JP4873406B2 - Method for producing non-sintered electrode for battery - Google Patents

Method for producing non-sintered electrode for battery Download PDF

Info

Publication number
JP4873406B2
JP4873406B2 JP2006098379A JP2006098379A JP4873406B2 JP 4873406 B2 JP4873406 B2 JP 4873406B2 JP 2006098379 A JP2006098379 A JP 2006098379A JP 2006098379 A JP2006098379 A JP 2006098379A JP 4873406 B2 JP4873406 B2 JP 4873406B2
Authority
JP
Japan
Prior art keywords
active material
tab portion
electrode
electrode substrate
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006098379A
Other languages
Japanese (ja)
Other versions
JP2007273301A (en
Inventor
正樹 石田
和樹 濱崎
陽一郎 柴田
一浩 吉村
正弘 細田
卓也 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006098379A priority Critical patent/JP4873406B2/en
Publication of JP2007273301A publication Critical patent/JP2007273301A/en
Application granted granted Critical
Publication of JP4873406B2 publication Critical patent/JP4873406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電極基板として三次元多孔体を用いる電池用非焼結式電極の製造方法に関する。   The present invention relates to a method for producing a non-sintered electrode for a battery using a three-dimensional porous body as an electrode substrate.

電気自動車、電動バイク、アシスト自転車あるいは電動工具等の大電流用途向けの電池として、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池が用いられるようになった。この種の用途に用いられるアルカリ蓄電池は、高出力特性、高エネルギー密度が要求される。高出力特性を達成するためには集電部品の低抵抗化等が必要であり、集電体と電極板端部の電極基板との接触を密にする必要がある。また、振動などにより集電体が外れる恐れがあるため、集電体と電極基板との溶接強度を強くする必要がある。   Alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries have come to be used as batteries for large current applications such as electric vehicles, electric motorcycles, assist bicycles, and electric tools. Alkaline storage batteries used for this type of application are required to have high output characteristics and high energy density. In order to achieve high output characteristics, it is necessary to reduce the resistance of the current collecting component, and it is necessary to close contact between the current collector and the electrode substrate at the end of the electrode plate. In addition, since the current collector may come off due to vibration or the like, it is necessary to increase the welding strength between the current collector and the electrode substrate.

この種のアルカリ蓄電池は、通常、正極板と負極板とをセパレータを介して渦巻状に巻回して電極群とした後、この電極群の下面に突出する負極板の電極基板を負極集電体に溶接するとともに、この電極群の上面に突出する正極板の電極基板を正極集電体に溶接する。ついで、この電極群を負極端子を兼ねる金属製外装缶に挿入し、負極集電体を金属製外装缶の底部に溶接するとともに、正極集電体より延出する集電リード部を正極端子を兼ねる封口体の底部に溶接した後、電解液を注液し、外装缶の開口部に絶縁ガスケットを介して封口体を装着して密閉することにより作製されている。   In this type of alkaline storage battery, normally, a positive electrode plate and a negative electrode plate are spirally wound through a separator to form an electrode group, and then the electrode substrate of the negative electrode plate protruding from the lower surface of the electrode group is used as a negative electrode current collector. And the electrode substrate of the positive electrode plate protruding from the upper surface of the electrode group is welded to the positive electrode current collector. Next, the electrode group is inserted into a metal outer can that also serves as a negative electrode terminal, the negative electrode current collector is welded to the bottom of the metal outer can, and the current collector lead portion extending from the positive electrode current collector is connected to the positive electrode terminal. After being welded to the bottom of the sealing body that also serves as the sealing member, an electrolytic solution is injected, and the sealing body is attached to the opening of the outer can through an insulating gasket and sealed.

これらのアルカリ蓄電池の生産性をさらに向上させるために、ニッケル正極の電極基板としてニッケルスポンジ等の三次元金属多孔体を使用する非焼結式ニッケル正極が広く用いられるようになった。ところが、非焼結式ニッケル正極を正極集電体に溶接する場合、電極基板である三次元多孔体は高多孔性で密度が小さいために、これを直接的に正極集電体に溶接することが困難であった。   In order to further improve the productivity of these alkaline storage batteries, non-sintered nickel positive electrodes using a three-dimensional metal porous body such as nickel sponge as an electrode substrate for nickel positive electrodes have been widely used. However, when a non-sintered nickel positive electrode is welded to the positive electrode current collector, the three-dimensional porous body as the electrode substrate is highly porous and has a low density. It was difficult.

そこで、三次元多孔体電極基板のニッケルスポンジに直接集電体を溶接する方法が、例えば特許文献1(特開昭62−136759号公報)等で提案されるようになった。この特許文献1にて提案された方法においては、三次元多孔体のニッケルスポンジからなる電極基板の活物質が充填されていない部分を圧縮して密な部分からなるタブ部を形成し、この密な部分からなるタブ部に集電体を溶接するようにしている。
特開昭62−136759号公報
Therefore, a method of directly welding a current collector to a nickel sponge of a three-dimensional porous electrode substrate has been proposed in, for example, Japanese Patent Application Laid-Open No. Sho 62-136759. In the method proposed in Patent Document 1, a portion of an electrode substrate made of a nickel sponge of a three-dimensional porous body that is not filled with an active material is compressed to form a tab portion consisting of a dense portion. The current collector is welded to the tab portion consisting of a large portion.
JP 62-136759 A

ところで上述の非焼結式ニッケル正極等の非焼結式電極は、例えば次のような方法により製造されている。
まず、長尺のニッケルスポンジ電極基板の集電体が溶接される部分を圧縮して正極活物質ペーストを充填しない無充填領域(タブ部)を形成する。続いて、前記長尺のニッケルスポンジ電極基板を活物質ペーストが入った槽に浸漬し、ニッケルスポンジ電極基板に活物質ペーストを充填する。その後、ニッケルスポンジ電極基板の前記タブ部に付着した活物質ペーストを吸引して除去する。次いで、活物質ペーストを充填したニッケルスポンジ電極基板を乾燥し、更にニッケルスポンジ電極基板内の活物質の充填密度を上げるために、その長手方向に沿って圧延ローラーによる圧延を行い、所定の寸法になるよう切断加工等を施して、非焼結式電極を製造する。
By the way, the non-sintered electrode such as the above-mentioned non-sintered nickel positive electrode is manufactured by the following method, for example.
First, a portion of the long nickel sponge electrode substrate to which the current collector is welded is compressed to form an unfilled region (tab portion) that is not filled with the positive electrode active material paste. Subsequently, the long nickel sponge electrode substrate is dipped in a bath containing an active material paste, and the nickel sponge electrode substrate is filled with the active material paste. Thereafter, the active material paste adhering to the tab portion of the nickel sponge electrode substrate is removed by suction. Next, the nickel sponge electrode substrate filled with the active material paste is dried, and in order to further increase the packing density of the active material in the nickel sponge electrode substrate, rolling is performed with a rolling roller along the longitudinal direction to a predetermined dimension. A non-sintered electrode is manufactured by cutting and so on.

しかしながら、このような製法では以下のような問題が生じた。
前記タブ部に活物質ペーストが残存すると、後の集電体溶接時にスパークが発生し、集電体と非焼結式電極との接続が十分にできず、強度不足により集電体が外れたり、電池を作製したときに内部抵抗が高くなるという特性低下を招いたりするため、出来るだけ前期タブ部の活物質ペーストを除去するのが望ましい。
しかし、上記の如くタブ部の活物質ペーストを吸引して除去したとしても、前記タブ部以外の活物質充填部からタブ部へ前記活物質ペーストの染み出しが生じ、結果的にタブ部に活物質ペーストが残存することとなった。
そこで、タブ部への活物質ペーストの染み出しを抑制するために当該タブ部の圧縮を大きくすると、後の圧延ローラーによる圧延時にタブ部にしわが発生し、これによりニッケルスポンジ等の三次元多孔体電極基板の幅が変化し、切断加工時に寸法が狂うという問題が生じた。
However, such a production method has the following problems.
If the active material paste remains in the tab portion, sparks will occur during subsequent current collector welding, the current collector cannot be sufficiently connected to the non-sintered electrode, and the current collector may come off due to insufficient strength. It is desirable to remove the active material paste in the previous tab portion as much as possible, because it causes a decrease in characteristics such as an increase in internal resistance when the battery is manufactured.
However, even if the active material paste in the tab portion is sucked and removed as described above, the active material paste oozes out from the active material filling portion other than the tab portion to the tab portion, and as a result, the tab portion is activated. The substance paste remained.
Therefore, if the compression of the tab portion is increased in order to suppress the seepage of the active material paste to the tab portion, wrinkles are generated in the tab portion during subsequent rolling with a rolling roller, thereby causing a three-dimensional porous body such as a nickel sponge. The width of the electrode substrate changed, resulting in a problem that the dimensions were distorted during the cutting process.

本発明は、上記従来の課題を解決するためになされたもので、圧延時に際して前記タブ部にしわを生じさせることなく、またタブ部への活物質ペーストの染み出しを抑制した非焼結式電極の製造方法を提供するものである。   The present invention has been made to solve the above-described conventional problems, and does not cause wrinkles in the tab portion during rolling, and suppresses the exudation of the active material paste to the tab portion. An electrode manufacturing method is provided.

本発明の非焼結式電極の製造方法においては、
フープから供給される長尺の三次元多孔体電極基板を長手方向に沿って厚み方向に加圧してタブ部及び当該タブ部でもって区画される複数列の非加圧領域を形成する工程と、
前記三次元多孔体電極基板の前記タブ部と前記非加圧領域の境界に前記タブ部よりも高密度に加圧された高圧縮部を形成する工程と、
前記高圧縮部が形成された三次元多孔体電極基板に活物質ペーストを充填する工程と、
前記タブ部の活物質ペーストを除去する工程と、
活物質ペーストが充填された前記三次元多孔体電極基板を乾燥する工程と、
前記三次元多孔体基板をその長手方向に沿って圧延を行う圧延工程を備えることを特徴
とする。
In the method for producing the non-sintered electrode of the present invention,
A step of pressurizing a long three-dimensional porous electrode substrate supplied from the hoop in the thickness direction along the longitudinal direction to form a tab portion and a plurality of rows of non-pressurized regions partitioned by the tab portion ;
Forming a high-compression portion pressed at a higher density than the tab portion at the boundary between the tab portion and the non-pressurized region of the three-dimensional porous electrode substrate;
Filling the active material paste into the three-dimensional porous electrode substrate on which the high compression portion is formed ;
Removing the active material paste of the tab portion;
Drying the three-dimensional porous electrode substrate filled with an active material paste;
It comprises a rolling step of rolling the three-dimensional porous substrate along its longitudinal direction.

上記のように、タブ部と活物質ペーストが充填される部分(活物質充填部)との境界領域を前記タブ部よりも圧縮量を大きくして高密度化した高圧縮部を設けることにより、前記活物質充填部から前記タブ部への染み出しを抑制できる。また、前記タブ部の圧縮量を前記高圧縮部ほど大きくしていないため、後の圧延工程において前記タブ部にしわが発生することはない。従って、切断加工時の不良を抑制し、生産品質を高めることができる。   As described above, by providing a high compression portion in which the boundary region between the tab portion and the portion filled with the active material paste (active material filling portion) is densified by increasing the amount of compression than the tab portion, The seepage from the active material filling portion to the tab portion can be suppressed. In addition, since the amount of compression of the tab portion is not as large as that of the high compression portion, wrinkles are not generated in the tab portion in the subsequent rolling process. Therefore, it is possible to suppress defects during cutting and improve production quality.

以下、本発明の一実施の形態に係る非焼結式ニッケル極の製造方法について模式図を用いて説明する。
まず、図1に示すようにニッケルスポンジ電極基板フープ1から供給された長尺のニッケルスポンジ電極基板2を、外周面に環状突起のついた突起付きローラー3a、3b間を通して加圧し、ニッケルスポンジ電極基板2の長手方向に沿ってタブ部11(図1中不図示)を形成する。次いで、長尺ニッケルスポンジ基板2を外周面に環状突起のついた突起付きローラー4a、4b間を通して加圧し、ニッケルスポンジ基板2の長手方向に沿ってタブ部11の活物質充填部13(図1中不図示)との境界部分に高圧縮部12(図1中不図示)を形成する。
Hereinafter, the manufacturing method of the non-sintered nickel electrode which concerns on one embodiment of this invention is demonstrated using a schematic diagram.
First, as shown in FIG. 1, a long nickel sponge electrode substrate 2 supplied from a nickel sponge electrode substrate hoop 1 is pressed through rollers 3a and 3b with projections having annular projections on the outer peripheral surface, thereby providing a nickel sponge electrode. A tab portion 11 (not shown in FIG. 1) is formed along the longitudinal direction of the substrate 2. Next, the long nickel sponge substrate 2 is pressurized through the protrusion-provided rollers 4a and 4b each having an annular protrusion on the outer peripheral surface, and the active material filling portion 13 (see FIG. 1) of the tab portion 11 along the longitudinal direction of the nickel sponge substrate 2. A high compression portion 12 (not shown in FIG. 1) is formed at a boundary portion with the middle (not shown).

そして、このタブ部11と高圧縮部12が形成されたニッケルスポンジ電極基板2を、活物質ペースト充填装置5を通過させることにより前記ニッケルスポンジ電極基板2に活物質を含むペーストを充填する。その後、前記タブ部11の活物質ペーストを吸引装置6で吸引することにより除去する。このとき、タブ部11と活物質充填部13の境界には高圧縮部12が形成されているので、当該タブ部11のペーストのみが除去され、活物質充填部13からタブ部11の方へ活物質ペーストが染み出すことを抑制できる。
続いて、乾燥炉7を通して乾燥を行い、活物質ペーストが充填されたニッケルスポンジ電極基板2を活物質の充填密度を更に上げるために一対の圧延ローラー8a、8b間に通してその長手方向に沿って圧延を行う。ここで、本製法ではタブ部を高圧縮部12ほど圧縮量が大きくないため、圧延によっても当該タブ部11にしわが発生しない。
この後、タブ部11の中心部と活物質充填部13の中心部をローラースリッター9により長尺方向に切断して複数列に分離し、最後に切断機10により所定長さの極板が作製される。
Then, the nickel sponge electrode substrate 2 on which the tab portion 11 and the high compression portion 12 are formed is passed through the active material paste filling device 5 to fill the nickel sponge electrode substrate 2 with the paste containing the active material. Thereafter, the active material paste on the tab portion 11 is removed by suction with the suction device 6. At this time, since the high compression portion 12 is formed at the boundary between the tab portion 11 and the active material filling portion 13, only the paste of the tab portion 11 is removed, and the active material filling portion 13 moves toward the tab portion 11. The active material paste can be prevented from oozing out.
Subsequently, drying is performed through a drying furnace 7, and the nickel sponge electrode substrate 2 filled with the active material paste is passed between a pair of rolling rollers 8a and 8b along the longitudinal direction in order to further increase the packing density of the active material. Rolling. Here, in this manufacturing method, since the amount of compression of the tab portion is not so large as that of the high compression portion 12, the tab portion 11 is not wrinkled even by rolling.
Thereafter, the central portion of the tab portion 11 and the central portion of the active material filling portion 13 are cut in the longitudinal direction by the roller slitter 9 to be separated into a plurality of rows, and finally a plate having a predetermined length is produced by the cutting machine 10. Is done.

さらに、実施例に従い本発明に係る製造方法を詳細に説明する。
(実施例1)
まず、水酸化ニッケル98重量部と水酸化コバルト2重量部を混合し、これに結着剤としてヒドロキシプロピルセルロース(HPC)0.1質量部を水40質量部に溶かしたHPC水溶液を加えて正極活物質スラリーとした。
Further, the production method according to the present invention will be described in detail according to the examples.
Example 1
First, 98 parts by weight of nickel hydroxide and 2 parts by weight of cobalt hydroxide were mixed, and an HPC aqueous solution in which 0.1 part by weight of hydroxypropyl cellulose (HPC) was dissolved in 40 parts by weight of water was added thereto as a positive electrode. An active material slurry was obtained.

次に多孔度97%、幅310mm、厚み1.3mmの長尺のニッケルスポンジを準備し、このニッケルスポンジ上の、後に集電体が接続される部分を突起付きローラーにて厚み0.4mmのタブ部11を形成するよう圧延を行った。なお、前記タブ部11は幅2.0mmであり、前記ニッケルスポンジ上に60mmの間隔で、図2に示すように5箇所に形成した。さらに、前記タブ部上で充填部との境を突起付きローラーにて厚みが0.3mmの高圧縮部12を形成するよう圧延を行った。なお、前記高圧縮部の幅は0.5mmとした。
以上の圧延操作をして出来たニッケルスポンジシートのタブ部付近の断面形状を、図3に示す。厚み0.4mmのタブ部11の両端に、厚み0.3mmの高圧縮部12が形成され、前記高圧縮部12の外側に厚み1.3mmの活物質充填部13が続くようになっている。
Next, a long nickel sponge having a porosity of 97%, a width of 310 mm, and a thickness of 1.3 mm was prepared, and a portion on the nickel sponge to which a current collector was connected later was formed with a roller having a protrusion of 0.4 mm. Rolling was performed to form the tab portion 11. The tab portion 11 had a width of 2.0 mm, and was formed at five locations on the nickel sponge at intervals of 60 mm as shown in FIG. Furthermore, it rolled so that the high compression part 12 with a thickness of 0.3 mm might be formed in the boundary with a filling part on the said tab part with the roller with a protrusion. The width of the high compression part was 0.5 mm.
FIG. 3 shows a cross-sectional shape in the vicinity of the tab portion of the nickel sponge sheet obtained by the above rolling operation. A high compression portion 12 having a thickness of 0.3 mm is formed at both ends of the tab portion 11 having a thickness of 0.4 mm, and an active material filling portion 13 having a thickness of 1.3 mm follows the outside of the high compression portion 12. .

続いて、ニッケルスポンジシートを前記正極活物質スラリーが投入されている槽に浸漬することによって充填した。このとき、タブ部11にも正極活物質スラリーが若干充填された状態となる。このタブ部11に充填された正極活物質スラリーを除去するため、吸引装置により吸引した。この後、ニッケルスポンジシートを乾燥炉にて90℃で乾燥し、次いでニッケルスポンジシートの活物質充填部13が厚み0.5mmとなるよう圧延ローラーにて圧延した。
このニッケルスポンジシートをローラースリッターにより前記タブ部11の中心と活物質充填部13の中心を通るように長尺方向に切断して(図4の破線)10列に分離し、最後に各列で長さが200mmとなるように切断機で切断し、長さ200mm、幅31mmの非焼結式ニッケル極を作製した。
Subsequently, the nickel sponge sheet was filled by being immersed in a tank in which the positive electrode active material slurry was put. At this time, the tab portion 11 is also slightly filled with the positive electrode active material slurry. In order to remove the positive electrode active material slurry filled in the tab portion 11, suction was performed by a suction device. Thereafter, the nickel sponge sheet was dried at 90 ° C. in a drying furnace, and then rolled with a rolling roller so that the active material filling portion 13 of the nickel sponge sheet had a thickness of 0.5 mm.
This nickel sponge sheet is cut in a longitudinal direction by a roller slitter so as to pass through the center of the tab portion 11 and the center of the active material filling portion 13 (broken line in FIG. 4), and is separated into 10 rows. A non-sintered nickel electrode having a length of 200 mm and a width of 31 mm was produced by cutting with a cutting machine so that the length was 200 mm.

(実施例2)
上述した実施例1とは高圧縮部12の厚みを0.2mmとした以外は同様にして、非焼結式ニッケル極を作製した。
(Example 2)
A non-sintered nickel electrode was produced in the same manner as in Example 1 except that the thickness of the high compression portion 12 was changed to 0.2 mm.

(比較例1)
上述した実施例1とは高圧縮部12を形成しない点以外は同様にして、非焼結式ニッケル極を作製した。
(Comparative Example 1)
A non-sintered nickel electrode was produced in the same manner as in Example 1 except that the high compression portion 12 was not formed.

(比較例2)
上述した実施例1とはタブ部11を厚み0.3mmとし、高圧縮部12を形成しない点以外は同様にして、非焼結式ニッケル極を作製した。
(Comparative Example 2)
A non-sintered nickel electrode was produced in the same manner as in Example 1 except that the tab portion 11 had a thickness of 0.3 mm and the high compression portion 12 was not formed.

(確認実験1)
以上の実施例1、実施例2、比較例1、及び比較例2の非焼結式ニッケル極を作製するにあたり、活物質充填部の圧延工程において、活物質タブ部におけるしわの発生の有無を目視にて確認した。
(Confirmation experiment 1)
In producing the non-sintered nickel electrodes of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 above, whether or not wrinkles occurred in the active material tab portion in the rolling process of the active material filling portion was determined. It was confirmed visually.

(確認実験2)
実施例1、実施例2、比較例1、及び比較例2の非焼結式ニッケル極を非焼結式カドミウム極とセパレータを挟んで巻回し、円筒形の電極群を作製した。ついで、略円形の集電体を用意し、電極体の正極のタブ部と前記集電体を溶接して接続した。
このようにして上記各例について5000個の電極体と集電体の溶接を行い、正極集電体溶接時にバクヒにより集電体が溶接できないものの数量から、溶接不良率を確認した。
(Confirmation experiment 2)
The non-sintered nickel electrode of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 was wound with a non-sintered cadmium electrode and a separator interposed therebetween to produce a cylindrical electrode group. Next, a substantially circular current collector was prepared, and the positive electrode tab portion of the electrode body and the current collector were welded and connected.
In this way, 5000 electrode bodies and current collectors were welded for each of the above examples, and the welding failure rate was confirmed from the quantity of the current collectors that could not be welded by baku at the time of positive electrode current collector welding.

以上の確認実験の結果を表1に示す。
The results of the above confirmation experiment are shown in Table 1.

比較例1では、しわの発生は無かったが、タブ部11の圧縮が十分でないため活物質充填部からの活物質の染み出しが発生し、溶接不良率が高い。また、比較例2では、タブ部11の圧縮が高いため、前記染み出しがなく溶接不良率を低くすることができたが、しわが発生した。
一方、タブ部11と活物質充填部13との境界に高圧縮部12を設けた実施例1および実施例2では、しわの発生もなく、また活物質の染み出しが抑制された結果、溶接不良率も低く抑えることができた。
In Comparative Example 1, wrinkles were not generated, but the tab portion 11 was not sufficiently compressed, so that the active material oozed out from the active material filling portion and the welding defect rate was high. Moreover, in the comparative example 2, since the compression of the tab part 11 was high, there was no said bleed and the welding failure rate could be lowered, but wrinkles occurred.
On the other hand, in Example 1 and Example 2 in which the high compression part 12 was provided at the boundary between the tab part 11 and the active material filling part 13, there was no generation of wrinkles and as a result of suppressing the seepage of the active material, welding The defective rate could be kept low.

以上説明したとおり本発明の製造方法を用いることによって、タブ部への活物質の染み出しを抑制しつつ、タブ部にしわが発生することもないため、非焼結式電極およびそれを用いた電池の生産品質を高めることができる。
なお、上述した実施の形態においては、本発明を非焼結式ニッケル正極に適用する例について説明したが、ニッケル正極以外にも、同様に三次元多孔体電極基板に活物質スラリーを充填して製造する他の電極(例えばカドミウム負極、水素吸蔵合金負極)にも適用可能である。
また、上述の実施の形態ではタブ部を形成後に高圧縮部を形成したが、高圧縮部を形成後にタブ部を形成することも可能である。更に、突起付きローラーの突起に段差を設けることにより、1回的に高圧縮部とタブ部を形成することも可能である。
As described above, the use of the manufacturing method of the present invention suppresses the leaching of the active material to the tab portion and does not cause wrinkles in the tab portion. Therefore, a non-sintered electrode and a battery using the same Can improve the production quality.
In the above-described embodiment, the example in which the present invention is applied to the non-sintered nickel positive electrode has been described. However, besides the nickel positive electrode, the three-dimensional porous electrode substrate is similarly filled with the active material slurry. The present invention can also be applied to other electrodes to be manufactured (for example, cadmium negative electrode, hydrogen storage alloy negative electrode).
Moreover, although the high compression part was formed after forming the tab part in the above-mentioned embodiment, it is also possible to form the tab part after forming the high compression part. Furthermore, it is also possible to form a high compression part and a tab part once by providing a level | step difference in the processus | protrusion of a roller with a processus | protrusion.

本発明の非焼結式電極の製造工程を示す図である。It is a figure which shows the manufacturing process of the non-sintering type electrode of this invention. タブ部を設けたニッケルスポンジ電極基板を示す図である。It is a figure which shows the nickel sponge electrode board | substrate which provided the tab part. ニッケルスポンジ電極基板の断面の一部を示す図である。It is a figure which shows a part of cross section of a nickel sponge electrode substrate. ニッケルスポンジ電極基板の切断部を示す図である。It is a figure which shows the cutting part of a nickel sponge electrode substrate.

符号の説明Explanation of symbols

1・・・ニッケルスポンジ電極基板フープ 2・・・ニッケルスポンジ
3a、3b、4a、4b・・突起付きローラー
11・・タブ部 12・・高圧縮部 13・・活物質充填部
DESCRIPTION OF SYMBOLS 1 ... Nickel sponge electrode substrate hoop 2 ... Nickel sponge 3a, 3b, 4a, 4b ... Roller 11 with a projection ... Tab part 12 ... High compression part 13 ... Active material filling part

Claims (1)

フープから供給される長尺の三次元多孔体電極基板を長手方向に沿って厚み方向に加圧してタブ部及び当該タブ部でもって区画される複数列の非加圧領域を形成する工程と、
前記三次元多孔体電極基板の前記タブ部と前記非加圧領域の境界に前記タブ部よりも高密度に加圧された高圧縮部を形成する工程と、
前記高圧縮部が形成された三次元多孔体電極基板に活物質ペーストを充填する工程と、
前記タブ部の活物質ペーストを除去する工程と、
活物質ペーストが充填された前記三次元多孔体電極基板を乾燥する工程と、
前記三次元多孔体基板をその長手方向に沿って圧延を行う圧延工程とを備えることを特徴とする電池用非焼結式電極の製造方法

A step of pressurizing a long three-dimensional porous electrode substrate supplied from the hoop in the thickness direction along the longitudinal direction to form a tab portion and a plurality of rows of non-pressurized regions partitioned by the tab portion ;
Forming a high-compression portion pressed at a higher density than the tab portion at the boundary between the tab portion and the non-pressurized region of the three-dimensional porous electrode substrate;
Filling the active material paste into the three-dimensional porous electrode substrate on which the high compression portion is formed ;
Removing the active material paste of the tab portion;
Drying the three-dimensional porous electrode substrate filled with an active material paste;
And a rolling process for rolling the three-dimensional porous substrate along the longitudinal direction thereof.

JP2006098379A 2006-03-31 2006-03-31 Method for producing non-sintered electrode for battery Expired - Fee Related JP4873406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098379A JP4873406B2 (en) 2006-03-31 2006-03-31 Method for producing non-sintered electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098379A JP4873406B2 (en) 2006-03-31 2006-03-31 Method for producing non-sintered electrode for battery

Publications (2)

Publication Number Publication Date
JP2007273301A JP2007273301A (en) 2007-10-18
JP4873406B2 true JP4873406B2 (en) 2012-02-08

Family

ID=38675885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098379A Expired - Fee Related JP4873406B2 (en) 2006-03-31 2006-03-31 Method for producing non-sintered electrode for battery

Country Status (1)

Country Link
JP (1) JP4873406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228133B1 (en) * 2012-10-01 2013-07-03 株式会社日立エンジニアリング・アンド・サービス Roll press facility for electrode material and method for producing electrode sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770311B2 (en) * 1985-12-10 1995-07-31 松下電器産業株式会社 Battery electrode manufacturing method
FR2714212B1 (en) * 1993-12-17 1996-02-02 Accumulateurs Fixes Electrode plate with a metal foam type support for an electrochemical generator and method for manufacturing such an electrode plate.
JP4349042B2 (en) * 2003-08-28 2009-10-21 株式会社ジーエス・ユアサコーポレーション Alkaline storage battery

Also Published As

Publication number Publication date
JP2007273301A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5004452B2 (en) Battery manufacturing method
JP4873406B2 (en) Method for producing non-sintered electrode for battery
CN1453896A (en) Nickel-hydrogen accumulator
CN217544655U (en) Pole piece and battery
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
WO2001006582A1 (en) Alkaline storage battery pole plate and production method for alkaline storage battery pole plate and alkaline storage battery
JPH0676819A (en) Electrode plate for cylindrical battery and manufacture thereof
JP5092277B2 (en) Secondary battery electrode and manufacturing method thereof
JP2000323165A (en) Wound body electrode group for accumulator and alkali storage battery
JP5025276B2 (en) Alkaline storage battery and method of manufacturing the same
JP7225111B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP2005129497A (en) Electrode plate for alkaline storage battery, its manufacturing method, and alkaline storage battery
JP3913395B2 (en) Method for producing alkaline storage battery
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP5093275B2 (en) Method for manufacturing electrode for secondary battery
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JP2013206745A (en) Cylindrical storage battery
JP5125246B2 (en) Method for manufacturing electrode for secondary battery
JP2010073537A (en) Alkaline secondary battery
JP2007172976A (en) Alkaline storage battery and manufacturing method therefor
JP2009176551A (en) Method and device of manufacturing nonaqueous secondary battery
JPH07307148A (en) Lead-acid battery
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JP5060215B2 (en) Method for cleaning core material for electrode plate and method for producing alkaline storage battery using the same
JP2008108605A (en) Manufacturing method of sealing cap for alkaline battery, and alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350