.
本発明の有機電子デバイスは、その種類に応じて任意の用途に用いることができる。例えば、本発明の高分子化合物を用いた電界効果トランジスタは、ディスプレーのアクティブマトリクスのスイッチング素子として利用することが出来る。これは、ゲートに印加される電圧でソースとドレイン間の電流をスイッチング出来ることを利用して、ある表示素子に電圧を印加あるいは電流を供給する時のみスイッチを入れ、その他の時間は回路を切断する事により、高速、高コントラストな表示を行なうものである。また、従来のアクティブマトリクスの代替としても、省エネルギープロセス、低コストプロセスの可能な素子として有利である。 The organic electronic device of this invention can be used for arbitrary uses according to the kind. For example, a field effect transistor using the polymer compound of the present invention can be used as a switching element for an active matrix of a display. This utilizes the fact that the current between the source and drain can be switched by the voltage applied to the gate, so that the switch is turned on only when a voltage is applied to or supplied to a certain display element, and the circuit is disconnected at other times. By doing so, a high-speed, high-contrast display is performed. Further, as an alternative to the conventional active matrix, it is advantageous as an element capable of an energy saving process and a low cost process.
本発明の有機電子デバイスは、低温プロセスでの素子作製が可能であり、プラスチック基板、プラスチックフィルムや紙等の、高温処理に耐えない基板を用いることができる。また、塗布あるいは印刷プロセスでの素子作製が可能であることから、大面積のディスプレーへの応用に適している。 The organic electronic device of the present invention can be manufactured by a low-temperature process, and a substrate that cannot withstand high-temperature processing, such as a plastic substrate, a plastic film, or paper, can be used. In addition, since the device can be manufactured by a coating or printing process, it is suitable for application to a large area display.
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
なお、以下の各反応式において、「Me」はメチル基を表わし、「Ph」はフェニル基を表わす。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
In the following reaction formulas, “Me” represents a methyl group, and “Ph” represents a phenyl group.
〔I.モノマーの合成〕
[合成例1]3,6−ビス(2−チエニル)ピリダジンの合成:
窒素雰囲気下、反応容器中でTHF(50mL)にマグネシウム粉末2.67g(110mmol)を分散させ、そこに2−ブロモチオフェン(上記反応式(i)の化合物1a)17.12g(105mmol)をゆっくり滴下して、グリニャール試薬を調製した。得られたグリニャール試薬を、0℃に冷却した3,6−ジクロロピリダジン7.45g(50mmol)とニッケル錯体であるNiCl2(dppp)0.54g(1.0mmol)を溶解させたTHF(50mL)にゆっくり滴下した。滴下終了後、この溶液を60℃で17時間加熱して反応させた。反応終了後、反応液を室温に冷却し、クロロホルム/水で抽出を行なった。クロロホルム相をエバポレーターで減圧濃縮し、回収された固体をクロロホルム−ヘキサン混合溶媒で再結晶することにより、薄黄色の固体状の生成物を得た。
[Synthesis Example 1] Synthesis of 3,6-bis (2-thienyl) pyridazine:
Under a nitrogen atmosphere, 2.67 g (110 mmol) of magnesium powder was dispersed in THF (50 mL) in a reaction vessel, and 17.12 g (105 mmol) of 2-bromothiophene (compound 1a of the above reaction formula (i)) was slowly added thereto. A Grignard reagent was prepared by dropwise addition. The obtained Grignard reagent was dissolved in THF (50 mL) in which 7.45 g (50 mmol) of 3,6-dichloropyridazine cooled to 0 ° C. and 0.54 g (1.0 mmol) of NiCl 2 (dppp) as a nickel complex were dissolved. The solution was slowly dripped into. After completion of the dropwise addition, this solution was heated at 60 ° C. for 17 hours to be reacted. After completion of the reaction, the reaction solution was cooled to room temperature and extracted with chloroform / water. The chloroform phase was concentrated under reduced pressure with an evaporator, and the recovered solid was recrystallized with a chloroform-hexane mixed solvent to obtain a light yellow solid product.
得られた生成物について、1H NMR測定、13C{1H}NMR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.74 (s, 2H), 7.65 (dd, J = 4.0 Hz and 1.2 Hz, 2H), 7.48 (dd, J = 4.8 Hz and 1.2 Hz, 2H), 7.15 (dd, J = 4.8 Hz and 4.0 Hz, 2H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.23, 140.61, 129.10, 127.99, 125.88, 122.42.
Anal. Calcd for C12H8N2S2: C, 58.99; H, 3.30; N, 11.47; S, 26.25.
Found: C, 59.18; H, 3.30; N, 11.43; S, 25.99.
The obtained product was subjected to 1 H NMR measurement, 13 C { 1 H} NMR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.74 (s, 2H), 7.65 (dd, J = 4.0 Hz and 1.2 Hz, 2H), 7.48 (dd, J = 4.8 Hz and 1.2 Hz, 2H), 7.15 (dd, J = 4.8 Hz and 4.0 Hz, 2H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.23, 140.61, 129.10, 127.99, 125.88, 122.42.
Anal.Calcd for C 12 H 8 N 2 S 2 : C, 58.99; H, 3.30; N, 11.47; S, 26.25.
Found: C, 59.18; H, 3.30; N, 11.43; S, 25.99.
以上の結果より、得られた生成物が3,6−ビス(2−チエニル)ピリダジン(上記反応式(i)の化合物2a)であることが確認された。収率は58%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis (2-thienyl) pyridazine (compound 2a in the above reaction formula (i)). The yield was 58%.
[合成例2]3,6−ビス[2−(3−n−ヘキシルチエニル)]ピリダジンの合成:
合成例1において、2−ブロモチオフェンを3−ヘキシル−2−ブロモチオフェン(上記反応式(i)の化合物(1b))に換え、精製法を再結晶からシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=2:1)に換えた以外は、合成例1と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 2 Synthesis of 3,6-bis [2- (3-n-hexylthienyl)] pyridazine:
In Synthesis Example 1, 2-bromothiophene was replaced with 3-hexyl-2-bromothiophene (compound (1b) of the above reaction formula (i)), and the purification method was changed from recrystallization to silica gel column chromatography (chloroform: hexane = 2). 1) A light yellow solid product was obtained by the same procedure as in Synthesis Example 1 except that the procedure was changed to 1).
得られた生成物について、1H NMR測定、13C{1H}NMR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.66 (s, 2H), 7.37 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 4H), 1.68 (m, 4H), 1.38-1.28 (m, 12H), 0.87 (t, J = 7.2 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.80, 142.73, 133.60, 130.75, 126.89, 124.45, 31.70, 30.51, 29.76, 29.25, 22.64, 14.12.
Anal. Calcd for C24H32N2S2: C, 69.85; H, 7.82; N, 6.79; S, 15.54.
Found: C, 69.49; H, 7.65; N, 6.51; S, 15.20.
The obtained product was subjected to 1 H NMR measurement, 13 C { 1 H} NMR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.66 (s, 2H), 7.37 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 4H), 1.68 (m, 4H), 1.38-1.28 (m, 12H), 0.87 (t, J = 7.2 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.80, 142.73, 133.60, 130.75, 126.89, 124.45, 31.70, 30.51, 29.76, 29.25, 22.64, 14.12.
Anal.Calcd for C 24 H 32 N 2 S 2 : C, 69.85; H, 7.82; N, 6.79; S, 15.54.
Found: C, 69.49; H, 7.65; N, 6.51; S, 15.20.
以上の結果より、得られた生成物が3,6−ビス[2−(3−n−ヘキシルチエニル)]ピリダジン(上記反応式(i)の化合物2b)であることが確認された。その収率は74%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (3-n-hexylthienyl)] pyridazine (Compound 2b in the above reaction formula (i)). The yield was 74%.
[合成例3]3,6−ビス[2−(3−n−デシルチエニル)]ピリダジンの合成:
合成例1において、2−ブロモチオフェンを3−デシル−2−ブロモチオフェン(上記反応式(i)の化合物1c)に換え、精製法を再結晶からクロロホルム:ヘキサン=2:1のシリカゲルカラムクロマトグラフィーに換えた以外は、合成例1と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 3 Synthesis of 3,6-bis [2- (3-n-decylthienyl)] pyridazine:
In Synthesis Example 1, 2-bromothiophene was replaced with 3-decyl-2-bromothiophene (compound 1c of the above reaction formula (i)), and the purification method was recrystallized to silica gel column chromatography with chloroform: hexane = 2: 1. A pale yellow solid product was obtained by the same procedure as in Synthesis Example 1 except that
得られた生成物について、1H NMR測定、13C{1H}NMR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.66 (s, 2H), 7.38 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 4H), 1.69 (m, 4H), 1.38-1.24 (m, 28H), 0.87 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.83, 142.76, 133.62, 130.77, 126.90, 124.47, 31.93, 30.57, 29.78, 29.66, 29.64, 29.62, 29.55, 29.38, 22.73, 14.18.
Anal. Calcd for C32H48N2S2: C, 73.23; H, 9.22; N, 5.34; S, 12.22.
Found: C, 72.96; H, 8.97; N, 5.15; S, 11.86.
The obtained product was subjected to 1 H NMR measurement, 13 C { 1 H} NMR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.66 (s, 2H), 7.38 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 4H), 1.69 (m, 4H), 1.38-1.24 (m, 28H), 0.87 (t, J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.83, 142.76, 133.62, 130.77, 126.90, 124.47, 31.93, 30.57, 29.78, 29.66, 29.64, 29.62, 29.55, 29.38, 22.73, 14.18.
Anal.Calcd for C 32 H 48 N 2 S 2 : C, 73.23; H, 9.22; N, 5.34; S, 12.22.
Found: C, 72.96; H, 8.97; N, 5.15; S, 11.86.
以上の結果より、得られた生成物が3,6−ビス[2−(3−n−デシルチエニル)]ピリダジン(上記反応式(i)の化合物2c)であることが確認された。その収率は59%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (3-n-decylthienyl)] pyridazine (compound 2c in the above reaction formula (i)). The yield was 59%.
[合成例4]3,6−ビス[2−(3−n−ドデシルチエニル)]ピリダジンの合成:
合成例1において、2−ブロモチオフェンを3−ドデシル−2−ブロモチオフェン(上記反応式(i)の化合物1d)に換え、精製法を再結晶からシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=2:1)に換えた以外は、合成例1と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 4 Synthesis of 3,6-bis [2- (3-n-dodecylthienyl)] pyridazine:
In Synthesis Example 1, 2-bromothiophene was replaced with 3-dodecyl-2-bromothiophene (compound 1d of the above reaction formula (i)), and the purification method was changed from recrystallization to silica gel column chromatography (chloroform: hexane = 2: 1). ), And a light yellow solid product was obtained by the same procedure as in Synthesis Example 1.
得られた生成物について、1H NMR測定、13C{1H}NMR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.66 (s, 2H), 7.38 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.96 (t, J = 7.6 Hz, 4H), 1.69 (m, 4H), 1.38-1.24 (m, 36H), 0.87 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.86, 142.79, 133.65, 130.79, 126.90, 124.49, 31.97, 30.59, 29.80, 29.73, 29.71, 29.66, 29.62, 29.57, 29.40, 22.75, 14.18.
Anal. Calcd for C36H56N2S2: C, 74.42; H, 9.72; N, 4.82; S, 11.04.
Found: C, 74.58; H, 9.66; N, 4.68; S, 10.76.
The obtained product was subjected to 1 H NMR measurement, 13 C { 1 H} NMR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.66 (s, 2H), 7.38 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.96 (t, J = 7.6 Hz, 4H), 1.69 (m, 4H), 1.38-1.24 (m, 36H), 0.87 (t, J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.86, 142.79, 133.65, 130.79, 126.90, 124.49, 31.97, 30.59, 29.80, 29.73, 29.71, 29.66, 29.62, 29.57, 29.40, 22.75, 14.18.
Anal.Calcd for C 36 H 56 N 2 S 2 : C, 74.42; H, 9.72; N, 4.82; S, 11.04.
Found: C, 74.58; H, 9.66; N, 4.68; S, 10.76.
以上の結果より、得られた生成物が3,6−ビス[2−(3−n−ドデシルチエニル)]ピリダジン(上記反応式(i)の化合物2d)であることが確認された。その収率は62%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (3-n-dodecylthienyl)] pyridazine (compound 2d in the above reaction formula (i)). The yield was 62%.
[合成例5]3,6−ビス[2−(3−n−テトラデシルチエニル)]ピリダジンの合成:
合成例1において、2−ブロモチオフェンを3−テトラデシル−2−ブロモチオフェン(上記反応式(i)の化合物1e)に換え、精製法を再結晶からシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=2:1)に換えた以外は、合成例1と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 5 Synthesis of 3,6-bis [2- (3-n-tetradecylthienyl)] pyridazine:
In Synthesis Example 1, 2-bromothiophene was replaced with 3-tetradecyl-2-bromothiophene (compound 1e in the above reaction formula (i)), and the purification method was changed from recrystallization to silica gel column chromatography (chloroform: hexane = 2: 1). ), And a light yellow solid product was obtained by the same procedure as in Synthesis Example 1.
得られた生成物について、1H NMR測定、13C{1H}NMR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.66 (s, 2H), 7.38 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 4H), 1.69 (m, 4H), 1.38-1.24 (m, 36H), 0.88 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.84, 142.77, 133.63, 130.78, 126.91, 124.48, 31.97, 30.58, 29.79, 29.74, 29.71, 29.66, 29.62, 29.57, 29.41, 22.75, 14.19.
Anal. Calcd for C40H64N2S2: C, 75.41; H, 10.13; N, 4.40; S, 10.07.
Found: C, 75.28; H, 10.19; N, 4.31; S, 9.83.
The obtained product was subjected to 1 H NMR measurement, 13 C { 1 H} NMR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.66 (s, 2H), 7.38 (d, J = 5.2 Hz, 2H), 7.03 (d, J = 5.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 4H), 1.69 (m, 4H), 1.38-1.24 (m, 36H), 0.88 (t, J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.84, 142.77, 133.63, 130.78, 126.91, 124.48, 31.97, 30.58, 29.79, 29.74, 29.71, 29.66, 29.62, 29.57, 29.41, 22.75, 14.19.
Anal.Calcd for C 40 H 64 N 2 S 2 : C, 75.41; H, 10.13; N, 4.40; S, 10.07.
Found: C, 75.28; H, 10.19; N, 4.31; S, 9.83.
以上の結果より、得られた生成物が3,6−ビス[2−(3−n−テトラデシルチエニル)]ピリダジン(上記反応式(i)の化合物2e)であることが確認された。その収率は60%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (3-n-tetradecylthienyl)] pyridazine (compound 2e in the above reaction formula (i)). The yield was 60%.
〔II.モノマーのジハロゲン化〕
[合成例6]3,6−ビス[2−(5−ブロモチエニル)]ピリダジンの合成:
室温、窒素雰囲気下において、合成例1で得られた化合物2aを1.71g(7.0mmol)、ジメチルホルムアミド(DMF)50mLに溶解させ、N−ブロモシクニシンイミド(NBS)2.62g(14.7mmol)をゆっくり加えた後、60℃に昇温して12時間反応を行なった。反応終了後、室温に冷却し、反応溶液を水へ投入して沈殿処理を行なった。得られた沈殿物を濾別回収してメタノールで洗浄することにより、薄黄色の固体状の生成物を得た。
Synthesis Example 6 Synthesis of 3,6-bis [2- (5-bromothienyl)] pyridazine:
In a nitrogen atmosphere at room temperature, the compound 2a obtained in Synthesis Example 1 was dissolved in 1.71 g (7.0 mmol) and dimethylformamide (DMF) 50 mL, and 2.62 g (14) of N-bromocyclisinimide (NBS) was obtained. 0.7 mmol) was slowly added, and the temperature was raised to 60 ° C. and the reaction was carried out for 12 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the reaction solution was poured into water for precipitation treatment. The resulting precipitate was collected by filtration and washed with methanol to obtain a light yellow solid product.
得られた生成物について、1H NMR測定、CP−MAS(cross-polarization - magic angle spinning) 13C NMR測定、FT−IR(Fourier transform - infrared)測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.69 (s, 2H), 7.38 (d, J = 4.4 Hz, 2H), 7.11 (d, J = 4.4 Hz, 2H).
CP-MAS 13C NMR: δ 148.02, 137.75, 123.87, 118.99.
FT-IR (KBr, cm?1): 3091, 3061, 1579, 1552, 1435, 1401, 1325, 1216, 1121, 1061, 990, 856, 839, 792, 748.
Anal. Calcd for C12H6Br2N2S2: C, 35.84; H, 1.50; Br, 39.74; N, 6.97; S, 15.95.
Found: C, 35.97; H, 1.56; Br, 39.48; N, 6.90; S, 15.72.
The obtained product was subjected to 1 H NMR measurement, CP-MAS (cross-polarization-magic angle spinning) 13 C NMR measurement, FT-IR (Fourier transform-infrared) measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.69 (s, 2H), 7.38 (d, J = 4.4 Hz, 2H), 7.11 (d, J = 4.4 Hz, 2H).
CP-MAS 13 C NMR: δ 148.02, 137.75, 123.87, 118.99.
FT-IR (KBr, cm ? 1 ): 3091, 3061, 1579, 1552, 1435, 1401, 1325, 1216, 1121, 1061, 990, 856, 839, 792, 748.
Anal.Calcd for C 12 H 6 Br 2 N 2 S 2 : C, 35.84; H, 1.50; Br, 39.74; N, 6.97; S, 15.95.
Found: C, 35.97; H, 1.56; Br, 39.48; N, 6.90; S, 15.72.
以上の結果より、得られた生成物が3,6−ビス[2−(5−ブロモチエニル)]ピリダジン(上記反応式(ii)の化合物3a)であることが確認された。収率は96%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (5-bromothienyl)] pyridazine (Compound 3a in the above reaction formula (ii)). The yield was 96%.
[合成例7]3,6−ビス[2−(5−ブロモ−3−n−ヘキシルチエニル)]ピリダジンの合成:
合成例6において、化合物2aを合成例2で得られた化合物2bに換えた以外は、合成例6と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 7 Synthesis of 3,6-bis [2- (5-bromo-3-n-hexylthienyl)] pyridazine:
A light yellow solid product was obtained by the same procedure as in Synthesis Example 6 except that Compound 2a was replaced with Compound 2b obtained in Synthesis Example 2 in Synthesis Example 6.
得られた生成物について、1H NMR測定、CP−MAS 13C NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.59 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.66 (m, 4H), 1.38-1.29 (m, 12H), 0.88 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.04, 143.33, 135.25, 133.48, 123.92, 115.23, 31.67, 30.28, 29.84, 29.20, 22.62, 14.13.
FT-IR (KBr, cm?1): 2951, 2928, 2850, 1553, 1433, 1387, 1201, 1144, 1040, 1008, 823, 729.
Anal. Calcd for C24H30Br2N2S2: C, 50.53; H, 5.30; Br, 28.01; N, 4.91; S, 11.24.
Found: C, 50.19; H, 5.31; Br, 28.34; N, 4.88; S, 11.10.
The obtained product was subjected to 1 H NMR measurement, CP-MAS 13 C NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.59 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.66 (m, 4H), 1.38-1.29 (m , 12H), 0.88 (t, J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.04, 143.33, 135.25, 133.48, 123.92, 115.23, 31.67, 30.28, 29.84, 29.20, 22.62, 14.13.
FT-IR (KBr, cm ? 1 ): 2951, 2928, 2850, 1553, 1433, 1387, 1201, 1144, 1040, 1008, 823, 729.
Anal.Calcd for C 24 H 30 Br 2 N 2 S 2 : C, 50.53; H, 5.30; Br, 28.01; N, 4.91; S, 11.24.
Found: C, 50.19; H, 5.31; Br, 28.34; N, 4.88; S, 11.10.
以上の結果より、得られた生成物が3,6−ビス[2−(5−ブロモ−3−n−ヘキシルチエニル)]ピリダジン(上記反応式(ii)の化合物3b)であることが確認された。その収率は73%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (5-bromo-3-n-hexylthienyl)] pyridazine (compound 3b in the above reaction formula (ii)). It was. The yield was 73%.
[合成例8]3,6−ビス[2−(5−ブロモ−3−n−デシルチエニル)]ピリダジンの合成:
合成例6において、化合物2aを合成例3で得られた化合物2cに換えた以外は、合成例6と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 8 Synthesis of 3,6-bis [2- (5-bromo-3-n-decylthienyl)] pyridazine:
A light yellow solid product was obtained by the same procedure as in Synthesis Example 6 except that Compound 2a was replaced with Compound 2c obtained in Synthesis Example 3 in Synthesis Example 6.
得られた生成物について、1H NMR測定、CP−MAS 13C NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.59 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.65 (m, 4H), 1.37-1.25 (m, 28H), 0.87 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.04, 143.33, 135.26, 133.48, 123.91, 115.22, 31.94, 30.32, 29.83, 29.65, 29.60, 29.52, 29.49, 29.37, 22.74, 14.19.
FT-IR (KBr, cm?1): 3048, 2954, 2918, 2850, 1550, 1469, 1439, 1390, 1121, 1042, 1006, 872, 827, 720.
Anal. Calcd for C32H46Br2N2S2: C, 56.30; H, 6.79; Br, 23.41; N, 4.10; S, 9.39.
Found: C, 56.34; H, 6.57; Br, 23.77; N, 4.36; S, 9.32.
The obtained product was subjected to 1 H NMR measurement, CP-MAS 13 C NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.59 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.65 (m, 4H), 1.37-1.25 (m , 28H), 0.87 (t, J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.04, 143.33, 135.26, 133.48, 123.91, 115.22, 31.94, 30.32, 29.83, 29.65, 29.60, 29.52, 29.49, 29.37, 22.74, 14.19.
FT-IR (KBr, cm ? 1 ): 3048, 2954, 2918, 2850, 1550, 1469, 1439, 1390, 1121, 1042, 1006, 872, 827, 720.
Anal.Calcd for C 32 H 46 Br 2 N 2 S 2 : C, 56.30; H, 6.79; Br, 23.41; N, 4.10; S, 9.39.
Found: C, 56.34; H, 6.57; Br, 23.77; N, 4.36; S, 9.32.
以上の結果より、得られた生成物が3,6−ビス[2−(5−ブロモ−3−n−デシルチエニル)]ピリダジン(上記反応式(ii)の化合物3c)であることが確認された。収率は72%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (5-bromo-3-n-decylthienyl)] pyridazine (compound 3c in the above reaction formula (ii)). . The yield was 72%.
[合成例9]3,6−ビス[2−(5−ブロモ−3−n−ドデシルチエニル)]ピリダジンの合成:
合成例6において、化合物2aを合成例4で得られた化合物2dに換えた以外は、合成例6と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 9 Synthesis of 3,6-bis [2- (5-bromo-3-n-dodecylthienyl)] pyridazine:
A light yellow solid product was obtained by the same procedure as in Synthesis Example 6 except that Compound 2a was replaced with Compound 2d obtained in Synthesis Example 4 in Synthesis Example 6.
得られた生成物について、1H NMR測定、CP−MAS 13C NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.58 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.66 (m, 4H), 1.37-1.25 (m, 36H), 0.88 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.08, 143.38, 135.28, 133.51, 123.93, 115.21, 31.97, 30.33, 29.85, 29.72, 29.70, 29.60, 29.52, 29.50, 29.41, 22.75, 14.18.
FT-IR (KBr, cm?1): 3047, 2953, 2918, 2850, 1550, 1469, 1439, 1389, 1329, 1121, 1044, 1003, 871, 828, 720.
Anal. Calcd for C36H54Br2N2S2: C, 58.53; H, 7.37; Br, 21.63; N, 3.79; S, 8.68.
Found: C, 58.26; H, 7.24; Br, 21.79; N, 3.84; S, 8.57.
The obtained product was subjected to 1 H NMR measurement, CP-MAS 13 C NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.58 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.66 (m, 4H), 1.37-1.25 (m , 36H), 0.88 (t, J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.08, 143.38, 135.28, 133.51, 123.93, 115.21, 31.97, 30.33, 29.85, 29.72, 29.70, 29.60, 29.52, 29.50, 29.41, 22.75, 14.18.
FT-IR (KBr, cm ? 1 ): 3047, 2953, 2918, 2850, 1550, 1469, 1439, 1389, 1329, 1121, 1044, 1003, 871, 828, 720.
Anal.Calcd for C 36 H 54 Br 2 N 2 S 2 : C, 58.53; H, 7.37; Br, 21.63; N, 3.79; S, 8.68.
Found: C, 58.26; H, 7.24; Br, 21.79; N, 3.84; S, 8.57.
以上の結果より、得られた生成物が3,6−ビス[2−(5−ブロモ−3−n−ドデシルチエニル)]ピリダジン(上記反応式(ii)の化合物3d)であることが確認された。収率は88%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (5-bromo-3-n-dodecylthienyl)] pyridazine (compound 3d in the above reaction formula (ii)). It was. The yield was 88%.
[合成例10]3,6−ビス[2−(5−ブロモ−3−n−テトラデシルチエニル)]ピリダジンの合成:
合成例6において、化合物2aを合成例5で得られた化合物2eに換えた以外は、合成例6と同様の手順により、薄黄色の固体状の生成物を得た。
Synthesis Example 10 Synthesis of 3,6-bis [2- (5-bromo-3-n-tetradecylthienyl)] pyridazine:
A light yellow solid product was obtained by the same procedure as in Synthesis Example 6 except that Compound 2a was replaced with Compound 2e obtained in Synthesis Example 5 in Synthesis Example 6.
得られた生成物について、1H NMR測定、CP−MAS 13C NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.59 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.37-1.25 (m, 44H), 0.88 (t, J = 6.8 Hz, 6H).
13C[1H] NMR (100 MHz, CDCl3): δ 153.05, 143.35, 135.27, 133.49, 123.92, 115.23, 31.98, 30.32, 29.84, 29.76, 29.73, 29.71, 29.61, 29.52, 29.50, 29.42, 22.76, 14.20.
FT-IR (KBr, cm?1): 3047, 2953, 2918, 2849, 1551, 1468, 1439, 1391, 1330, 1122, 1044, 1004, 872, 827, 721.
Anal. Calcd for C40H62Br2N2S2: C, 60.44; H, 7.86; Br, 20.10; N, 3.52; S, 8.07.
Found: C, 60.78; H, 7.87; Br, 20.19; N, 3.55; S, 8.35.
The obtained product was subjected to 1 H NMR measurement, CP-MAS 13 C NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.59 (s, 2H), 6.98 (s, 2H), 2.86 (t, J = 7.6 Hz, 4H), 1.37-1.25 (m, 44H), 0.88 (t , J = 6.8 Hz, 6H).
13 C [ 1 H] NMR (100 MHz, CDCl 3 ): δ 153.05, 143.35, 135.27, 133.49, 123.92, 115.23, 31.98, 30.32, 29.84, 29.76, 29.73, 29.71, 29.61, 29.52, 29.50, 29.42, 22.76, 14.20.
FT-IR (KBr, cm ? 1 ): 3047, 2953, 2918, 2849, 1551, 1468, 1439, 1391, 1330, 1122, 1044, 1004, 872, 827, 721.
Anal.Calcd for C 40 H 62 Br 2 N 2 S 2 : C, 60.44; H, 7.86; Br, 20.10; N, 3.52; S, 8.07.
Found: C, 60.78; H, 7.87; Br, 20.19; N, 3.55; S, 8.35.
以上の結果より、得られた生成物が3,6−ビス[2−(5−ブロモ−3−n−テトラデシルチエニル)]ピリダジン(上記反応式(ii)の化合物3e)であることが確認された。収率は75%であった。 From the above results, it was confirmed that the obtained product was 3,6-bis [2- (5-bromo-3-n-tetradecylthienyl)] pyridazine (compound 3e in the above reaction formula (ii)). It was done. The yield was 75%.
〔III.高分子化合物の製造〕
[実施例1]ポリ[3,6−ビス(2−チエニル)ピリダジン](P(PydTh)−H)の合成:
合成例6で得られた化合物3a(1.21g、3.00mmol)、ビス(トリメチル錫)(1.03g、3.15mmol)、テトラヒドロフラン(THF)20mL、N−メチル−2−ピロリドン(NMP)10mL、Pd(PPh3)4(0.17g、0.15mmol)、ヨウ化銅(I)(CuI)(0.02g、0.1mmol)をシュレンクに入れて内部を窒素置換し、80℃で48時間に加熱して重合を行った。反応終了後、室温へ冷却した後、5%フッ化カリウム水溶液に反応溶液を投入するとポリマー固体が析出してきた。このポリマーを濾過によって回収し、水、メタノール及びアセトンで洗浄して減圧乾燥を行なうことにより、赤茶色の固体状の生成物を得た。
Example 1 Synthesis of poly [3,6-bis (2-thienyl) pyridazine] (P (PydTh) -H):
Compound 3a (1.21 g, 3.00 mmol) obtained in Synthesis Example 6, bis (trimethyltin) (1.03 g, 3.15 mmol), tetrahydrofuran (THF) 20 mL, N-methyl-2-pyrrolidone (NMP) 10 mL, Pd (PPh 3 ) 4 (0.17 g, 0.15 mmol), copper (I) iodide (CuI) (0.02 g, 0.1 mmol) were placed in a Schlenk, and the inside was purged with nitrogen. Polymerization was carried out by heating for 48 hours. After completion of the reaction, the reaction solution was cooled to room temperature and then poured into a 5% aqueous potassium fluoride solution, whereby a polymer solid was precipitated. The polymer was recovered by filtration, washed with water, methanol and acetone and dried under reduced pressure to obtain a reddish brown solid product.
得られた生成物について、CP−MAS 13C NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
CP-MAS 13C NMR: δ 148.60, 135.30, 122.51.
FT-IR (KBr, cm?1): 3064, 1549, 1438, 1405, 1311, 1119, 1075, 1036, 838, 793, 746, 696.
Anal. Calcd for (C12H6N2S2・0.9H2O)n: C, 55.75; H, 3.04; N, 10.84; S, 24.81.
Found: C, 55.88; H, 2.76; N, 10.72; S, 24.29; Br, 3.50.
The obtained product was subjected to CP-MAS 13 C NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
CP-MAS 13 C NMR: δ 148.60, 135.30, 122.51.
FT-IR (KBr, cm ? 1 ): 3064, 1549, 1438, 1405, 1311, 1119, 1075, 1036, 838, 793, 746, 696.
Anal.Calcd for (C 12 H 6 N 2 S 2 0.9H 2 O) n : C, 55.75; H, 3.04; N, 10.84; S, 24.81.
Found: C, 55.88; H, 2.76; N, 10.72; S, 24.29; Br, 3.50.
以上の結果より、得られた生成物がポリ[3,6−ビス(2−チエニル)ピリダジン](P(PydTh)−H)(上記反応式(iii)の化合物4a)であることが確認された。収率は75%であった。 From the above results, it was confirmed that the obtained product was poly [3,6-bis (2-thienyl) pyridazine] (P (PydTh) -H) (compound 4a in the above reaction formula (iii)). It was. The yield was 75%.
[実施例2]ポリ{3,6−ビス[2−(3−n−ヘキシルチエニル)]ピリダジン}(P(PydTh)−6)の合成:
実施例1において、化合物3aを合成例7で得られた化合物3bに換えた以外は、実施例1と同様の手順により、赤茶色の固体状の生成物を得た。
[Example 2] Synthesis of poly {3,6-bis [2- (3-n-hexylthienyl)] pyridazine} (P (PydTh) -6):
A red-brown solid product was obtained in the same manner as in Example 1, except that Compound 3a was replaced with Compound 3b obtained in Synthesis Example 7.
得られた生成物について、1H NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.69 (s, 2H), 7.21 (s, 2H), 2.97 (br, 4H), 1.74 (br, 4H), 1.45-1.34 (m, 12H), 0.91 (br, 6H).
FT-IR (KBr, cm?1): 2952, 2924, 2853, 1550, 1435, 1379, 1277, 1038, 826, 724.
Anal. Calcd for (C24H30N2S2・0.8H2O)n: C, 67.82; H, 7.49; N, 6.59; S, 15.09.
Found: C, 67.54; H, 7.11; N, 6.34; S, 14.97; Br, 1.91.
The obtained product was subjected to 1 H NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.69 (s, 2H), 7.21 (s, 2H), 2.97 (br, 4H), 1.74 (br, 4H), 1.45-1.34 (m, 12H), 0.91 (br, 6H).
FT-IR (KBr, cm ? 1 ): 2952, 2924, 2853, 1550, 1435, 1379, 1277, 1038, 826, 724.
Anal.Calcd for (C 24 H 30 N 2 S 2 0.8H 2 O) n : C, 67.82; H, 7.49; N, 6.59; S, 15.09.
Found: C, 67.54; H, 7.11; N, 6.34; S, 14.97; Br, 1.91.
以上の結果より、得られた生成物がポリ{3,6−ビス[2−(3−n−ヘキシルチエニル)]ピリダジン}(P(PydTh)−6)(上記反応式(iii)の化合物4b)であることが確認された。収率は93%であった。 From the above results, the obtained product was poly {3,6-bis [2- (3-n-hexylthienyl)] pyridazine} (P (PydTh) -6) (compound 4b in the above reaction formula (iii)). ). The yield was 93%.
[実施例3]ポリ{3,6−ビス[2−(3−n−デシルチエニル)]ピリダジン}(P(PydTh)−10)の合成:
実施例1において、化合物3aを合成例8で得られた化合物3cに換えた以外は、実施例1と同様の手順により、赤茶色の固体状の生成物を得た。
[Example 3] Synthesis of poly {3,6-bis [2- (3-n-decylthienyl)] pyridazine} (P (PydTh) -10):
A red-brown solid product was obtained in the same manner as in Example 1, except that Compound 3a was replaced with Compound 3c obtained in Synthesis Example 8.
得られた生成物について、1H NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.68 (s, 2H), 7.20 (s, 2H), 2.96 (br, 4H), 1.72 (br, 4H), 1.43-1.27 (m, 28H), 0.88 (br, 6H).
FT-IR (KBr, cm?1): 2922, 2851, 1550, 1436, 1380, 1272, 1038, 826, 720.
Anal. Calcd for (C32H46N2S2・0.5H2O)n: C, 72.26; H, 8.91; N, 5.27; S, 12.06.
Found: C, 72.07; H, 8.49; N, 5.19; S, 11.80; Br, 0.36.
The obtained product was subjected to 1 H NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.68 (s, 2H), 7.20 (s, 2H), 2.96 (br, 4H), 1.72 (br, 4H), 1.43-1.27 (m, 28H), 0.88 (br, 6H).
FT-IR (KBr, cm ? 1 ): 2922, 2851, 1550, 1436, 1380, 1272, 1038, 826, 720.
Anal.Calcd for (C 32 H 46 N 2 S 2・ 0.5H 2 O) n : C, 72.26; H, 8.91; N, 5.27; S, 12.06.
Found: C, 72.07; H, 8.49; N, 5.19; S, 11.80; Br, 0.36.
以上の結果より、得られた生成物がポリ{3,6−ビス[2−(3−n−デシルチエニル)]ピリダジン}(P(PydTh)−10)(上記反応式(iii)の化合物4c)であることが確認された。収率は95%であった。 From the above results, the obtained product was poly {3,6-bis [2- (3-n-decylthienyl)] pyridazine} (P (PydTh) -10) (compound 4c in the above reaction formula (iii)). It was confirmed that. The yield was 95%.
[実施例4]ポリ{3,6−ビス[2−(3−n−ドデシルチエニル)]ピリダジン}(P(PydTh)−12)の合成:
実施例1において、化合物3aを合成例9で得られた化合物3dに換えた以外は、実施例1と同様の手順により、赤茶色の固体状の生成物を得た。
Example 4 Synthesis of poly {3,6-bis [2- (3-n-dodecylthienyl)] pyridazine} (P (PydTh) -12):
A red-brown solid product was obtained in the same manner as in Example 1 except that Compound 3a was replaced with Compound 3d obtained in Synthesis Example 9 in Example 1.
得られた生成物について、1H NMR測定、FT−IR測定、及び元素分析を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.68 (s, 2H), 7.20 (s, 2H), 2.95 (br, 4H), 1.74 (br, 4H), 1.44-1.25 (m, 36H), 0.87 (br, 6H).
FT-IR (KBr, cm?1): 2922, 2850, 1550, 1436, 1380, 1271, 1038, 826, 720.
Anal. Calcd for (C36H54N2S2・0.8H2O)n: C, 72.87; H, 9.44; N, 4.72; S, 11.00.
Found: C, 72.79; H, 8.92; N, 4.65; S, 10.81; Br, 0.43.
The obtained product was subjected to 1 H NMR measurement, FT-IR measurement, and elemental analysis. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.68 (s, 2H), 7.20 (s, 2H), 2.95 (br, 4H), 1.74 (br, 4H), 1.44-1.25 (m, 36H), 0.87 (br, 6H).
FT-IR (KBr, cm ? 1 ): 2922, 2850, 1550, 1436, 1380, 1271, 1038, 826, 720.
Anal.Calcd for (C 36 H 54 N 2 S 2・ 0.8H 2 O) n : C, 72.87; H, 9.44; N, 4.72; S, 11.00.
Found: C, 72.79; H, 8.92; N, 4.65; S, 10.81; Br, 0.43.
以上の結果より、得られた生成物がポリ{3,6−ビス[2−(3−n−ドデシルチエニル)]ピリダジン}(P(PydTh)−12)(上記反応式(iii)の化合物4d)であることが確認された。収率は94%であった。 From the above results, the obtained product was poly {3,6-bis [2- (3-n-dodecylthienyl)] pyridazine} (P (PydTh) -12) (compound 4d in the above reaction formula (iii)). ). The yield was 94%.
[実施例5]ポリ{3,6−ビス[2−(3−n−テトラデシルチエニル)]ピリダジン}(P(PydTh)−14)の合成:
実施例1において、化合物3aを合成例10で得られた化合物3eに換えた以外は、実施例1と同様の手順により、赤茶色の固体状の生成物を得た。
Example 5 Synthesis of poly {3,6-bis [2- (3-n-tetradecylthienyl)] pyridazine} (P (PydTh) -14):
A red-brown solid product was obtained in the same manner as in Example 1, except that Compound 3a was replaced with Compound 3e obtained in Synthesis Example 10.
得られた生成物について、1H NMR測定、FT−IR測定、元素分析、及び分子量測定を行なった。その結果を以下に示す。
1H NMR (400 MHz, CDCl3): δ 7.67 (s, 2H), 7.19 (s, 2H), 2.95 (br, 4H), 1.72 (br, 4H), 1.45-1.25 (m, 44H), 0.87 (br, 6H).
FT-IR (KBr, cm?1): 2920, 2850, 1550, 1466, 1438, 1382, 1274, 1038, 826, 721.
Anal. Calcd for (C40H62N2S2・0.7H2O)n: C, 74.12; H, 9.87; N, 4.33; S, 9.90.
Found: C, 73.92; H, 9.25; N, 4.26; S, 9.88; Br, 0.
数平均分子量:Mn=32,000(GPC法、測定溶媒o−ジクロロベンゼン、80℃)、n=53。
About the obtained product, < 1 > H NMR measurement, FT-IR measurement, elemental analysis, and molecular weight measurement were performed. The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 7.67 (s, 2H), 7.19 (s, 2H), 2.95 (br, 4H), 1.72 (br, 4H), 1.45-1.25 (m, 44H), 0.87 (br, 6H).
FT-IR (KBr, cm ? 1 ): 2920, 2850, 1550, 1466, 1438, 1382, 1274, 1038, 826, 721.
Anal.Calcd for (C 40 H 62 N 2 S 2・ 0.7H 2 O) n : C, 74.12; H, 9.87; N, 4.33; S, 9.90.
Found: C, 73.92; H, 9.25; N, 4.26; S, 9.88; Br, 0.
Number average molecular weight: Mn = 32,000 (GPC method, measurement solvent o-dichlorobenzene, 80 ° C.), n = 53.
以上の結果より、得られた生成物がポリ{3,6−ビス[2−(3−n−テトラデシルチエニル)]ピリダジン}(P(PydTh)−14)(上記反応式(iii)の化合物4e)であることが確認された。収率は94%であった。 From the above results, the obtained product was poly {3,6-bis [2- (3-n-tetradecylthienyl)] pyridazine} (P (PydTh) -14) (compound of the above reaction formula (iii) 4e) was confirmed. The yield was 94%.
[比較例1]ポリ{3,6−ビス[2−(3−n−テトラデシルチエニル)]ピリダジン}(P(PydTh)−14)の合成:
合成例10で得られた化合物3e(1.42g、3.0mmol)、ビス(ピナコレート)ジボロン(0.80g、3.15mmol)、テトラヒドロフラン(THF)20mL、N,N′−ジメチルアセトアミド(DMAc)10mL、PdCl2(dppf)(ここで「dppf」は1,1′−ビス(ジフェニルホスフィノ)フェロセンを表わす。)(0.15g、0.15mmol)、及びヨウ化銅(1)(Cul)(0.02g、0.1mmol)をシュレンクに入れて内部を窒素置換し、80℃で48時間加熱して重合を行なった。反応終了後、室温まで冷却し、反応溶液を5%水酸化ナトリウム水溶液に投入すると、黄色粉末が析出した。この粉末を濾過によって回収し、水、メタノール及びアセトンで洗浄して減圧乾燥を行なった後、解析のため、o−ジクロロベンゼンを溶媒としたGPCによって分子量を測定したところ、重合が進行していないことが判明した。
Comparative Example 1 Synthesis of poly {3,6-bis [2- (3-n-tetradecylthienyl)] pyridazine} (P (PydTh) -14):
Compound 3e (1.42 g, 3.0 mmol) obtained in Synthesis Example 10, bis (pinacolato) diboron (0.80 g, 3.15 mmol), tetrahydrofuran (THF) 20 mL, N, N′-dimethylacetamide (DMAc) 10 mL, PdCl 2 (dppf) (where “dppf” represents 1,1′-bis (diphenylphosphino) ferrocene) (0.15 g, 0.15 mmol), and copper iodide (1) (Cul) (0.02 g, 0.1 mmol) was placed in Schlenk, and the inside was purged with nitrogen, followed by polymerization at 80 ° C. for 48 hours. After completion of the reaction, the mixture was cooled to room temperature, and the reaction solution was poured into a 5% aqueous sodium hydroxide solution to precipitate a yellow powder. This powder was collected by filtration, washed with water, methanol and acetone, dried under reduced pressure, and then analyzed for molecular weight by GPC using o-dichlorobenzene as a solvent for analysis. Polymerization did not proceed. It has been found.
〔IV.有機電子デバイス〕
[実施例6]
300nmの酸化膜を形成したN型のシリコン基板(Sbドープ、抵抗率0.02Ωcm以下、住友金属工業社製)上に、フォトリソグラフィーで長さ(L)10μm、幅(W)500μmのギャップを有する金電極(ソース、ドレイン電極)を形成した。また、この電極と異なる位置の酸化膜をフッ酸/フッ化アンムニウム液でエッチングし、むき出しになったSi部分に金を蒸着し、これをシリコン基板(ゲート電極)に電圧を印加するための電極とした。
[IV. Organic electronic devices)
[Example 6]
A gap of length (L) 10 μm and width (W) 500 μm is formed by photolithography on an N-type silicon substrate (Sb-doped, resistivity 0.02 Ωcm or less, manufactured by Sumitomo Metal Industries, Ltd.) on which a 300 nm oxide film is formed. Gold electrodes (source and drain electrodes) were formed. In addition, an oxide film at a position different from this electrode is etched with a hydrofluoric acid / ammonium fluoride solution, gold is deposited on the exposed Si portion, and an electrode for applying a voltage to the silicon substrate (gate electrode) It was.
実施例2で得られた化合物4b(P(PydTh)−6)(10mg)をo−ジクロロベンゼン1mLに溶解させて溶液を調製した。以下の成膜及び電気特性の評価は、酸素や湿度の影響を避けるために、全て窒素雰囲気下で行なった。先に用意した溶液を上記で電極を形成した基板上に1000rpmでスピンコートして良好な膜を得た。この基板を、120℃に加熱したホットプレートの上に置き、その後15分ごとに10℃ずつステップ状に200℃まで昇温し加熱した。 Compound 4b (P (PydTh) -6) (10 mg) obtained in Example 2 was dissolved in 1 mL of o-dichlorobenzene to prepare a solution. The following film formation and evaluation of electrical characteristics were all performed in a nitrogen atmosphere in order to avoid the influence of oxygen and humidity. The previously prepared solution was spin-coated at 1000 rpm on the substrate on which the electrode was formed as described above to obtain a good film. This substrate was placed on a hot plate heated to 120 ° C., and then heated to 200 ° C. in steps of 10 ° C. every 15 minutes.
こうして得られた電界効果トランジスタの特性を、アジレントテクノロジー社製半導体パラメータアナライザー4155Cを用いて測定した。ソースとドレイン間に印加された電圧Vdに対して流れる電流をId、ソースとゲートに印加される電圧をVg、閾値電圧をVt、絶縁膜の単位面積当たりの静電容量をCi、ソース電極とドレイン電極の間隔をL、幅をW、半導体層の移動度をμとすると、その動作は次のように表すことができる。 The characteristics of the field effect transistor thus obtained were measured using a semiconductor parameter analyzer 4155C manufactured by Agilent Technologies. The current flowing with respect to the voltage Vd applied between the source and the drain is Id, the voltage applied to the source and the gate is Vg, the threshold voltage is Vt, the capacitance per unit area of the insulating film is Ci, and the source electrode When the interval between the drain electrodes is L, the width is W, and the mobility of the semiconductor layer is μ, the operation can be expressed as follows.
μは素子の電流電圧特性から求めることができる。μを求めるには式(A)或いは(B)を用いるが、(B)式の飽和電流部分のId 1/2−Vgの傾きから求める方法を採用した。このプロットのId=0との切片からスレシホールド電圧Vt、Vd=−30V印加時のVg=30Vと−50VのIdの比をオンオフ比とした。 μ can be obtained from the current-voltage characteristics of the element. The equation (A) or (B) is used to obtain μ, but the method of obtaining from the slope of I d 1/2 −V g of the saturation current portion of the equation (B) was adopted. From the intercept of this plot with I d = 0, the ratio of I d between V g = 30 V and −50 V when the threshold voltage V t and V d = −30 V were applied was defined as the on / off ratio.
上記手順により測定された実施例6の有機半導体デバイス(電界効果トランジスタ)の半導体特性を図4に示す。実施例6の有機半導体デバイス(電界効果トランジスタ)の移動度は3.3×10-3cm2/V・s、Vtは−18V、オンオフ比は3.2×103であった。 The semiconductor characteristics of the organic semiconductor device (field effect transistor) of Example 6 measured by the above procedure are shown in FIG. The mobility of the organic semiconductor device (field effect transistor) of Example 6 was 3.3 × 10 −3 cm 2 / V · s, V t was −18 V, and the on / off ratio was 3.2 × 10 3 .
本発明により得られるπ共役系の高分子化合物は、電気特性に優れており、有機半導体としての性質を有することから、電荷輸送材料として、有機電子デバイスなど各種の用途に好適に用いることができ、極めて有用である。 The π-conjugated polymer compound obtained by the present invention has excellent electrical characteristics and properties as an organic semiconductor, and therefore can be suitably used as a charge transport material for various applications such as organic electronic devices. Is extremely useful.
1 支持基板
2 ゲート電極
3 絶縁体層
4 電荷輸送層
5 ソース電極
6 ドレイン電極
DESCRIPTION OF
Claims (16)
ことを特徴とする、高分子化合物の製造方法。
ことを特徴とする、請求項1記載の高分子化合物の製造方法。 The method for producing a polymer compound according to claim 1, wherein in the general formula (2), R 7 is a divalent organic group having a π-conjugated structure.
機基である
ことを特徴とする、請求項2記載の高分子化合物の製造方法。 In the said General formula (2), R < 7 > is a bivalent organic group which has (pi) conjugated structure and contains a heterocyclic structure, The manufacturing method of the high molecular compound of Claim 2 characterized by the above-mentioned .
ことを特徴とする、高分子化合物。
ことを特徴とする、有機電子デバイス。 Characterized by using the claims 4 Symbol mounting of the polymer compound, an organic electronic device.
ことを特徴とする、請求項5記載の有機電子デバイス。 6. The organic electronic device according to claim 5 , wherein the organic electronic device is a switching element.
ことを特徴とする、請求項5記載の有機電子デバイス。 The organic electronic device according to claim 5 , wherein the organic electronic device is a light emitting element.
ことを特徴とする、請求項5記載の有機電子デバイス。 The organic electronic device according to claim 5 , wherein the organic electronic device is a photoelectric conversion element.
ことを特徴とする、請求項5記載の有機電子デバイス。 The organic electronic device according to claim 5 , wherein the organic electronic device is a photosensor element utilizing photoconductivity.
ことを特徴とする、請求項5記載の有機電子デバイス。 The organic electronic device according to claim 5 , wherein the organic electronic device is a solar cell element.
ことを特徴とする、有機電子デバイスの製造方法。A method for producing an organic electronic device.
ことを特徴とする、請求項11記載の有機電子デバイスの製造方法。The method of manufacturing an organic electronic device according to claim 11, wherein:
ことを特徴とする、請求項11記載の有機電子デバイスの製造方法。The method of manufacturing an organic electronic device according to claim 11, wherein:
ことを特徴とする、請求項11記載の有機電子デバイスの製造方法。The method of manufacturing an organic electronic device according to claim 11, wherein:
ことを特徴とする、請求項11記載の有機電子デバイスの製造方法。The method of manufacturing an organic electronic device according to claim 11, wherein:
ことを特徴とする、請求項11記載の有機電子デバイスの製造方法。The method of manufacturing an organic electronic device according to claim 11, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005191645A JP4873603B2 (en) | 2005-06-30 | 2005-06-30 | Method for producing polymer compound, polymer compound, and organic electronic device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005191645A JP4873603B2 (en) | 2005-06-30 | 2005-06-30 | Method for producing polymer compound, polymer compound, and organic electronic device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007009061A JP2007009061A (en) | 2007-01-18 |
JP4873603B2 true JP4873603B2 (en) | 2012-02-08 |
Family
ID=37747971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005191645A Active JP4873603B2 (en) | 2005-06-30 | 2005-06-30 | Method for producing polymer compound, polymer compound, and organic electronic device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4873603B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5471756B2 (en) * | 2010-04-12 | 2014-04-16 | Jsr株式会社 | Curable composition and optical member |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183221A (en) * | 1984-10-01 | 1986-04-26 | Kao Corp | Polypyridazine and its production |
JP2750559B2 (en) * | 1992-09-16 | 1998-05-13 | 信越化学工業株式会社 | Conductive polymer composition |
JP3844016B2 (en) * | 1995-10-27 | 2006-11-08 | 日産化学工業株式会社 | Novel polymers and their production and use |
JP4279509B2 (en) * | 2002-05-16 | 2009-06-17 | 住友化学株式会社 | Optoelectronic device using polymer material |
JP3842248B2 (en) * | 2003-06-30 | 2006-11-08 | 独立行政法人科学技術振興機構 | Phenylenethiophene polymer and method for producing the same |
KR101007787B1 (en) * | 2003-12-08 | 2011-01-14 | 삼성전자주식회사 | Organic Semiconductor Polymer for Organic Thin Film Transistor, Containing Quinoxaline Ring in the Backbone Chain |
JP2007016228A (en) * | 2005-06-10 | 2007-01-25 | Sumitomo Chemical Co Ltd | Method for producing polymer |
-
2005
- 2005-06-30 JP JP2005191645A patent/JP4873603B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007009061A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: Synthesis, structure–property correlations, and thermoelectric performance | |
Shi et al. | Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance | |
KR101503564B1 (en) | Carbon nanotube composite, organic semiconductor composite, and field-effect transistor | |
Allard et al. | Organic semiconductors for solution‐processable field‐effect transistors (OFETs) | |
EP2011157B1 (en) | Electronic devices containing acene-thiophene copolymers with silylethynyl groups | |
EP1615237B1 (en) | Organic semiconductor copolymers containing oligothiophene and n-type heteroaromatic units | |
Robitaille et al. | Poly (naphthalene diimide-alt-bithiophene) prepared by direct (hetero) arylation polymerization for efficient all-polymer solar cells | |
Kim et al. | Incorporation of pyrene units to improve hole mobility in conjugated polymers for organic solar cells | |
JP5013665B2 (en) | Benzotriazole structure-containing polymer, method for producing the same, charge transport material, and organic electronic device | |
JP2011151396A (en) | Polymer semiconductor, method of manufacturing polymer semiconductor and electronic device | |
EP2232606A1 (en) | Solution processable organic semiconductors based on anthracene | |
JP2009197218A (en) | Polymer, organic film containing it, and transistor | |
JP6275118B2 (en) | Aromatic heterocyclic compound, method for producing the same, organic semiconductor material, and organic semiconductor device | |
JP6140482B2 (en) | Compound, method for producing the compound, polymer compound obtained by polymerizing the compound, organic thin film and organic semiconductor element containing the polymer compound | |
JP2009170906A (en) | Polymer semiconductors, thin-film transistor, and method of manufacturing thin-film transistor | |
Kong et al. | New semiconducting polymers containing 3, 6-dimethyl (thieno [3, 2-b] thiophene or selenopheno [3, 2-b] selenophene) for organic thin-film transistors | |
Du et al. | N-type conjugated polymers based on an indandione-terminated quinoidal building block | |
Kong et al. | The influence of electron deficient unit and interdigitated packing shape of new polythiophene derivatives on organic thin‐film transistors and photovoltaic cells | |
JP2009040903A (en) | Polymer containing isothianaphthene structure, method for producing the same, charge transport material and organic electronic device | |
JP2006241359A (en) | Conductive alternate copolymer, its manufacturing method, and organic electron device and field effect transister using the same | |
JP4873603B2 (en) | Method for producing polymer compound, polymer compound, and organic electronic device using the same | |
JP2009099942A (en) | High molecular organic semiconductor material, high molecular organic semiconductor thin film and organic semiconductor device | |
JP2006131799A (en) | Method for producing thiadiazole structure-containing polymer, thiadiazole structure-containing polymer, charge transport material using the same and organic electronic device | |
Deng et al. | A comparative study of bithiophene and thienothiophene based polymers for organic field-effect transistor applications | |
JP2014114265A (en) | DITHIOPHENE COMPOUND, π-ELECTRON CONJUGATED POLYMER HAVING DITHIOPHENE GROUP AND ORGANIC SEMICONDUCTOR DEVICE USING POLYMER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4873603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |