JP4871622B2 - Method and system for surveying structures - Google Patents

Method and system for surveying structures Download PDF

Info

Publication number
JP4871622B2
JP4871622B2 JP2006085829A JP2006085829A JP4871622B2 JP 4871622 B2 JP4871622 B2 JP 4871622B2 JP 2006085829 A JP2006085829 A JP 2006085829A JP 2006085829 A JP2006085829 A JP 2006085829A JP 4871622 B2 JP4871622 B2 JP 4871622B2
Authority
JP
Japan
Prior art keywords
point
surveying
collimation
section
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085829A
Other languages
Japanese (ja)
Other versions
JP2007263606A (en
Inventor
伸司 大前
宏史 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Mac Co Ltd
Original Assignee
Obayashi Corp
Mac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Mac Co Ltd filed Critical Obayashi Corp
Priority to JP2006085829A priority Critical patent/JP4871622B2/en
Publication of JP2007263606A publication Critical patent/JP2007263606A/en
Application granted granted Critical
Publication of JP4871622B2 publication Critical patent/JP4871622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、例えば、トンネルなどの構造物の測量方法及び測量システムに関する。   The present invention relates to a surveying method and surveying system for a structure such as a tunnel.

図7に、従来のトンネルの内壁面上の点の位置を測量する方法の一例を示す。   FIG. 7 shows an example of a method for surveying the position of a point on the inner wall surface of a conventional tunnel.

トンネルの掘削後には、例えば、図7に示すように、トンネル60の施工において計画設計された設計壁面20と、実際に掘削した後のトンネル内壁面である実壁面30との寸法の誤差の測量を行ったり、また、掘削後に実壁面30上に、寸法用の測量点、アンカーボルト、又は壁面ボーリングなどを設置するための位置を設定する測量を行ったりする。   After the tunnel excavation, for example, as shown in FIG. 7, the measurement of the dimensional error between the designed wall surface 20 planned in the construction of the tunnel 60 and the actual wall surface 30 which is the inner wall surface of the tunnel after the actual excavation is performed. In addition, after excavation, surveying is performed to set a position for installing a survey point for dimensions, an anchor bolt, or a wall boring on the actual wall surface 30.

このような測量では、図7の(a)に示すように、まず、トンネル60の空間内の適宜な位置に測量器10を設置して、測量を行いたいトンネル横断面50と、このトンネル横断面50と直交する基準軸である、例えば、トンネル基軸40との交点Oの位置を測量する。次に、図7の(b)に示すように、交点Oを新たな測量を実施する基準点として、測量器10を基準点Oへ移動し、基準点Oから、トンネル横断面50上の測定したい方向αに位置する設計壁面20上の点Aを視準し、基準点Oから点Aを通り延伸する半直線rと、実壁面30との交点である点Mの位置を測量することで、実壁面30上の測量対象となる点Mの座標を求める。 In such surveying, as shown in FIG. 7A, first, the surveying instrument 10 is installed at an appropriate position in the space of the tunnel 60, the tunnel cross section 50 to be surveyed, and the tunnel crossing For example, the position of the intersection O with the tunnel base axis 40, which is a reference axis orthogonal to the surface 50, is measured. Next, as shown in FIG. 7B, the surveying instrument 10 is moved to the reference point O using the intersection point O as a reference point for performing a new survey, and the measurement on the tunnel cross section 50 is performed from the reference point O. The point A 0 on the design wall 20 located in the desired direction α is collimated, and the position of the point M that is the intersection of the half-line r extending from the reference point O through the point A 0 and the actual wall 30 is measured. Thus, the coordinates of the point M to be surveyed on the actual wall surface 30 are obtained.

従来より、このようなトンネル横断面の内周壁面上の点の位置の測量には、例えば、特許文献1に記載されるように、トンネル横断面上に配置された光波測距機から発生されるレーザー光を、横断面に沿ってトンネル内周壁面に所定の角度毎に順次照射して、光波測距機で各角度における内周壁面を測距し、その測量結果に基づき、トンネル形状の断面データを作成する測量技術が開示されている。
特開2003−65755号公報
Conventionally, the measurement of the position of the point on the inner peripheral wall surface of the tunnel cross section is generated from a light wave range finder arranged on the tunnel cross section, as described in Patent Document 1, for example. The laser beam is irradiated to the inner wall surface of the tunnel sequentially along the cross section at a predetermined angle, and the inner wall surface at each angle is measured with a light wave range finder. A surveying technique for creating cross-sectional data is disclosed.
JP 2003-65555 A

しかしながら、特許文献1に記載されるような従来の測量方法では、実壁面30上における点の位置を測量するためには、トンネル60の空間内の適宜な位置に設置された測量器10による測量により、点Oを求めた後、測量器10を点Oに移動させなければならない。特に、測定対象となる点Mが複数のトンネル横断面にわたって位置する場合、その度に、測量器を繰り返して移動させなければならず、手間と労力を要してしまう。また、トンネル横断面50上に資器材が設置される場合や、切羽断面の内周壁面上の点の位置の測量及び位置出し測量などには、横断面上に測量器10を設置できないため、この方法は適用できない。   However, in the conventional surveying method as described in Patent Document 1, in order to survey the position of the point on the actual wall surface 30, the surveying by the surveying instrument 10 installed at an appropriate position in the space of the tunnel 60 is performed. Thus, after obtaining the point O, the surveying instrument 10 must be moved to the point O. In particular, when the point M to be measured is located across a plurality of tunnel cross sections, the surveying instrument must be moved repeatedly each time, which requires labor and labor. In addition, when the equipment is installed on the tunnel cross section 50, or for the surveying and positioning of the position of the point on the inner peripheral wall surface of the face section, the surveying instrument 10 cannot be installed on the cross section. This method is not applicable.

本発明は上記の点に鑑みてなされたものであり、トンネルなどの構造物の表面上の測量対象点を見通せる任意の位置から、測量器を移動させることなく、この構造物の所望の横断面上の測量対象点の位置を測量することが可能な測量方法及び測量システムを提供することを目的とする。   The present invention has been made in view of the above points, and a desired cross section of the structure can be obtained without moving the surveying instrument from any position where the survey target point on the surface of the structure such as a tunnel can be seen. It is an object of the present invention to provide a surveying method and a survey system capable of surveying the position of the above survey target point.

上記の目的を達成するため、本発明は、所定の基準軸に直交する各横断面における設計断面形状が既知の構造物について、前記基準軸上の所与の位置を通り前記所定の基準軸に直交する横断面(以下、対象横断断面という)内での、前記基準軸から見て所与の方向における表面上の点を測量対象点としてその座標を測量する測量方法であって、
前記測量対象点を見通せる適宜な点を基準点として、この基準点に、視準点に向かう方向に位置する対象物表面上の点の座標を測量可能な測量器を設置する測量器設置工程と、
前記測量器により、前記対象横断面内での、前記基準軸から見て前記所与の方向における前記設計断面形状上の点を視準点として、前記基準点と前記視準点とを結ぶ直線が前記構造物の表面と交わる第1の点の座標を測量する測量工程と、
前記第1の点の座標に基づいて、前記視準点を前記対象横断面内にて更新する視準点更新工程と、
前記更新前の視準点と前記更新後の視準点との距離を計算し、この距離が所定の近似条件を満たすか否かを判定する判定工程とを備え、
前記所定の近似条件を満たせば、前記更新後の視準点の座標を前記測量対象点の座標とし、前記所定の近似条件を満たさなければ、前記更新後の視準点を用いて、前記測量工程、前記視準点更新工程、及び判定工程を繰り返すことを特徴とする(第1の発明)。
In order to achieve the above object, the present invention is directed to a structure having a known design cross-sectional shape in each cross section orthogonal to a predetermined reference axis, passing through a given position on the reference axis to the predetermined reference axis. A surveying method for surveying the coordinates of a point on a surface in a given direction as viewed from the reference axis in an orthogonal cross section (hereinafter referred to as a target cross section) as a survey target point,
A surveying instrument installation step of installing a surveying instrument capable of surveying the coordinates of a point on the surface of the object located in the direction toward the collimation point, with an appropriate point through which the survey target point can be seen as a reference point; ,
A straight line connecting the reference point and the collimation point by using the surveying instrument, with the point on the design cross-sectional shape in the given direction as a collimation point when viewed from the reference axis in the target cross section A surveying step of surveying the coordinates of the first point that intersects the surface of the structure;
A collimation point update step of updating the collimation point in the target cross section based on the coordinates of the first point;
A step of calculating a distance between the collimation point before the update and the collimation point after the update, and determining whether the distance satisfies a predetermined approximate condition,
If the predetermined approximate condition is satisfied, the coordinate of the updated collimation point is set as the coordinate of the survey target point, and if the predetermined approximate condition is not satisfied, the updated collimation point is used to perform the surveying. The step, the collimation point update step, and the determination step are repeated (first invention).

本発明による測量方法によれば、構造物内の任意の位置に測量器を設置しても、測量器を移動することなく、構造物の所望の横断面の内周壁に位置する測量対象点の近似位置を導出できる。また、測量対象点が複数の横断面に位置する場合にも、測量器を移動する必要がなく測量対象点の近似位置を特定できるため、作業効率が大幅に向上する。   According to the surveying method of the present invention, even if the surveying instrument is installed at an arbitrary position in the structure, the survey target point located on the inner peripheral wall of the desired cross section of the structure is not moved without moving the surveying instrument. An approximate position can be derived. In addition, when the survey target point is located on a plurality of cross sections, it is not necessary to move the surveying instrument, and the approximate position of the survey target point can be specified, so that the work efficiency is greatly improved.

また、中空空間における所望の横断面上に、資器材が設置される場合や、トンネル切羽断面上の内周壁を測量する場合などにも、資器材が設置場所以外の所や、切羽面から離れた所などから測量できる。これにより、測量可能な範囲が広くなるだけでなく、安全に測量を実施できるとともに、掘削工事と並行した測量も実施できる。   Also, when equipment is installed on the desired cross section in the hollow space, or when surveying the inner peripheral wall on the section of the tunnel face, the equipment is away from the place where the equipment is placed or from the face. It can be surveyed from places. As a result, not only can the surveyable range be widened, but the surveying can be carried out safely and the surveying in parallel with the excavation work can be carried out.

第2の発明は、第1の発明において、前記視準点更新工程は、前記第1の点を、前記対象横断断面上へ、前記対象横断断面と直交する向きに投影した第2の点の座標を計算する第1計算工程と、前記対象横断断面上において、前記基準軸からの距離が前記第2の点と同じで、かつ、前記基準軸から見た向きが前記視準点と同じである第3の点を更新後の視準点としてその座標を計算する第2計算工程とを含むことを特徴とする。   In a second aspect based on the first aspect, the collimation point updating step includes: a second point obtained by projecting the first point onto the target cross section in a direction orthogonal to the target cross section. A first calculation step of calculating coordinates, and a distance from the reference axis is the same as the second point on the cross section of the object, and an orientation viewed from the reference axis is the same as the collimation point And a second calculation step of calculating coordinates of the third point as an updated collimation point.

第3の発明は、第1又は2の発明において、前記測量器はレーザー光を出射して、前記レーザー光が対象物表面に照射された点の座標を測量する光波測量器であることを特徴とする。   According to a third invention, in the first or second invention, the surveying instrument is a light wave surveying instrument that emits a laser beam and surveys the coordinates of a point at which the laser beam is irradiated onto the surface of the object. And

第4の発明は、第1〜3の発明において、前記基準軸は直線又は曲線であることを特徴とする。   According to a fourth invention, in the first to third inventions, the reference axis is a straight line or a curve.

第5の発明は、第1〜4の発明において、前記近似条件は、前記距離が所定値以下であることを特徴とする。   According to a fifth invention, in the first to fourth inventions, the approximation condition is that the distance is not more than a predetermined value.

第6の発明は、第1〜5の発明において、前記構造物はトンネルであることを特徴とする。   According to a sixth invention, in the first to fifth inventions, the structure is a tunnel.

第7の発明は、所定の基準軸に直交する各横断面における設計断面形状が既知の構造物について、前記基準軸上の所与の位置を通り前記所定の基準軸に直交する横断面(以下、対象横断面という)内での、前記基準軸から見て所与の方向における表面上の点を測量対象点としてその座標を測量する測量システムであって、視準点に向かう方向に位置する対象物表面上の点の座標を計測可能な測量部と、前記測量部の視準点を調整する視準点調整部と、前記測量対象点を見通せる適宜な点を基準点とし、前記対象横断面内での、前記基準軸から見て前記所与の方向における前記設計断面形状上の点を視準点として、前記基準点に設置された前記測量部により、前記基準点と前記視準点とを結ぶ直線が前記構造物の表面と交わる第1の点の座標を測量した時の、第1の点の座標を取得する測量値取得部と、前記第1の点の座標に基づいて、前記視準点を前記対象横断面内にて更新する視準点更新部と、前記更新前の視準点と前記更新後の視準点との距離を計算し、この距離が所定の近似条件を満たすか否かを判定し、前記所定の近似条件を満たせば、前記更新後の視準点の座標を前記測量対象点の座標とし、前記所定の近似条件を満たさなければ、前記更新後の視準点を用いて前記視準点調整部、前記測量値取得部、及び前記視準点更新部による処理を行わせる制御部と、を備えることを特徴とする。   According to a seventh aspect of the present invention, a structure having a known design cross-sectional shape in each cross section orthogonal to a predetermined reference axis passes through a given position on the reference axis and is orthogonal to the predetermined reference axis (hereinafter referred to as a cross section). A survey system that measures the coordinates of a point on the surface in a given direction as viewed from the reference axis within the object cross-section, and is located in the direction toward the collimation point A surveying unit capable of measuring the coordinates of a point on the surface of the object, a collimation point adjusting unit for adjusting a collimation point of the surveying unit, and an appropriate point through which the surveying target point can be seen as a reference point, The reference point and the collimation point are determined by the surveying unit installed at the reference point with a point on the design cross-sectional shape in the given direction as viewed from the reference axis in a plane as a collimation point. The coordinates of the first point where the straight line connecting with the surface of the structure intersects A surveying value acquisition unit that acquires the coordinates of the first point when measured, and a collimation point update unit that updates the collimation point in the target cross section based on the coordinates of the first point And calculating a distance between the collimation point before the update and the collimation point after the update, determining whether the distance satisfies a predetermined approximate condition, and if the predetermined approximate condition is satisfied, The coordinate of the collimation point after update is the coordinate of the survey target point, and if the predetermined approximate condition is not satisfied, the collimation point adjustment unit using the updated collimation point, the survey value acquisition unit, And a control unit that performs processing by the collimation point update unit.

第8の発明は、第7の発明において、前記視準点更新部は、前記測量値取得部により取得された前記第1の点を、前記対象横断断面上へ、前記対象横断断面と直交する向きに投影した第2の点の座標を計算する第1計算部と、前記第1計算部により計算された前記第2の点から、前記対象横断面上において、前記基準軸からの距離が前記第2の点と同じで、かつ、前記基準軸から見た向きが前記視準点と同じである第3の点を更新後の視準点としてその座標を計算する第2計算部と、を備えることを特徴とする。   In an eighth aspect based on the seventh aspect, the collimation point update unit orthogonally crosses the target cross section onto the target cross section with the first point acquired by the survey value acquisition section. A distance from the reference axis on the target cross section is calculated from a first calculation unit that calculates the coordinates of the second point projected in the direction, and the second point calculated by the first calculation unit. A second calculation unit that calculates the coordinates of the third point that is the same as the second point and that is viewed from the reference axis and that is the same as the collimation point as the collimation point after update, It is characterized by providing.

本発明によれば、トンネルなどの構造物の表面上の測量対象点を見通せる任意の位置から、測量器を移動させることなく、この構造物の所望の横断面上の測量対象点の位置を測量することが可能な測量方法及び測量システムを提供できる。   According to the present invention, the position of the survey target point on the desired cross section of the structure is surveyed without moving the surveying instrument from any position where the survey target point on the surface of the structure such as a tunnel can be seen. It is possible to provide a surveying method and surveying system that can be performed.

以下、本発明の好ましい一実施形態について図面に基づき詳細に説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.

図3は、本実施形態のトンネル60の内壁面上の点の位置を測量する方法の一例を示す斜視図である。なお、図3において、図7に対応する部分は同一の符号を付している。本実施形態では、トンネル60について、所定の基準軸上の所与の位置を通り、この基準軸と直交する横断面内での、基準軸から見て所与の方向における内面上の点の測量を、測量器10を移動させることなく行うものである。なお、本実施形態では、図7の場合と同様に、基準軸をトンネル基軸40とし、トンネル基軸40上の所与の点Oにてトンネル基軸40と直交するトンネル横断面50内での、点Oから見て方向αにある実壁面30の位置M(座標)を測量するものとする。   FIG. 3 is a perspective view showing an example of a method for measuring the position of a point on the inner wall surface of the tunnel 60 of the present embodiment. In FIG. 3, portions corresponding to FIG. 7 are denoted with the same reference numerals. In this embodiment, the survey of a point on the inner surface of the tunnel 60 in a given direction as viewed from the reference axis in a cross section passing through a given position on a predetermined reference axis and perpendicular to the reference axis. Is performed without moving the surveying instrument 10. In the present embodiment, as in the case of FIG. 7, the reference axis is the tunnel base axis 40, and the point in the tunnel cross section 50 orthogonal to the tunnel base axis 40 at a given point O on the tunnel base axis 40 is obtained. Assume that the position M (coordinates) of the actual wall surface 30 in the direction α as viewed from O is measured.

図3に示すように、トンネル60の内空間の任意の位置Sに設置される測量器10から、トンネル基軸40に直交するトンネル横断面50において、トンネル基軸40からみて方向αにおける設計壁面20上の点Aを視準した場合、測量される点は、測量位置Sから点Aに直線を結んだ視準線SAを延伸し、実壁面30との交点である点Aとなる。本実施形態では、この点Aの座標を基として、所定の計算及び測量を繰り返しながら、視準点を繰り返し設定し、徐々にその視準点を測量対象点Mへと移動させて、測量対象点Mの近似座標を確定する。 As shown in FIG. 3, from the surveying instrument 10 installed at an arbitrary position S in the inner space of the tunnel 60, the tunnel cross section 50 orthogonal to the tunnel base axis 40 on the design wall surface 20 in the direction α as seen from the tunnel base axis 40. When the point A 0 is collimated, the point to be surveyed is a point A 1 that is an intersection with the actual wall 30 by extending a collimation line SA 0 connecting a straight line from the survey position S to the point A 0. . In the present embodiment, as the basis of the coordinates of the point A 1, while repeating the predetermined calculation and surveying, viewing set repeatedly quasi point, gradually move and its collimation point to surveying object point M, surveying The approximate coordinates of the target point M are determined.

図1は、本実施形態に係る測量方法100の手順を示すフローチャートである。   FIG. 1 is a flowchart showing a procedure of a surveying method 100 according to the present embodiment.

図1に示すように、測量方法100は、測量器設置工程110と、測量工程120と、視準点更新工程125と、判定工程150と、視準点再設定工程160と、測量対象点決定工程170とから構成される。なお、視準点更新工程125は、第1計算工程130と、第2計算工程140により構成される。   As shown in FIG. 1, the surveying method 100 includes a surveying instrument installation step 110, a surveying step 120, a collimation point update step 125, a determination step 150, a collimation point resetting step 160, and a survey target point determination. And Step 170. The collimation point update process 125 includes a first calculation process 130 and a second calculation process 140.

測量器設置工程110は、測量器10の設置を行う工程である。図3に示すように、測量器10は、足場が良く、測量器10が固定設置できる場所で、測量対象点Mを見通せる場所であれば、トンネル60の空間内の任意の位置に設置できる。   The surveying instrument installation step 110 is a step of installing the surveying instrument 10. As shown in FIG. 3, the surveying instrument 10 can be installed at an arbitrary position in the space of the tunnel 60 as long as the scaffolding is good and the surveying instrument 10 can be fixedly installed and can see the survey target point M.

また、測量工程120では、トンネル横断面50とトンネル基軸40との交点である点Oから見て、トンネル横断面50内で方向αに位置する設計壁面20上の点Aを視準点として、位置Sと視準点Aとを結ぶ直線がトンネル60の実壁面30と交わる点の位置を測量し、この点を第1の点Aとしてその座標を求める。 Further, in the surveying process 120, the point A 0 on the design wall 20 located in the direction α in the tunnel cross section 50 is used as a collimation point when viewed from the point O that is the intersection of the tunnel cross section 50 and the tunnel base axis 40. Then, the position of the point where the straight line connecting the position S and the collimation point A 0 intersects the actual wall surface 30 of the tunnel 60 is measured, and this point is set as the first point A 1 and its coordinates are obtained.

図4〜図6は、第1計算工程130及び第2計算工程140を説明するための図であり、それぞれXZ平面、XY平面及びYZ平面に夫々投影した投影図である。   4 to 6 are diagrams for explaining the first calculation step 130 and the second calculation step 140, and are projection views respectively projected on the XZ plane, the XY plane, and the YZ plane.

第1計算工程130では、図4及び図5に示すように、測量工程120で測量した第1の点Aの座標を用いて、この第1の点Aを、トンネル横断面50へ、トンネル横断面50と直交する向き投影した点である第2の点Aの座標を計算する。 In the first calculation step 130, as shown in FIGS. 4 and 5, with the first point A 1 of the coordinates survey in the survey process 120, a point A 1 of the first, to the tunnel cross section 50, calculating a second coordinate a 2 points in that the orientation projection perpendicular to the tunnel cross section 50.

第2計算工程140では、図6に示すように、第1計算工程130で計算された第2の点Aと、点Oとの距離OAを計算し、点Oからの距離が距離OAと同じで、かつ、点Oから点Aを通り延伸する半直線r上にある第3の点Aの座標を計算する。すなわち、第3の点Aは、測量された第1の点Aを測定対象であるトンネル横断面50へトンネル基軸40の方向に投影した点(第2の点A)を、点Oを中心に、所望の方向αへ回転した点であり、以下に述べるように、この第3の点Aを新たな視準点として測量を繰り返すことで、視準点を次第に測量対象点Mに近づけることができる。 In the second calculation step 140, as shown in FIG. 6, the distance OA 2 between the second point A 2 calculated in the first calculation step 130 and the point O is calculated, and the distance from the point O is the distance OA. The coordinates of the third point A 3 which is the same as 2 and is on the half line r extending from the point O through the point A 0 are calculated. That is, the third point A 3 is a point (second point A 2 ) obtained by projecting the measured first point A 1 onto the tunnel cross section 50 to be measured in the direction of the tunnel base axis 40. mainly, a point rotated in the desired direction alpha, as described below, by repeating the surveying point a 3 of the third as a quasi-point a new vision gradually surveying target point collimation point M Can be approached.

判定工程150では、視準点Aと、第2計算工程140で計算した第3の点Aとの距離dを計算し、この距離dが、所定の近似条件(例えば、距離D以下であること)を満たすか否かを判定する。 In the determination step 150, a distance d A between the collimation point A 0 and the third point A 3 calculated in the second calculation step 140 is calculated, and this distance d A is set to a predetermined approximate condition (for example, the distance D It is determined whether or not the following is satisfied.

そして、距離dがこの近似条件を満たさなければ、第3の点Aが、測量に用いる新たな視準点Bとして設定され(視準点再設定工程160)、測量工程120により第1の点Bが測量され、第1計算工程130により第2の点Bの座標が計算され、第2計算工程140により第3の点Bの座標が計算される。そして、再び、判定工程150にて視準点Bと第3の点Bとの距離dが求められ、前述した近似条件を満たすか否かを判定する。このように、これらの工程120〜150は、近似条件を満たすまで繰り返される。一方、第3の点と視準点との距離が近似条件を満たせば、第3の点の座標を測量対象点の座標として決定し(測量対象点決定工程170)、測量方法100を終了する。 If the distance d A does not satisfy this approximation condition, the third point A 3 is set as a new collimation point B 0 used for surveying (collimation point resetting step 160). One point B 1 is surveyed, the first calculation step 130 calculates the coordinates of the second point B 2 , and the second calculation step 140 calculates the coordinates of the third point B 3 . Then, again, the determination step quasi point B 0 viewing at 150 distance d B is obtained with the third point B 3, determines whether the approximate conditions are satisfied as described above. Thus, these steps 120 to 150 are repeated until the approximate condition is satisfied. On the other hand, if the distance between the third point and the collimation point satisfies the approximation condition, the coordinate of the third point is determined as the coordinate of the survey target point (survey target point determination step 170), and the survey method 100 is terminated. .

図2は、上記測量方法100を実施するための一例を示す測量システム200の機能ブロック図である。   FIG. 2 is a functional block diagram of a survey system 200 showing an example for implementing the survey method 100.

同図に示すように、測量システム200は、測量部210と、視準点調整部220と、測量値取得部230と、視準点更新部235と、これら210〜235を制御する制御部260とから構成される。なお、視準点更新部235は、第1計算部240と、第2計算部250により構成される。   As shown in the figure, the surveying system 200 includes a surveying unit 210, a collimation point adjustment unit 220, a surveying value acquisition unit 230, a collimation point update unit 235, and a control unit 260 that controls these 210-235. It consists of. The collimation point update unit 235 includes a first calculation unit 240 and a second calculation unit 250.

測量部210は、視準点に向かう方向に位置する対象点の座標を計測可能な、例えば、ノンプリズム光波式のトータルステーションを用いる。
視準点調整部220は、測量部210の姿勢を、後述する制御部260から指示された視準点に視準するように調整する。
測量値取得部230は、測量部210により測量された対象点の座標を、測量部210から取得する。
The surveying unit 210 uses, for example, a non-prism light wave total station capable of measuring the coordinates of a target point located in the direction toward the collimation point.
The collimation point adjustment unit 220 adjusts the attitude of the surveying unit 210 so that it collimates to a collimation point instructed from the control unit 260 described later.
The survey value acquisition unit 230 acquires the coordinates of the target point surveyed by the survey unit 210 from the survey unit 210.

第1計算部240は、測量値取得部230により取得された座標に基づき、前述した第1計算工程130を行い、第2の点の座標の計算を行う。
第2計算部250は、第1計算部240により計算された第2の点の座標に基づき、前述した第2計算工程140を行い、第3の点を更新後の視準点としてその座標の計算を行う。
The first calculation unit 240 performs the first calculation step 130 described above based on the coordinates acquired by the survey value acquisition unit 230, and calculates the coordinates of the second point.
The second calculation unit 250 performs the above-described second calculation step 140 based on the coordinates of the second point calculated by the first calculation unit 240, and uses the third point as the updated collimation point and the coordinates of the second point. Perform the calculation.

制御部260は、第2計算部250により計算された第3の点の座標に基づき、前述した判定工程150を行うことにより、前述した近似条件を満たすか否かを判定し、これらの各部210〜250を、図1のフローチャートに示す工程120〜170に則して制御し、最終的に測量対象点Mの位置を決定する。   Based on the coordinates of the third point calculated by the second calculation unit 250, the control unit 260 determines whether or not the approximate condition described above is satisfied by performing the determination step 150 described above. ˜250 are controlled in accordance with steps 120 to 170 shown in the flowchart of FIG. 1, and finally the position of the survey target point M is determined.

以上説明したように、本実施形態による測量方法100及び測量システム200によれば、トンネル60の空間内の任意の位置Sに測量器10を設置しても、測量器10を移動することなく、所望のトンネル横断面50の実壁面30に位置する測量対象点Mの近似位置を導出できる。すなわち、測量対象点Mが複数のトンネル横断面50に位置する場合にも、測量器10を移動する必要なく測量対象点Mの近似位置を特定できるため、作業効率が大幅に向上する。   As described above, according to the surveying method 100 and the surveying system 200 according to the present embodiment, even if the surveying instrument 10 is installed at an arbitrary position S in the space of the tunnel 60, the surveying instrument 10 is not moved. The approximate position of the survey target point M located on the actual wall surface 30 of the desired tunnel cross section 50 can be derived. That is, even when the survey target point M is located on a plurality of tunnel cross sections 50, the approximate position of the survey target point M can be specified without having to move the surveying instrument 10, so that the work efficiency is greatly improved.

また、トンネル横断面50上に、資器材が設置される場合や、トンネル切羽断面の内周壁面上の点の位置を測量する場合などにも、資器材が設置場所以外の所や、切羽面から離れた所などから測量できる。これにより、測量可能な範囲が広くなるだけでなく、安全に測量を実施できるとともに、掘削工事と並行した測量も実施できる。   Also, when equipment is installed on the tunnel cross-section 50, or when measuring the position of a point on the inner peripheral wall surface of the tunnel face section, the equipment face other than the place where the equipment is installed, or the face surface Surveying can be done from a distance from As a result, not only can the surveyable range be widened, but the surveying can be carried out safely and the surveying in parallel with the excavation work can be carried out.

なお、本発明による測量システム200に、特定された測量対象点Mを指し示すことが可能な可視レーザー光を出射する装置を備えてもよい。これにより、例えば、測量点やアンカーボルトなどの位置出しを行う際に、その位置を簡便に指示参照できる。   Note that the surveying system 200 according to the present invention may be provided with a device that emits visible laser light capable of pointing to the specified survey target point M. Thereby, for example, when positioning a surveying point, an anchor bolt, or the like, the position can be simply referred to.

なお、本実施形態では、基準軸をトンネル基軸40としたが、これに限らず、基準軸の取り方は任意である。図8は、基準軸を、設計壁面20上の点Aから、鉛直下方向の鉛直方向基準軸40に設定した場合と、水平方向の水平方向基準軸40に設定した場合の測量対象点の位置を示す斜視図である。 In this embodiment, the reference axis is the tunnel base axis 40. However, the present invention is not limited to this, and the method of taking the reference axis is arbitrary. 8, the reference axis, from the point A 0 of the design wall 20, and when set to the vertical direction reference axis 40 a of the vertically downward direction, surveying subject of setting the horizontal direction reference axis 40 b in the horizontal direction It is a perspective view which shows the position of a point.

例えば、図8に示すように、基準軸を鉛直方向基準軸40とした場合には、トンネル横断面50と鉛直方向基準軸40との交点である点Oから、点Aの方向へ延長した実壁面30との交点Mが測量対象点となり、基準軸を水平方向基準軸40とした場合には、トンネル横断面50と水平方向基準軸40との交点である点Oから、点Aの方向へ延長した実壁面30との交点Mが測量対象点となる。このように、基準軸を変更することにより、設計壁面20上の点Aからの、任意の方向における実壁面30上の投影点を測量することができる。 For example, as shown in FIG. 8, when the reference axis and the vertical reference axis 40 a from O a point which is the intersection of the tunnel cross section 50 and vertical reference axis 40 a, the direction of the point A 0 intersection M a of the actual wall surface 30 that extends to become surveying object point, if the reference axis and the horizontal reference axis 40 b is a point which is the point of intersection between the tunnel cross section 50 and the horizontal reference axis 40 b O The intersection M b with the actual wall surface 30 extended from b in the direction of the point A 0 becomes the survey target point. Thus, by changing the reference axis, it is possible to survey from point A 0 of the design wall 20, the projection points of the real wall 30 on at any direction.

また、本実施形態では、測量対象をトンネルの内壁面としたが、これに限らず、例えば、ボックスカルバートの壁面や、切土・盛土又は土砂掘削の法面や、円筒形竪坑などの曲面部などの構造物でも、基準軸と、その基準軸に直交する横断面とが既知の構造物であって、測量対象点を見通せる位置に測定器を設置することにより、本発明を適用することができる。   In the present embodiment, the survey target is the inner wall surface of the tunnel, but is not limited to this, for example, a wall surface of a box culvert, a slope of cut, banking or earth excavation, or a curved surface portion such as a cylindrical shaft It is possible to apply the present invention by installing a measuring instrument at a position where a reference axis and a cross section perpendicular to the reference axis are known and a survey target point can be seen. it can.

本実施形態に係る測量方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the surveying method which concerns on this embodiment. 本実施形態に係る測量システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the surveying system which concerns on this embodiment. 本実施形態のトンネルの内壁面上の点の位置を測量する方法の一例を示す斜視図である。It is a perspective view which shows an example of the method of surveying the position of the point on the inner wall face of the tunnel of this embodiment. 第1計算工程及び第2計算工程を説明するためのXZ平面投影図である。It is a XZ plane projection view for demonstrating a 1st calculation process and a 2nd calculation process. 第1計算工程及び第2計算工程を説明するためのXY平面投影図である。It is XY plane projection drawing for demonstrating a 1st calculation process and a 2nd calculation process. 第1計算工程及び第2計算工程を説明するためのYZ平面投影図である。It is a YZ plane projection view for demonstrating a 1st calculation process and a 2nd calculation process. 従来のトンネルの内壁面上の点の位置を測量する方法の一例を示す斜視図である。It is a perspective view which shows an example of the method of surveying the position of the point on the inner wall face of the conventional tunnel. 基準軸を、設計壁面20上の点Aから、鉛直下方向の鉛直方向基準軸40に設定した場合と、水平方向の水平方向基準軸40に設定した場合の測量対象点の位置を示す斜視図である。The reference axis, from the point A 0 of the design wall 20, and when set to the vertical direction reference axis 40 a of the vertically downward direction, the position of the surveying object point in the case of setting the horizontal direction reference axis 40 b in the horizontal direction It is a perspective view shown.

符号の説明Explanation of symbols

10 測量器 20 設計壁面
30 実壁面 40 トンネル基軸
40 鉛直方向基準軸 40 水平方向基準軸
50 トンネル横断面 60 トンネル
100 測量方法 110 測量器設置工程
120 測量工程 125 視準点更新工程
130 第1計算工程 140 第2計算工程
150 判定工程 160 視準点再設定工程
170 測量対象点決定工程 200 測量システム
210 測量部 220 視準点調整部
230 測量値取得部 235 視準点更新部
240 第1計算部 250 第2計算部
260 制御部 A、B、C 視準点
、B、C 第1の点 A、B 第2の点
、B 第3の点 M、Ma、 測量対象点
O、O、O トンネル横断面と基準軸との交点
S 測量器設置位置
、d 視準点と第3の点との距離
r 点Oから方向αに延伸する半直線
α トンネル横断面上の所定の方向
10 surveying instrument 20 designed wall 30 real wall 40 tunnel base shaft 40 a vertical reference axis 40 b horizontally reference axis 50 Tunnel cross section 60 tunnel 100 surveying method 110 surveying instrument installation step 120 surveying step 125 collimating points updating step 130 first Calculation step 140 Second calculation step 150 Judgment step 160 Collimation point resetting step 170 Survey target point determination step 200 Survey system 210 Survey unit 220 Collimation point adjustment unit 230 Survey value acquisition unit 235 Collimation point update unit 240 First calculation Unit 250 second calculation unit 260 control unit A 0 , B 0 , C 0 collimation point A 1 , B 1 , C 1 first point A 2 , B 2 second point A 3 , B 3 third point M, M a, M b surveying target point O, O a, O b tunnel cross section and the intersection of the reference axis S surveying instrument installation position d a, the distance between the points d B collimation point and the third Predetermined direction on a half line α tunnel cross section extending in the direction α from point O

Claims (8)

所定の基準軸に直交する各横断面における設計断面形状が既知の構造物について、前記基準軸上の所与の位置を通り前記所定の基準軸に直交する横断面(以下、対象横断断面という)内での、前記基準軸から見て所与の方向における表面上の点を測量対象点としてその座標を測量する測量方法であって、
前記測量対象点を見通せる適宜な点を基準点として、この基準点に、視準点に向かう方向に位置する対象物表面上の点の座標を測量可能な測量器を設置する測量器設置工程と、
前記測量器により、前記対象横断面内での、前記基準軸から見て前記所与の方向における前記設計断面形状上の点を視準点として、前記基準点と前記視準点とを結ぶ直線が前記構造物の表面と交わる第1の点の座標を測量する測量工程と、
前記第1の点の座標に基づいて、前記視準点を前記対象横断面内にて更新する視準点更新工程と、
前記更新前の視準点と前記更新後の視準点との距離を計算し、この距離が所定の近似条件を満たすか否かを判定する判定工程とを備え、
前記所定の近似条件を満たせば、前記更新後の視準点の座標を前記測量対象点の座標とし、前記所定の近似条件を満たさなければ、前記更新後の視準点を用いて、前記測量工程、前記視準点更新工程、及び判定工程を繰り返すことを特徴とする構造物の測量方法。
For a structure having a known design cross-sectional shape in each cross-section orthogonal to a predetermined reference axis, a cross-section passing through a given position on the reference axis and orthogonal to the predetermined reference axis (hereinafter referred to as a target cross-section) A surveying method for surveying the coordinates of a point on the surface in a given direction as viewed from the reference axis,
A surveying instrument installation step of installing a surveying instrument capable of surveying the coordinates of a point on the surface of the object located in the direction toward the collimation point, with an appropriate point through which the survey target point can be seen as a reference point; ,
A straight line connecting the reference point and the collimation point by using the surveying instrument, with the point on the design cross-sectional shape in the given direction as a collimation point when viewed from the reference axis in the target cross section A surveying step of surveying the coordinates of the first point that intersects the surface of the structure;
A collimation point update step of updating the collimation point in the target cross section based on the coordinates of the first point;
A step of calculating a distance between the collimation point before the update and the collimation point after the update, and determining whether the distance satisfies a predetermined approximate condition,
If the predetermined approximate condition is satisfied, the coordinate of the updated collimation point is set as the coordinate of the survey target point, and if the predetermined approximate condition is not satisfied, the updated collimation point is used to perform the surveying. A structure surveying method, characterized by repeating a step, the collimation point update step, and the determination step.
前記視準点更新工程は、
前記第1の点を、前記対象横断断面上へ、前記対象横断断面と直交する向きに投影した第2の点の座標を計算する第1計算工程と、
前記対象横断断面上において、前記基準軸からの距離が前記第2の点と同じで、かつ、前記基準軸から見た向きが前記視準点と同じである第3の点を更新後の視準点としてその座標を計算する第2計算工程とを含むことを特徴とする請求項1に記載の測量方法。
The collimation point update step includes:
A first calculation step of calculating coordinates of a second point obtained by projecting the first point onto the target cross section in a direction orthogonal to the target cross section;
On the cross-section of the object, a third point whose distance from the reference axis is the same as that of the second point and whose direction viewed from the reference axis is the same as the collimation point is updated. The surveying method according to claim 1, further comprising a second calculation step of calculating the coordinates as the quasi-point.
前記測量器はレーザー光を出射して、前記レーザー光が対象物表面に照射された点の座標を測量する光波測量器であることを特徴とする請求項1又は2に記載の測量方法。   The surveying method according to claim 1 or 2, wherein the surveying instrument is a light wave surveying instrument that emits laser light and surveys the coordinates of a point at which the laser light is irradiated on the surface of an object. 前記基準軸は直線又は曲線であることを特徴とする請求項1〜3のうち何れかに記載の測量方法。   The surveying method according to claim 1, wherein the reference axis is a straight line or a curve. 前記近似条件は、前記距離が所定値以下であることを特徴とする請求項1〜4のうち何れかに記載の測量方法。   The surveying method according to claim 1, wherein the approximate condition is that the distance is equal to or less than a predetermined value. 前記構造物はトンネルであることを特徴とする請求項1〜5のうち何れかに記載の測量方法。   The surveying method according to claim 1, wherein the structure is a tunnel. 所定の基準軸に直交する各横断面における設計断面形状が既知の構造物について、前記基準軸上の所与の位置を通り前記所定の基準軸に直交する横断面(以下、対象横断面という)内での、前記基準軸から見て所与の方向における表面上の点を測量対象点としてその座標を測量する測量システムであって、
視準点に向かう方向に位置する対象物表面上の点の座標を計測可能な測量部と、
前記測量部の視準点を調整する視準点調整部と、
前記測量対象点を見通せる適宜な点を基準点とし、前記対象横断面内での、前記基準軸から見て前記所与の方向における前記設計断面形状上の点を視準点として、前記基準点に設置された前記測量部により、前記基準点と前記視準点とを結ぶ直線が前記構造物の表面と交わる第1の点の座標を測量した時の、第1の点の座標を取得する測量値取得部と、
前記第1の点の座標に基づいて、前記視準点を前記対象横断面内にて更新する視準点更新部と、
前記更新前の視準点と前記更新後の視準点との距離を計算し、この距離が所定の近似条件を満たすか否かを判定し、前記所定の近似条件を満たせば、前記更新後の視準点の座標を前記測量対象点の座標とし、前記所定の近似条件を満たさなければ、前記更新後の視準点を用いて前記視準点調整部、前記測量値取得部、及び前記視準点更新部による処理を行わせる制御部と、を備えることを特徴とする測量システム。
For a structure having a known design cross-sectional shape in each cross section orthogonal to a predetermined reference axis, a cross section passing through a given position on the reference axis and orthogonal to the predetermined reference axis (hereinafter referred to as a target cross section) A surveying system for surveying the coordinates of a point on the surface in a given direction as viewed from the reference axis,
A surveying unit capable of measuring the coordinates of a point on the surface of the object located in the direction toward the collimation point;
A collimation point adjustment unit for adjusting a collimation point of the surveying unit;
An appropriate point through which the survey target point can be seen is used as a reference point, and the reference point is a point on the design cross-sectional shape in the given direction as viewed from the reference axis in the target cross section. The coordinates of the first point when the straight line connecting the reference point and the collimation point is measured by the surveying unit installed at the surface of the structure is acquired. A survey value acquisition unit;
A collimation point updating unit for updating the collimation point in the target cross section based on the coordinates of the first point;
Calculate the distance between the collimation point before the update and the collimation point after the update, determine whether this distance satisfies a predetermined approximate condition, and if the predetermined approximate condition is satisfied, The collimation point coordinates are the coordinates of the survey target point, and if the predetermined approximate condition is not satisfied, the collimation point adjustment unit, the survey value acquisition unit, and the A surveying system comprising: a control unit that performs processing by a collimation point update unit.
前記視準点更新部は、
前記測量値取得部により取得された前記第1の点を、前記対象横断断面上へ、前記対象横断断面と直交する向きに投影した第2の点の座標を計算する第1計算部と、
前記第1計算部により計算された前記第2の点から、前記対象横断面上において、前記基準軸からの距離が前記第2の点と同じで、かつ、前記基準軸から見た向きが前記視準点と同じである第3の点を更新後の視準点としてその座標を計算する第2計算部と、を備えることを特徴とする請求項7記載の測量システム。

The collimation point update unit
A first calculation unit that calculates coordinates of a second point obtained by projecting the first point acquired by the survey value acquisition unit onto the target cross section in a direction orthogonal to the target cross section;
From the second point calculated by the first calculation unit, on the target cross section, the distance from the reference axis is the same as the second point, and the orientation viewed from the reference axis is The surveying system according to claim 7, further comprising: a second calculation unit that calculates the coordinates of the third point that is the same as the collimation point as an updated collimation point.

JP2006085829A 2006-03-27 2006-03-27 Method and system for surveying structures Expired - Fee Related JP4871622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085829A JP4871622B2 (en) 2006-03-27 2006-03-27 Method and system for surveying structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085829A JP4871622B2 (en) 2006-03-27 2006-03-27 Method and system for surveying structures

Publications (2)

Publication Number Publication Date
JP2007263606A JP2007263606A (en) 2007-10-11
JP4871622B2 true JP4871622B2 (en) 2012-02-08

Family

ID=38636752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085829A Expired - Fee Related JP4871622B2 (en) 2006-03-27 2006-03-27 Method and system for surveying structures

Country Status (1)

Country Link
JP (1) JP4871622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137707B2 (en) * 2008-06-17 2013-02-06 株式会社 ソキア・トプコン Surface shape measuring machine
JP5312890B2 (en) * 2008-10-01 2013-10-09 西松建設株式会社 Excavation management method for invert section

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418682B2 (en) * 1999-12-28 2003-06-23 マック株式会社 Integrated surveying system for tunnels
JP2003065755A (en) * 2001-08-21 2003-03-05 Taisei Corp Displacement measuring method for tunnel shape
JP2005331363A (en) * 2004-05-20 2005-12-02 Taisei Corp Method for monitoring cutting face of tunnel, and instrument for measuring the cutting face of tunnel

Also Published As

Publication number Publication date
JP2007263606A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US8060344B2 (en) Method and system for automatically performing a study of a multidimensional space
US10191183B2 (en) Method of constructing digital terrain model
US9879994B2 (en) Method of placing a total station in a building
US9858712B2 (en) System and method capable of navigating and/or mapping any multi-dimensional space
JP6910511B2 (en) Laser measurement method, laser measurement sign, and coordinate calculation program
US20120150573A1 (en) Real-time site monitoring design
JP6853071B2 (en) Shield survey method
JP2021042045A (en) Simulation device
JP6524527B2 (en) Measurement system, measurement processing apparatus and measurement method
JP4871622B2 (en) Method and system for surveying structures
JP7059820B2 (en) Anchor hole drilling position management system and anchor hole drilling position management method
JP6493988B2 (en) Error correction apparatus and error correction program in laser survey using a moving object
JP7372003B2 (en) Ding method and Ding system
JP4651397B2 (en) Deposition monitoring method, system and computer program
CN109812260B (en) Directional well trajectory design method and system for offshore exploration and electronic equipment
KR100820339B1 (en) Control point surveying method for underground space
US9756479B2 (en) Method for calibrating the physical position and orientation of an electronic device
US8325351B2 (en) Layout method
Qiu et al. Terrestrial laser scanning for deformation monitoring of the thermal pipeline traversed subway tunnel engineering
JP2007177541A (en) Structure in-situ installation system
US20220260500A1 (en) Inspection support apparatus, inspection support method, and computer-readable medium
JPH08145663A (en) Method and system for measuring verticality of structure
JP7505957B2 (en) Measurement method for winding space in tunnel construction
US20220155068A1 (en) Tilt analysis system, tilt analysis method, storage medium storing tilt analysis program, and survey target device
JP5097258B2 (en) Excavator position measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees