JP4873455B2 - Optical thin film forming method and apparatus - Google Patents

Optical thin film forming method and apparatus Download PDF

Info

Publication number
JP4873455B2
JP4873455B2 JP2006072372A JP2006072372A JP4873455B2 JP 4873455 B2 JP4873455 B2 JP 4873455B2 JP 2006072372 A JP2006072372 A JP 2006072372A JP 2006072372 A JP2006072372 A JP 2006072372A JP 4873455 B2 JP4873455 B2 JP 4873455B2
Authority
JP
Japan
Prior art keywords
refractive index
index material
thin film
substrate
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006072372A
Other languages
Japanese (ja)
Other versions
JP2007248828A (en
Inventor
義隆 飯田
勝久 岡田
博光 本多
旭陽 佐井
徹治 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Priority to JP2006072372A priority Critical patent/JP4873455B2/en
Publication of JP2007248828A publication Critical patent/JP2007248828A/en
Application granted granted Critical
Publication of JP4873455B2 publication Critical patent/JP4873455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、Ti2などの高屈折率物質とSi2などの低屈折率物質とを交互にイオンアシスト蒸着法によって蒸着する光学薄膜形成方法と、この方法の実施に直接使用する光学薄膜形成装置に関するものである。 The present invention uses an optical thin film forming method in which a high refractive index material such as T i O 2 and a low refractive index material such as S i O 2 are alternately deposited by an ion-assisted deposition method, and is directly used for carrying out this method. The present invention relates to an optical thin film forming apparatus.

光学分野で用いる光学レンズや光学フィルタなどでは基材表面に薄膜を形成することにより、光学特性を制御している。例えばTi2やTa25などの高屈折率物質とSi2などの低屈折率物質との薄膜をそれぞれ所定厚さで交互に多層に積層した反射防止膜が知られている。また特定波長域の光を選択的に透過するフィルタも広く用いられている。 In optical lenses and optical filters used in the optical field, optical characteristics are controlled by forming a thin film on the surface of a substrate. For example, an antireflection film is known in which thin films of a high refractive index material such as T i O 2 or Ta 2 O 5 and a low refractive index material such as S i O 2 are alternately stacked in a predetermined thickness. . Filters that selectively transmit light in a specific wavelength range are also widely used.

これらの高屈折率物質や低屈折率物質の薄膜形成方法の1つとして、イオンアシスト蒸着法(ion beam assisted deposition; IBAD、イオンビーム支援堆積法ともいう。)が公知である。この方法は、真空容器の中で蒸発させた中性の薄膜材料(蒸着粒子)を基板表面に到達させる際に、イオン銃で数100eV程度の比較的低エネルギーのガスイオン(および基板表面にたまるプラス電荷を中和するための同量の電子)を基板に照射し、その運動エネルギーによって緻密な膜にする方法である。   As one of methods for forming a thin film of these high refractive index materials and low refractive index materials, ion beam assisted deposition (IBAD, also called ion beam assisted deposition) is known. In this method, when a neutral thin film material (evaporated particles) evaporated in a vacuum vessel reaches the substrate surface, the ion gun accumulates relatively low energy gas ions (and several hundred eV) on the substrate surface. This is a method of irradiating a substrate with the same amount of electrons for neutralizing positive charges and forming a dense film by its kinetic energy.

特開平1−197701号公報JP-A-1-197701 特開2005−42132号公報JP-A-2005-42132 特開平10−123301号公報JP-A-10-123301

従来のイオンアシスト蒸着法は中性の蒸着粒子とイオンとを同時に供給するものであり、蒸着粒子が基板に付着する際にイオンの運動エネルギーを利用して薄膜の吸収・散乱などの光学特性の向上を図り、薄膜の密度向上を可能にするものである。   The conventional ion-assisted deposition method supplies neutral deposition particles and ions at the same time. When the deposition particles adhere to the substrate, the kinetic energy of the ions is used to improve the optical properties such as absorption and scattering of the thin film. It is intended to improve the density of the thin film.

一方光学機器においては光透過率などの光学特性の向上が常に要求されている。特に高屈折率物質と低屈折率物質とを交互に多層に積層する反射防止膜や光学フィルタなどでは、薄膜の吸収・散乱などの光学特性の僅かな低下により最終製品としての特性は著しく低下することになる。   On the other hand, optical devices are constantly required to improve optical characteristics such as light transmittance. Especially in anti-reflective coatings and optical filters where high refractive index materials and low refractive index materials are alternately stacked in multiple layers, the final product characteristics are significantly reduced due to slight deterioration in optical characteristics such as absorption and scattering of thin films. It will be.

一般に真空容器内は常に真空ポンプで排気されているが、真空容器内に収容された蒸発源や基板の保持手段やシャッタ機構などの種々の部分から不純物が蒸発するため、これらの不純物が基板表面に付着する。このような不純物があると蒸着膜に不純物が入ったり、蒸着膜が結晶化しやすくなり、吸収や散乱が増え、多層膜の光学特性が低下する。不純物を除去するためには、排気時間を長くしたり真空度を上げることが考えられるが、この場合には処理能率が低下したり真空系が複雑になる。   In general, the vacuum vessel is always evacuated by a vacuum pump. However, since impurities evaporate from various parts such as the evaporation source, the substrate holding means, and the shutter mechanism housed in the vacuum vessel, these impurities are removed from the substrate surface. Adhere to. When such impurities are present, impurities enter the deposited film or the deposited film is easily crystallized, absorption and scattering increase, and the optical characteristics of the multilayer film are degraded. In order to remove impurities, it is conceivable to lengthen the exhaust time or raise the degree of vacuum, but in this case, the processing efficiency is lowered or the vacuum system becomes complicated.

この発明はこのような事情に鑑みなされたものであり、簡単に薄膜の光学的特性の向上が図れ、特に多層構造とした場合に光学特性の向上が可能になる光学薄膜形成方法を提供することを第1の目的とする。また同様な光学薄膜形成装置を提供することを第2の目的とする。   The present invention has been made in view of such circumstances, and provides an optical thin film forming method capable of easily improving the optical characteristics of a thin film, and particularly capable of improving the optical characteristics when a multilayer structure is used. Is the first purpose. A second object is to provide a similar optical thin film forming apparatus.

この発明によればこの目的は、真空容器内に保持した基板に高屈折率物質と低屈折率物質とを交互にかつ多層にイオンアシスト蒸着法によって蒸着する光学薄膜形成方法において、
前記基板に形成した低屈折率物質の蒸着薄膜に前記高屈折率物質の蒸発粒子とイオンとを同時に供給する蒸着工程の前に、イオンを所定時間供給する予備的イオン照射工程を設けると共に各蒸着薄膜層の蒸着工程の後にイオン照射を停止するイオン照射停止期間を設けたことを特徴とする光学薄膜形成方法、により達成される。
According to the present invention, an object of the present invention is to provide an optical thin film forming method in which a high refractive index substance and a low refractive index substance are alternately and multilayerly deposited by ion-assisted deposition on a substrate held in a vacuum vessel.
Before the vapor deposition step of simultaneously supplying the vaporized particles and ions of the high refractive index material to the vapor deposition thin film of the low refractive index material formed on the substrate, a preliminary ion irradiation step for supplying ions for a predetermined time is provided and each vapor deposition is performed. This is achieved by an optical thin film forming method characterized by providing an ion irradiation stop period in which ion irradiation is stopped after the thin film layer deposition step.

また第2の目的は、真空容器内に保持した基板に高屈折率物質と低屈折率物質とを交互にかつ多層にイオンアシスト蒸着法によって蒸着する光学薄膜形成装置において、所定の圧力に保たれた真空容器と、この真空容器内に保持された基板と、この基板に所定距離離して対向する高屈折率物質の蒸発手段および低屈折率物資の蒸発手段と、これらの蒸発手段と基板との間にそれぞれ進退出動する第1の蒸発源シャッターおよび第2の蒸発源シャッタと、基板に対してイオンを照射するイオン銃と、このイオン銃による基板へのイオン照射を制御するイオン銃シャッターと、前記高屈折率物質または低屈折率物質の蒸発粒子とイオンとを同時に供給する蒸着工程を制御し、前記高屈折率物質の蒸着工程に先行してイオンを所定時間供給する予備的イオン照射工程を設けると共に前記高屈折率物質の蒸着工程と前記低屈折率物質の蒸着工程との間にイオン照射を停止するイオン照射停止期間を設けるように制御するコントローラと、を備えることを特徴とする光学薄膜形成装置、により達成される。 The second object is to maintain a predetermined pressure in an optical thin film forming apparatus that deposits a high refractive index material and a low refractive index material alternately and in multiple layers by ion-assisted deposition on a substrate held in a vacuum vessel. A vacuum container, a substrate held in the vacuum container, a high-refractive-index material evaporation means and a low-refractive-index material evaporation means facing the substrate at a predetermined distance, and the evaporation means and the substrate. A first evaporation source shutter and a second evaporation source shutter that move forward and backward in between, an ion gun that irradiates ions to the substrate, an ion gun shutter that controls irradiation of ions to the substrate by the ion gun, It controls the high refractive index material or low refractive index at the same time supplies the deposition process evaporating particles and the ions of the material, prior to pre-supplying ions a predetermined time deposition process of the high refractive index material Characterized in that it comprises a controller for controlling so as to provide an ion irradiation stop period to stop the ion irradiation during the deposition process of the low refractive index material and deposition process of the high refractive index material provided with an ion irradiation step And an optical thin film forming apparatus.

請求項1の発明によれば、高屈折率物質の蒸発粒子とイオンとを同時に照射する蒸着工程に先行して、イオンを照射する工程(予備的イオン照射工程)を付加したので、高屈折率物質の蒸着に先行してイオンが低屈折率物質の蒸着薄膜の表面に衝突して表面を清浄化する。   According to the first aspect of the present invention, the ion irradiation step (preliminary ion irradiation step) is added prior to the vapor deposition step of simultaneously irradiating the evaporated particles and ions of the high refractive index substance. Prior to the deposition of the material, ions impinge on the surface of the deposited film of low refractive index material to clean the surface.

高屈折率物質の蒸着に先行してイオンを低屈折率物質の蒸着薄膜の表面に照射するので、低屈折率物質の蒸着薄膜の表面に付着する不純物を高屈折率物質の蒸着開始に先行して除去することができ、その直後に連続して高屈折率物質の蒸着を行うので薄膜に不純物が混入しにくくなる。このため高屈折率物質の吸収・散乱などの光学特性を向上させることができる。   Prior to the deposition of the high refractive index material, ions are irradiated onto the surface of the low refractive index material vapor deposition thin film, so that the impurities adhering to the surface of the low refractive index material vapor deposition film precede the start of the deposition of the high refractive index material. Immediately thereafter, the high refractive index material is continuously deposited, so that impurities are less likely to be mixed into the thin film. For this reason, optical characteristics such as absorption and scattering of the high refractive index substance can be improved.

なお高屈折率物質の蒸着に先行する予備的イオン照射工程は、イオン銃あるいはイオン銃シャッタを制御するだけであるから、処理能率の大幅な低下を招くことがなく、装置が複雑になることもない。また高屈折率物質および低屈折率物資の蒸着工程の後にイオンの供給を停止する期間(イオン照射停止期間)を設けたので、この期間を設けることによって基板の表面温度の上昇を抑制し温度管理が可能になる。 The preliminary ion irradiation process preceding the deposition of the high refractive index material only controls the ion gun or the ion gun shutter, so that the processing efficiency is not significantly reduced and the apparatus may be complicated. Absent. In addition, a period for stopping the supply of ions (ion irradiation stop period) is provided after the vapor deposition process of the high refractive index material and the low refractive index material. By providing this period, the rise in the surface temperature of the substrate is suppressed to control the temperature. Is possible.

請求項の発明によれば、前記請求項1の発明の実施に直接使用する光学薄膜形成装置が得られる。 According to the invention of claim 4 , an optical thin film forming apparatus used directly for carrying out the invention of claim 1 is obtained.

この発明は高屈折率物質の蒸着に適するものであるが、低屈折率物質の蒸着にも先行して予備的イオン照射工程を行ってもよい(請求項2)。 Although the present invention is suitable for vapor deposition of a high refractive index material, a preliminary ion irradiation step may be performed prior to vapor deposition of a low refractive index material .

予備的イオン照射工程におけるイオンのイオン照射電力(パワー)は、高屈折率物質の蒸着中のイオン照射電力と同じあるいは大きくしたり小さくしてもよい。特にこの照射電力を小さくした場合には、下地となる低屈折率物質の蒸着表面を傷めるおそれがなくなるので好ましい。ここに照射電力密度はイオンの加速電圧(V)とイオン電流密度(I)の積(V・I)である。   The ion irradiation power (power) of ions in the preliminary ion irradiation step may be the same as or larger or smaller than the ion irradiation power during the deposition of the high refractive index material. In particular, when the irradiation power is reduced, there is no possibility of damaging the deposition surface of the low-refractive-index substance serving as a base, which is preferable. Here, the irradiation power density is the product (V · I) of the acceleration voltage (V) of ions and the ion current density (I).

この場合、予備的イオン照射工程の時間は、イオンの照射電力や下地の表面状態によって変化させるのがよい。例えば照射電力を大きくする場合には照射時間(T)を短くし、反対に照射電力を小さくする場合には照射時間(T)を長くすることによって、照射エネルギー密度(V・I・T)を制御するのがよい。   In this case, the time of the preliminary ion irradiation process is preferably changed depending on the ion irradiation power and the surface state of the base. For example, when the irradiation power is increased, the irradiation time (T) is shortened. On the other hand, when the irradiation power is decreased, the irradiation time (T) is increased to reduce the irradiation energy density (V · I · T). It is good to control.

蒸着される高屈折率物質は、Ti2(二酸化チタン)やTa25(五酸化タンタル)などであるが、特にTi2が安価であって好ましい。蒸着される低屈折率物質はSi2(二酸化シリコン)が望ましい。この場合イオン銃は、Ti2に対して反応性ガスとしてのO2と希ガスとしてのArをイオン化して射出し、Si2に対しては反応性ガスO2のみをイオン化して射出するものとするのがよい。 The high refractive index material to be deposited is T i O 2 (titanium dioxide), T a2 O 5 (tantalum pentoxide) or the like, and T i O 2 is particularly preferable because it is inexpensive. The low refractive index material to be deposited is preferably S i O 2 (silicon dioxide). In this case, the ion gun ionizes and ejects O 2 as a reactive gas and Ar as a rare gas with respect to T i O 2 and ionizes only the reactive gas O 2 with respect to S i O 2 . Should be injected.

また真空容器には、電子を照射するニュートラライザを設け、イオンによる基板表面の帯電を電子によって中和させるのがよい。基板表面が帯電すると放電によって薄膜に損傷を与え光学特性が劣化するからである。   In addition, the vacuum vessel is preferably provided with a neutralizer for irradiating electrons, and neutralization of the charging of the substrate surface by ions with electrons is preferable. This is because if the surface of the substrate is charged, the thin film is damaged by discharge and the optical characteristics are deteriorated.

図1は本発明の一実施例である光学薄膜形成装置の概念図である。この図で符号10は真空容器であり、図示しない排気手段によって所定の圧力(例えば3×10-2〜10-4aの程度)に排気される。この真空容器は縦置き円筒状であり、その内部の上方には球面状のステンレス製の基板ホルダ12が垂直軸回りに回動可能に保持されている。この基板ホルダ12の下面には多数の基板14が薄膜形成面を下向きにして固定されている。基板14は形状が板状あるいはレンズなどに加工されたガラスや樹脂である。 FIG. 1 is a conceptual diagram of an optical thin film forming apparatus according to an embodiment of the present invention. Reference numeral 10 in this figure is a vacuum vessel is evacuated to a predetermined pressure by the exhaust means (not shown) (e.g., degree of 3 × 10 -2 ~10 -4 P a ). This vacuum vessel is a vertically-placed cylinder, and a spherical stainless steel substrate holder 12 is held above the inside thereof so as to be rotatable about a vertical axis. A large number of substrates 14 are fixed to the lower surface of the substrate holder 12 with the thin film forming surface facing downward. The substrate 14 is glass or resin processed into a plate shape or a lens.

基板ホルダ12の中心に設けた開口には光学モニタ16および水晶モニタ18が配設されている。光学モニタ16は基板14と同じ材料で作られた透明な板であり、真空容器10の上方に設けたミラーユニット20によって、投光器22から供給される光を光学モニタ16に導き、この光学モニタ16の反射光をミラーユニット20を介して分光器24に導き、一定波長の光強度から膜厚検出部26で光学膜厚を検出するものである。また水晶モニタ18は、その表面に薄膜が付着することによる共振周波数の変化から物理膜厚を膜厚検出部26で検出する。膜厚の検出結果は、コントローラ28に送られる。   An optical monitor 16 and a crystal monitor 18 are disposed in an opening provided in the center of the substrate holder 12. The optical monitor 16 is a transparent plate made of the same material as the substrate 14, and the light supplied from the projector 22 is guided to the optical monitor 16 by the mirror unit 20 provided above the vacuum vessel 10, and this optical monitor 16 The reflected light is guided to the spectroscope 24 through the mirror unit 20, and the optical film thickness is detected by the film thickness detector 26 from the light intensity of a certain wavelength. The crystal monitor 18 detects the physical film thickness by the film thickness detection unit 26 from the change in the resonance frequency due to the thin film adhering to the surface. The film thickness detection result is sent to the controller 28.

基板ホルダ12の上方には電気ヒータ30が配設されている。基板ホルダ12の温度は熱電対などの温度センサ32で検出され、その結果はコントローラ28に送られる。コントローラ28はこの温度センサ32の出力を用いて電気ヒータ30を制御して基板14の温度を適切に管理する。   An electric heater 30 is disposed above the substrate holder 12. The temperature of the substrate holder 12 is detected by a temperature sensor 32 such as a thermocouple, and the result is sent to the controller 28. The controller 28 appropriately controls the temperature of the substrate 14 by controlling the electric heater 30 using the output of the temperature sensor 32.

真空容器10の内部の下方には、高屈折率物質(Ti2)蒸発手段である蒸発源34、低屈折率物質(Si2)の蒸発手段である蒸発源36、イオン銃38が配設されている。蒸発源34、36は電子ビーム加熱方式によって高屈折率物質や低屈折率物質を加熱し蒸発させる。イオン銃38は反応性ガス(O2など)や希ガス(Arなど)のプラズマから帯電したイオン(O2 +、Ar+)を引出し加速電圧により加速して基板14に向けて射出する。 Below the inside of the vacuum vessel 10, an evaporation source 34 that is a high refractive index substance (T i O 2 ) evaporation means, an evaporation source 36 that is an evaporation means for a low refractive index substance (S i O 2 ), and an ion gun 38. Is arranged. The evaporation sources 34 and 36 heat and evaporate a high refractive index material and a low refractive index material by an electron beam heating method. The ion gun 38 extracts charged ions (O 2 + , Ar + ) from plasma of a reactive gas (such as O 2 ) or a rare gas (such as Ar), and accelerates them with an acceleration voltage to eject them toward the substrate 14.

蒸発源34の上方には、開閉可能な第1のシャッタ34Aが取付けられている。蒸発源36の上方には、開閉可能な第2のシャッタ36Aが取付けられている。イオン銃38の上方にはイオン銃シャッタ38Aが開閉可能に取付けられている。   Above the evaporation source 34, a first shutter 34A that can be opened and closed is attached. Above the evaporation source 36, a second shutter 36A that can be opened and closed is attached. Above the ion gun 38, an ion gun shutter 38A is attached so as to be openable and closable.

40はニュートラライザである。このニュートラライザ40は電子を基板14に向かって放出するものでありArなどの希ガスのプラズマから電子(e)を引き出し、加速電圧で加速して電子を射出する。ここから射出される電子は、基板表面に付着したイオンを中和する。 Reference numeral 40 denotes a neutralizer. The neutralizer 40 emits electrons toward the substrate 14. The neutralizer 40 extracts electrons (e ) from a rare gas plasma such as Ar and accelerates them with an acceleration voltage to emit electrons. The electrons emitted from here neutralize the ions attached to the substrate surface.

次にこの装置の動作を図2を用いて説明する。図2は各シャッタ34A、36A、38Aの開閉タイミングの時間変化を説明するタイミング図である。真空容器10内に基板14を固定した基板ホルダ12をセットし、真空容器10内を所定圧力まで排気する。その後電気ヒータ30を発熱させ、基板ホルダー12を低速で回転させる。この回転によって多数の基板14の温度と膜形成条件とを均一化する。   Next, the operation of this apparatus will be described with reference to FIG. FIG. 2 is a timing chart for explaining the change over time of the opening / closing timings of the shutters 34A, 36A, 38A. A substrate holder 12 having a substrate 14 fixed thereto is set in the vacuum vessel 10, and the inside of the vacuum vessel 10 is exhausted to a predetermined pressure. Thereafter, the electric heater 30 is heated, and the substrate holder 12 is rotated at a low speed. By this rotation, the temperature and film forming conditions of many substrates 14 are made uniform.

コントローラ28は、基板14の温度が設定温度になったことを温度センサ32の出力により判定すると蒸着工程に入るが、その前にイオン銃38はイオン源をアイドル運転状態としておく。また蒸発源34、36もシャッタ34A、36Aの開動作によって直ちに蒸発粒子を拡散(放出)できるように準備しておく。   When the controller 28 determines from the output of the temperature sensor 32 that the temperature of the substrate 14 has reached the set temperature, the controller 28 enters a vapor deposition process. Before that, the ion gun 38 sets the ion source in an idle operation state. The evaporation sources 34 and 36 are also prepared so that the evaporated particles can be immediately diffused (released) by opening the shutters 34A and 36A.

図2において、Aは高屈折率物質の蒸着工程を、Bは低屈折率物質の蒸着工程を示す。コントローラ28は、高屈折率物質の蒸着工程Aに先行してイオン銃38の照射電力をアイドル状態から事前に設定された照射電力に増大させ、イオン銃シャッタ38Aを開く。この工程は図2のCで示す予備的イオン照射工程(プレ照射ともいう)である。この工程Cは実験から決めた最適時間、例えば約10〜20秒間続ける。   In FIG. 2, A indicates a vapor deposition process of a high refractive index material, and B indicates a vapor deposition process of a low refractive index material. The controller 28 increases the irradiation power of the ion gun 38 from the idle state to a preset irradiation power prior to the deposition step A of the high refractive index material, and opens the ion gun shutter 38A. This step is a preliminary ion irradiation step (also referred to as pre-irradiation) indicated by C in FIG. This step C is continued for an optimum time determined from the experiment, for example, about 10 to 20 seconds.

この予備的イオン照射工程の照射電力(V・I)および時間(T)は、照射電力(V・I)が強すぎたり時間(T)が長いと、下地となる薄膜(低屈折率物質の蒸着薄膜)が少しずつスパッタされることになるので、光の吸収・散乱が少ない必要な膜特性が得られる範囲でできるだけ照射電力を弱くし時間を短くするのがよい。蒸着速度(蒸着レートという)が速いほど照射電力を相対的に強くしかつ時間を長くするのがよい。   The irradiation power (V · I) and time (T) in this preliminary ion irradiation process are such that if the irradiation power (V · I) is too strong or the time (T) is long, the underlying thin film (low refractive index material) Since the deposited thin film) is sputtered little by little, it is preferable to reduce the irradiation power and shorten the time as much as possible within a range where necessary film characteristics with little light absorption / scattering can be obtained. The faster the deposition rate (deposition rate), the stronger the irradiation power and the longer the time.

この工程Cに続いて、コントローラ28はイオン銃シャッタ38Aを開いたままイオン銃38の照射電力を正規の蒸着工程Aに対応するようにして、同時に第1の蒸発シャッタ34Aを開く。このため高屈折率物質の蒸着工程Aに入り、高屈折率物質の蒸着が行われる。この工程Aではコントローラ28は膜厚を光学モニタ16、水晶モニタ18により監視し続け、所定の膜厚になると蒸着を停止する。   Following this step C, the controller 28 opens the first evaporation shutter 34A at the same time so that the irradiation power of the ion gun 38 corresponds to the regular vapor deposition step A while the ion gun shutter 38A is open. For this reason, the high refractive index substance deposition step A is performed, and the high refractive index substance is deposited. In this step A, the controller 28 continues to monitor the film thickness with the optical monitor 16 and the crystal monitor 18, and stops vapor deposition when the film thickness reaches a predetermined value.

すなわちコントローラ28は、この工程Aを終了させるために第1のシャッタ34Aとイオン銃シャッタ38Aを閉じ、イオン銃38をアイドル状態に戻す。この状態で、蒸発物質Bの蒸発準備(事前溶かし込み)を行い、準備完了後コントローラ28はイオン銃38の照射電力を正規の蒸着工程Bに対応するようにすると共に、低屈折率物質の第2のシャッタ36Aとイオン銃シャッタ38Aとを同時に開く。このため低屈折率物質の蒸発粒子が基板14に付着する。この工程Bでは、コントローラ28は膜厚を監視し続け、所定の膜厚になると停止する。   That is, the controller 28 closes the first shutter 34A and the ion gun shutter 38A to end the process A, and returns the ion gun 38 to the idle state. In this state, the evaporation material B is prepared for evaporation (pre-melting), and after the preparation is completed, the controller 28 sets the irradiation power of the ion gun 38 to correspond to the regular deposition process B, and the low refractive index material first. 2 shutter 36A and ion gun shutter 38A are opened simultaneously. For this reason, the evaporated particles of the low refractive index substance adhere to the substrate 14. In this process B, the controller 28 continues to monitor the film thickness and stops when the film thickness reaches a predetermined value.

すなわち第2の蒸発シャッタ36Aとイオン銃シャッタ38Aを閉じ、イオン銃38をアイドル状態に戻す。このように高屈折率物質と低屈折率物質との蒸着を複数回繰り返すことにより、多層膜を形成することができる。   That is, the second evaporation shutter 36A and the ion gun shutter 38A are closed, and the ion gun 38 is returned to the idle state. Thus, a multilayer film can be formed by repeating the deposition of the high refractive index substance and the low refractive index substance a plurality of times.

実験例1Experimental example 1

次にこの装置を用いて行った本発明による実験例を、従来方法による実験例と比較して説明する。ここに従来方法は本発明における予備的イオン照射工程を除いたものである。   Next, an experimental example according to the present invention performed using this apparatus will be described in comparison with an experimental example according to a conventional method. Here, the conventional method excludes the preliminary ion irradiation step in the present invention.

実験例の成膜条件は次の通りである。

基板: BK7(屈折率n=1.52)
基板温度:150℃
i2蒸着時のイオン銃条件:
加速電圧:1000V
イオン電流密度:110μA/cm2
放電ガス:酸素60sccm+アルゴン7sccm
i2蒸発時のイオン銃条件:
加速電圧:1000V
イオン電流密度:110μA/cm2
放電ガス:酸素60sccm
予備的イオン照射条件:
加速電圧:300V,1000V
イオン電流密度:35μA/cm2,110μA/cm2
放電ガス:酸素60sccm+アルゴン7sccm
放電時間:0〜20秒
i2の蒸着速度:0.3,0.5,0.7nm/s
i2の蒸発速度:1.0nm/s
ニュートライザの条件:
加速電圧:50V
電子電流:2.0A
放電ガス:アルゴン10sccm
The film forming conditions in the experimental example are as follows.

Substrate: BK7 (refractive index n = 1.52)
Substrate temperature: 150 ° C
T i O 2 during deposition of the ion gun conditions:
Acceleration voltage: 1000V
Ion current density: 110 μA / cm 2
Discharge gas: oxygen 60 sccm + argon 7 sccm
S i O 2 evaporation time of the ion gun conditions:
Acceleration voltage: 1000V
Ion current density: 110 μA / cm 2
Discharge gas: oxygen 60sccm
Preliminary ion irradiation conditions:
Acceleration voltage: 300V, 1000V
Ion current density: 35 μA / cm 2 , 110 μA / cm 2
Discharge gas: oxygen 60 sccm + argon 7 sccm
Discharge time: 0 to 20 seconds T i O 2 deposition rate: 0.3, 0.5, 0.7 nm / s
Evaporation rate of S i O 2: 1.0nm / s
Nutriza conditions:
Acceleration voltage: 50V
Electron current: 2.0A
Discharge gas: Argon 10 sccm

本発明による実験例では予備的イオン照射工程(プレ照射)を10秒、20秒としたのに対し、従来方法では0秒とした点が両者で異なる。この実験例で33層の多層膜からなるUV−IRカットフィルタ(紫外線領域と赤外線領域を不透過にするフィルタ)を形成し、その光学特性を測定した。図3はその測定結果を示す図、表1はその予備的イオン照射条件を示す。   In the experimental example according to the present invention, the preliminary ion irradiation process (pre-irradiation) was set to 10 seconds and 20 seconds, whereas the conventional method was set to 0 seconds. In this experimental example, a UV-IR cut filter (filter for making the ultraviolet region and infrared region opaque) formed of a multilayer film of 33 layers was formed, and its optical characteristics were measured. FIG. 3 shows the measurement results, and Table 1 shows the preliminary ion irradiation conditions.

すなわち表1はTi2の成膜レート(蒸着速度、nm/s)と予備的イオン照射条件との関係を示し、×はその効果が無い時であって図3(A)に示す結果となる。△は効果が小さい時であって図3(B)に示す結果となる。○は効果が大きい時であって図3(C)に示す結果となっている。なお表1において、予備的イオン照射電力密度の0.01W/cm2,0.11W/cm2は、加速電圧とイオン電流密度の積であり、前者は300V×35μA/cm2の場合、後者は1000V×110μA/cm2の場合である。また実験では基板ホルダ12の異なる場所にセットした複数(9枚)の基板の測定値の平均値を測定値としている。 That is, Table 1 shows the relationship between the T i O 2 film formation rate (evaporation rate, nm / s) and the preliminary ion irradiation conditions, and × indicates the time when there is no effect, and the result shown in FIG. It becomes. Δ is when the effect is small, and the result shown in FIG. A circle shows a result when the effect is large, as shown in FIG. Note In Table 1, 0.01W / cm 2, 0.11W / cm 2 preliminary ion irradiation power density is the product of accelerating voltage and the ion current density, the former in the case of 300V × 35μA / cm 2, the latter Is the case of 1000 V × 110 μA / cm 2 . In the experiment, an average value of measured values of a plurality (9) of substrates set at different locations on the substrate holder 12 is used as a measured value.

Figure 0004873455
Figure 0004873455

図3(A)によれば、予備的イオン照射(プレ照射)時間を0秒とした時(すなわち予備的イオン照射を行わない従来方法による時)には、光透過率Tの測定値は可視光の波長範囲で約87%であることが解る。なお比較のためにこの時の設計値が破線で加えてある。この設計値は約95%である。このように設計値(約95%)と測定値(約87%)とが大きく異なることが解る。なお図3(B)によれば、光透過率Tの測定値は約92%であり、設計値95%とはまだ相当大きな違いがある。   According to FIG. 3A, when the preliminary ion irradiation (pre-irradiation) time is set to 0 second (that is, according to a conventional method in which preliminary ion irradiation is not performed), the measured value of the light transmittance T is visible. It can be seen that it is about 87% in the wavelength range of light. For comparison, the design value at this time is added by a broken line. This design value is about 95%. Thus, it can be seen that the design value (about 95%) and the measured value (about 87%) are greatly different. According to FIG. 3B, the measured value of the light transmittance T is about 92%, which is still quite different from the designed value of 95%.

図3(C)によれば、光透過率Tの測定値は可視光の波長範囲で約95%となり、ほぼ設計値(破線で示す)通りの値を得ることができることが解った。これは、予備的イオン照射(プレ照射)によってTi2の膜質が向上し、膜の屈折率の変動が少なく均一化し、光の吸収係数が一定以下で安定化するためと考えられる。 According to FIG. 3C, the measured value of the light transmittance T is about 95% in the visible light wavelength range, and it was found that a value almost as designed (shown by a broken line) can be obtained. This is presumably because the film quality of T i O 2 is improved by preliminary ion irradiation (pre-irradiation), the refractive index fluctuation of the film is uniformed, and the light absorption coefficient is stabilized at a certain level or less.

本発明に係る装置の概念図Conceptual diagram of an apparatus according to the present invention シャッタの開閉タイミングおよびイオン銃のイオン照射電力の時間変化を示す図The figure which shows the time change of the shutter opening and closing timing and the ion irradiation power of the ion gun 多層膜の光透過率の実測値を設計値と対比して示す図Figure showing the measured value of the light transmittance of the multilayer film compared to the design value

符号の説明Explanation of symbols

10 真空容器
12 基板ホルダ
14 基板
28 コントローラ
34 高屈折率物質の蒸発源(蒸発手段)
34A 第1のシャッタ
36 低屈折率物質の蒸発源(蒸発手段)
36A 第2のシャッタ
38 イオン銃
38A イオン銃シャッタ
40 ニュートラライザ
A 高屈折率物質の蒸着工程
B 低屈折率物質の蒸着工程
C 予備的イオン照射工程
DESCRIPTION OF SYMBOLS 10 Vacuum container 12 Substrate holder 14 Substrate 28 Controller 34 Evaporation source (evaporation means) of high refractive index substance
34A First shutter 36 Low-refractive-index substance evaporation source (evaporation means)
36A Second shutter 38 Ion gun 38A Ion gun shutter 40 Neutralizer A High refractive index material deposition process B Low refractive index material deposition process C Preliminary ion irradiation process

Claims (5)

真空容器内に保持した基板に高屈折率物質と低屈折率物質とを交互にかつ多層にイオンアシスト蒸着法によって蒸着する光学薄膜形成方法において、
前記基板に形成した低屈折率物質の蒸着薄膜に前記高屈折率物質の蒸発粒子とイオンとを同時に供給する蒸着工程の前に、イオンを所定時間供給する予備的イオン照射工程を設けると共に各蒸着薄膜層の蒸着工程の後にイオン照射を停止するイオン照射停止期間を設けたことを特徴とする光学薄膜形成方法。
In an optical thin film forming method in which a high-refractive index material and a low-refractive index material are alternately and multilayerly deposited by ion-assisted deposition on a substrate held in a vacuum vessel,
Before the vapor deposition step of simultaneously supplying the vaporized particles and ions of the high refractive index material to the vapor deposition thin film of the low refractive index material formed on the substrate, a preliminary ion irradiation step for supplying ions for a predetermined time is provided and each vapor deposition is performed. An optical thin film forming method characterized by providing an ion irradiation stop period in which ion irradiation is stopped after a thin film layer deposition step.
高屈折率物質の蒸着工程の前および低屈折率物質の蒸着工程の前に予備的イオン照射工程を設けた請求項1記載の光学薄膜形成方法。   2. The method of forming an optical thin film according to claim 1, wherein a preliminary ion irradiation step is provided before the vapor deposition step of the high refractive index material and before the vapor deposition step of the low refractive index material. 基板に蒸着された高屈折率物質はTi2であり、低屈折率物質はSi2である請求項1〜2のいずれかの光学薄膜形成方法。 3. The method of forming an optical thin film according to claim 1, wherein the high refractive index material deposited on the substrate is T i O 2 and the low refractive index material is S i O 2 . 真空容器内に保持した基板に高屈折率物質と低屈折率物質とを交互にかつ多層にイオンアシスト蒸着法によって蒸着する光学薄膜形成装置において、
所定の圧力に保たれた真空容器と、この真空容器内に保持された基板と、
この基板に所定距離離して対向する高屈折率物質の蒸発手段および低屈折率物資の蒸発手段と、
これらの蒸発手段と基板との間にそれぞれ進退出動する第1の蒸発源シャッターおよび第2の蒸発源シャッタと、
基板に対してイオンを照射するイオン銃と、
このイオン銃による基板へのイオン照射を制御するイオン銃シャッターと、
前記高屈折率物質または低屈折率物質の蒸発粒子とイオンとを同時に供給する蒸着工程を制御し、前記高屈折率物質の蒸着工程に先行してイオンを所定時間供給する予備的イオン照射工程を設けると共に前記高屈折率物質の蒸着工程と前記低屈折率物質の蒸着工程との間にイオン照射を停止するイオン照射停止期間を設けるように制御するコントローラと、
を備えることを特徴とする光学薄膜形成装置。
In an optical thin film forming apparatus that deposits a high refractive index substance and a low refractive index substance alternately and in multiple layers on a substrate held in a vacuum vessel by an ion-assisted deposition method.
A vacuum vessel maintained at a predetermined pressure, a substrate held in the vacuum vessel,
A high refractive index substance evaporation means and a low refractive index substance evaporation means facing the substrate at a predetermined distance;
A first evaporation source shutter and a second evaporation source shutter that move forward and backward between the evaporation means and the substrate, respectively.
An ion gun for irradiating the substrate with ions;
An ion gun shutter for controlling ion irradiation to the substrate by the ion gun;
A preliminary ion irradiation step of controlling a vapor deposition step of simultaneously supplying vaporized particles and ions of the high refractive index material or the low refractive index material and supplying ions for a predetermined time prior to the vapor deposition step of the high refractive index material; A controller for controlling to provide an ion irradiation stop period for stopping ion irradiation between the high refractive index material vapor deposition step and the low refractive index material vapor deposition step, and
An optical thin film forming apparatus comprising:
請求項4において、さらに基板に向かって電子を照射するニュートラライザを備える光学薄膜形成装置。   5. The optical thin film forming apparatus according to claim 4, further comprising a neutralizer that irradiates electrons toward the substrate.
JP2006072372A 2006-03-16 2006-03-16 Optical thin film forming method and apparatus Active JP4873455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072372A JP4873455B2 (en) 2006-03-16 2006-03-16 Optical thin film forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072372A JP4873455B2 (en) 2006-03-16 2006-03-16 Optical thin film forming method and apparatus

Publications (2)

Publication Number Publication Date
JP2007248828A JP2007248828A (en) 2007-09-27
JP4873455B2 true JP4873455B2 (en) 2012-02-08

Family

ID=38593192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072372A Active JP4873455B2 (en) 2006-03-16 2006-03-16 Optical thin film forming method and apparatus

Country Status (1)

Country Link
JP (1) JP4873455B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097511A1 (en) 2008-06-30 2011-04-28 Shincron Co., Ltd. Deposition apparatus and manufacturing method of thin film device
JP4503701B2 (en) * 2008-06-30 2010-07-14 株式会社シンクロン Vapor deposition apparatus and thin film device manufacturing method
WO2010018639A1 (en) 2008-08-15 2010-02-18 株式会社シンクロン Deposition apparatus and method for manufacturing thin-film device
CN102084025B (en) * 2008-09-05 2013-12-04 新柯隆株式会社 Film-forming method and oil repellent base
WO2011135667A1 (en) * 2010-04-27 2011-11-03 株式会社シンクロン Process for production of semiconductor light-emitting element substrate
CN102505108A (en) * 2011-12-21 2012-06-20 厦门美澜光电科技有限公司 Method for preparing lens plated with patterns without sight obstruction
JP2013185158A (en) * 2012-03-05 2013-09-19 Optorun Co Ltd Film deposition method
WO2016017791A1 (en) * 2014-08-01 2016-02-04 Jsr株式会社 Optical filter
JP7349798B2 (en) * 2019-03-06 2023-09-25 株式会社タムロン Anti-reflection film, optical element and anti-reflection film formation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318162A (en) * 1991-04-16 1992-11-09 Kobe Steel Ltd Formation of cubic boron nitride film and forming device therefor
JPH11246962A (en) * 1998-03-04 1999-09-14 Toyo Commun Equip Co Ltd Formation of reactive quartz film
JP2004170757A (en) * 2002-11-21 2004-06-17 Victor Co Of Japan Ltd Polarizing plate for liquid crystal projector apparatuses and its manufacturing method
JP2004346365A (en) * 2003-05-21 2004-12-09 Shin Meiwa Ind Co Ltd Ion-beam-assisted vapor deposition method and apparatus

Also Published As

Publication number Publication date
JP2007248828A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4873455B2 (en) Optical thin film forming method and apparatus
WO2010018639A1 (en) Deposition apparatus and method for manufacturing thin-film device
TWI397949B (en) Method for producing smooth, dense optical films
JP3808917B2 (en) Thin film manufacturing method and thin film
JP3689524B2 (en) Aluminum oxide film and method for forming the same
WO2015097898A1 (en) Process for forming multilayer antireflection film
WO1997037051A1 (en) Method of manufacturing substrate with thin film, and manufacturing apparatus
CN101588912A (en) Method for producing a nanostructure on a plastic surface
JP4512669B2 (en) Vapor deposition apparatus and thin film device manufacturing method
TWI604075B (en) Film forming method and film forming apparatus
JP4434949B2 (en) Methods for obtaining thin, stable, fluorine-doped silica layers, the resulting thin layers, and their application in ophthalmic optics
JP4823293B2 (en) Film forming method and film forming apparatus
TW200422419A (en) Thin film forming apparatus and thin film forming method
JP4503701B2 (en) Vapor deposition apparatus and thin film device manufacturing method
JPH11172421A (en) Production method and producing device of fluoride thin film
JP2005133131A (en) Method for forming refractive-index-changing layer
EP2535438B1 (en) Methods for forming metal fluoride film
JP5901571B2 (en) Deposition method
JP2001207260A (en) Film deposition method and film deposition system
CN111926293A (en) Optical device and method for manufacturing the same
JP2007224335A (en) Film deposition method and film deposition system
JP5458277B1 (en) Functional film, film forming apparatus and film forming method
JP2010116613A (en) Cluster ion-assisted vapor deposition apparatus and method
JP3407911B2 (en) Manufacturing method of high yield strength film for laser
TWI836150B (en) Film forming method and film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250