JP4869462B2 - Artificial leather base - Google Patents

Artificial leather base Download PDF

Info

Publication number
JP4869462B2
JP4869462B2 JP31208799A JP31208799A JP4869462B2 JP 4869462 B2 JP4869462 B2 JP 4869462B2 JP 31208799 A JP31208799 A JP 31208799A JP 31208799 A JP31208799 A JP 31208799A JP 4869462 B2 JP4869462 B2 JP 4869462B2
Authority
JP
Japan
Prior art keywords
core
ultrafine
fiber
sheath
artificial leather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31208799A
Other languages
Japanese (ja)
Other versions
JP2001131877A (en
Inventor
豪 山崎
善博 丹波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP31208799A priority Critical patent/JP4869462B2/en
Publication of JP2001131877A publication Critical patent/JP2001131877A/en
Application granted granted Critical
Publication of JP4869462B2 publication Critical patent/JP4869462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、外観が極めて良好でかつ機械的物性に優れ、軽量で柔軟なスエード調人工皮革およびその製造方法に関する。
【0002】
【従来の技術】
人工皮革の各分野で、機械的諸物性に優れ、軽量で柔軟な製品が求められている。従来から、海成分が溶出可能な海島構造の多成分繊維、例えば海成分がポリエチレンからなる海島構造の繊維を用いて不織布とし、それを用いて人工皮革とすることは公知である。かかる海島構造繊維は最終製品となるまでのいずれかの工程で海成分を除去して繊維を極細化し極細繊維を得る。このような製品は極細繊維特有の風合いと良好なスエード外観を有し、市場での一定の評価を得ている。しかし極細繊維化時の厚み減少による比重の上昇は避け難く、軽量化性能を兼ね備えたものではなかった。
また異種の繊維を目的にあわせて混合し、絡合不織布とすることは従来から行われている方法である。2種類以上のウェッブ、シート類を積層して絡合させた交絡体およびこれらの交絡体に高分子弾性体溶液を含浸、凝固する方法について特公昭48−11925号公報に記載されている。これらは皮革ライクで機械的物性に優れているものもあるが、良好なスエード外観及び軽量化性能を兼ね備えたものではなかった。
また、衣料製品などに軽量、保温性等の観点からポリエステル、ナイロンの中空繊維が一般的に用いられている。合成皮革、人工皮革の分野においては、特開昭47−28104号公報および特開昭50−5502号公報に、中空繊維を用いた軽量で通気性の良好な合成皮革の記載がある。また微小中空粒子を混合して軽量化と保温性の向上をはかった合成皮革について特開平1−292188号公報に記載されている。このように、繊維を含めた中空構造を持つ物質を合成皮革、人工皮革に用いる技術は公知であるが、これらは軽量化性能はもっが、スエードとしての外観が不十分なものであり、また軽量化性能と必要な機械的性能をもつものであっても近年強く要求される柔軟性および表面の外観に関しては不十分であり、これらすべてを併せもつものではなかった。
【0003】
【発明が解決しようとする課題】
人工皮革の各分野では一般的に0.5〜1.3mmの厚みの基体が用いられている。この厚みの範囲のなかでより軽く、機械的物性に優れた、柔軟な製品が求められており、特にスエード調人工皮革において機械的物性に優れていることと、軽量で柔軟なスエード感に優れていることとは裏腹の関係にあり、これらすべてを満足する人工皮革基体は未だ開発されていない。
このように人工皮革の各分野では、高級感の向上が求められ、その中でも、外観の高級感と軽量性能はもっとも強く望まれているものである。その一方で、用途に応じた機械的物性、とくにスポーツ用の人工皮革では、靴底ゴム部と人工皮革製品との剥離強力、運動時に必要な引裂強力は最も重視されている特性であって、この機械的物性と製品としての軽くて、優れた外観を併せもつことが極めて重要となる。
【0004】
その課題解決の方策として、抽出等で極細化可能な多成分繊維からなる、例えば海島構造繊維シートから抽出等で除去する成分の比率を増加させる方法が考えられるが、製造工程でのテンションやプレス処理によって厚みが低下し、軽量化出来ず、機械的物性も不足することとなる。また、人工皮革製品の繊維量自体を減ずる方法では軽量化は出来るが、諸物性が不足する問題点がある。
また、中空繊維のステープルの嵩高さを利用して人工皮革にこれらの中空繊維を用いて基体とする方法は、確かには軽量化は達成出来るが、繊維中に中空を形成させるため、必然的に繊維デシテックスが大きくなり表面の平滑性に欠け、特にスエード用途としての外観が確保出来ず、また風合いも柔軟ではない。
本発明の目的は、このような問題を解決し、外観が極めて良好でかつ機械的物性に優れ、軽量で柔軟なスエード調人工皮革基体を提供することにある。
【0005】
【課題を解決するための手段】
前述の目的を達成するために本発明者らは鋭意研究を行い、その結果、0.1デシテックス以下の極細繊維集束体の集束体断面内に中空部を有し、該繊維を三次元絡合されている不織布を用いることで、外観が極めて良好でかつ軽量で柔軟なスエード調人工皮革にすることができることを見いだした。 すなわち本発明は、極細繊維集束体が三次元絡合されている不織布とその内部に含浸された高分子弾性体からなる人工皮革基体において、不織布を構成する極細繊維集束体が、0.1デシテックス以下の極細繊維からなる集束体であって、かつ該極細繊維集束体は芯鞘型の断面構造における鞘部分には極細繊維が存在し、芯部分には実質的に極細繊維が存在しない中空部を有するものであることを特徴とする人工皮革基体であり、好ましくは、該極細繊維集束体の断面形状が下記式で表わされる中空率が6〜20%の範囲である上記の人工皮革基体である。
中空率(%)=(A/B)×100
A=極細繊維集束体の内周に囲まれた空間部の面積
B=極細繊維集束体の外周に囲まれた部分の面積
さらに本発明の人工皮革基体は、以下の(1)〜(3)の工程を順次行うことにより製造することができる。
(1)下記工程(3)により、0.1デシテックス以下の極細繊維からなる集束体は芯鞘型の断面構造における鞘部分には極細繊維が存在し、芯部分には実質的に極細繊維が存在しない中空部を有することとなる芯鞘型極細繊維発生型繊維から不織布を製造する工程、
(2)上記不織布に高分子弾性体溶液または分散液を含浸し、高分子弾性体を凝固させる工程、
(3)該芯鞘型極細繊維発生型繊維の鞘部分において極細繊維を発生させる処理を行った後に、その極細繊維集束体断面に中空部を発生させる処理を行い、極細繊維集束体断面において芯鞘型の断面構造における鞘部分には極細繊維が存在し、芯部分には実質的に極細繊維が存在しない中空部を有する極細繊維集束体を発生させる工程、
【0006】
【発明の実施の形態】
本発明に用いる、繊度0.1デシテックス以下の極細繊維からなる集束体の断面部に中空部を存在させることが可能となる極細繊維発生型繊維は、相溶性を有していない3種以上の熱可塑性ポリマーを複合紡糸することにより得られる。その代表的な繊維の形態はいわゆる芯鞘型繊維と呼ばれるものである。
繊維の鞘部分は2成分からなる海島構造を有し、芯部分は繊維断面の中心部分にあっても、中心部からずれていてもよく、また芯部分の形状は、繊維断面内である程度の面積を形成していれば不定形であっても、円、楕円、四角、三角等の幾何学的形態を有するものでもよい。
【0007】
また、鞘部分は、相溶性を有していない2種以上の熱可塑性ポリマーからなり、これらポリマーが海島構造を形成している。その島成分を構成するポリマーとしては、溶融紡糸可能で、十分に強度等の繊維物性を発揮するポリマーであって、紡糸条件下で海成分ポリマーより溶融粘度が大きく、かつ表面張力が大きいポリマーが好ましく、例えば6−ナイロン、66−ナイロン等のポリアミド系ポリマー、およびこれを主体とする共重合体、ポリエチレンテレフタート、ポリブチレンテレフタレート等のポリエステル系ポリマー、およびこれを主体とする共重合体等が好適に用いられる。
海成分ポリマーとしては、島成分ポリマーよりも溶融粘度が低く、島成分との溶解性、分解性を異にし、海成分の溶解除去又は分解除去に用いられる溶剤または分解剤等への溶解性が大きく(島成分ポリマーは海成分ポリマーの除去時に実質的に溶解又は分解除去されない)、島成分との相溶性の小さい成分が好ましい。例えばポリエチレン、変性ポリエチレン、ポリプロピレン、ポリスチレン、変性ポリエステルなどが好適に用いられる。
【0008】
本発明における繊度0.1デシテックス以下の極細繊維を発生させる鞘部分の海島繊維の好適な海島体積比率は海/島=30/70〜70/30の範囲である。海成分が30%未満では溶剤または分解剤などで、溶解または分解除去する成分が少なすぎて柔軟効果が十分発揮できず、海成分が70%を超える比率では、溶解または分解除去後の島成分からなる繊維の絶対量が少なくなり皮革様シートとしての充分な物性が確保できず、また溶解または分解除去する成分が多いことは生産性の観点からも不適切である。
【0009】
本発明における鞘部分を形成する海島構造の海成分を溶解除去した後の好適な島成分の平均繊維太さは0.1デシテックス以下、好ましくは0.05デシテックス以下である。一般的に太デシテックスの繊維絡合体からなる不織布は繊維が抜けやすい傾向にあり、本発明においても島の繊維太さが0.1デシテックスを超える場合には、海成分除去後の極細繊維のぬけ現象が顕著になり、基体の柔軟性が損なわれゴワゴワとした触感となり、また、スエード調としての表面の美観に欠けたものになる。本発明でいう極細繊維の太さ(繊度)は、極細繊維集束体の繊維軸方向に直角な断面を顕微鏡により写真にとり、極細繊維集束体のトータルデシテックスを顕微鏡写真から求めた該集束体構成極細繊維の本数で割ることにより求められる。
【0010】
芯部分を形成するポリマーとしては、鞘部分を形成する海島構造の海成分の溶解除去又は分解除去に用いられる溶剤または分解剤と溶解性又は分解性を異にし(海成分除去時には、芯成分ポリマーは実質的に溶解又は分解されない)、なおかつ、鞘部分を形成する海島構造の島成分とも溶解性又は分解性を異にする(芯成分除去時には、島成分ポリマーは実質的に溶解又は分解されない)ポリマーであって、たとえば、希アルカリで溶出可能な、または水可溶性のポリエステル共重合体、水溶性かつ熱可塑性の変性ポリビニルアルコールなどが好適に用いられる。
【0011】
本発明の極細繊維発生型繊維から極細繊維集束体断面に中空部を有する極細繊維集束体を発生させる際に、鞘部分を形成する海島構造部分の海成分のみをまず溶解または分解除去した後、芯成分を溶解または分解除去する。
例えば、不織布に高分子弾性体溶液または分散液を含浸し、高分子弾性体を凝固させた海島構造繊維シートから海成分を抽出等で除去する際、製造工程でのテンションやプレス処理によって厚みが低下し、軽量化が出来ない。すなわち、極細繊維発生型繊維の海成分除去時に、海成分の除去による繊維の痩の発生と、不織布に含浸された高分子弾性体が膨潤軟化した状態で、テンションやプレス処理工程を通るため厚みが低下するためである。
【0012】
本発明は、本発明の極細繊維発生型繊維からの鞘部分の海島構造繊維部の海成分を抽出等で除去し極細繊維を発生させる際に、その溶剤、薬剤等の影響を受けることなく芯成分部分が耐え、製造工程のテンションやプレスによる厚み低下を軽減、緩和する働きをする点にある。その後、鞘部分を形成する海島構造の海成分の溶解除去又は分解除去に用いられる溶剤または分解剤と異にし、なおかつ鞘部分を形成する海島構造の島成分を実質的に溶解又は分解させることがなく、芯成分を溶解または分解させる溶剤または分解剤で処理することにより芯成分を除去することにより、鞘部分の島成分を残し、繊度0.1デシテックス以下の極細繊維集束体断面部に中空部が存在する極細繊維集束体を発生させることができる。
【0013】
この芯成分の除去工程は、鞘部分の海成分の除去後、基体中に残存する使用溶剤、分解剤を除去する時の湯洗または、染色前の湯通し及び染色後の洗い工程で除去できるのが好ましい。例えば、エチレン単位を5〜10モル%含有し、重合度が200〜500、鹸化度が90〜99モル%である水溶性かつ熱可塑性の変性ポリビニルアルコールは、50〜80℃の熱水に容易に溶解するので特に好ましい。
【0014】
本発明に用いる繊度0.1デシテックス以下の極細繊維集束体断面部に中空部を存在させる極細繊維発生型繊維の芯鞘型繊維の断面における中空部分を発生させる芯部の面積率は7〜30%の範囲が好ましい。芯部の面積率が7%未満では軽量化の効果が不十分であり、30%を超える場合は芯部除去工程のテンション、プレス処理工程によって繊維断面の中空部分の潰れが顕著になり、基体の比重が上がり軽量な基体が得られにくい。一般に芯部分の太さとしては、0.3〜1.3デシテックスの範囲が芯成分除去後の中空部を有する極細繊維収束体の形状安定性の点で好ましい。
また、中空率は極細繊維を発生させる鞘部分の海島繊維の海島体積比率、極細繊維の太さ、極細繊維を構成するポリマーによって、芯部の除去時の形態維持性が異なるので、適宜組み合わせをするのが好ましい。一般的に鞘部分の島比率が少なく、またデニールが細いと中空部分の潰れが顕著になる傾向にある。
【0015】
このように、実際の極細繊維集束体断面部に発性する中空率は、芯鞘繊維の芯部の面積率とは異なるが、一般に6〜20%なるように調節するのが好ましい。極細繊維集束体断面部に発性する中空率が6%未満では、軽量化の効果が不十分であり、20%を超える場合は、基体の表面の毛羽感が粗くなり、スエードとしでの外観および機械的物性が劣ったものとなる。
【0016】
本発明の芯鞘型多成分繊維の延伸処理においては,延伸時の繊維膠着防止の点で鞘部の海成分ポリマーの軟化点以下の温度にて延伸することが好ましく、より好ましくは海成分ポリマーの軟化温度より5〜10℃低い温度である。
ついで、この海島型多成分繊維は、捲縮、乾燥、カットなどの処理工程を経て繊度2〜10デシテックスの繊維とする。
【0017】
芯鞘型多成分繊維を、カードで開繊し、ウェバーを通してランダムウェブまたはクロスラップウエブを形成し、得られた繊維ウェブを所望の重さ、厚さに積層する。次いで、ニードルパンチ、高速流体流処理などの公知の方法で絡合処理を行って不織布とする。製品の一体感や表面の平滑性を向上させる目的で複数のカード、ラッパーを用いて、不織布とすることはさしつかえない。なお本発明において、不織布を構成する繊維の一部として、前記芯鞘型多成分繊維以外の繊維を本発明の目的を損なわない範囲内でブレンドすることもできる。
【0018】
本発明におけるニードルパンチのフェルト針は公知のものが用いられるが、ウェッブの厚さ方向への縫いつけを行うには繊維切れの起きにくい1バーブ針が好適に用いられる。不織布の表面の比重を上げるためには3バーブ、6バーブ、9バーブ等の多バーブの針が使用できる。目的によってこれらの針を組み合わせて良い。
【0019】
ニードルパンチ工程におけるパンチ数は使用する針の形状や、ウェッブの厚みにより異なるが、200〜2500パンチ/cm2の範囲で設定される。一般的に極細繊維発生型繊維のニードルパンチにおいては、ニードルパンチ条件が強すぎる場合には極細繊維発生型繊維の切断や繊維割れがおこり、絡合が向上せず、またニードルパンチ条件が弱すぎる場合には厚み方向に並ぶ繊維数の不足をまねき絡合が向上しない。
【0020】
ニードルパンチされた不織布は次に表面を平滑化し、厚みを規制するため、厚さ方向にプレスするのが好ましい。プレスの方法は、複数の加熱ロール間を通す方法、予熱した不織布を冷却ロール間に通す方法等従来公知の方法が利用でき、繊維中の海成分すなわちポリエチレンなどの低溶融粘度成分の溶融・圧着により、より不織布の平滑化を達成することが出来る。なおこの工程の際に、テンションやプレス等による工程の形態変化を抑制する目的でポリビニルアルコールやデンプン、樹脂エマルジョン等の接着剤を添加することは差し支えない。
【0021】
面を平滑化した不織布は次に高分子弾性体溶液または分散液を含浸し、スポンジ状に凝固させる。高分子弾性体としては従来から皮革様シートの製造に用いられている樹脂が好適に用いられる。すなわち、ポリウレタン系樹脂、ポリ塩化ビニル樹脂、ポリアクリル酸系樹脂、ポリアミノ酸系樹脂、シリコン系樹脂、およびこれらの共重合、これらの混合物が好適である。これらの樹脂は水系エマルジョンまたは有機溶剤溶液として前記不織布に含浸した後、湿式凝固等を行うことによりスポンジ状に凝固する。なお本発明において、繊維の鞘部分の海成分を除去するに先立って、高分子弾性体を含浸凝固させるのが中空部を有する極細繊維収束体の形状安定化の点で好ましい。
【0022】
高分子弾性体溶液または分散液を含浸凝固した繊維質基体に、次に、芯成分ポリマーと鞘部分の島成分ポリマーと含浸した高分子弾性体の非溶剤であり、鞘部分の海成分ポリマーの溶剤または分解剤である液により該海成分を溶解または分解除去することにより芯成分繊維の周辺に0.1デシテックス以下の極細繊維を発生させ、次に極細繊維および高分子弾性体の非溶剤であり、芯成分繊維の溶剤または分解剤である液により芯成分ポリマーを溶解または分解除去することにより0.1デシテックス以下の極細芯繊維の集束体断面内に中空部を有する繊維束と高分子弾性体からなる人工皮革基体を得る。
【0023】
次に、スエード調人工皮革を得る方法としては,この人工皮革基体を必要により厚さ方向に複数枚にスライスしたのち、その表面の少なくとも一面を起毛処理して極細繊維を主体とした繊維立毛面を形成させる。繊維立毛面を形成させる方法は、サンドペーパーなどによるバフィングなどによる公知の方法を用いる。次に染色したスエード調繊維質基体に対して、もみ、柔軟化処理、ブラッシングなどの仕上げ処理を行うことにより、優美な外観であり、かつ毛羽脱落のないスエード調人工皮革の製品が得られる。
本発明により、密度が0.3g/cm3以下、剥離強力が8kg/2.5cm以上、厚み1mmあたりの引裂強力が6kg以上という機械物性に優れかつ軽量なスエード調人工皮革が得られる。
【0024】
人工皮革基体の厚みは用途に応じて任意に選択でき、特に限定されるものではないが、好ましくは0.3mm〜3mm、特に好ましくは0.7mm〜1.8mmの範囲である。また極細繊維と高分子弾性体との量比としては、重量比で35/65〜65/35が好ましい。この範囲を外れると繊維と弾性重合体とのバランスが悪くなり、製品としての充実感や柔軟性が得られなくなる。
【0025】
本発明における人工皮革基体の密度としては0.3g/cm3以下が好ましい。各分野において重い、軽いは使用する人の相対的、感覚的な要素であるが、一般的な人工皮革の密度は0.35〜0.5g/cm3であり、密度0.3g/cm3以下の基体というのは、明らかに従来の人工皮革基体の感覚から軽く感じる範囲であって、本発明によれば人工皮革基体の密度を確実に0.3g/cm3以下にすることが出来る。
【0026】
また,本発明の人工皮革基体は銀付調人工皮革の分野にも好適に利用できる。すなわち,この人工皮革基体の表面に皮革様フィルムの接着や樹脂エマルジョン,樹脂溶液,溶融樹脂のコート,グラビア,エンボス,これらの組合わせ等の仕上げを行うことにより柔軟で充実感のある銀付調人工皮革が得られる。
【0027】
【実施例】
次に本発明の実施を具体的に実施例で説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の部及び%はことわりのない限り重量に関するものである。以下の実施例および比較例において中空率、比重の測定、機械的物性、その他の評価は以下の方法に従った。
【0028】
[人工皮革基体の引裂強力測定方法]
縦10cm×横4cmの試験片を切り取り、短辺の中央に辺と直角に5cmの切れ目をいれ、各舌片をチャックに挟み引張試験機で100mm/分の速度で引裂く。引裂最大荷重を求め、あらかじめ求めた試験片の厚みで除し試験片3個の平均値で表す。
【0029】
[密度の測定]
人工皮革基体の単位面積あたりの重量(g/cm2)を厚み(cm)で除した数字を密度(g/cm3)とする。なお厚みは、JISL1096に準じて測定される。
【0030】
[芯鞘複合繊維の芯鞘比率]
複合繊維の芯鞘の面積比率は電子顕微鏡にて糸断面を500倍の拡大写真を撮影し、平均繊維直径および芯部の平均直径から比率を算出する。
[極細繊維収束体の断面内の中空率]
極細繊維収束体の収束体断面内の中空率は電子顕微鏡にて製品の断面を500倍の拡大写真を撮影し、下記式にて中空率を算出する。
中空率(%)=(A/B)×100
A=極細繊維集束体の内周に囲まれた空間部の面積
B=極細繊維集束体の外周に囲まれた部分の面積
【0031】
実施例1
2基のエクストルーダ溶融系で溶融したポリマー流を芯鞘型複合紡糸紡糸装置を用いて、芯成分がエチレン単位を7モル%含有し、重合度が300、鹸化度が97モル%である水溶性かつ熱可塑性の変性ポリビニルアルコールを、また鞘部分は、島成分が6−ナイロンであって、海成分が高流動性低密度ポリエチレン(海成分/島成分比率=40/60)からなる海島型繊維からなる芯鞘型複合繊維を紡糸した。芯鞘複合繊維の芯鞘成分の比率は芯/鞘=25/75であった。
得られた糸を延伸、クリンプ、カットし、3.5デシテックス、カット長さ51mmのステープル繊維を得た。
このステープル繊維をカードに通し、クロスラッパー方式によりウエッブとし、積層した。次に針に1箇所のバーブのついたフェルト針を用いて980P/cm2の針刺し密度でニードルパンチして目付450g/m2の不織布を得た。この不織布を加熱乾燥、プレスして表面を平滑にした後に13%のポリウレタンのDMF溶液を含浸し、DMF水溶液で凝固し、水洗、乾燥後、熱トルエンで鞘部分の海成分であるポリエチレンを抽出除去し、6−ナイロンの極細繊維が芯成分の変性ポリビニールアルコールを覆い包んだ状態の繊維と含浸したポリウレタンからなる基体を得た。その後得られた基体を80℃の温水で30分間ウインス染色機で処理し中空部を有する6ナイロンの極細繊維収束体とポリウレタンからなる厚み1.2mm、目付310g/m2の人工皮革用基体を得た。
【0032】
この繊維質基体の極細繊維束の断面を電子顕微鏡で観察すると、中空率が17%で、極細繊維の平均繊度は0.007デシテックスであった。この基体の一面をバフィングして厚さ1.0mmに厚み合わせを行なった後、他の面をエメリーバフ機で処理して極細繊維立毛面を形成し、さらにIrgalan Brown 2BLN(Chiba Geigy)を用いて、4%owfの濃度で染色した。仕上げをして得られたスエード調人工皮革は、引き裂き強力9kg/2.5cmあり、比重は0.26で非常に強く、外観、風合い,タッチ感共に良好で毛羽脱落のほとんどない軽いものであった。
【0033】
比較例1
実施例1の繊維を、実施例1の鞘成分のみからなる混合紡糸繊維に置き換え、かつ芯成分を除去する工程を省く以外は実施例1と同様の操作を行い、スエード調人工皮革を得た。このスエード調人工皮革は外観、風合い、タッチ感共に良好で毛羽脱落のほとんどないものであったが、極細繊維束の断面を電子顕微鏡で観察すると、中空部が存在せず、引裂強力9kg/2.5cmあるが、密度は0.39g/cm3であり、軽量性に欠けるものであった。
【0034】
比較例2
2基のエクストルーダ溶融系で溶融したポリマー流を芯鞘型複合紡糸紡糸装置を用いて、芯成分が、高流動性低密度ポリエチレン、また鞘部分は、島成分が6−ナイロンであって、海成分が高流動性低密度ポリエチレン(海成分/島成分比率=40/60)からなる海島型繊維からなる芯鞘型複合繊維を紡糸した。芯鞘複合繊維の芯鞘成分の比率は実施例1と同様に芯/鞘=25/75とした。
実施例1と同様の操作で不織布化後、加熱乾燥、プレスして表面を平滑にした後に13%のポリウレタンのDMF溶液を含浸し、DMF水溶液で凝固し、水洗後、熱トルエンで芯部分および鞘部分の海成分であるポリエチレンを抽出除去した。得られた基体の極細繊維束の断面を電子顕微鏡で観察すると、極細繊維束中に中空部分が存在せず、引き裂き強力は8kg/2.5cmであり、また密度が0.36g/cm3で軽量性に欠けるものであった。
【0035】
【発明の効果】
本発明によれば、スポーツシューズ等の用途に耐えうる機械的物性を持ち、軽量で柔軟なスエード調人工皮革基体が得られるものである。また本発明により得られた人工皮革基体の表面層に皮革様フィルムの接着や樹脂エマルジョン、樹脂溶液、溶融樹脂のコート、グラビア、エンボス、等を組み合わせて仕上げを行い銀付調人工皮革に仕上げることが出来る。
[0001]
[Industrial application fields]
The present invention relates to a suede-like artificial leather having a very good appearance and excellent mechanical properties, lightweight and flexible, and a method for producing the same.
[0002]
[Prior art]
In various fields of artificial leather, lightweight, flexible products with excellent mechanical properties are demanded. Conventionally, it has been known that a non-woven fabric is formed using a multi-component fiber having a sea-island structure from which sea components can be eluted, for example, a fiber having a sea-island structure in which the sea component is made of polyethylene, and is used as an artificial leather. Such a sea-island structure fiber is obtained by removing sea components in any process until it becomes a final product, thereby obtaining a very fine fiber. Such products have a unique texture of fine fibers and a good suede appearance, and have a certain reputation in the market. However, an increase in specific gravity due to a decrease in thickness at the time of forming ultrafine fibers is unavoidable, and it does not have light weight performance.
Further, mixing different types of fibers according to the purpose to form an entangled nonwoven fabric is a conventional method. Japanese Patent Publication No. 48-11925 discloses an entangled body in which two or more kinds of webs and sheets are laminated and entangled, and a method of impregnating and solidifying these entangled bodies with a polymer elastic body solution. Some of them are leather-like and have excellent mechanical properties, but they do not have good suede appearance and light weight performance.
Further, polyester and nylon hollow fibers are generally used for clothing products and the like from the viewpoints of light weight and heat retention. In the field of synthetic leather and artificial leather, Japanese Patent Application Laid-Open Nos. 47-28104 and 50-5502 describe light-weight synthetic leather with good air permeability using hollow fibers. Japanese Patent Application Laid-Open No. 1-292188 discloses a synthetic leather in which minute hollow particles are mixed to reduce weight and improve heat retention. As described above, techniques for using a material having a hollow structure including fibers for synthetic leather and artificial leather are known, but these have light weight performance, but have an insufficient appearance as a suede. Even those having light weight performance and necessary mechanical performance are insufficient in terms of flexibility and surface appearance, which have been strongly demanded in recent years, and not all of them.
[0003]
[Problems to be solved by the invention]
In each field of artificial leather, a substrate having a thickness of 0.5 to 1.3 mm is generally used. Within this range of thickness, there is a demand for flexible products that are lighter and have excellent mechanical properties. Especially in suede-like artificial leather, they have excellent mechanical properties and light and flexible suede. Therefore, an artificial leather substrate that satisfies all of these requirements has not been developed yet.
As described above, in each field of artificial leather, an improvement in luxury is demanded, and among them, a high-quality appearance and lightweight performance are most strongly desired. On the other hand, the mechanical properties according to the application, especially the artificial leather for sports, the peel strength between the shoe sole rubber part and the artificial leather product, the tear strength required during exercise are the most important characteristics, It is extremely important to combine this mechanical property with a light and excellent appearance as a product.
[0004]
As a solution to the problem, a method of increasing the ratio of components that are made of multi-component fibers that can be made ultrafine by extraction or the like, for example, is removed from the sea-island structure fiber sheet by extraction or the like is considered. The thickness is reduced by the treatment, the weight cannot be reduced, and the mechanical properties are insufficient. In addition, although the weight can be reduced by the method of reducing the fiber amount itself of the artificial leather product, there is a problem that various physical properties are insufficient.
In addition, the method of using these hollow fibers as a base material for artificial leather by utilizing the bulkiness of hollow fiber staples can surely achieve a reduction in weight, but it is necessary to form a hollow in the fibers. In addition, the fiber decitex becomes large, and the surface is not smooth. Especially, the appearance as a suede application cannot be secured, and the texture is not flexible.
An object of the present invention is to solve such problems, and to provide a suede-like artificial leather substrate that has a very good appearance and excellent mechanical properties, and is lightweight and flexible.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted intensive research. As a result, the present invention has a hollow portion in the cross section of the fine fiber bundle of 0.1 decitex or less, and the fiber is three-dimensionally entangled. The present inventors have found that a suede-like artificial leather having a very good appearance, light weight and softness can be obtained by using a non-woven fabric. That is, the present invention provides an artificial leather base composed of a nonwoven fabric in which ultrafine fiber bundles are three-dimensionally entangled and a polymer elastic body impregnated therein, and the ultrafine fiber bundles constituting the nonwoven fabric are 0.1 decitex. A converging body composed of the following ultrafine fibers, and the ultrafine fiber converging body is a hollow portion in which a sheath portion in a core-sheath cross-sectional structure has an ultrafine fiber and a core portion has substantially no ultrafine fiber. An artificial leather base characterized in that the cross-sectional shape of the ultrafine fiber focusing body is a hollow ratio in the range of 6 to 20% represented by the following formula: is there.
Hollow ratio (%) = (A / B) × 100
A = area of the space surrounded by the inner periphery of the ultrafine fiber bundle B = area of the portion surrounded by the outer circumference of the ultrafine fiber bundle Further, the artificial leather substrate of the present invention has the following (1) to (3) It can manufacture by performing these processes sequentially.
(1) According to the following step (3), the bundle of ultrafine fibers of 0.1 decitex or less has an ultrafine fiber in the sheath portion in the core-sheath cross-sectional structure, and the ultrafine fiber is substantially in the core portion. process of manufacturing a nonwoven fabric from the core-sheath type microfine fiber-forming fibers to be able to have a hollow portion that does not exist,
(2) impregnating the non-woven fabric with a polymer elastic body solution or dispersion to solidify the polymer elastic body;
(3) In the sheath portion of the core-sheath microfine fiber-forming fibers after the process of generating ultrafine fibers, a process for generating a hollow portion in the microfine fiber bundle of section, you to microfine fiber bundle of section And a step of generating an ultrafine fiber bundle having a hollow portion in which the ultrafine fiber is present in the sheath portion in the core-sheath type cross-sectional structure, and the ultrafine fiber is not substantially present in the core portion ,
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The ultrafine fiber-generating fiber that allows the hollow portion to be present in the cross-section of the bundle of ultrafine fibers having a fineness of 0.1 dtex or less used in the present invention is composed of three or more types that are not compatible. It is obtained by complex spinning a thermoplastic polymer. A typical form of the fiber is a so-called core-sheath fiber.
The sheath portion of the fiber has a two-component sea-island structure, and the core portion may be at the center portion of the fiber cross section or may be offset from the center portion, and the shape of the core portion is somewhat within the fiber cross section. It may be indefinite as long as it forms an area, or it may have a geometric form such as a circle, an ellipse, a square, or a triangle.
[0007]
Further, the sheath portion is composed of two or more thermoplastic polymers that are not compatible, and these polymers form a sea-island structure. The polymer constituting the island component is a polymer that can be melt-spun and exhibits sufficient fiber properties such as strength, and has a higher melt viscosity and higher surface tension than the sea component polymer under the spinning conditions. Preferably, for example, polyamide-based polymers such as 6-nylon and 66-nylon, and copolymers mainly composed thereof, polyester-based polymers such as polyethylene terephthalate and polybutylene terephthalate, and copolymers mainly composed thereof. Preferably used.
The sea component polymer has a lower melt viscosity than the island component polymer, has different solubility and decomposability from the island component, and has solubility in a solvent or decomposing agent used for dissolving or removing sea components. A component that is large (the island component polymer is not substantially dissolved or decomposed and removed upon removal of the sea component polymer) and has a low compatibility with the island component is preferable. For example, polyethylene, modified polyethylene, polypropylene, polystyrene, modified polyester and the like are preferably used.
[0008]
In the present invention, the preferred sea-island volume ratio of the sea-island fiber in the sheath portion that generates ultrafine fibers having a fineness of 0.1 dtex or less is in the range of sea / island = 30/70 to 70/30. If the sea component is less than 30%, there are too few components to be dissolved or decomposed with a solvent or a decomposing agent, so that the softening effect cannot be sufficiently exerted. If the sea component exceeds 70%, the island component after dissolution or decomposition is removed. It is inappropriate from the viewpoint of productivity that the absolute amount of the fibers made of the material becomes small, and sufficient physical properties as a leather-like sheet cannot be secured, and that many components are dissolved or decomposed and removed.
[0009]
The average fiber thickness of a suitable island component after dissolving and removing the sea component of the sea-island structure forming the sheath portion in the present invention is 0.1 dtex or less, preferably 0.05 dtex or less. In general, a nonwoven fabric made of a thick dtex fiber entanglement tends to easily lose fibers. Even in the present invention, when the fiber thickness of the island exceeds 0.1 dtex, the removal of the ultrafine fibers after removal of the sea component is eliminated. The phenomenon becomes prominent, the flexibility of the substrate is lost, and the texture becomes harsh, and the surface aesthetics as a suede tone are lacking. The thickness (fineness) of the ultrafine fiber referred to in the present invention is determined by taking a cross-section perpendicular to the fiber axis direction of the ultrafine fiber bundle with a microscope and obtaining the total decitex of the ultrafine fiber bundle from the micrograph. It is obtained by dividing by the number of fibers.
[0010]
The polymer that forms the core part is different in solubility or decomposability from the solvent or decomposing agent used for dissolving or removing the sea component of the sea-island structure that forms the sheath part. Is not dissolved or decomposed), and the island component of the sea-island structure forming the sheath portion is also different in solubility or decomposability (when the core component is removed, the island component polymer is not substantially dissolved or decomposed). For example, a polymer, which can be eluted with a dilute alkali or is water-soluble, a polyester copolymer, a water-soluble and thermoplastic modified polyvinyl alcohol, and the like are preferably used.
[0011]
When generating an ultrafine fiber bundle having a hollow portion in the cross section of the ultrafine fiber bundle from the ultrafine fiber generating fiber of the present invention, after first dissolving or decomposing and removing only the sea component of the sea-island structure part forming the sheath part, Dissolve or decompose the core component.
For example, when a sea component is removed from a sea-island structure fiber sheet obtained by impregnating a non-woven fabric with a polymer elastic body solution or dispersion and solidifying the polymer elastic body, the thickness may be increased by tension or pressing in the manufacturing process. Reduced and cannot be reduced in weight. In other words, when removing the sea component of the ultrafine fiber-generating fiber, fiber wrinkles are generated due to the removal of the sea component, and the polymer elastic body impregnated in the nonwoven fabric is swelled and softened, so that it passes through the tension and press processing steps. This is because of a decrease.
[0012]
The present invention eliminates the sea component of the sea-island structure fiber portion of the sheath portion from the ultrafine fiber-generating fiber of the present invention by extraction or the like, and generates the ultrafine fiber without being affected by the solvent, drug, etc. This is because the component part can withstand and acts to reduce or alleviate the thickness reduction caused by the tension or pressing in the manufacturing process. Then, different from the solvent or decomposing agent used for dissolving or removing the sea component of the sea-island structure forming the sheath part, the island component of the sea-island structure forming the sheath part may be substantially dissolved or decomposed. Without removing the core component by treating with a solvent or a decomposing agent that dissolves or decomposes the core component, leaving an island component of the sheath portion, a hollow portion in the cross section of the fine fiber bundle having a fineness of 0.1 dtex or less Can be produced.
[0013]
This core component removal step can be removed by removing the sea component from the sheath, followed by washing with hot water when removing the used solvent and decomposing agent remaining in the substrate, or blanching before dyeing and washing after dyeing. Is preferred. For example, water-soluble and thermoplastic modified polyvinyl alcohol containing 5 to 10 mol% of ethylene units, having a polymerization degree of 200 to 500 and a saponification degree of 90 to 99 mol% is easily dissolved in hot water of 50 to 80 ° C. It is particularly preferable because it dissolves in
[0014]
The area ratio of the core part that generates the hollow part in the cross section of the core-sheath type fiber of the ultrafine fiber generation type fiber in which the hollow part is present in the cross section part of the ultrafine fiber bundle having a fineness of 0.1 dtex or less used in the present invention is 7-30. % Range is preferred. If the area ratio of the core is less than 7%, the effect of weight reduction is insufficient, and if it exceeds 30%, the hollow portion of the fiber cross-section becomes prominently crushed by the tension in the core removal process and the pressing process. It is difficult to obtain a lightweight substrate. In general, the thickness of the core portion is preferably in the range of 0.3 to 1.3 dtex in terms of the shape stability of the ultrafine fiber converging body having the hollow portion after the core component is removed.
In addition, the hollowness ratio of the sea-island fiber of the sheath part that generates the ultrafine fiber, the sea-island volume ratio, the thickness of the ultrafine fiber, and the polymer that constitutes the ultrafine fiber have different shape maintainability at the time of removal of the core part, so the combination is appropriate It is preferable to do this. Generally, the island ratio of the sheath portion is small, and when the denier is thin, the hollow portion tends to be crushed.
[0015]
As described above, the hollow ratio generated in the actual cross-section portion of the ultrafine fiber bundle is different from the area ratio of the core portion of the core-sheath fiber, but is generally preferably adjusted to be 6 to 20%. If the hollow ratio generated in the cross section of the ultrafine fiber bundle is less than 6%, the effect of weight reduction is insufficient, and if it exceeds 20%, the fluff on the surface of the substrate becomes rough and the appearance as a suede In addition, the mechanical properties are inferior.
[0016]
In the stretching treatment of the core-sheath type multicomponent fiber of the present invention, it is preferable to stretch at a temperature below the softening point of the sea component polymer of the sheath portion, more preferably the sea component polymer in terms of preventing fiber sticking at the time of stretching. The temperature is 5 to 10 ° C. lower than the softening temperature.
Subsequently, this sea-island type multicomponent fiber is made into a fiber having a fineness of 2 to 10 dtex through processing steps such as crimping, drying and cutting.
[0017]
The core-sheath type multicomponent fiber is opened with a card, a random web or a cross-wrap web is formed through a web, and the obtained fiber web is laminated to a desired weight and thickness. Subsequently, a entanglement process is performed by a known method such as a needle punch or a high-speed fluid flow process to obtain a nonwoven fabric. For the purpose of improving the sense of unity of the product and the smoothness of the surface, it is permissible to use a plurality of cards and wrappers as a non-woven fabric. In the present invention, as a part of the fibers constituting the nonwoven fabric, fibers other than the core-sheath type multicomponent fiber can be blended within a range not impairing the object of the present invention.
[0018]
As the felt needle of the needle punch in the present invention, a well-known felt needle is used, but a 1 barb needle which is less likely to cause fiber breakage is suitably used for sewing in the thickness direction of the web. In order to increase the specific gravity of the surface of the nonwoven fabric, needles of multiple barbs such as 3 barbs, 6 barbs, and 9 barbs can be used. These needles may be combined depending on the purpose.
[0019]
The number of punches in the needle punching process varies depending on the shape of the needle used and the thickness of the web, but is set in the range of 200 to 2500 punches / cm 2 . Generally, in the needle punch of the ultra fine fiber generating fiber, if the needle punch condition is too strong, the ultra fine fiber generating fiber is cut or broken, the entanglement is not improved, and the needle punch condition is too weak. In such a case, the entanglement is not improved due to insufficient number of fibers arranged in the thickness direction.
[0020]
The needle punched nonwoven fabric is then preferably pressed in the thickness direction in order to smooth the surface and regulate the thickness. Conventionally known methods such as a method of passing between a plurality of heating rolls and a method of passing a preheated nonwoven fabric between cooling rolls can be used as a pressing method, and a sea component in a fiber, ie, a low melt viscosity component such as polyethylene is melted and pressed. By this, smoothing of the nonwoven fabric can be achieved more. In this step, it is possible to add an adhesive such as polyvinyl alcohol, starch, or resin emulsion for the purpose of suppressing a change in the shape of the step due to tension or pressing.
[0021]
The nonwoven fabric having a smooth surface is then impregnated with a polymer elastic body solution or dispersion and solidified in a sponge form. As the polymer elastic body, a resin conventionally used for producing a leather-like sheet is preferably used. That is, a polyurethane resin, a polyvinyl chloride resin, a polyacrylic acid resin, a polyamino acid resin, a silicon resin, a copolymer thereof, and a mixture thereof are suitable. These resins are impregnated into the nonwoven fabric as an aqueous emulsion or an organic solvent solution, and then solidified in a sponge form by wet coagulation or the like. In the present invention, it is preferable to impregnate and solidify the polymer elastic body before removing the sea component in the fiber sheath portion from the viewpoint of shape stabilization of the ultrafine fiber converging body having a hollow portion.
[0022]
The fibrous base material impregnated and solidified with the polymer elastic body solution or dispersion is then a non-solvent of the core component polymer, the island component polymer of the sheath portion and the polymer elastomer impregnated with the core component polymer, and the sea component polymer of the sheath portion. By dissolving or decomposing and removing the sea component with a liquid that is a solvent or a decomposing agent, an extra fine fiber of 0.1 decitex or less is generated around the core component fiber, and then a non-solvent of the extra fine fiber and the polymer elastic body is used. A fiber bundle having a hollow portion in the cross-section of a fine core fiber of 0.1 decitex or less and polymer elasticity by dissolving or decomposing and removing the core component polymer with a solvent or a decomposing agent for the core component fiber An artificial leather substrate consisting of a body is obtained.
[0023]
Next, as a method for obtaining a suede-like artificial leather, the artificial leather base is sliced into a plurality of sheets in the thickness direction as necessary, and at least one surface of the surface is raised to raise a fiber raised surface mainly composed of ultrafine fibers. To form. As a method for forming the fiber raised surface, a known method such as buffing with sandpaper or the like is used. Next, the dyed suede-like fibrous base material is subjected to finishing treatments such as kneading, softening treatment, and brushing to obtain a product of suede-like artificial leather that has an elegant appearance and does not fall off fluff.
According to the present invention, a lightweight suede-like artificial leather having excellent mechanical properties such as a density of 0.3 g / cm 3 or less, a peel strength of 8 kg / 2.5 cm or more, and a tear strength per 1 mm of thickness of 6 kg or more can be obtained.
[0024]
The thickness of the artificial leather substrate can be arbitrarily selected according to the use and is not particularly limited, but is preferably in the range of 0.3 mm to 3 mm, particularly preferably 0.7 mm to 1.8 mm. The weight ratio between the ultrafine fiber and the polymer elastic body is preferably 35/65 to 65/35 by weight. If it is out of this range, the balance between the fiber and the elastic polymer is deteriorated, and a sense of fulfillment and flexibility as a product cannot be obtained.
[0025]
The density of the artificial leather substrate in the present invention is preferably 0.3 g / cm 3 or less. Heavy in various fields, mild relative of a person using is a sensory element, the density of a typical artificial leather is 0.35~0.5g / cm 3, density of 0.3 g / cm 3 The following substrate is clearly a light range from the feeling of the conventional artificial leather substrate, and according to the present invention, the density of the artificial leather substrate can be surely made 0.3 g / cm 3 or less.
[0026]
The artificial leather substrate of the present invention can also be suitably used in the field of silver-tone artificial leather. In other words, the surface of this artificial leather substrate is finished with adhesion of leather-like film, resin emulsion, resin solution, molten resin coating, gravure, embossing, combinations of these, etc. Artificial leather is obtained.
[0027]
【Example】
Next, although execution of the present invention is concretely explained with an example, the present invention is not limited to these examples. In the examples, “part” and “%” relate to weight unless otherwise specified. In the following examples and comparative examples, the hollowness ratio, specific gravity measurement, mechanical properties, and other evaluations were in accordance with the following methods.
[0028]
[Method of measuring tear strength of artificial leather base]
A test piece of 10 cm in length and 4 cm in width is cut out, a 5 cm cut is made in the center of the short side at right angles to the side, each tongue piece is sandwiched between chucks, and teared at a speed of 100 mm / min with a tensile tester. The maximum tearing load is obtained and divided by the thickness of the test piece obtained in advance, and is expressed as an average value of three test pieces.
[0029]
[Density measurement]
A number obtained by dividing the weight (g / cm 2 ) per unit area of the artificial leather substrate by the thickness (cm) is defined as density (g / cm 3 ). The thickness is measured according to JISL1096.
[0030]
[Core-sheath ratio of core-sheath composite fiber]
The area ratio of the core sheath of the composite fiber is calculated from the average fiber diameter and the average diameter of the core by taking an enlarged photograph of the yarn cross section 500 times with an electron microscope.
[Hollowness in cross section of ultrafine fiber converging body]
The hollow ratio in the cross section of the ultrafine fiber converging body is obtained by taking an enlarged photograph of the cross section of the product 500 times with an electron microscope and calculating the hollow ratio by the following formula.
Hollow ratio (%) = (A / B) × 100
A = area of the space surrounded by the inner periphery of the ultrafine fiber bundle B = area of the portion surrounded by the outer circumference of the ultrafine fiber bundle
Example 1
Using a core-sheath type composite spinning and spinning apparatus, a polymer stream melted in two extruder melt systems contains 7 mol% of ethylene units, has a polymerization degree of 300, and a saponification degree of 97 mol%. In addition, a thermoplastic modified polyvinyl alcohol, and the sheath part is a sea-island fiber in which the island component is 6-nylon and the sea component is a high-fluidity low-density polyethylene (sea component / island component ratio = 40/60). A core-sheath type composite fiber made of The ratio of the core-sheath component of the core-sheath composite fiber was core / sheath = 25/75.
The obtained yarn was drawn, crimped and cut to obtain staple fibers having 3.5 decitex and a cut length of 51 mm.
This staple fiber was passed through a card, made into a web by a cross wrapper method, and laminated. Next, a non-woven fabric having a weight per unit area of 450 g / m 2 was obtained by needle punching with a needle penetration density of 980 P / cm 2 using a felt needle with one barb on the needle. This non-woven fabric is dried by heating, pressed to smooth the surface, impregnated with 13% polyurethane DMF solution, coagulated with DMF aqueous solution, washed with water, dried and extracted with hot toluene, which is the sea component of the sheath. Then, a substrate made of impregnated polyurethane and fibers in a state where 6-nylon ultrafine fibers covered the core modified polyvinyl alcohol was obtained. Thereafter, the substrate obtained was treated with a wine dyeing machine at 80 ° C. for 30 minutes with a Wins dyeing machine, and a 6-nylon ultrafine fiber converging body having a hollow portion and a polyurethane base having a thickness of 1.2 mm and a basis weight of 310 g / m 2 were obtained. Obtained.
[0032]
When the cross section of the ultrafine fiber bundle of the fibrous base was observed with an electron microscope, the hollowness was 17% and the average fineness of the ultrafine fiber was 0.007 dtex. After buffing one side of this substrate to adjust the thickness to 1.0 mm, the other side is treated with an emery buffing machine to form a fine fiber raised surface, and further using Irgalan Brown 2BLN (Chiba Geigy) Stained at a concentration of 4% owf. The finished suede-like artificial leather has a tear strength of 9kg / 2.5cm, a specific gravity of 0.26, and is very strong. It has a good appearance, texture and touch, and is light with almost no fluff falling off. It was.
[0033]
Comparative Example 1
The same procedure as in Example 1 was performed except that the fiber of Example 1 was replaced with the mixed spun fiber consisting only of the sheath component of Example 1 and the core component was removed, to obtain a suede-like artificial leather. . This suede-like artificial leather was good in appearance, texture and touch, and had almost no fluff falling off. However, when the cross section of the ultrafine fiber bundle was observed with an electron microscope, there was no hollow part and a tear strength of 9 kg / 2 Although it was 0.5 cm, the density was 0.39 g / cm 3 , which was lacking in lightness.
[0034]
Comparative Example 2
Using a core-sheath compound spinning machine, the polymer stream melted in the two extruder melt systems is a high-fluidity low-density polyethylene whose core component is 6-nylon and the sheath component is 6-nylon. A core-sheath type composite fiber composed of sea-island type fibers composed of high-fluidity low-density polyethylene (sea component / island component ratio = 40/60) was spun. The ratio of the core-sheath component of the core-sheath composite fiber was core / sheath = 25/75 as in Example 1.
After making into a non-woven fabric by the same operation as in Example 1, heat drying, pressing to smooth the surface, impregnating with 13% polyurethane DMF solution, coagulating with DMF aqueous solution, washing with water, hot toluene with core part and The polyethylene, which is a sea component in the sheath, was extracted and removed. When the cross section of the ultrafine fiber bundle of the obtained substrate was observed with an electron microscope, there was no hollow portion in the ultrafine fiber bundle, the tear strength was 8 kg / 2.5 cm, and the density was 0.36 g / cm 3 . It was lacking in lightness.
[0035]
【Effect of the invention】
According to the present invention, a lightweight and flexible suede-like artificial leather substrate having mechanical properties that can withstand applications such as sports shoes can be obtained. In addition, the surface layer of the artificial leather substrate obtained by the present invention is finished by combining leather-like film adhesion, resin emulsion, resin solution, melted resin coating, gravure, embossing, etc., and finishing with silver-finished artificial leather I can do it.

Claims (3)

極細繊維集束体が三次元絡合されている不織布とその内部に含浸された高分子弾性体からなる人工皮革基体において、不織布を構成する極細繊維集束体が、0.1デシテックス以下の極細繊維からなる集束体であって、かつ該極細繊維集束体は芯鞘型の断面構造における鞘部分には極細繊維が存在し、芯部分には実質的に極細繊維が存在しない中空部を有するものであることを特徴とする人工皮革基体。In an artificial leather base composed of a nonwoven fabric in which ultrafine fiber bundles are three-dimensionally entangled and a polymer elastic body impregnated therein, the ultrafine fiber bundles constituting the nonwoven fabric are made of ultrafine fibers of 0.1 decitex or less. And the ultrafine fiber bundle has a hollow portion in which the ultrafine fibers are present in the sheath portion and the ultrafine fibers are not substantially present in the core portion in the core-sheath type cross-sectional structure. An artificial leather base characterized by the above. 該極細繊維集束体の断面形状が下記式で表わされる中空率が6〜20%の範囲である請求項1記載の人工皮革基体。
中空率(%)=(A/B)×100
A=極細繊維集束体の内周に囲まれた空間部の面積
B=極細繊維集束体の外周に囲まれた部分の面積
2. The artificial leather substrate according to claim 1, wherein the cross-sectional shape of the ultrafine fiber bundle is a hollow ratio in the range of 6 to 20% represented by the following formula.
Hollow ratio (%) = (A / B) × 100
A = area of the space surrounded by the inner periphery of the ultrafine fiber bundle B: area of the portion surrounded by the outer circumference of the ultrafine fiber bundle
以下の(1)〜(3)の工程
(1)下記工程(3)により、0.1デシテックス以下の極細繊維からなる集束体は芯鞘型の断面構造における鞘部分には極細繊維が存在し、芯部分には実質的に極細繊維が存在しない中空部を有することとなる芯鞘型極細繊維発生型繊維から不織布を製造する工程、
(2)上記不織布に高分子弾性体溶液または分散液を含浸し、高分子弾性体を凝固させる工程、
(3)該芯鞘型極細繊維発生型繊維の鞘部分において極細繊維を発生させる処理を行った後に、その極細繊維集束体断面に中空部を発生させる処理を行い、極細繊維集束体断面において芯鞘型の断面構造における鞘部分には極細繊維が存在し、芯部分には実質的に極細繊維が存在しない中空部を有する極細繊維集束体を発生させる工程、
を順次行うことを特徴とする人工皮革基体の製造方法。
Steps (1) to (3) below (1) By the following step (3), the bundle of ultrafine fibers of 0.1 decitex or less has ultrafine fibers in the sheath portion in the core-sheath cross-sectional structure. a step of producing a nonwoven fabric from the core-sheath type microfine fiber-forming fibers to be able to have a hollow portion which is substantially free of ultrafine fibers in the core part,
(2) impregnating the non-woven fabric with a polymer elastic body solution or dispersion to solidify the polymer elastic body;
(3) In the sheath portion of the core-sheath microfine fiber-forming fibers after the process of generating ultrafine fibers, a process for generating a hollow portion in the microfine fiber bundle of section, you to microfine fiber bundle of section And a step of generating an ultrafine fiber bundle having a hollow portion in which the ultrafine fiber is present in the sheath portion in the core-sheath type cross-sectional structure, and the ultrafine fiber is not substantially present in the core portion ,
A method for producing an artificial leather substrate, characterized in that
JP31208799A 1999-11-02 1999-11-02 Artificial leather base Expired - Fee Related JP4869462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31208799A JP4869462B2 (en) 1999-11-02 1999-11-02 Artificial leather base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31208799A JP4869462B2 (en) 1999-11-02 1999-11-02 Artificial leather base

Publications (2)

Publication Number Publication Date
JP2001131877A JP2001131877A (en) 2001-05-15
JP4869462B2 true JP4869462B2 (en) 2012-02-08

Family

ID=18025088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31208799A Expired - Fee Related JP4869462B2 (en) 1999-11-02 1999-11-02 Artificial leather base

Country Status (1)

Country Link
JP (1) JP4869462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170047209A (en) 2014-08-28 2017-05-04 도레이 카부시키가이샤 Sheet material and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464119B2 (en) 2003-12-12 2010-05-19 株式会社クラレ Artificial leather base material, various artificial leathers based on the base material, and method for producing artificial leather base material
JP2010203021A (en) * 2009-03-06 2010-09-16 Toray Ind Inc Sheet material
JP6022161B2 (en) * 2011-03-23 2016-11-09 株式会社クラレ Artificial leather substrate
CN109137538A (en) * 2018-10-19 2019-01-04 江苏尚科聚合新材料有限公司 A kind of softness artificial leather and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170047209A (en) 2014-08-28 2017-05-04 도레이 카부시키가이샤 Sheet material and manufacturing method thereof
US11021838B2 (en) 2014-08-28 2021-06-01 Toray Industries, Inc. Sheet material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001131877A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US4515854A (en) Entangled fibrous mat having good elasticity and methods for the production thereof
KR101317055B1 (en) Base for synthetic leather and synthetic leathers made by using the same
JP4783295B2 (en) Non-woven fabric for artificial leather and method for producing artificial leather substrate
KR20080017370A (en) Base material for artificial leathers and method of producing the same
JP6613764B2 (en) Artificial leather and method for producing the same
JP4869462B2 (en) Artificial leather base
JP2004211258A (en) Leather-like sheet for designing
WO2020044911A1 (en) Artificial leather base material, method for production thereof, and napped artificial leather
JP4004938B2 (en) Suede-like artificial leather
JP2002242077A (en) Artificial leather substrate and method for producing the same
JP4086954B2 (en) Artificial leather substrate and manufacturing method thereof
JP3159408B2 (en) Antibacterial suede-like artificial leather
JPH07103506B2 (en) Silver-faced sheet-like material and method for producing the same
JP2002227078A (en) Artificial leather substrate
JP3742215B2 (en) Artificial leather base
JP3961296B2 (en) Leather-like sheet and method for producing the same
JP2000239972A (en) Substrate body for artificial leather
JP3142098B2 (en) Method for producing leather-like sheet material
JP2001293125A (en) Gloves for sports
JP2013047405A (en) Substrate for artificial leather and method for producing the same
JPH05339863A (en) Flexible artificial leather of suede tone and its production
JP4390907B2 (en) Nonwoven manufacturing method
JPS59211664A (en) Sheet article good in extensibility and production thereof
JP3109761B2 (en) Suede-like artificial leather and manufacturing method thereof
WO2020138029A1 (en) Knitting string and knitted product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees