JP4869759B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP4869759B2
JP4869759B2 JP2006086595A JP2006086595A JP4869759B2 JP 4869759 B2 JP4869759 B2 JP 4869759B2 JP 2006086595 A JP2006086595 A JP 2006086595A JP 2006086595 A JP2006086595 A JP 2006086595A JP 4869759 B2 JP4869759 B2 JP 4869759B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
light
layers
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006086595A
Other languages
Japanese (ja)
Other versions
JP2006310815A (en
Inventor
雅之 三島
吉隆 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006086595A priority Critical patent/JP4869759B2/en
Publication of JP2006310815A publication Critical patent/JP2006310815A/en
Application granted granted Critical
Publication of JP4869759B2 publication Critical patent/JP4869759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、電気エネルギーを光に変換して発光できる有機電界発光素子(単に、素子、発光素子、またはEL素子ともいう。)に関する。   The present invention relates to an organic electroluminescent element (also simply referred to as an element, a light emitting element, or an EL element) that can emit light by converting electric energy into light.

今日、種々の表示素子に関する研究開発が活発であり、中でも有機電界発光(EL)素子は、低電圧で高輝度の発光を得ることができるため、有望な表示素子として注目されている。
一般に有機EL素子は、発光層もしくは発光層を含む複数の有機層を挟んだ対向電極から構成されており、陰極から注入された電子と陽極から注入された正孔が発光層において再結合し、生成した励起子からの発光を利用するもの、又は前記励起子からエネルギー移動によって生成する他の分子の励起子からの発光を利用するものである。
しかし、省エネルギ−や耐久性向上の点で、さらに発光効率向上および輝度向上が強く求められている。
Today, research and development on various display elements are active. Among them, organic electroluminescence (EL) elements are attracting attention as promising display elements because they can emit light with high luminance at a low voltage.
In general, an organic EL element is composed of a light emitting layer or a counter electrode sandwiching a plurality of organic layers including a light emitting layer, and electrons injected from a cathode and holes injected from an anode are recombined in the light emitting layer, One that uses light emission from the generated exciton, or one that uses light emission from the exciton of another molecule generated by energy transfer from the exciton.
However, further improvements in luminous efficiency and luminance are strongly demanded from the viewpoint of energy saving and durability improvement.

有機EL素子は自発光の面光源であることから、例えば、白色光源としての利用が考えられる。Commission Internationale de l'Eclairage(CIE)により定義されているように、理想的な白色光源は(0.33,0.33)のCIE色度図上の座標を有する。白色発光は、青色,緑色,赤色の3色の発光材料、あるいは補色関係にある2色の発光材料の発光により得ることができる。
白色発光素子としては、低電圧,高輝度、かつ色度の高い白色発光が望まれている。低電圧化,高輝度化のため、蛍光発光材より発光効率の高い燐光発光材の使用が望まれている(例えば、特許文献1,2,3参照。)が、特に、発光素子としての発光効率向上のために、青色発光の燐光材料の開発および青色燐光材を有効に発光させる素子の開発が望まれている。その理由として、青色の発光強度が低い場合、所望の色度を得るために、高効率発光することが知られている緑色や,赤色の燐光発光強度を下げて調整する必要が生じ、結果的に発光素子としての発光効率が低下してしまうことが挙げられる。
また、白色発光素子においては、発光材間のエネルギー移動(青色→緑色→赤色)が生じると、色度が悪化してしまうという問題もあり、改良が望まれていた。特許文献3には、青色、緑色、赤色の発光層にそれぞれ燐光発光材を使用した白色発光素子が開示されている。しかしながら、発光効率や色度の点でいまだ不十分であり、更なる改良が望まれていた
特開2001−319780号公報 特開2004−281087号公報 特表2004−522276号公報
Since the organic EL element is a self-luminous surface light source, it can be used as a white light source, for example. An ideal white light source has coordinates on the CIE chromaticity diagram of (0.33, 0.33), as defined by the Commission Internationale de l'Eclairage (CIE). White light emission can be obtained by light emission of light emitting materials of three colors of blue, green, and red, or light emitting materials of two colors having a complementary color relationship.
As a white light emitting element, white light emission with low voltage, high luminance, and high chromaticity is desired. In order to lower the voltage and increase the brightness, it is desired to use a phosphorescent light emitting material having higher luminous efficiency than the fluorescent light emitting material (see, for example, Patent Documents 1, 2, and 3). In order to improve efficiency, it is desired to develop a phosphorescent material that emits blue light and to develop an element that effectively emits light from the blue phosphorescent material. The reason for this is that when the blue emission intensity is low, it is necessary to adjust the green or red phosphorescence emission intensity, which is known to emit light with high efficiency, in order to obtain the desired chromaticity. In addition, the light emission efficiency as a light emitting element is reduced.
Further, in the white light emitting element, there is a problem that chromaticity deteriorates when energy transfer (blue → green → red) occurs between the light emitting materials, and improvement has been desired. Patent Document 3 discloses a white light-emitting element using phosphorescent light-emitting materials for blue, green, and red light-emitting layers, respectively. However, the luminous efficiency and chromaticity are still insufficient, and further improvement has been desired.
JP 2001-319780 A Japanese Patent Application Laid-Open No. 2004-28877 JP-T-2004-522276

本発明は、発光効率および色度に優れた有機電界発光素子を提供することを目的とする。   An object of this invention is to provide the organic electroluminescent element excellent in luminous efficiency and chromaticity.

前記実情に鑑み本発明者らは、鋭意研究を行ったところ、上記課題を解決しうることを見出し本発明を完成した。
即ち、本発明は下記の手段により達成される。
In view of the above circumstances, the present inventors have conducted extensive research and found that the above problems can be solved, thereby completing the present invention.
That is, the present invention is achieved by the following means.

> 陽極と陰極との間に少なくとも一層の発光層を含む複数の有機化合物層を有する有機電界発光素子であって、前記発光層のうち少なくとも同一層に、少なくとも1種の燐光発光材料を含む少なくとも2種の発光材料とホスト材料と含み、かつ、前記発光層と陽極との間に三層の有機化合物層を有し、前記発光層のイオン化ポテンシャルをIp1、該三層の有機化合物層のイオン化ポテンシャルを発光層から近い順に、Ip2、Ip3、Iとしたときに、式(1):Ip1>Ip2>Ip3>Iの関係を満たすこと、及び、前記発光層と陰極との間に三層の有機化合物層を有し、前記発光層の電子親和力をEa1、該三層の有機化合物層の電子親和力を発光層から近い順に、Ea2、Ea3、Eとしたときに、式(2):Ea1<Ea2<Ea3<Eの関係を満たし、隣り合う層の間の障壁は0.4eV以下であること、を特徴とする有機電界発光素子。 < 1 > An organic electroluminescent device having a plurality of organic compound layers including at least one light emitting layer between an anode and a cathode, wherein at least one phosphorescent light emitting material is formed on at least the same layer of the light emitting layers. at least two comprises a light emitting material and a host material and the light emitting layer and the anode has an organic compound layer of the three layers between the ionization potential of the light-emitting layer Ip1, the organic compound layer of the three layers including the ionization potential in order of proximity to the light-emitting layer, when the Ip2, Ip3, I p 4, wherein (1): Ip1>Ip2>Ip3> satisfy the relation of I p 4, and the light emitting layer and a cathode has an organic compound layer of the three layers between the electron affinity of the light emitting layer Ea1, the electron affinity of the organic compound layer of the three layers in order of proximity to the light-emitting layer, when the Ea2, Ea3, E a 4 ,formula( ): Ea1 <Ea2 <Ea3 <meets the relationship E a 4, the organic electroluminescent device, characterized in, that the barrier is less than 0.4eV between adjacent layers.

<2> 前記発光層の陽極側に隣接する有機化合物層のイオン化ポテンシャル(Ip2)が6.2〜5.3eVであることを特徴とする上記<1>に記載の有機電界発光素子。
<3> 前記発光層の陰極側に隣接する有機化合物層の電子親和力(Ea2)が2.2〜3.1eVであることを特徴とする上記<1>又は<2>に記載の有機電界発光素子。
<4> 前記陽極と前記陰極との間に電圧を印加したときに、前記同一層に含まれる少なくとも2種の発光材料のうち、少なくとも2種が発光することを特徴とする上記<1>のいずれか1項に記載の有機電界発光素子。
<2> The organic electroluminescent element as described in <1> above, wherein the organic compound layer adjacent to the anode side of the light emitting layer has an ionization potential (Ip2) of 6.2 to 5.3 eV.
<3> The organic electroluminescence according to the above <1> or <2>, wherein an electron affinity (Ea2) of an organic compound layer adjacent to the cathode side of the light emitting layer is 2.2 to 3.1 eV element.
<4> When a voltage is applied between the anode and the cathode, the at least two light-emitting materials contained in the same layer, above, characterized in that at least two emit light <1> - The organic electroluminescent element of any one of < 3 >.

> 前記少なくとも2種の発光材料のうち、少なくとも1種の発光材料が青色の発光材料であることを特徴とする上記<1>〜<>のいずれか1項に記載の有機電界発光素子。
> 前記青色の発光材料が燐光発光材料であることを特徴とする上記<>に記載の有機電界発光素子。
> 白色発光であることを特徴とする上記<1>〜<>のいずれか1項に記載の有機電界発光素子。
< 5 > The organic electroluminescence according to any one of <1> to < 4 >, wherein at least one of the at least two light emitting materials is a blue light emitting material. element.
< 6 > The organic electroluminescent element as described in < 5 > above, wherein the blue light emitting material is a phosphorescent light emitting material.
< 7 > The organic electroluminescent element according to any one of <1> to < 6 >, wherein the organic electroluminescent element is white light emission.

> 前記同一層に含まれる前記少なくとも2種の発光材料の濃度が各々2質量%以下であり、かつ、前記同一層に含まれる前記少なくとも2種の発光材料の濃度の合計が3質量%以下であることを特徴とする上記<1>〜<>のいずれか1項に記載の有機電界発光素子。 < 8 > The concentration of the at least two light emitting materials contained in the same layer is 2% by mass or less, and the total concentration of the at least two light emitting materials contained in the same layer is 3% by mass. The organic electroluminescent element according to any one of the above items <1> to < 7 >, wherein:

本発明によれば、高い発光効率および色度に優れた有機EL素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the organic EL element excellent in high luminous efficiency and chromaticity can be provided.

以下、本発明について詳細に説明する。
本発明の有機電界発光素子は、陽極と陰極との間に少なくとも一層の発光層を含む複数の有機化合物層を有し、前記発光層のうち少なくとも同一層に、少なくとも1種の燐光発光材料を含む少なくとも2種の発光材料とホスト材料とを含み、かつ、前記発光層と陽極との間に三層の有機化合物層を有し、前記発光層のイオン化ポテンシャルをIp1、該三層の有機化合物層のイオン化ポテンシャルを発光層に隣接した層から順に、Ip2、Ip3、Iとしたときに、式(1):Ip1>Ip2>Ip3>Iの関係を満たすこと、及び、前記発光層と陰極との間に三層の有機化合物層を有し、前記発光層の電子親和力をEa1、該三層の有機化合物層の電子親和力を発光層に隣接した層から順に、Ea2、Ea3、Eとしたときに、式(2):Ea1<Ea2<Ea3<Eの関係を満たし、隣り合う層の間の障壁は0.4eV以下であること、を特徴とする。
上記構成とすることにより、高い発光効率および色度に優れた有機EL素子を得ることができる。
Hereinafter, the present invention will be described in detail.
The organic electroluminescent element of the present invention has a plurality of organic compound layers including at least one light emitting layer between an anode and a cathode, and at least one phosphorescent light emitting material is formed in at least the same layer among the light emitting layers. An organic compound layer having three layers between the light emitting layer and the anode, the ionization potential of the light emitting layer being Ip1, and the organic compound having the three layers the ionization potential of the layers in the order from the layer adjacent to the luminescent layer, when the Ip2, Ip3, I p 4, wherein (1): Ip1>Ip2>Ip3> satisfy the relation of I p 4, and the light emitting has an organic compound layer of the three layers between the layer and the cathode, the electron affinity of the light emitting layer Ea1, the electron affinity of the organic compound layer of the three layers in the order from the layer adjacent to the luminescent layer, Ea2, Ea3, It was E a 4 To come formula (2): Ea1 <Ea2 < Ea3 < meets the relationship E a 4, a barrier between adjacent layers is not more than 0.4 eV, and wherein.
By setting it as the said structure, the organic EL element excellent in high luminous efficiency and chromaticity can be obtained.

本発明の有機電界発光素子は、発光層と陽極との間(陽極側)に、及び、発光層と陰極との間(陰極側)に、有機化合物層を3層有することによって、隣り合う層の間のポテンシャル障壁を減らすことができ、発光効率、発光輝度が高くすることができる。
本発明の有機電界発光素子は、発光層と両極間のそれぞれに前記有機化合物層を有し、さらに、該有機化合物層は、前記発光層及び両極に隣接して設けられる。
前記隣り合う層の間の障壁は、電荷の移動のし易さから、0.3eV以下が特に好ましい。
The organic electroluminescent device of the present invention, between the light emitting layer and the anode (anode side),及Beauty, between the emitting layer and the cathode (cathode side), an organic compound layer and 3 Soyu child Therefore The potential barrier between adjacent layers can be reduced, and the light emission efficiency and light emission luminance can be increased.
The organic electroluminescent device of the present invention has an organic compound layer in each of between the light emitting layer and two electrodes, further, the organic compound layer, Ru provided adjacent to the light emitting layer and electrodes.
The barrier between the adjacent layers is 0 . 3 eV or less is particularly preferable.

ここで、本発明の発光素子における「各層のイオン化ポテンシャル」とは、その層に10質量%以上含まれる材料の中で最もイオン化ポテンシャルが小さい材料のイオン化ポテンシャルを意味する。本明細書におけるイオン化ポテンシャルは、AC−1(理研計器(株)製)を用いて室温・大気下で測定した値を採用する。AC−1の測定原理については、安達千波矢等著「有機薄膜仕事関数データ集」シーエムシー出版社2004年発行に記載されている。   Here, the “ionization potential of each layer” in the light emitting device of the present invention means an ionization potential of a material having the lowest ionization potential among materials contained in the layer of 10% by mass or more. As the ionization potential in this specification, a value measured at room temperature and in the atmosphere using AC-1 (manufactured by Riken Keiki Co., Ltd.) is adopted. The measurement principle of AC-1 is described in Chiyaya Adachi et al., “Organic thin film work function data collection” issued by CMC Publishing Co., Ltd. 2004.

また、本発明の発光素子における「各層の電子親和力」とは、その層に10質量%以上含まれる材料の中で最も電子親和力が大きい材料の電子親和力を意味する。本発明における電子親和力は、イオン化ポテンシャル測定に用いた膜の紫外可視吸収スペクトルを測定し、吸収スペクトルの長波長端のエネルギーから励起エネルギーを求め、励起エネルギーと前記イオン化ポテンシャルの値から算出する。本明細書においては、島津製作所製のUV3100型分光光度計で測定した紫外可視吸収スペクトルを用いる。   In addition, the “electron affinity of each layer” in the light emitting device of the present invention means the electron affinity of a material having the highest electron affinity among materials contained in 10% by mass or more in the layer. The electron affinity in the present invention is calculated from the excitation energy and the value of the ionization potential obtained by measuring the ultraviolet-visible absorption spectrum of the film used for measuring the ionization potential, obtaining the excitation energy from the energy at the long wavelength end of the absorption spectrum. In this specification, an ultraviolet-visible absorption spectrum measured with a UV3100 spectrophotometer manufactured by Shimadzu Corporation is used.

本発明の発光素子における前記陽極側の有機化合物層の層数(n−1)は、層間のポテンシャル障壁を減少させること、及び製造コスト低減の観点から、3層〜5層有することが好ましく、3層〜4層有することがより好ましい。
また、陰極側の有機化合物層(m−1)についても、層間のポテンシャル障壁を減少させること、及び製造コスト低減の観点から、3層〜5層有することが好ましく、3層〜4層有することがより好ましい。
前記両極の有機化合物層の層数は、同数であっても、異なってもよい。
本発明においては前記両極の有機化合物層の層数は同数の3層である。
The number (n-1) of the organic compound layers on the anode side in the light emitting device of the present invention preferably has 3 to 5 layers from the viewpoint of reducing the potential barrier between layers and reducing the manufacturing cost. It is more preferable to have 3 to 4 layers.
Also, the organic compound layer (m-1) on the cathode side preferably has 3 to 5 layers from the viewpoint of reducing the potential barrier between layers and reducing the manufacturing cost, and has 3 to 4 layers. Is more preferable.
The number of the organic compound layers of the two electrodes may be the same or different.
In the present invention, the number of the organic compound layers of the two electrodes is the same number of three layers.

本発明の発光素子における発光層が1層である場合は、発光層のイオン化ポテンシャル(Ip1)は6.4eV以下が好ましく、6.3eV以下がより好ましく、6.2eV以下が特に好ましい。また、発光層の電子親和力(Ea1)は、2.1eV以上が好ましく、2.2eV以上がより好ましく、2.3eV以上が特に好ましい。   When the light emitting layer in the light emitting device of the present invention is a single layer, the ionization potential (Ip1) of the light emitting layer is preferably 6.4 eV or less, more preferably 6.3 eV or less, and particularly preferably 6.2 eV or less. In addition, the electron affinity (Ea1) of the light emitting layer is preferably 2.1 eV or more, more preferably 2.2 eV or more, and particularly preferably 2.3 eV or more.

前記発光層の陽極側に隣接する有機化合物層のイオン化ポテンシャル(Ip2)は、6.2〜5.3eVが好ましく、6.1〜5.4eVがより好ましく、6.0〜5.5eVが特に好ましい。
前記発光層と陽極の間に設けられた他の有機化合物層のイオン化ポテンシャル(Ip3、4、…、n)は、5.8eV以下が好ましく、5.7eV以下がより好ましく、5.6eV以下が特に好ましい。
The ionization potential (Ip2) of the organic compound layer adjacent to the anode side of the light emitting layer is preferably 6.2 to 5.3 eV, more preferably 6.1 to 5.4 eV, and particularly preferably 6.0 to 5.5 eV. preferable.
The ionization potential (Ip3, 4,..., N) of another organic compound layer provided between the light emitting layer and the anode is preferably 5.8 eV or less, more preferably 5.7 eV or less, and 5.6 eV or less. Particularly preferred.

前記発光層の陰極側に隣接する有機化合物層の電子親和力(Ea2)は、2.2〜3.1eVが好ましく、2.3〜3.0eVがより好ましく、2.4〜2.9eVが特に好ましい。
前記発光層と陰極の間に設けられた他の有機化合物層(電子輸送層)の電子親和力(Ea3、4、…、m)は、2.6eV以上が好ましく、2.7eV以上がより好ましく、2.8eV以上が特に好ましい。
The electron affinity (Ea2) of the organic compound layer adjacent to the cathode side of the light emitting layer is preferably 2.2 to 3.1 eV, more preferably 2.3 to 3.0 eV, and particularly preferably 2.4 to 2.9 eV. preferable.
The electron affinity (Ea3, 4,..., M) of the other organic compound layer (electron transport layer) provided between the light emitting layer and the cathode is preferably 2.6 eV or more, more preferably 2.7 eV or more, 2.8 eV or more is particularly preferable.

本発明におけるイオン化ポテンシャル又は電子親和力の関係は、各層を構成する材料の中から、上記したイオン化ポテンシャル又は電子親和力を示す材料を選択して組み合わせることにより制御される。   The relationship between the ionization potential or the electron affinity in the present invention is controlled by selecting and combining the materials showing the above ionization potential or electron affinity from the materials constituting each layer.

また、本発明の素子は電圧を印加したとき、前記同一層に含まれる少なくとも2種の発光材料のうち、少なくとも2種が発光することが好ましい。
前記少なくとも2種の発光材料のうち少なくとも2種が発光することにより、様々な色相の発光素子とすることができる。
ここで、発光しているかの判断は以下のようにして行う。まず、各々の発光材料を単独でガラス基板上に成膜したものに対し、紫外線を照射した時に得られる発光スペクトルを観測し、各々の材料の発光スペクトルの最大値における波長を調べる。続いて、本発明の素子に電圧を印加したときのスペクトルを観測し、先ほど調べた各々の材料の発光スペクトルの最大値における波長での強度が、本発明素子の発光スペクトルの最大値の1/10以上であれば、その発光材料は発光していると判断する。
In addition, when a voltage is applied to the element of the present invention, it is preferable that at least two of the at least two light emitting materials contained in the same layer emit light.
When at least two of the at least two light emitting materials emit light, light emitting elements having various hues can be obtained.
Here, the determination of whether light is emitted is performed as follows. First, an emission spectrum obtained when each luminescent material is independently formed on a glass substrate is irradiated with ultraviolet rays, and the wavelength at the maximum value of the emission spectrum of each material is examined. Subsequently, the spectrum when a voltage is applied to the element of the present invention is observed, and the intensity at the wavelength at the maximum value of the emission spectrum of each material examined earlier is 1 / of the maximum value of the emission spectrum of the element of the present invention. If it is 10 or more, it is determined that the luminescent material emits light.

更にまた、本発明の素子の構成は、前記少なくとも2種の発光材料のうち、少なくとも1種の発光材料が青色発光材料であることが好ましく、さらに青色燐光発光材料であることが好ましい。
前記構成とすることにより、本発明の発光素子を白色発光させることができ、照明、液晶のバックライトなど応用範囲を広げることができる。
Furthermore, in the structure of the element of the present invention, at least one of the at least two light emitting materials is preferably a blue light emitting material, and more preferably a blue phosphorescent light emitting material.
With the above-described structure, the light-emitting element of the present invention can emit white light, and the application range such as illumination and liquid crystal backlight can be expanded.

本発明に使用できる基板、陽極および陰極は、特に制限はなく、公知のものから適宜選択することができるが、発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。   The substrate, the anode and the cathode that can be used in the present invention are not particularly limited and can be appropriately selected from known ones. However, due to the properties of the light emitting element, at least one of the anode and the cathode must be transparent. Is preferred.

本発明における有機化合物層の積層の態様としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と発光層との間、又は、発光層と電子輸送層との間には、電荷ブロック層等を有していてもよい。陽極と正孔輸送層との間に、正孔注入層を有してもよく、陰極と電子輸送層との間には、電子注入層を有してもよい。   As an aspect of lamination of the organic compound layer in the present invention, an aspect in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the anode side is preferable. Further, a charge blocking layer or the like may be provided between the hole transport layer and the light-emitting layer, or between the light-emitting layer and the electron transport layer. A hole injection layer may be provided between the anode and the hole transport layer, and an electron injection layer may be provided between the cathode and the electron transport layer.

発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層におけるホスト材料は1種であっても2種以上であっても良く、2種以上の場合は、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。電荷輸送性のホスト材料の他に、さらに、発光層中に電荷輸送性を有さず、発光しないホスト材料を含んでいても良い。
ホスト材料に用いられる材料は、特に限定はなく、公知の物から適宜選択して用いることができる。例えば、電子輸送性ホスト材料およびホール輸送性ホスト材料は、それぞれ、電子輸送層,電子注入層に用いられる材料、正孔輸送層、正孔注入層に用いられる材料を好適に使用することができる。
The light-emitting layer receives holes from the anode, the hole injection layer, or the hole transport layer when an electric field is applied, receives electrons from the cathode, the electron injection layer, or the electron transport layer, and recombines holes and electrons. It is a layer which has the function to provide and to emit light.
The host material in the light emitting layer in the present invention may be one type or two or more types, and in the case of two or more types, for example, a configuration in which an electron transporting host material and a hole transporting host material are mixed. Is mentioned. In addition to the charge transporting host material, the light emitting layer may further contain a host material that does not have a charge transporting property and does not emit light.
The material used for the host material is not particularly limited and can be appropriately selected from known materials. For example, as the electron transporting host material and the hole transporting host material, materials used for the electron transport layer and the electron injection layer, materials used for the hole transport layer and the hole injection layer, respectively, can be preferably used. .

本発明の発光素子は、少なくとも1種の燐光発光材料を含む少なくとも2種の発光材料とホスト材料とを同一発光層に含む。
燐光発光材料としては、特に限定されることはなく、公知の材料から適宜選択して使用することができる。例えば、特開2004−221068号の(0051)から(0057)等に記載のものを挙げることができるが、中でも、オルトメタル化金属錯体、又はポルフィリン金属錯体が好ましい。
The light-emitting element of the present invention includes at least two light-emitting materials including at least one phosphorescent light-emitting material and a host material in the same light-emitting layer.
The phosphorescent material is not particularly limited and can be appropriately selected from known materials. Examples include those described in JP-A-2004-221068 (0051) to (0057), among which ortho-metalated metal complexes or porphyrin metal complexes are preferred.

上記オルトメタル化金属錯体とは、例えば山本明夫著「有機金属化学−基礎と応用−」150頁、232頁、裳華房社(1982年発行)やH.Yersin著「Photochemistry and Photophisics of Coodination Compounds」71〜77頁、135〜146頁、Springer−Verlag社(1987年発行)等に記載されている化合物群の総称である。該オルトメタル化金属錯体を発光材料として発光層に用いることは、高輝度で発光効率に優れる点で有利である。   Examples of the above-mentioned orthometalated metal complex include, for example, Akio Yamamoto, “Organic Metal Chemistry: Fundamentals and Applications”, pages 150 and 232, Hankabo (published in 1982) and Yersin's “Photochemistry and Photophysics of Coordination Compounds” pages 71-77, pages 135-146, Springer-Verlag (published in 1987), etc. The use of the orthometalated metal complex as a light emitting material in the light emitting layer is advantageous in terms of high luminance and excellent light emission efficiency.

上記オルトメタル化金属錯体を形成する配位子としては、種々のものがあり、上記文献にも記載されているが、その中でも好ましい配位子としては、2−フェニルピリジン誘導体、7,8−ベンゾキノリン誘導体、2−(2−チエニル)ピリジン誘導体、2−(1−ナフチル)ピリジン誘導体、2−フェニルキノリン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有してもよい。また、上記オルトメタル化金属錯体は、上記配位子のほかに、他の配位子を有していてもよい。   There are various ligands that form the ortho-metalated metal complex, which are also described in the above documents. Among them, preferred ligands include 2-phenylpyridine derivatives, 7,8- Examples include benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, and 2-phenylquinoline derivatives. These derivatives may have a substituent if necessary. The orthometalated metal complex may have other ligands in addition to the above ligands.

本発明で用いるオルトメタル化金属錯体は、Inorg. Chem., 1991年, 30号, 1685頁、同 1988年, 27号, 3464頁.、同 1994年, 33号, 545頁、Inorg.Chim.Acta, 1991年, 181号, 245頁、J.Organomet.Chem., 1987年, 335号, 293頁、J.Am.Chem.Soc. 1985年, 107号, 1431頁 等、種々の公知の手法で合成することができる。
上記オルトメタル化錯体の中でも、三重項励起子から発光する化合物が本発明においては発光効率向上の観点から好適に使用することができる。また、ポルフィリン金属錯体の中ではポルフィリン白金錯体が好ましい。
The orthometalated metal complex used in the present invention can be obtained from Inorg. Chem. 1991, No. 30, page 1685, 1988, No. 27, page 3464. 1994, 33, 545, Inorg. Chim. Acta, 1991, 181, 245; Organomet. Chem. , 1987, 335, 293, J. Am. Am. Chem. Soc. 1985, No. 107, p. 1431 and the like can be synthesized by various known methods.
Among the ortho-metalated complexes, compounds that emit light from triplet excitons can be suitably used in the present invention from the viewpoint of improving luminous efficiency. Of the porphyrin metal complexes, a porphyrin platinum complex is preferred.

ホスト材料の発光層中における含有量としては、特に限定されるものではないが、中でも、90〜99.9質量%が好ましく、95〜99.9質量%がより好ましく、97〜99.9質量%が特に好ましい。   The content of the host material in the light emitting layer is not particularly limited, but 90 to 99.9% by mass is preferable, 95 to 99.9% by mass is more preferable, and 97 to 99.9% by mass. % Is particularly preferred.

本発明においては、上記燐光発光材料を少なくとも1種含む相異なる少なくとも2種の発光材料を用いることにより、任意の色の発光素子を得ることができる。白色発光素子は、上記燐光発光材料を少なくとも1種含む相異なる少なくとも2種の発光材料、中でも、3種以上の発光材料を選択することが、より高発光効率で、より高発光輝度な白色発光素子を得る観点から好ましい。これらの発光材料は上記例より適切に選ぶことができる。
例えば、2種の発光材料として補色関係にある青色発光材料と橙色発光材料との組み合わせにより白色発光素子を得ることができ、さらに、青色発光材料、緑色発光材料、赤色発光材料の相異なる3種以上の発光材料を適切に選択することにより、白色発光素子を得ることができる。
中でも、前記青色発光材料としては、極大発光波長(発光強度が極大となる時の波長)が400〜500nmである材料が好ましく、420〜490nmがより好ましく、430〜470nmが特に好ましい。
また、緑色発光材料としては、500〜570nmが好ましく、500〜560nmがより好ましく、500〜550nmが特に好ましい。
また、赤色発光材料としては、580〜670nmが好ましく、590〜660nmがより好ましく、600〜650nmが特に好ましい。
In the present invention, a light emitting element of any color can be obtained by using at least two different light emitting materials including at least one phosphorescent light emitting material. The white light-emitting element can select at least two different light-emitting materials including at least one phosphorescent light-emitting material, and more particularly, three or more light-emitting materials can be selected to produce white light with higher light emission efficiency and higher luminance. It is preferable from the viewpoint of obtaining an element. These luminescent materials can be appropriately selected from the above examples.
For example, a white light-emitting element can be obtained by combining a blue light-emitting material and an orange light-emitting material in complementary colors as two types of light-emitting materials, and three different types of blue light-emitting material, green light-emitting material, and red light-emitting material. A white light emitting element can be obtained by appropriately selecting the above light emitting materials.
Among them, the blue light emitting material is preferably a material having a maximum light emission wavelength (wavelength when the light emission intensity becomes maximum) of 400 to 500 nm, more preferably 420 to 490 nm, and particularly preferably 430 to 470 nm.
Moreover, as a green luminescent material, 500-570 nm is preferable, 500-560 nm is more preferable, 500-550 nm is especially preferable.
Moreover, as a red luminescent material, 580-670 nm is preferable, 590-660 nm is more preferable, 600-650 nm is especially preferable.

本発明の発光素子の発光層は、一層であっても、複数層であってもよい。
本発明の白色発光素子を作成する場合、2種の発光材料を用いるとき、前記発光層のうち同一の層に、前記2種の発光材料を前記ホスト材料とともに含有する必要があり、3種の発光材料を用いた場合においては、3種の発光材料が前記同一の層に含まれていても、また、2種の発光材料を含んだ層と他の1種の発光材料を含んだ層とがそれぞれ別々に積層されていてもよい。
いずれの場合にしても、含有される少なくとも2種の発光材料が全て別々の層に含まれる場合と比較して、層数を減らすことができ、簡便に発光素子を作成できる。
The light emitting layer of the light emitting device of the present invention may be a single layer or a plurality of layers.
When producing the white light emitting device of the present invention, when two kinds of light emitting materials are used, it is necessary to contain the two kinds of light emitting materials together with the host material in the same layer among the light emitting layers. In the case where a light emitting material is used, even if three kinds of light emitting materials are included in the same layer, a layer containing two kinds of light emitting materials and a layer containing another one kind of light emitting material are used. May be laminated separately.
In any case, the number of layers can be reduced as compared with the case where at least two kinds of light-emitting materials contained are all contained in separate layers, and a light-emitting element can be easily produced.

また、本発明における発光層は、少なくとも2種の発光材料を含有し、該発光材料のうち少なくとも1種は燐光発光材料であることが必要であるが、該燐光発光材料に加え、蛍光発光材料を併用して使用することもできる。本発明で使用できる蛍光発光材料の例としては、特に制限はなく、公知のものから適宜選択することができる。例えば、特開2004−146067号の[0027]、特開2004−103577号の[0057]等に記載のものを挙げることができるが、本発明はこれに限定されない。   Further, the light emitting layer in the present invention contains at least two kinds of light emitting materials, and at least one of the light emitting materials needs to be a phosphorescent light emitting material. In addition to the phosphorescent light emitting material, a fluorescent light emitting material is used. Can also be used in combination. There is no restriction | limiting in particular as an example of the fluorescent luminescent material which can be used by this invention, It can select from a well-known thing suitably. Examples include those described in JP-A No. 2004-146067 [0027], JP-A No. 2004-103577 [0057], and the like, but the present invention is not limited thereto.

更に本発明においては、発光材料の濃度を各々5質量%以下とし、全ての発光材料の濃度の合計を10質量%以下とすることが好ましい。更に、各々の発光材料を0.03%以上3%以下とし、全ての発光材料の濃度の合計を5質量%以下とすることがより好ましく、さらに、各々0.1%以上2%以下とし、全ての発光材料の濃度の合計を3質量%以下とすることが好ましい。   Furthermore, in the present invention, it is preferable that the concentration of each light emitting material is 5% by mass or less and the total concentration of all the light emitting materials is 10% by mass or less. Furthermore, it is more preferable that each light emitting material is 0.03% or more and 3% or less, and the total concentration of all the light emitting materials is 5% by mass or less, and further, 0.1% or more and 2% or less, The total concentration of all luminescent materials is preferably 3% by mass or less.

また、発光材料に青色材料を含む場合、ホストとして用いられる材料の最低励起三重項エネルギー(以下、T1と称する)は、
60kcal/mol(251.4kJ/mol)以上90kcal/mol(377.1kJ/mol)以下が好ましく、63kcal/mol(264kJ/mol)以上85kcal/mol(356.2kJ/mol)以下がより好ましく、65kcal/mol(272kJ/mol)以上80kcal/mol(335.2kJ/mol)以下が更に好ましく、66kcal/mol(276.5kJ/mol)以上80kcal/mol(335.2kJ/mol)以下が特に好ましい。
発光材料のT1と比較して、ホスト材料のT1が小さいと、発光材料にできた励起子がホストに移動してしまい好ましくない。ここで、発光材料が短波長に発光ピークを持つ青色材料の場合を考えると、青色材料のT1は大きいため、励起子をホスト材料に移動させないという観点から、上記のようなT1をもつホスト材料が好ましい。
When the light emitting material includes a blue material, the lowest excited triplet energy (hereinafter referred to as T 1 ) of the material used as the host is:
60 kcal / mol (251.4 kJ / mol) or more and 90 kcal / mol (377.1 kJ / mol) or less is preferable, 63 kcal / mol (264 kJ / mol) or more and 85 kcal / mol (356.2 kJ / mol) or less is more preferable, and 65 kcal / Mol (272 kJ / mol) to 80 kcal / mol (335.2 kJ / mol) is more preferable, and 66 kcal / mol (276.5 kJ / mol) to 80 kcal / mol (335.2 kJ / mol) is particularly preferable.
When T 1 of the host material is smaller than T 1 of the light emitting material, excitons formed in the light emitting material move to the host, which is not preferable. Here, considering the case where the light emitting material is a blue material having a light emission peak at a short wavelength, the T 1 of the blue material is large, so that it has the above T 1 from the viewpoint of not moving excitons to the host material. A host material is preferred.

本発明の有機電界発光素子における、基板、電極、各有機層、その他の層、等の構成要素については、例えば、特開2004−221068号の[0013]から[0082]、特開2004−214178号の[0017]から[0091]、特開2004−146067号の[0024]から[0035]、特開2004−103577号の[0017]から[0068]、特開2003−323987号の[0014]から[0062]、特開2002−305083号の[0015]から[0077]、特開2001−172284号の[0008]から[0028]、特開2000−186094号の[0013]から[0075]、特表2003−515897号の[0016]から[0118]等に記載のものが本発明においても同様に適用することができる。ただし、本発明はこれらに限定されるものではない。   Constituent elements such as a substrate, electrodes, organic layers, and other layers in the organic electroluminescent device of the present invention are described in, for example, [0013] to [0082] of JP-A-2004-221068, JP-A-2004-214178. [0017] to [0091], JP 2004-146067 [0024] to [0035], JP 2004-103577 [0017] to [0068], JP 2003-323987 [0014]. [0062], JP-A-2002-305083, [0015] to [0077], JP-A-2001-172284, [0008] to [0028], JP-A-2000-186094, [0013] to [0075], Those described in [0016] to [0118] of JP-T-2003-515897 are the present invention. It can be applied similarly. However, the present invention is not limited to these.

本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。   The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.

有機電界発光素子の重要な特性値として、外部量子効率(発光効率)がある。外部量子効率は、「外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数」で算出され、この値が大きいほど消費電力の点で有利な素子と言える。   An important characteristic value of the organic electroluminescence device is external quantum efficiency (luminescence efficiency). The external quantum efficiency is calculated by “external quantum efficiency φ = number of photons emitted from the device / number of electrons injected into the device”, and it can be said that the larger this value, the more advantageous the device in terms of power consumption.

また、発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出することができる。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を発光したフォトン数に換算することができる。これらから外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算することができる。   Further, the external quantum efficiency of the light emitting element can be calculated from the result and the relative luminous efficiency curve obtained by measuring the light emission luminance, the light emission spectrum, and the current density. That is, the number of input electrons can be calculated using the current density value. The emission luminance can be converted into the number of photons emitted by integral calculation using the emission spectrum and the relative visibility curve (spectrum). From these, the external quantum efficiency (%) can be calculated by “(number of emitted photons / number of electrons input to the device) × 100”.

本発明においては、ケースレー社製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加し発光させ、トプコン社製分光放射輝度計SR−3を用いて発光スペクトルを測定し、1000cd/m 2における外部量子効率とCIE色度座標(x,y)を求める。 In the present invention, a source measure unit 2400 manufactured by Keithley Co. is used to apply a DC constant voltage to the EL element to emit light, and an emission spectrum is measured using a spectral radiance meter SR-3 manufactured by Topcon Co., Ltd. Obtain the external quantum efficiency and CIE chromaticity coordinates (x, y) at m 2 .

本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。   The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234658, and JP-A-8-2441047. The driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.

本発明の発光素子は、表示素子、ディスプレイ(例えば、フルカラ−ディスプレイ)、バックライト、電子写真、照明光源、記録光源(例えば、光源アレイ)、露光光源、読み取り光源、標識、看板、インテリア、光通信等の分野に好適に使用できる。   The light emitting device of the present invention includes a display device, a display (for example, full color display), a backlight, electrophotography, an illumination light source, a recording light source (for example, a light source array), an exposure light source, a reading light source, a sign, a signboard, an interior, and light. It can be suitably used in the field of communication and the like.

以下に、本発明について実施例を用いて説明するが、本発明はこれら実施例により限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

[比較例1]
ガラス基板上に150nmの厚みで形成されたインジウム・スズ酸化物(ITO)透明導電膜(ジオマテック社製)に対し、フォトリソグラフィーと塩酸エッチングを用いてパターニングし、陽極を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行って、真空蒸着装置内に設置した。その後、蒸着装置内を排気した。
[Comparative Example 1]
An indium tin oxide (ITO) transparent conductive film (manufactured by Geomatic Co., Ltd.) formed on a glass substrate with a thickness of 150 nm was patterned using photolithography and hydrochloric acid etching to form an anode. The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally with ultraviolet ozone cleaning. installed. Thereafter, the inside of the vapor deposition apparatus was evacuated.

続いて、上記蒸着装置内にて下記に示す4,4'−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)を加熱して、蒸着速度0.2nm/秒で蒸着を行い、膜厚40nmの正孔輸送層を形成した。   Subsequently, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) shown below is heated in the vapor deposition apparatus, and the vapor deposition rate is 0.2 nm / second. Vapor deposition was performed to form a 40 nm-thick hole transport layer.

Figure 0004869759
Figure 0004869759

引続き、上記により形成された正孔輸送層の上に、発光層に含有されるホスト材料としての4,4'−N,N'−ジカルバゾール−ビフェニル(CBP)と、青色発光材料のイリジウム(III)ビス[(4,6−ジフルオロフェニル)−ピリジナート−N,C2]ピコリネート(Firpic)と、緑色発光材料のトリス(2−フェニルピリジン)イリジウム(Ir(ppy)3)と、赤色発光材料のドーパントAとを加熱し、同時蒸着することで発光層の成膜を行った。CBPの蒸着速度は0.2nm/秒に制御し、Firpicが1.5質量%、Ir(ppy)3が0.5質量%、ドーパントAが0.5質量%含有された膜厚30nmの発光層を正孔輸送層の上に積層した。 Subsequently, 4,4′-N, N′-dicarbazole-biphenyl (CBP) as a host material contained in the light emitting layer and iridium (blue light emitting material) are formed on the hole transport layer formed as described above. III) Bis [(4,6-difluorophenyl) -pyridinate-N, C2] picolinate (Firpic), green light emitting material tris (2-phenylpyridine) iridium (Ir (ppy) 3 ), red light emitting material The light emitting layer was formed by heating the dopant A and co-depositing it. The CBP deposition rate is controlled to 0.2 nm / second, and the emission is 30 nm with a film containing 1.5% by weight, 0.5% by weight of Ir (ppy) 3 and 0.5% by weight of dopant A. The layer was laminated on the hole transport layer.

Figure 0004869759
Figure 0004869759

更に、下の式で表されるアルミニウム(III)ビス(2−メチル−8−キノリナト)4−フェニルフェノレート(BAlq)を、蒸着速度0.1nm/秒で蒸着を行い、膜厚30nmの電子輸送層を発光層の上に積層した。   Further, aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (BAlq) represented by the following formula is deposited at a deposition rate of 0.1 nm / second, and an electron having a thickness of 30 nm is formed. A transport layer was laminated on the light emitting layer.

Figure 0004869759
Figure 0004869759

その後、フッ化リチウム(LiF)を蒸着速度0.1nm/秒、1nmの膜厚で電子輸送層の上に成膜して電子注入層を形成し、更に、アルミニウムを蒸着速度0.5nm/秒、膜厚150nmの陰極を形成した。
また、陽極及び陰極より、それぞれアルミニウムのリード線を結線した。
尚、蒸着時は、所望の膜厚が得られるよう、水晶発振式成膜コントローラを用いてモニターした。
Thereafter, lithium fluoride (LiF) is deposited on the electron transport layer at a deposition rate of 0.1 nm / second and a thickness of 1 nm to form an electron injection layer, and further, aluminum is deposited at a deposition rate of 0.5 nm / second. A cathode having a thickness of 150 nm was formed.
Also, aluminum lead wires were connected from the anode and the cathode, respectively.
During vapor deposition, monitoring was performed using a crystal oscillation type film formation controller so as to obtain a desired film thickness.

ここで得られた積層体を、空気に晒すことなく、窒素ガスで置換したグローブボックス内に入れた。内側に凹部を設けたステンレス製の封止カバーに、前記グローブボックス内で水分吸収剤(サエスゲッターズ製)を貼り付けた。この封止カバーと、接着剤として紫外線硬化型接着剤(XNR5516HV、長瀬チバ製)を用いて封止した。
以上のようにして、比較例1の有機EL素子を得た。
The laminated body obtained here was put in a glove box substituted with nitrogen gas without being exposed to air. A moisture absorbent (manufactured by SAES Getters) was affixed to a stainless steel sealing cover provided with a recess on the inside in the glove box. This sealing cover was sealed using an ultraviolet curable adhesive (XNR5516HV, manufactured by Chiba Nagase) as an adhesive.
As described above, an organic EL element of Comparative Example 1 was obtained.

[比較例2]
比較例1と同様に、ガラス基板上に、ITO透明導電膜を堆積したものをパターニング・洗浄し、真空蒸着装置内に設置した。その後、蒸着装置内を排気した。
[Comparative Example 2]
Similar to Comparative Example 1, the ITO transparent conductive film deposited on the glass substrate was patterned and washed, and placed in a vacuum evaporation apparatus. Thereafter, the inside of the vapor deposition apparatus was evacuated.

続いて、上記蒸着装置内にて下記に示す銅フタロシアニン(CuPc)を加熱し、蒸着速度0.1nm/秒で蒸着を行い、膜厚10nmの正孔注入層を形成した。   Subsequently, copper phthalocyanine (CuPc) shown below was heated in the vapor deposition apparatus, and vapor deposition was performed at a vapor deposition rate of 0.1 nm / second to form a 10 nm thick hole injection layer.

Figure 0004869759
Figure 0004869759

次いで、上記により形成された正孔注入層の上に、α−NPDを加熱して、蒸着速度0.2nm/秒で蒸着を行い、膜厚30nmの正孔輸送層を形成した。   Next, α-NPD was heated on the hole injection layer formed as described above, and vapor deposition was performed at a deposition rate of 0.2 nm / second to form a hole transport layer having a thickness of 30 nm.

引続き、上記により形成された正孔輸送層の上に、発光層に含有されるホスト材料として、CBPと、青色発光材料のFirpicと、緑色発光材料のIr(ppy)3と、赤色発光材料のドーパントAとを加熱し、同時蒸着によって発光層の成膜を行った。CBPの蒸着速度は0.2nm/秒に制御し、Firpicが1.5質量%、Ir(ppy)3が0.5質量%、ドーパントAが0.5質量%含有された膜厚30nmの発光層を正孔輸送層の上に積層した。 Subsequently, on the hole transport layer formed as described above, as a host material contained in the light emitting layer, CBP, Firepic of blue light emitting material, Ir (ppy) 3 of green light emitting material, and red light emitting material The dopant A was heated and a light emitting layer was formed by co-evaporation. The CBP deposition rate is controlled to 0.2 nm / second, and the emission is 30 nm with a film containing 1.5% by weight, 0.5% by weight of Ir (ppy) 3 and 0.5% by weight of dopant A. The layer was laminated on the hole transport layer.

更に続いて、BAlqを、蒸着速度0.1nm/秒で蒸着を行い、膜厚10nmの正孔ブロック層を発光層の上に積層した。   Subsequently, BAlq was deposited at a deposition rate of 0.1 nm / second, and a hole blocking layer having a thickness of 10 nm was laminated on the light emitting layer.

更に続いて、正孔ブロック層の上に、下記に示すトリス(8−ヒドロキシキノリナト)アルミニウム(III)(Alq)を蒸着速度0.2nm/秒で蒸着し、35nmの膜厚の電子輸送層を形成した。   Subsequently, on the hole blocking layer, tris (8-hydroxyquinolinato) aluminum (III) (Alq) shown below was deposited at a deposition rate of 0.2 nm / second, and an electron transport layer having a thickness of 35 nm. Formed.

Figure 0004869759
Figure 0004869759

その後、フッ化リチウム(LiF)を蒸着速度0.1nm/秒、1nmの膜厚で電子輸送層の上に成膜して電子注入層を形成し、更に、アルミニウムを蒸着速度0.5nm/秒、膜厚150nmの陰極を形成した。
尚、蒸着時は、所望の膜厚が得られるよう、水晶発振式成膜コントローラを用いてモニターした。
Thereafter, lithium fluoride (LiF) is deposited on the electron transport layer at a deposition rate of 0.1 nm / second and a thickness of 1 nm to form an electron injection layer, and further, aluminum is deposited at a deposition rate of 0.5 nm / second. A cathode having a thickness of 150 nm was formed.
During vapor deposition, monitoring was performed using a crystal oscillation type film formation controller so as to obtain a desired film thickness.

次に、陽極及び陰極に、それぞれアルミニウムのリード線を結線した。
ここで得られた積層体を、空気に晒すことなく、窒素ガスで置換したグローブボックス内に入れた。内側に凹部を設けたステンレス製の封止カバーに、前記グローブボックス内で水分吸収剤(サエスゲッターズ製)を貼り付けた。この封止カバーと、接着剤として紫外線硬化型接着剤(XNR5516HV、長瀬チバ製)を用いて封止した。
以上のようにして、比較例2の有機EL素子を得た。
Next, aluminum lead wires were connected to the anode and the cathode, respectively.
The laminated body obtained here was put in a glove box substituted with nitrogen gas without being exposed to air. A moisture absorbent (manufactured by SAES Getters) was affixed to a stainless steel sealing cover provided with a recess on the inside in the glove box. This sealing cover was sealed using an ultraviolet curable adhesive (XNR5516HV, manufactured by Chiba Nagase) as an adhesive.
As described above, an organic EL element of Comparative Example 2 was obtained.

[比較例3]
比較例2において、発光層に含有されるホスト材料を、CBPから下記に示す4,4'−N,N'−ジカルバゾール−ビフェニル(mCP)と変更した以外は比較例2と同様にして比較例3の有機EL素子を作成した。
[Comparative Example 3]
In Comparative Example 2, comparison was made in the same manner as in Comparative Example 2 except that the host material contained in the light emitting layer was changed from CBP to 4,4′-N, N′-dicarbazole-biphenyl (mCP) shown below. The organic EL element of Example 3 was created.

Figure 0004869759
Figure 0004869759

[実施例1]
比較例1と同様に、ガラス基板上に、ITO透明導電膜を堆積したものをパターニング・洗浄し、真空蒸着装置内に設置した。その後、蒸着装置内を排気した。
[Example 1]
Similar to Comparative Example 1, the ITO transparent conductive film deposited on the glass substrate was patterned and washed, and placed in a vacuum evaporation apparatus. Thereafter, the inside of the vapor deposition apparatus was evacuated.

続いて、上記蒸着装置内にてCuPcを加熱し、蒸着速度0.1nm/秒で蒸着を行い、膜厚10nmの第1正孔輸送層を形成した。
次いで、上記により形成された第1正孔輸送層の上に、α−NPDを加熱して、蒸着速度0.2nm/秒で蒸着を行い、膜厚30nmの第2正孔輸送層を形成した。
引続き、上記により形成された第2正孔輸送層の上に、下記に示す4,4',4''−トリス(N−カルバゾリル)−トリフェニルアミン(TCTA)を加熱して、蒸着速度0.2nm/秒で蒸着を行い、膜厚10nmの第3正孔輸送層を形成した。
Subsequently, CuPc was heated in the vapor deposition apparatus, and vapor deposition was performed at a vapor deposition rate of 0.1 nm / second to form a first hole transport layer having a thickness of 10 nm.
Next, α-NPD was heated on the first hole transport layer formed as described above, and vapor deposition was performed at a deposition rate of 0.2 nm / second to form a second hole transport layer having a thickness of 30 nm. .
Subsequently, 4,4 ′, 4 ″ -tris (N-carbazolyl) -triphenylamine (TCTA) shown below is heated on the second hole transport layer formed as described above, and the deposition rate is 0. Vapor deposition was performed at 2 nm / second to form a third hole transport layer having a thickness of 10 nm.

Figure 0004869759
Figure 0004869759

引続き、上記により形成された第3正孔輸送層の上に、発光層に含有されるホスト材料のmCPと、青色発光材料のFirpicと、緑色発光材料のIr(ppy)3と、赤色発光材料のドーパントAとを加熱し、同時蒸着によって発光層の成膜を行った。mCPの蒸着速度は0.2nm/秒に制御し、Firpicが1.5質量%、Ir(ppy)3が0.5質量%、ドーパントAが0.5%含有された膜厚30nmの発光層を正孔輸送層の上に積層した。 Subsequently, on the third hole transport layer formed as described above, the host material mCP, the blue light emitting material Irpic, the green light emitting material Ir (ppy) 3, and the red light emitting material contained in the light emitting layer. The dopant A was heated and a light emitting layer was formed by co-evaporation. The deposition rate of mCP is controlled to 0.2 nm / second, and a 30 nm thick light emitting layer containing 1.5% by mass of Ferpic, 0.5% by mass of Ir (ppy) 3 and 0.5% of dopant A Was laminated on the hole transport layer.

更に、下記に示すETM−1を、蒸着速度0.1nm/秒で蒸着を行い、膜厚10nmの第1電子輸送層を発光層の上に積層した。   Further, ETM-1 shown below was deposited at a deposition rate of 0.1 nm / second, and a first electron transport layer having a thickness of 10 nm was laminated on the light emitting layer.

Figure 0004869759
Figure 0004869759

更に続いて、BAlqを、蒸着速度0.1nm/秒で蒸着を行い、膜厚10nmの第2電子輸送層を第1電子輸送層の上に積層した。   Subsequently, BAlq was deposited at a deposition rate of 0.1 nm / second, and a second electron transport layer having a thickness of 10 nm was stacked on the first electron transport layer.

更に続いて、第2電子輸送層の上に、Alqを蒸着速度0.2nm/秒で蒸着し、25nmの膜厚の第3電子輸送層を形成した。   Subsequently, Alq was deposited on the second electron transport layer at a deposition rate of 0.2 nm / second to form a third electron transport layer having a thickness of 25 nm.

その後、フッ化リチウム(LiF)を蒸着速度0.1nm/秒、1nmの膜厚で電子輸送層の上に成膜して電子注入層を形成し、更に、アルミニウムを蒸着速度0.5nm/秒、膜厚150nmの陰極を形成した。
尚、蒸着時は、所望の膜厚が得られるよう、水晶発振式成膜コントローラを用いてモニターした。
Thereafter, lithium fluoride (LiF) is deposited on the electron transport layer at a deposition rate of 0.1 nm / second and a thickness of 1 nm to form an electron injection layer, and further, aluminum is deposited at a deposition rate of 0.5 nm / second. A cathode having a thickness of 150 nm was formed.
During vapor deposition, monitoring was performed using a crystal oscillation type film formation controller so as to obtain a desired film thickness.

次に、陽極及び陰極より、それぞれアルミニウムのリード線を結線した。
ここで得られた積層体を、空気に晒すことなく、窒素ガスで置換したグローブボックス内に入れた。内側に凹部を設けたステンレス製の封止カバーに、前記グローブボックス内で水分吸収剤(サエスゲッターズ製)を貼り付けた。この封止カバーと、接着剤として紫外線硬化型接着剤(XNR5516HV、長瀬チバ製)を用いて封止した。
以上のようにして、実施例1の有機EL素子を得た。
Next, aluminum lead wires were respectively connected from the anode and the cathode.
The laminated body obtained here was put in a glove box substituted with nitrogen gas without being exposed to air. A moisture absorbent (manufactured by SAES Getters) was affixed to a stainless steel sealing cover provided with a recess on the inside in the glove box. This sealing cover was sealed using an ultraviolet curable adhesive (XNR5516HV, manufactured by Chiba Nagase) as an adhesive.
As described above, an organic EL element of Example 1 was obtained.

[素材物性の評価]
(1)イオン化ポテンシャル
ガラス基板上に、有機化合物層に用いた各化合物を、50nmの厚みになるように蒸着した。この膜を常温常圧下、理研計器(株)製の紫外線光電子分析装置AC−1によりイオン化ポテンシャルを測定した。なお、ETM−1のイオン化ポテンシャルについては、金基板上に50nm厚みに蒸着した膜を用いて、PHI社製のMUL−010HIにより測定した。
[Evaluation of material properties]
(1) Ionization potential Each compound used for the organic compound layer was deposited on a glass substrate so as to have a thickness of 50 nm. The ionization potential of this membrane was measured with an ultraviolet photoelectron analyzer AC-1 manufactured by Riken Keiki Co., Ltd. under normal temperature and normal pressure. In addition, about the ionization potential of ETM-1, it measured by MUL-010HI made from PHI using the film | membrane vapor-deposited on the gold substrate in thickness of 50 nm.

(2)電子親和力
イオン化ポテンシャル測定に用いた膜の紫外可視吸収スペクトルを、島津製作所製のUV3100型分光光度計で測定し、吸収スペクトルの長波長端のエネルギーから励起エネルギーを求めた。励起エネルギーと前記イオン化ポテンシャルの値から電子親和力を算出した。
これらの結果を下記表1に示す。
(2) Electron affinity The ultraviolet-visible absorption spectrum of the film used for measuring the ionization potential was measured with a UV3100 spectrophotometer manufactured by Shimadzu Corporation, and the excitation energy was determined from the energy at the long wavelength end of the absorption spectrum. The electron affinity was calculated from the excitation energy and the value of the ionization potential.
These results are shown in Table 1 below.

Figure 0004869759
Figure 0004869759

これらの測定値を用いて、比較例1〜3、実施例1における各層のイオン化ポテンシャルをまとめると、以下の表のようになる。   Using these measured values, the ionization potential of each layer in Comparative Examples 1 to 3 and Example 1 is summarized as shown in the following table.

Figure 0004869759
Figure 0004869759

Figure 0004869759
Figure 0004869759

Figure 0004869759
Figure 0004869759

Figure 0004869759
Figure 0004869759

[有機電界発光素子の評価]
得られた比較例1〜3、実施例1の各々の素子に対して、ソ−スメジャ−ユニット2400型(ケースレー製)を用いて、直流電圧を有機EL素子に印加し、発光させた。1000cd/m2時の外部量子効率(η1000)(%)を求め、また、SR−3(トプコン製)を用いて発光スペクトルを測定し、CIE1964色度座標(x,y)を求めた。CIE色度座標の値は、理想的な白色光源(0.33,0.33)に近いほど、良好であることを示す。これらの値を表6に示す。
[Evaluation of organic electroluminescence device]
A direct voltage was applied to the organic EL element to emit light using the source measure unit 2400 type (manufactured by Keithley) for each of the obtained Comparative Examples 1 to 3 and Example 1. The external quantum efficiency (η 1000 ) (%) at 1000 cd / m 2 was determined, the emission spectrum was measured using SR-3 (manufactured by Topcon), and the CIE 1964 chromaticity coordinates (x, y) were determined. The closer the CIE chromaticity coordinate value is to an ideal white light source (0.33, 0.33), the better. These values are shown in Table 6.

Figure 0004869759
Figure 0004869759

比較例1と2との比較において、層の数を増やすことで効率は向上することが分かる。また、比較例2と3との比較において、青色材料からホスト材料に励起子が移動するのを防ぐために高いT1のホスト材料(CBP:60kcal/mol;mCP:67kcal/mol)を用いた比較例3において、発光層陰極間、発光層陽極間の層の数が2層では、発光効率及び色度共に不十分であることが分かる。
一方、電子輸送層及び正孔輸送層をそれぞれ三層有する実施例1は、表6から明らかな通り、発光効率及び色度共によい素子が得られることが分かる。
また、実施例1において、TCTAの代わりに下記に示すHTM−1、ETM−1の代わりにETM−2又はETM−3を用いて素子を作成しても、同様の効果が得られる。これらの材料のイオン化ポテンシャル・電子親和力は下記表7のとおりである。
これは、最も陽極に近い有機層から発光層までの範囲において、隣り合う層のイオン化ポテンシャルの差を小さくすることができ、また、最も陰極に近い有機層から発光層までの範囲において、隣り合う層の電子親和力の差を小さくすることができた為と推定できる。
以上のように、本発明の構成の発光素子を作成することによって、効率が高く、色度の良い素子が得られる。
In comparison between Comparative Examples 1 and 2, it can be seen that the efficiency is improved by increasing the number of layers. In comparison between Comparative Examples 2 and 3, a comparison was made using a high T 1 host material (CBP: 60 kcal / mol; mCP: 67 kcal / mol) in order to prevent exciton migration from the blue material to the host material. In Example 3, it can be seen that when the number of layers between the light emitting layer cathodes and between the light emitting layer anodes is two, both the luminous efficiency and chromaticity are insufficient.
On the other hand, in Example 1 having three electron transport layers and three hole transport layers, as can be seen from Table 6, it can be seen that an element having good luminous efficiency and chromaticity is obtained.
In Example 1, the same effect can be obtained even when an element is created using ETM-2 or ETM-3 instead of HTM-1 and ETM-1 shown below instead of TCTA. The ionization potential and electron affinity of these materials are as shown in Table 7 below.
This can reduce the difference in ionization potential between adjacent layers in the range from the organic layer closest to the anode to the light emitting layer, and is adjacent in the range from the organic layer closest to the cathode to the light emitting layer. It can be presumed that the difference in electron affinity of the layers could be reduced.
As described above, by producing a light-emitting element having the structure of the present invention, an element with high efficiency and good chromaticity can be obtained.

Figure 0004869759
Figure 0004869759

Figure 0004869759
Figure 0004869759

Claims (8)

陽極と陰極との間に少なくとも一層の発光層を含む複数の有機化合物層を有する有機電界発光素子であって、前記発光層のうち少なくとも同一層に、少なくとも1種の燐光発光性材料を含む少なくとも2種の発光材料とホスト材料と含み、かつ、前記発光層と陽極との間に三層の有機化合物層を有し、前記発光層のイオン化ポテンシャルをIp1、該三層の有機化合物層のイオン化ポテンシャルを発光層から近い順に、Ip2、Ip3、Iとしたときに、式(1):Ip1>Ip2>Ip3>Iの関係を満たすこと、及び、前記発光層と陰極との間に三層の有機化合物層を有し、前記発光層の電子親和力をEa1、該三層の有機化合物層の電子親和力を発光層から近い順に、Ea2、Ea3、Eとしたときに、式(2):Ea1<Ea2<Ea3<Eの関係を満たし、隣り合う層の間の障壁は0.4eV以下であること、を特徴とする有機電界発光素子。 An organic electroluminescence device having a plurality of organic compound layers including at least one light emitting layer between an anode and a cathode, wherein at least one phosphorescent material is included in at least the same layer of the light emitting layers. wherein the two light-emitting materials and host materials, and ionization of Ip1, the three-layer organic compound layer has an organic compound layer of the three layers, the ionization potential of the light-emitting layer between the light emitting layer and the anode the potential in the order closer to the light-emitting layer, when the Ip2, Ip3, I p 4, wherein (1): Ip1>Ip2>Ip3> satisfy the relation of I p 4, and, between the light emitting layer and the cathode has an organic compound layer of the three layers, the electron affinity of the light emitting layer Ea1, the electron affinity of the organic compound layer of the three layers in order of proximity to the light-emitting layer, when the Ea2, Ea3, E a 4, wherein (2): a1 <Ea2 <Ea3 <meets the relationship E a 4, the organic electroluminescent device, characterized in, that the barrier is less than 0.4eV between adjacent layers. 前記発光層の陽極側に隣接する有機化合物層のイオン化ポテンシャル(Ip2)が6.2〜5.3eVであることを特徴とする請求項1に記載の有機電界発光素子。The organic electroluminescence device according to claim 1, wherein an ionization potential (Ip2) of an organic compound layer adjacent to the anode side of the light emitting layer is 6.2 to 5.3 eV. 前記発光層の陰極側に隣接する有機化合物層の電子親和力(Ea2)が2.2〜3.1eVであることを特徴とする請求項1又は2に記載の有機電界発光素子。The organic electroluminescence device according to claim 1 or 2, wherein an electron affinity (Ea2) of an organic compound layer adjacent to the cathode side of the light emitting layer is 2.2 to 3.1 eV. 前記陽極と前記陰極との間に電圧を印加したときに、前記同一層に含まれる少なくとも2種の発光材料のうち、少なくとも2種が発光することを特徴とする請求項1〜3のいずれか1項に記載の有機電界発光素子。 4. The light emitting device according to claim 1, wherein when a voltage is applied between the anode and the cathode, at least two of the at least two light emitting materials included in the same layer emit light . 2. The organic electroluminescent element according to item 1 . 前記少なくとも2種の発光材料のうち、少なくとも1種の発光材料が青色の発光材料であることを特徴とする請求項1〜のいずれか1項に記載の有機電界発光素子。 Wherein the at least two light-emitting materials, organic electroluminescent device according to any one of claims 1 to 4, characterized in that at least one luminescent material is a blue luminescent material. 前記青色の発光材料が燐光発光材料であることを特徴とする請求項に記載の有機電界発光素子。 6. The organic electroluminescent element according to claim 5 , wherein the blue light emitting material is a phosphorescent light emitting material. 白色発光であることを特徴とする請求項1〜のいずれか1項に記載の有機電界発光素子。 It is white light emission, The organic electroluminescent element of any one of Claims 1-6 characterized by the above-mentioned. 前記同一層に含まれる前記少なくとも2種の発光材料の濃度が各々2質量%以下であり、かつ、前記同一層に含まれる前記少なくとも2種の発光材料の濃度の合計が3質量%以下であることを特徴とする請求項1〜のいずれか1項に記載の有機電界発光素子。 The concentration of the at least two light emitting materials included in the same layer is 2% by mass or less, and the total concentration of the at least two light emitting materials included in the same layer is 3% by mass or less. The organic electroluminescent element according to any one of claims 1 to 7 , wherein
JP2006086595A 2005-03-30 2006-03-27 Organic electroluminescence device Active JP4869759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086595A JP4869759B2 (en) 2005-03-30 2006-03-27 Organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005098747 2005-03-30
JP2005098747 2005-03-30
JP2006086595A JP4869759B2 (en) 2005-03-30 2006-03-27 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2006310815A JP2006310815A (en) 2006-11-09
JP4869759B2 true JP4869759B2 (en) 2012-02-08

Family

ID=37477275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086595A Active JP4869759B2 (en) 2005-03-30 2006-03-27 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4869759B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200925A1 (en) * 2006-06-13 2009-08-13 Konica Minolta Holdings, Inc. Organic electroluminescent element, lighting device and display device
US8304764B2 (en) 2007-10-29 2012-11-06 Konica Minolta Holdings, Inc. Organic electroluminescent element
JP2010161357A (en) * 2008-12-10 2010-07-22 Fujifilm Corp Organic electric field light-emitting element and light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476855B2 (en) * 1992-01-07 2003-12-10 株式会社東芝 Organic EL device
JP3237905B2 (en) * 1992-07-17 2001-12-10 株式会社東芝 Organic EL device
JP4048521B2 (en) * 2000-05-02 2008-02-20 富士フイルム株式会社 Light emitting element
JP2002324676A (en) * 2001-04-26 2002-11-08 Konica Corp Organic electroluminescent element, light emitting source, lighting device, display device and light-emission method
JP2004281087A (en) * 2003-03-12 2004-10-07 Nippon Hoso Kyokai <Nhk> Organic el device and organic el display

Also Published As

Publication number Publication date
JP2006310815A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5205584B2 (en) Organic electroluminescence device and display device
JP3970253B2 (en) Organic electroluminescence device
JP4879904B2 (en) Blue light emitting organic electroluminescence device
JP4365199B2 (en) Organic electroluminescence device
JP5606921B2 (en) White OLED with blue light emitting layer
JP5497284B2 (en) White organic electroluminescence device
US9412964B2 (en) Organic electroluminescent element
JP5133974B2 (en) Efficient white light OLED display with filter
JP5324513B2 (en) Organic electroluminescence device
JP2006351638A (en) Light emitting device
JP4850521B2 (en) Organic electroluminescence device
WO2010084690A1 (en) Organic electroluminescent element
US7560729B2 (en) Organic electroluminescent device for improved luminous efficiency and chromaticity
JP2006269232A (en) Organic electroluminescent element
JPWO2005076668A1 (en) Organic electroluminescence device
JPWO2007004563A1 (en) Organic electroluminescence device
JP6034604B2 (en) Organic electroluminescence device
JP5670223B2 (en) Organic electroluminescence device
JP5649327B2 (en) Organic electroluminescence device
JP2006054422A (en) Organic electroluminescent element and display device
JP4869759B2 (en) Organic electroluminescence device
JP2006310748A (en) Organic electroluminescence element
JP2006302864A (en) Organic electroluminescent element
JP2011192829A (en) Organic electroluminescent element
JP2011228238A (en) White color organic electroluminescence element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4869759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250