JP4869198B2 - Distributed power system - Google Patents

Distributed power system Download PDF

Info

Publication number
JP4869198B2
JP4869198B2 JP2007249322A JP2007249322A JP4869198B2 JP 4869198 B2 JP4869198 B2 JP 4869198B2 JP 2007249322 A JP2007249322 A JP 2007249322A JP 2007249322 A JP2007249322 A JP 2007249322A JP 4869198 B2 JP4869198 B2 JP 4869198B2
Authority
JP
Japan
Prior art keywords
power supply
generators
generator
distributed power
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007249322A
Other languages
Japanese (ja)
Other versions
JP2009081942A (en
Inventor
雅幸 福西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2007249322A priority Critical patent/JP4869198B2/en
Publication of JP2009081942A publication Critical patent/JP2009081942A/en
Application granted granted Critical
Publication of JP4869198B2 publication Critical patent/JP4869198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、複数の発電機で系統連系又は自立運転を行う分散電源システムに関する。   The present invention relates to a distributed power supply system that performs grid interconnection or independent operation with a plurality of generators.

系統連系又は自立運転を行う従来の分散電源システムとして、例えば、機械式で行っていたガバナ機構をエンジン制御部(ECU)にてエンジンへの燃料噴射量を制御することで、発電機の回転数を制御するようにしたものがある。   As a conventional distributed power supply system that performs grid connection or independent operation, for example, a governor mechanism that has been mechanically operated is controlled by the engine control unit (ECU) to control the fuel injection amount to the engine. There is something that controls the number.

このような従来の分散電源システムにおいては、1台の発電機で系統連系又は自立運転を行うに当たり、系統連系時は出力増加に伴い回転数が垂下する、いわゆるドループ制御とし、自立運転時は定回転数を維持する、いわゆるアイソクロナス制御とする構成が、下記特許文献1に開示されている。   In such a conventional distributed power supply system, when performing grid interconnection or independent operation with one generator, so-called droop control in which the rotation speed drops as the output increases during grid interconnection, Japanese Patent Application Laid-Open Publication No. 2004-259542 discloses a configuration in which so-called isochronous control is maintained to maintain a constant rotational speed.

図4は、アイソクロナス制御を説明するための図であって、負荷に対するエンジン回転数(回転速度)の特性を示すグラフである。また、図5は、ドループ制御を説明するための図であって、負荷に対するエンジン回転数(回転速度)の特性を示すグラフである。   FIG. 4 is a graph for explaining the isochronous control, and is a graph showing the characteristics of the engine speed (rotational speed) with respect to the load. FIG. 5 is a graph for explaining the droop control, and is a graph showing the characteristics of the engine speed (rotational speed) with respect to the load.

図4に示すアイソクロナス制御は、負荷がかかることによりエンジンの回転数が下がろうとするところ、定格出力の回転数となるように燃料噴射量を増やして、定格出力の回転数を保つアイソクロナス特性にて回転数(回転速度)制御を行うものである。このアイソクロナス制御においては、自立運転時に負荷変動しても定格出力のエンジン回転数を維持するので、安定した周波数で運転することができる。   The isochronous control shown in FIG. 4 has an isochronous characteristic that maintains the rated output speed by increasing the fuel injection amount so as to achieve the rated output speed when the engine speed decreases due to the load. Thus, the rotation speed (rotation speed) is controlled. In this isochronous control, the engine speed of the rated output is maintained even if the load fluctuates during the self-sustaining operation, so that the operation can be performed at a stable frequency.

図5に示すドループ制御は、機械式のガバナ機構と同様、無負荷状態から負荷の増加に伴ってエンジン回転数が一定のドループ率で低下するドループ特性にて回転数制御(回転速度)を行うものである。ここで、ドループ率は、(Na−Nb)/Nb(Na:無負荷時の回転速度、Nb:定格出力(全負荷)時の回転速度)で示される速度垂下率のことである。このドループ制御においては、系統連系時に負荷変動によってたとえ発電機の周波数が不安定になったとしても、発電機に比して電力容量が圧倒的に大きい系統電源に周波数特性を委ねることで、この場合も安定した周波数で運転することができる。
特開平4−344200号公報
The droop control shown in FIG. 5 performs the rotation speed control (rotation speed) with a droop characteristic in which the engine rotation speed decreases at a constant droop rate as the load increases from the no-load state, as in the mechanical governor mechanism. Is. Here, the droop rate is a rate of droop indicated by (Na-Nb) / Nb (Na: rotational speed at no load, Nb: rotational speed at rated output (full load)). In this droop control, even if the frequency of the generator becomes unstable due to load fluctuations during grid connection, by entrusting the frequency characteristics to the system power supply with an overwhelmingly large power capacity compared to the generator, Also in this case, it is possible to operate at a stable frequency.
JP-A-4-344200

しかしながら、前記した従来技術では、系統連系又は自立運転を行う発電機が複数で並列運転される場合での各発電機の回転制御については何ら考慮されていない。   However, in the above-described conventional technology, no consideration is given to rotation control of each generator when a plurality of generators that perform grid interconnection or independent operation are operated in parallel.

そこで、本発明は、系統連系又は自立運転を行う発電機が複数で並列運転される場合での各発電機の回転制御を良好に行うことができる分散電源システムを提供することを目的とする。   Then, this invention aims at providing the distributed power supply system which can perform rotation control of each generator favorably when the generator which performs a grid connection or a self-sustained operation is operated in parallel with two or more. .

本発明は、前記課題を解決するために、複数の発電機で系統連系又は自立運転を行う分散電源システムにおいて、系統連系時は全発電機をドループ特性にて回転数制御(ドループ制御)し、自立運転時はいずれか1台の発電機のみアイソクロナス特性にて回転数制御(アイソクロナス制御)を行って残りの発電機は全てドループ特性にて回転数制御(ドループ制御)を行うことを特徴とする分散電源システムを提供する。   In order to solve the above-described problem, the present invention provides a distributed power supply system that performs grid interconnection or independent operation with a plurality of generators. In grid interconnection, all the generators are controlled with a droop characteristic to control the rotational speed (droop control). During self-sustained operation, only one of the generators performs speed control (isochronous control) with isochronous characteristics, and the remaining power generators all perform speed control (droop control) with droop characteristics. A distributed power supply system is provided.

本発明に係る分散電源システムによれば、系統連系時は、全発電機をドループ制御しても、これら発電機に比して電力容量が圧倒的に大きい系統電源に周波数特性を委ねることができる。従って、出力周波数の挙動を安定させることができる。また、自立運転時では、いずれか1台の発電機のみアイソクロナス制御することで、このアイソクロナス制御を行う1台の発電機にて周波数特性を支配させることができ、これにより、残りの発電機が全てドループ制御を行っている状態において、出力周波数の挙動安定化に寄与することができる。   According to the distributed power supply system of the present invention, at the time of grid connection, even if all the generators are droop controlled, it is possible to entrust the frequency characteristics to the grid power supply that has an overwhelmingly large power capacity compared to these generators. it can. Therefore, the behavior of the output frequency can be stabilized. In addition, during independent operation, only one of the generators is controlled isochronously, so that the frequency characteristics can be controlled by one generator that performs this isochronous control. In a state where all the droop control is performed, it is possible to contribute to stabilization of the behavior of the output frequency.

本発明に係る分散電源システムにおいて、前記各発電機にそれぞれ異なる固有の番号を予め設定し、該各発電機間で相互に電力供給中の発電機の番号を認識し、自立運転時のアイソクロナス特性にて回転数制御を行う発電機を最小番号又は最大番号の発電機とする具体的態様を例示できる。こうすることで、自立運転時のアイソクロナス制御を行う発電機を容易に特定することができる。   In the distributed power supply system according to the present invention, different unique numbers are set in advance for the respective generators, the numbers of the generators supplying power to each other are recognized, and the isochronous characteristics at the time of independent operation are determined. The specific mode which makes the generator which performs rotation speed control by the generator of the minimum number or the maximum number can be illustrated. By doing so, it is possible to easily identify the generator that performs the isochronous control during the autonomous operation.

かかる構成において、ゼロ番号、又は、設定するいずれの発電機の番号よりも大きい番号を系統電源に付与し、発電機番号の認識に当たっては、前記系統電源を仮想発電機とすることが好ましい。こうすることで、系統連系時に全発電機を確実にドループ制御することが可能となる。また、この構成では、電力供給中の発電機を前記各発電機と電力供給経路との間に配置される遮断器の開閉信号に基づき認識すると共に、前記仮想発電機の電力供給の有無を前記系統電源からの受電用遮断器の開閉信号に基づき認識することができる。これにより、前記各発電機が電力供給中か否かを確実に認識することができる。   In such a configuration, it is preferable to assign a zero number or a number larger than the number of any generator to be set to the system power supply, and to recognize the generator number, the system power supply is a virtual generator. By doing so, it becomes possible to reliably perform droop control of all the generators during grid connection. Further, in this configuration, the generator that is supplying power is recognized based on an open / close signal of a circuit breaker arranged between each generator and the power supply path, and whether or not the virtual generator is supplied with power is It can be recognized based on the switching signal of the power receiving breaker from the system power supply. Thereby, it can be recognized reliably whether each said generator is supplying electric power.

以上説明したように、本発明によると、系統連系又は自立運転を行う発電機が複数で並列運転される場合での各発電機の回転制御を良好に行うことができる分散電源システムを提供することができる。   As described above, according to the present invention, there is provided a distributed power supply system that can satisfactorily perform rotation control of each generator when a plurality of generators that perform grid interconnection or independent operation are operated in parallel. be able to.

以下、本発明の実施形態について添付図面を参照しつつ説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the following embodiment is an example which actualized this invention, Comprising: The thing of the character which limits the technical scope of this invention is not.

図1は、本発明に係る分散電源システムの一実施形態を示す概略構成図である。図1に示す分散電源システム100は、複数の分散電源装置D1〜Dn(nは2以上の整数)と、制御装置10とを備えている。   FIG. 1 is a schematic configuration diagram showing an embodiment of a distributed power supply system according to the present invention. A distributed power supply system 100 shown in FIG. 1 includes a plurality of distributed power supply devices D1 to Dn (n is an integer of 2 or more) and a control device 10.

この分散電源システム100は、制御装置10の作動制御によって、系統電源30と複数の分散電源装置D1〜Dnとを並列に接続して連系運転を行う系統連系と、系統電源30とは離脱した状態で、複数の分散電源装置D1〜Dnから電力供給を行う自立運転とのうちいずれか一方を行うようになっている。   In this distributed power supply system 100, the system power supply 30 that connects the system power supply 30 and the plurality of distributed power supply devices D <b> 1 to Dn in parallel by performing operation control of the control device 10 and the system operation is separated from the system power supply 30. In this state, any one of the independent operation in which power is supplied from the plurality of distributed power supply devices D1 to Dn is performed.

図2は、図1に示す分散電源装置D1〜Dn及び制御装置10の概略構成を示すブロック図である。各分散電源装置D1〜Dnは、ここでは、それぞれ、エンジンE1〜Enと、エンジン制御部F1〜Fnと、発電機G1〜Gnとを備えており、制御装置10に接続されている。各エンジン制御部F1〜Fnは、制御装置10の指示の下、エンジンE1〜Enへの燃料噴射量を制御することで、該エンジンE1〜Enの回転数(回転速度)を制御するようになっている。   FIG. 2 is a block diagram showing a schematic configuration of the distributed power supply devices D1 to Dn and the control device 10 shown in FIG. Each of the distributed power supply devices D1 to Dn includes an engine E1 to En, an engine control unit F1 to Fn, and a generator G1 to Gn, respectively, and is connected to the control device 10. Each engine control unit F1 to Fn controls the rotational speed (rotational speed) of the engines E1 to En by controlling the fuel injection amount to the engines E1 to En under the instruction of the control device 10. ing.

制御装置10は、CPU(Central Processing Unit)等の処理部11と、ROM(Read Only Memory)及びRAM(Random Access Memory)等の記憶部12とを含んでおり、前記処理部11によって、各種制御プログラムを記憶部12から読み出し、該読み出した制御プログラムを実行することで、各分散電源装置D1〜Dnの作動制御を行うように構成されている。   The control device 10 includes a processing unit 11 such as a CPU (Central Processing Unit) and a storage unit 12 such as a ROM (Read Only Memory) and a RAM (Random Access Memory). By reading the program from the storage unit 12 and executing the read control program, operation control of each of the distributed power supply devices D1 to Dn is performed.

制御装置10は、各エンジンE1〜Enに対するアイソクロナス制御及びドループ制御の切り替えを各分散電源装置D1〜Dnに指示するように構成されている。   The control device 10 is configured to instruct the distributed power supply devices D1 to Dn to switch between isochronous control and droop control for the engines E1 to En.

詳しくは、制御装置10は、各分散電源装置部D1〜Dnに対してアイソクロナス制御の切り替え指令を行う場合には、アイソクロナス制御を行う切り替え信号を所定の定格回転数の情報と共に送信するようになっている。また、制御装置10は、各分散電源装置部D1〜Dnに対してドループ制御の切り替え指令を行う場合には、ドループ制御を行う切り替え信号を所定の定格回転数及びドループ率の情報と共に送信するようになっている。前記定格回転数としては、発電機周波数50Hzで1500回転/分や3000回転/分を例示でき、発電機周波数60Hzで1600回転/分や3200回転/分を例示できる。前記ドループ率としては、0%を超え且つ6%以下程度(標準的には3%程度)を例示できる。   Specifically, when the control device 10 issues a switching command for isochronous control to each of the distributed power supply devices D1 to Dn, the control device 10 transmits a switching signal for performing isochronous control together with information on a predetermined rated rotational speed. ing. In addition, when the control device 10 issues a droop control switching command to each of the distributed power supply device units D1 to Dn, the control device 10 transmits a switching signal for performing the droop control together with information on the predetermined rated rotation speed and the droop rate. It has become. Examples of the rated rotational speed include 1500 revolutions / minute and 3000 revolutions / minute at a generator frequency of 50 Hz, and 1600 revolutions / minute and 3200 revolutions / minute at a generator frequency of 60 Hz. Examples of the droop rate include over 0% and about 6% or less (typically about 3%).

各分散電源装置D1〜Dnでは、制御装置10にてアイソクロナス制御の切り替えが指示されて、該制御装置10からアイソクロナス制御を行う切り替え信号が定格回転数(例えば3000回/分:50Hz)の情報と共に送信されると、該定格回転数のアイソクロナス特性(図4参照)にて回転数制御を行う。また、各分散電源装置D1〜Dnでは、制御装置10にてドループ制御の切り替えが指示されて、該制御装置10からドループ制御を行う切り替え信号が定格回転数(例えば3000回/分:50Hz)及びドループ率(例えば3%)の情報と共に送信されると、該定格回転数及びドループ率のドループ特性(図5参照)にて回転数制御を行う。   In each of the distributed power supply devices D1 to Dn, switching of isochronous control is instructed by the control device 10, and a switching signal for performing isochronous control is transmitted from the control device 10 together with information on the rated rotation speed (for example, 3000 times / minute: 50 Hz). When transmitted, the rotational speed is controlled with the isochronous characteristic of the rated rotational speed (see FIG. 4). Further, in each of the distributed power supply devices D1 to Dn, switching of droop control is instructed by the control device 10, and a switching signal for performing the droop control is transmitted from the control device 10 to a rated rotational speed (for example, 3000 times / minute: 50 Hz) and When it is transmitted together with information on the droop rate (for example, 3%), the rotational speed is controlled by the rated speed and the droop characteristic of the droop rate (see FIG. 5).

そして、制御装置10は、系統連系モード及び自立運転モードを備え、系統連系時は系統連系モードを実行する一方、自立運転時は自立運転モードを実行するようになっている。   And the control apparatus 10 is provided with the grid connection mode and the independent operation mode, and while performing the grid connection mode at the time of grid connection, it performs the independent operation mode at the time of independent operation.

図3は、図1に示す分散電源システム100の動作状態を概念的に示す図であり、図3(a)は、系統連系時の動作状態を示しており、図3(b)は、自立運転時の動作状態を示している。なお、図3において制御装置10は図示を省略してある。   FIG. 3 is a diagram conceptually showing an operation state of the distributed power supply system 100 shown in FIG. 1, FIG. 3 (a) shows an operation state at the time of grid connection, and FIG. It shows the operating state during independent operation. In FIG. 3, the controller 10 is not shown.

制御装置10は、図3(a)に示すように、系統連系時に複数の分散電源装置D1〜Dnのうち電力供給中の分散電源装置における全発電機(ここでは発電機G1〜Gn)をドループ特性にて回転数制御する系統連系モードを実行し、図3(b)に示すように、自立運転時に複数の分散電源装置D1〜Dnのうち電力供給中の分散電源装置のいずれか1台の分散電源装置における発電機のみ(ここでは発電機G1を)アイソクロナス特性にて回転数制御を行い且つ電力供給中の残りの全分散電源装置における発電機(ここでは発電機G2〜Gn)はドループ特性にて回転数制御を行う自立運転モードを実行するように構成されている。   As shown in FIG. 3A, the control device 10 sets all the generators (here, the generators G1 to Gn) in the distributed power supply device that is supplying power among the plurality of distributed power supply devices D1 to Dn at the time of grid connection. A grid interconnection mode in which the rotational speed is controlled by the droop characteristic is executed, and as shown in FIG. 3B, one of the plurality of distributed power supply devices D1 to Dn that is supplying power during the independent operation. The generators (here, the generators G2 to Gn) of the remaining distributed power supply units that perform rotation speed control with isochronous characteristics only in the generators of the single distributed power supply unit (here, the generator G1) and supply power It is configured to execute a self-sustaining operation mode in which the rotational speed control is performed with the droop characteristic.

この分散電源システム100によれば、系統連系時は、発電機G1〜Gnに比して電力容量が圧倒的に大きい系統電源30に周波数特性を委ねることができるので、負荷変動によって発電機G1〜Gnの周波数が変動しても、安定した出力周波数で運転することが可能となると共に、自立運転時は、アイソクロナス制御を行う1台の発電機G1にて周波数特性を支配させることで、該1台の発電機G1にて系統電源30の如く出力周波数の挙動安定化を図ることが可能となる。   According to the distributed power supply system 100, when the system is connected, the frequency characteristics can be entrusted to the system power supply 30 that has an overwhelmingly larger power capacity than the generators G1 to Gn. Even if the frequency of ~ Gn fluctuates, it becomes possible to operate at a stable output frequency, and at the time of self-sustained operation, the frequency characteristic is controlled by one generator G1 that performs isochronous control. It is possible to stabilize the behavior of the output frequency like the system power supply 30 with one generator G1.

ところで、自立運転時に電力供給中の全ての発電機をアイソクロナス特性にて回転数制御することが考えられるが、このアイソクロナス制御では、図4に示すように、負荷に対するエンジン回転数の目標値が負荷変動に拘わらず一定であるため、自立運転時に電力供給中の全発電機をアイソクロナス制御すると、2台以上の発電機で制御装置10が誤動作してエンジンの回転数が定まらない事態を招き易く、従ってエンジンが暴走してしまうといったトラブルが発生することがある。   By the way, it is conceivable to control the rotational speed of all the generators that are supplying power during the independent operation with isochronous characteristics. In this isochronous control, as shown in FIG. Because it is constant regardless of fluctuations, isochronous control of all generators that are supplying power during self-sustained operation tends to cause a situation in which the controller 10 malfunctions with two or more generators and the engine speed is not determined. Therefore, troubles such as engine runaway may occur.

これに対し、ドループ制御では、負荷に対するエンジン回転数の目標値が一意に決まるため、エンジン回転数を目標値に収束させることができる。例えば、図5に示すように、ドループ率が3%の場合、能力範囲の50%での負荷の回転数は、無負荷時の回転数3090回転/分から1.5%低減した回転数3045回転/分に収束させることができる。従って、電力供給中の1台の発電機のみアイソクロナス制御を行うと共に、電力供給中の残りの全発電機はドループ制御を行う場合には、出力周波数の挙動安定化を図りつつ制御装置10の誤動作を効果的に防止でき、これにより、エンジンの暴走を回避することが可能となる。   On the other hand, in the droop control, since the target value of the engine speed with respect to the load is uniquely determined, the engine speed can be converged to the target value. For example, as shown in FIG. 5, when the droop rate is 3%, the rotation speed of the load at 50% of the capacity range is 3045 rotation speeds reduced by 1.5% from the rotation speed of 3090 rotations / minute when there is no load. Per minute. Therefore, when performing isochronous control for only one generator that is supplying power and performing droop control for all remaining generators that are supplying power, malfunction of the control device 10 while stabilizing the behavior of the output frequency. Can be effectively prevented, and engine runaway can be avoided.

かかる観点から、本発明の実施形態に係る分散電源システム100では、自立運転時に電力供給中の1台の分散電源装置D1における発電機G1のみアイソクロナス特性にて回転数制御を行うと共に、電力供給中の残りの分散電源装置D2〜Dnにおける発電機G2〜Gnはいずれもドループ特性にて回転数制御を行っている。   From such a viewpoint, in the distributed power supply system 100 according to the embodiment of the present invention, only the generator G1 in the single distributed power supply device D1 that is supplying power during the self-sustained operation performs the rotational speed control with isochronous characteristics and is supplying power. The generators G2 to Gn in the remaining distributed power supply devices D2 to Dn all perform rotational speed control with droop characteristics.

本実施の形態においては、各発電機G1〜Gnにそれぞれ異なる固有の番号(ここでは1号からn号の番号)が予め設定(ここでは記憶部12に記憶)されている。そして、制御装置10は、各発電機G1〜Gn間で相互に電力供給中の発電機の番号を認識し、系統連系時は電力供給中の全発電機(ここでは1号〜n号の発電機G1〜Gn)をドループ特性にて回転数制御し、自立運転時は電力供給中の最小番号又は最大番号の発電機(ここでは1号の発電機G1)のみアイソクロナス特性にて回転数制御を行って電力供給中の残りの発電機(ここでは2号〜n号の発電機G2〜Gn)は全てドループ特性にて回転数制御を行うようになっている。こうすることで、自立運転時のアイソクロナス特性にて回転数制御を行う発電機を容易に特定することができる。   In the present embodiment, different unique numbers (here, Nos. 1 to n) are preset (stored in the storage unit 12 here) for each of the generators G1 to Gn. And the control apparatus 10 recognizes the number of the generator which is supplying electric power mutually between each generator G1-Gn, and is connected to all the generators (here No. 1-n of an electric power supply) at the time of grid connection. The number of generators G1 to Gn) is controlled by the droop characteristic, and at the time of self-sustained operation, only the generator with the smallest or largest number during power supply (here, the first generator G1) is controlled with the isochronous characteristic. The remaining generators (in this case, the generators G2 to Gn of Nos. 2 to n) that are supplying power are all controlled to rotate at the droop characteristic. By doing so, it is possible to easily identify the generator that performs the rotational speed control with the isochronous characteristic during the autonomous operation.

また、本実施の形態においては、制御装置10は、ゼロ番号(0号)、又は、予め設定した各発電機G1〜Gnのいずれの番号よりも大きい番号(例えばn+1号)(ここでは0号)を系統電源30に付与し、各発電機G1〜Gnの番号認識に当たっては、系統電源30を仮想発電機とするように構成されている。   Moreover, in this Embodiment, the control apparatus 10 is a number (for example, n + 1 number) (here 0 number) larger than the zero number (0 number) or any number of each generator G1-Gn set beforehand. ) Is applied to the system power supply 30, and the system power supply 30 is configured as a virtual generator when the numbers of the generators G1 to Gn are recognized.

即ち、制御装置10は、系統連系時には、仮想発電機としてゼロ番号(0号)、又は、各発電機G1〜Gnのいずれの番号よりも大きい番号(例えばn+1号)が付与された系統電源30と並列に接続して電力供給中の全発電機(ここでは1号〜n号の発電機G1〜Gn)をドループ制御し、自立運転時には、系統電源30とは離脱した状態で電力供給中の最小番号又は最大番号の発電機(ここでは1号の発電機G1)のみアイソクロナス制御して電力供給中の残りの発電機(ここでは2号〜n号の発電機G2〜Gn)は全てドループ制御するようになっている。   That is, at the time of grid connection, the control device 10 has a grid power supply to which a virtual generator is assigned a zero number (0) or a number (for example, n + 1) that is larger than any of the generators G1 to Gn. Droop control is performed on all generators connected in parallel with the power supply 30 (here, the generators G1 to Gn of No. 1 to n), and power is being supplied in a state of being disconnected from the system power supply 30 during independent operation. The remaining generators (here, Nos. 2 to n generators G2 to Gn) are all drooped by isochronous control of only the generator with the smallest or largest number (here, No. 1 generator G1). It comes to control.

かかる構成を備えた分散電源システム100では、系統連系時に電力供給中の全発電機G1〜Gnを確実にドループ制御しつつ、仮想発電機として0号又はn+1号(ここでは0号)の番号が付与された系統電源30にて出力周波数の挙動安定化を図ることができる。   In the distributed power supply system 100 having such a configuration, the number 0 or n + 1 (here, No. 0) is assigned as a virtual generator while reliably performing droop control on all the generators G1 to Gn that are supplying power during grid connection. It is possible to stabilize the behavior of the output frequency with the system power supply 30 to which is provided.

また、本実施の形態に係る分散電源システム100には、図1及び図2に示すように、系統電源30からの受電用遮断器52Rから各発電機G1〜Gnの遮断器52G1〜52Gn(図2参照)の直前に到るまでの電力供給経路Pを有している。   Moreover, in the distributed power supply system 100 according to the present embodiment, as shown in FIGS. 1 and 2, the circuit breakers 52G1 to 52Gn of the generators G1 to Gn from the power receiving circuit breaker 52R from the system power supply 30 (FIG. 2), the power supply path P is provided until it reaches immediately before.

ところで、各発電機G1〜Gnは、運転状態であっても運転初期状態の場合等のように電力供給ができない状態が存在する。このため、分散電源システム100では、各発電機G1〜Gnが電力供給できない状態において各発電機G1〜Gnと電力供給経路Pの間に配置される遮断器52G1〜52Gnを開いておき、各発電機G1〜Gnが電力供給できる状態になったときに、遮断器52G1〜52Gnを閉じ得る構成となっている。また、分散電源システム100では、系統電源30から負荷側への電力供給の有無は、系統電源30からの受電用遮断器52Rの開閉によってなされている。   By the way, each generator G1-Gn has the state which cannot supply electric power like the case of the driving | running | working initial state etc., even if it is a driving | running state. For this reason, in the distributed power supply system 100, the circuit breakers 52G1 to 52Gn disposed between the generators G1 to Gn and the power supply path P are opened in a state in which the generators G1 to Gn cannot supply power, and When the machines G1 to Gn can supply power, the circuit breakers 52G1 to 52Gn can be closed. In the distributed power supply system 100, whether or not power is supplied from the system power supply 30 to the load side is determined by opening and closing a power receiving circuit breaker 52R from the system power supply 30.

かかる観点から、制御装置10は、各発電機G1〜Gnと電力供給経路Pの間に配置される遮断器52G1〜52Gnの開閉状態に対応する開閉信号に基づき各発電機G1〜Gnが電力供給中か否かを認識すると共に、系統電源30からの受電用遮断器52Rの開閉状態に対応する開閉信号に基づき仮想発電機である系統電源30が電力供給中か否かを認識するように構成されている。   From this viewpoint, the control device 10 supplies power to each of the generators G1 to Gn based on an open / close signal corresponding to the open / close state of the circuit breakers 52G1 to 52Gn disposed between the generators G1 to Gn and the power supply path P. It is configured to recognize whether the system power supply 30 as a virtual generator is supplying power based on an open / close signal corresponding to the open / close state of the power receiving circuit breaker 52R from the system power supply 30. Has been.

具体的には、制御装置10は、遮断器52G1〜52Gnからの開閉信号によって遮断器52G1〜52Gnが閉じていると認識している場合に受電用遮断器52Rからの開閉信号によって受電用遮断器52Rが開いていると認識した場合には自立運転モードを実行するようになっている。また、制御装置10は、遮断器52G1〜52Gnからの開閉信号によって遮断器52G1〜52Gnが閉じていると認識している場合に受電用遮断器52Rからの開閉信号によって受電用遮断器52Rが閉じていると認識した場合には系統連系モードを実行するようになっている。   Specifically, when the control device 10 recognizes that the circuit breakers 52G1 to 52Gn are closed by the switching signals from the circuit breakers 52G1 to 52Gn, the power receiving circuit breaker is received from the power receiving circuit breaker 52R. When it is recognized that 52R is open, the autonomous operation mode is executed. In addition, when the control device 10 recognizes that the circuit breakers 52G1 to 52Gn are closed by the switching signals from the circuit breakers 52G1 to 52Gn, the power receiving circuit breaker 52R is closed by the switching signal from the power receiving circuit breaker 52R. When it is recognized that the system is connected, the grid connection mode is executed.

このように、制御装置10は、各発電機G1〜Gn直前の遮断器52G1〜52Gnや系統電源30直後の受電用遮断器52Rからの開閉信号を得ることで、各発電機G1〜Gnや系統電源30が電力供給中か否かを確実に認識した状態で自立運転モード又は系統連系モードを実行することができる。   As described above, the control device 10 obtains an opening / closing signal from the circuit breakers 52G1 to 52Gn immediately before the generators G1 to Gn and the power receiving circuit breaker 52R immediately after the system power supply 30 to thereby generate the generators G1 to Gn and the systems. The autonomous operation mode or the grid interconnection mode can be executed in a state where it is surely recognized whether or not the power supply 30 is supplying power.

本発明に係る分散電源システムの一実施形態を示す概略構成図である。1 is a schematic configuration diagram showing an embodiment of a distributed power supply system according to the present invention. 図1に示す分散電源装置及び制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the distributed power supply device and control apparatus which are shown in FIG. 図1に示す分散電源システムの動作状態を示す概念図であって、図(a)は、系統連系時の動作状態を示す図であり、図(b)は、自立運転時の動作状態を示す図である。It is a conceptual diagram which shows the operation state of the distributed power supply system shown in FIG. 1, Comprising: FIG. (A) is a figure which shows the operation state at the time of grid connection, FIG. (B) shows the operation state at the time of independent operation. FIG. アイソクロナス制御を説明するための図であって、負荷に対するエンジン回転数(回転速度)の特性を示すグラフである。It is a figure for demonstrating isochronous control, Comprising: It is a graph which shows the characteristic of the engine speed (rotation speed) with respect to load. ドループ制御を説明するための図であって、負荷に対するエンジン回転数(回転速度)の特性を示すグラフである。It is a figure for demonstrating droop control, Comprising: It is a graph which shows the characteristic of the engine speed (rotation speed) with respect to load.

符号の説明Explanation of symbols

30 系統電源
52G1〜52Gn 遮断器
52R 受電用遮断器
100 分散電源システム
G1〜Gn 複数の発電機
30 System power supply 52G1-52Gn Circuit breaker 52R Power receiving circuit breaker 100 Distributed power supply system G1-Gn Multiple generators

Claims (4)

複数の発電機で系統連系又は自立運転を行う分散電源システムにおいて、
系統連系時は全発電機をドループ特性にて回転数制御し、自立運転時はいずれか1台の発電機のみアイソクロナス特性にて回転数制御を行って残りの発電機は全てドループ特性にて回転数制御を行うことを特徴とする分散電源システム。
In a distributed power system that performs grid interconnection or independent operation with multiple generators,
During grid connection, all generators are controlled with the droop characteristics, and during independent operation, only one of the generators is controlled with the isochronous characteristics, and the remaining generators are all with the droop characteristics. A distributed power supply system characterized by performing rotation speed control.
請求項1記載の分散電源システムにおいて、
前記各発電機にそれぞれ異なる固有の番号を予め設定し、該各発電機間で相互に電力供給中の発電機の番号を認識し、自立運転時のアイソクロナス特性にて回転数制御を行う発電機を最小番号又は最大番号の発電機とすることを特徴とする分散電源システム。
The distributed power supply system according to claim 1,
A unique number is set in advance for each of the generators, the number of the generators supplying power to each other is recognized between the generators, and the number of revolutions is controlled by isochronous characteristics during independent operation. Is a generator having a minimum number or a maximum number.
請求項2記載の分散電源システムにおいて、
ゼロ番号、又は、設定するいずれの発電機の番号よりも大きい番号を系統電源に付与し、発電機番号の認識に当たっては、前記系統電源を仮想発電機とすることを特徴とする分散電源システム。
The distributed power supply system according to claim 2,
A distributed power supply system characterized in that a zero number or a number larger than any set generator number is assigned to a system power supply, and when the generator number is recognized, the system power supply is a virtual generator.
請求項3記載の分散電源システムにおいて、
電力供給中の発電機を前記各発電機と電力供給経路との間に配置される遮断器の開閉信号に基づき認識すると共に、前記仮想発電機の電力供給の有無を前記系統電源からの受電用遮断器の開閉信号に基づき認識することを特徴とする分散電源システム。
The distributed power supply system according to claim 3,
Recognizing a power supply generator based on an open / close signal of a circuit breaker arranged between each of the power generators and a power supply path, and receiving power from the system power supply to determine whether or not the virtual generator is powered A distributed power supply system that recognizes based on a circuit breaker switching signal.
JP2007249322A 2007-09-26 2007-09-26 Distributed power system Expired - Fee Related JP4869198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249322A JP4869198B2 (en) 2007-09-26 2007-09-26 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249322A JP4869198B2 (en) 2007-09-26 2007-09-26 Distributed power system

Publications (2)

Publication Number Publication Date
JP2009081942A JP2009081942A (en) 2009-04-16
JP4869198B2 true JP4869198B2 (en) 2012-02-08

Family

ID=40656296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249322A Expired - Fee Related JP4869198B2 (en) 2007-09-26 2007-09-26 Distributed power system

Country Status (1)

Country Link
JP (1) JP4869198B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508796B2 (en) * 2009-09-18 2014-06-04 東京瓦斯株式会社 Power supply system control method and power supply system control apparatus
JP6084863B2 (en) 2013-02-28 2017-02-22 川崎重工業株式会社 Power converter for grid connection
CN106410808B (en) * 2016-09-27 2018-04-24 东南大学 Universal micro-capacitance sensor group distributed control method comprising invariable power and droop control
PL425996A1 (en) 2018-06-20 2020-01-02 Akademia Morska W Szczecinie Method for power distribution between electric generators and system therefor
JP6853225B2 (en) * 2018-09-07 2021-03-31 株式会社Ihi原動機 How to operate power generation equipment
JP7266381B2 (en) * 2018-10-24 2023-04-28 北越工業株式会社 engine driven generator
JP7351620B2 (en) 2019-02-01 2023-09-27 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple generation power supply system
JP7292042B2 (en) 2019-02-01 2023-06-16 三菱重工エンジン&ターボチャージャ株式会社 Combined power generation system in isolated operation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344200A (en) * 1991-05-20 1992-11-30 Hitachi Ltd Operation controller for generator
JPH0556699A (en) * 1991-08-22 1993-03-05 Meidensha Corp Parallel/parallel-off control system for a plurality of generators
JPH099511A (en) * 1995-06-16 1997-01-10 Meidensha Corp Synchronization system of non-utility generation equipment
JPH1189096A (en) * 1997-09-02 1999-03-30 Nissin Electric Co Ltd Operation control method of distributed power supply equipment
JP4101201B2 (en) * 2004-03-31 2008-06-18 山洋電気株式会社 Operation method of distributed power supply
JP4616579B2 (en) * 2004-05-13 2011-01-19 株式会社四国総合研究所 Power supply system

Also Published As

Publication number Publication date
JP2009081942A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4869198B2 (en) Distributed power system
ES2807826T3 (en) Dynamic hybrid control
JP3692340B2 (en) COMBINED PLANT FUEL CONTROL METHOD AND CONTROL DEVICE FOR THE SAME
JP2009535001A (en) Control system for electric motor
JP6119584B2 (en) Battery control device
EP2937519B1 (en) Method to control electric starter generator for gas turbine engines
JP3620496B2 (en) Control device for fuel cell system
CA3013996C (en) Method and windfarm control module for controlling a windfarm
JP6903951B2 (en) Power system
EP2339416B1 (en) System and method for controlling a machine
WO2017175381A1 (en) Electric power steering device
US20240239466A1 (en) Fully integrated hybrid power generation system for a vessel
JP5241706B2 (en) ELECTRONIC DRIVE SYSTEM ELECTRONIC CONTROL DEVICE, ELECTRIC DRIVE SYSTEM ELECTRONIC DRIVE UNIT, AND ELECTRIC DRIVE SYSTEM
US8183809B2 (en) Drive device for at least one electric motor and drive control unit interacting with the drive device
US10063171B2 (en) Control apparatus for internal combustion engine
US9827929B2 (en) Method for managing a system for supplying a vehicle electrical system with electrical energy
KR102004123B1 (en) Apparatus for hybrid series electrical power and its management method
JP2011173512A (en) Idling stop device and electric power control method
CN117254546A (en) System power supply structure, backup power supply device, control method, and storage medium
US20140214181A1 (en) Control system for software termination protection
JP5353624B2 (en) Robot control apparatus and robot control method
JP2008154397A (en) Power controller
JP6593976B2 (en) Control device and driving method
US10566800B2 (en) Method for controlling a genset system
JP3983746B2 (en) Power management method for pod propulsion ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees