JP4867320B2 - High strength steel member and manufacturing method thereof - Google Patents

High strength steel member and manufacturing method thereof Download PDF

Info

Publication number
JP4867320B2
JP4867320B2 JP2005350788A JP2005350788A JP4867320B2 JP 4867320 B2 JP4867320 B2 JP 4867320B2 JP 2005350788 A JP2005350788 A JP 2005350788A JP 2005350788 A JP2005350788 A JP 2005350788A JP 4867320 B2 JP4867320 B2 JP 4867320B2
Authority
JP
Japan
Prior art keywords
less
steel member
strength
strength steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005350788A
Other languages
Japanese (ja)
Other versions
JP2007154258A (en
Inventor
敏伸 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005350788A priority Critical patent/JP4867320B2/en
Publication of JP2007154258A publication Critical patent/JP2007154258A/en
Application granted granted Critical
Publication of JP4867320B2 publication Critical patent/JP4867320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高強度鋼部材及びその製造方法に関する。特に、本発明は、曲げ変形時の吸収エネルギーに優れた高強度鋼部材及びその製造方法に関する。   The present invention relates to a high-strength steel member and a method for manufacturing the same. In particular, the present invention relates to a high-strength steel member excellent in absorbed energy during bending deformation and a method for producing the same.

近年、自動車の燃費向上あるいは衝突時の乗員の安全性向上を図るため、引張強さが780MPa以上の高強度鋼板を、補強部材を中心に自動車部品へ適用することが積極的に検討されている。しかしながら、引張強さが780MPa以上の高強度鋼板には、成形性に乏しいために成形時の割れや形状不良が生じやすいとともに、素材コストが高いという問題がある。   In recent years, in order to improve the fuel efficiency of automobiles and the safety of passengers in the event of a collision, it has been actively studied to apply high-strength steel sheets with a tensile strength of 780 MPa or more to automobile parts, mainly reinforcing members. . However, a high strength steel sheet having a tensile strength of 780 MPa or more has a problem that since the formability is poor, cracks and shape defects are likely to occur during forming and the material cost is high.

そこで、近年では、440MPaレベルの低強度の鋼板を用いて成形性を確保するとともに、高周波焼入れ等を行うことにより高強度化を図ることが行われている。例えば、非特許文献1には、センターピラーリンフォースメントやフロントクロスメンバー等にそれぞれ440MPa、390MPaレベルの低強度の鋼板を用い、高周波焼入れを行うことにより所望の高強度を確保する発明が開示されている。   Therefore, in recent years, high strength has been achieved by securing formability using a low strength steel plate of 440 MPa level and performing induction hardening or the like. For example, Non-Patent Document 1 discloses an invention that secures a desired high strength by induction hardening using low strength steel plates of 440 MPa and 390 MPa levels for the center pillar reinforcement and the front cross member, respectively. ing.

また、特許文献1には、オーステナイト域に加熱されて軟質化かつ高延性化する鋼板にプレス成形を行うことにより複雑な形状に寸法精度よく成形するとともに、金型内で急冷(焼入れ)することによりマルテンサイト変態を図って鋼板を高強度化する発明が開示されている。
特開2002−102980号公報 まてりあ、第37巻、第6号(1998)525〜527頁
Patent Document 1 discloses that a steel sheet that is heated to an austenite region to be softened and highly ductile is press-formed into a complex shape with high dimensional accuracy and rapidly cooled (quenched) in a mold. Discloses an invention for enhancing the strength of a steel sheet by martensitic transformation.
JP 2002-102980 A Materia, Vol. 37, No. 6 (1998) 525-527

非特許文献1や特許文献1により開示される発明は、部材全体の高強度化により衝撃特性の向上、つまり曲げ変形時の吸収エネルギーの向上を図るものである。しかし、これらの発明は、単に部材全体の強度にのみ着目するため、衝撃特性の向上については未だ改善の余地がある。   The invention disclosed in Non-Patent Document 1 and Patent Document 1 aims to improve impact characteristics by increasing the strength of the entire member, that is, to improve the absorbed energy during bending deformation. However, since these inventions focus only on the strength of the entire member, there is still room for improvement in improving the impact characteristics.

本発明の課題は、曲げ変形時の吸収エネルギーに優れるとともに780MPa以上の引張強さを有する高強度鋼部材及びその製造方法を提供することである。   The subject of this invention is providing the high strength steel member which is excellent in the absorbed energy at the time of bending deformation, and has the tensile strength of 780 Mpa or more, and its manufacturing method.

本発明者は、780MPa以上の引張強さを有する高強度鋼部材について、曲げ変形時の吸収エネルギーを向上させることについて鋭意検討を行った結果、化学組成、表面性状、表層部及び内層部の組織の適正化を図ること、換言すれば、製造時の素材の組成と熱処理条件の適正化を図ることにより、780MPa以上の引張強さを維持しながら曲げ変形時の吸収エネルギーを飛躍的に向上させることが可能となることを知見して、本発明を完成した。   As a result of intensive investigations on improving the absorbed energy at the time of bending deformation of a high-strength steel member having a tensile strength of 780 MPa or more, the present inventor has obtained chemical composition, surface properties, surface layer portion and inner layer portion structure. In other words, by optimizing the composition of the raw materials and the heat treatment conditions during production, the absorbed energy during bending deformation is dramatically improved while maintaining the tensile strength of 780 MPa or more. As a result, the present invention has been completed.

本発明は、C:0.08%以上0.45%以下(本明細書においては特にことわりがない限り「%」は「質量%」を意味する。)、Si:0.5%以下、Mn+Cr:0.5%以上3.0%以下、P:0.05%以下、S:0.05%以下、Al:1%以下、N:0.01%以下を含有し、残部Feおよび不純物からなる鋼組成を有し、表面から深さ15μmまでの表層部におけるフェライトの組織分率が80%以上であり、さらに、この表層部を除いた内層部が旧オーステナイト平均粒径25μm以下のマルテンサイトからなり、かつこの表面の中心線平均粗さRaと、表面粗さ曲線の中心線から0.3175μm以上の山と0.3175μm以上の谷との対の25.4mm当りの数PPIとの積が200以上であることを特徴とする、引張強さが780MPa以上の高強度鋼部材である。   In the present invention, C: 0.08% or more and 0.45% or less (in this specification, “%” means “mass%” unless otherwise specified), Si: 0.5% or less, Mn + Cr : 0.5% or more and 3.0% or less, P: 0.05% or less, S: 0.05% or less, Al: 1% or less, N: 0.01% or less, from the balance Fe and impurities Martensite having a steel composition of which the structure fraction of ferrite in the surface layer portion from the surface to a depth of 15 μm is 80% or more, and the inner layer portion excluding the surface layer portion has a prior austenite average particle size of 25 μm or less And the product of the center line average roughness Ra of this surface and the number PPI per 25.4 mm of a pair of a peak of 0.3175 μm or more and a valley of 0.3175 μm or more from the center line of the surface roughness curve Tensile, characterized in that is 200 or more Saga is 780MPa or more high strength steel member.

この本発明にかかる高強度鋼部材では、さらに、Ni:2%以下および/またはCu:1%以下を含有することが望ましい。
これらの本発明にかかる高強度鋼部材では、さらに、B:0.01%以下を含有することが望ましい。
The high strength steel member according to the present invention preferably further contains Ni: 2% or less and / or Cu: 1% or less.
These high-strength steel members according to the present invention preferably further contain B: 0.01% or less.

これらの本発明にかかる高強度鋼部材では、さらに、Nb:1.0%以下、Ti:1.0%以下、Mo:1.0%以下およびV:1.0%以下からなる群から選ばれた1種または2種以上を含有することが望ましい。   These high-strength steel members according to the present invention are further selected from the group consisting of Nb: 1.0% or less, Ti: 1.0% or less, Mo: 1.0% or less, and V: 1.0% or less. It is desirable to contain one kind or two or more kinds.

別の観点からは、本発明は、上述した鋼組成を有する鋼材を、平均昇温速度1〜100℃/sでAc点以上(Ac点+200℃)以下の温度域に加熱し、この温度域に5分間以下保持した後、上部臨界冷却速度以上の冷却速度で焼入れ処理を施すことを特徴とする、本発明にかかる高強度鋼部材の製造方法である。 From another viewpoint, the present invention heats a steel material having the above steel composition to a temperature range of Ac 3 points or more (Ac 3 points + 200 ° C.) at an average temperature rising rate of 1 to 100 ° C./s, and this The method for producing a high-strength steel member according to the present invention is characterized in that after being kept in a temperature range for 5 minutes or less, quenching is performed at a cooling rate equal to or higher than the upper critical cooling rate.

この本発明にかかる高強度鋼部材の製造方法では、鋼材が、表面の中心線平均粗さRaと、表面粗さ曲線の中心線から0.3175μm以上の山と0.3175μm以上の谷との対の25.4mmあたりの数PPIとの積が50以上であることが望ましい。   In the manufacturing method of the high strength steel member according to the present invention, the steel material has a surface centerline average roughness Ra, a peak of 0.3175 μm or more and a valley of 0.3175 μm or more from the centerline of the surface roughness curve. The product of the number PPI per 25.4 mm of the pair is preferably 50 or more.

本発明により、曲げ変形時の吸収エネルギーに優れるとともに780MPa以上の引張強さを有する高強度鋼部材及びその製造方法を提供できる。   According to the present invention, it is possible to provide a high-strength steel member having excellent tensile energy of 780 MPa or more and a method for producing the same while being excellent in absorbed energy during bending deformation.

本発明にかかる高強度鋼部材及びその製造方法を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。
本実施の形態の高強度鋼部材、およびその素材である鋼材の組成の限定理由を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A best mode for carrying out a high strength steel member and a method for producing the same according to the present invention will be described in detail with reference to the accompanying drawings.
The reason for limiting the composition of the high-strength steel member of the present embodiment and the steel material that is the material thereof will be described.

C:0.08%以上0.45%以下
Cは、焼入れ性を高め、かつ焼入れ後の強度を決定する非常に重要な元素である。780MPa以上の引張強さを確保するために、少なくとも0.08%以上含有させる。一方、C含有量が0.45%を超えると強度が高くなり過ぎ、靱性劣化が著しくなり、曲げ変形時の吸収エネルギーが低下する。そこで、本実施の形態では、C含有量は0.08%以上0.45%以下と限定する。より望ましいC含有量の下限は0.15%であり、上限は0.33%である。
C: 0.08% or more and 0.45% or less C is a very important element that enhances hardenability and determines strength after quenching. In order to ensure a tensile strength of 780 MPa or more, at least 0.08% or more is contained. On the other hand, when the C content exceeds 0.45%, the strength becomes too high, the toughness is significantly deteriorated, and the absorbed energy at the time of bending deformation is reduced. Therefore, in the present embodiment, the C content is limited to 0.08% or more and 0.45% or less. A more desirable lower limit of the C content is 0.15%, and an upper limit is 0.33%.

Si:0.5%以下
Siは、焼入れ性を高めかつ焼入れ後の強度の安定確保に有効な元素である。しかし、Si含有量が0.5%を超えてもこのような効果の向上は望めず、いたずらにコストの増加を招いてしまう。そこで、本実施の形態では、Si含有量は0.5%以下と限定する。
Si: 0.5% or less Si is an element that enhances hardenability and is effective for ensuring stable strength after quenching. However, even if the Si content exceeds 0.5%, such an effect cannot be expected, and the cost is unnecessarily increased. Therefore, in the present embodiment, the Si content is limited to 0.5% or less.

Mn+Cr:0.5%以上3.0%以下
MnおよびCrは、いずれも、焼入れ性を高め、かつ焼入れ後の強度を安定して確保するために、非常に有効な元素である。MnおよびCrの合計含有量(以下、「(Mn+Cr)含有量」ともいう。)が0.5%未満ではこのような効果を十分得ることができず、一方、(Mn+Cr)含有量が3.0%を超えるとその効果は飽和し、かえって安定した強度確保が困難になる。そこで、本実施の形態では、(Mn+Cr)含有量は0.5%以上3.0%以下と限定する。より望ましい(Mn+Cr)含有量の下限は0.8%であり、上限は2.0%である。
Mn + Cr: 0.5% or more and 3.0% or less Mn and Cr are very effective elements for improving the hardenability and ensuring the strength after quenching stably. If the total content of Mn and Cr (hereinafter also referred to as “(Mn + Cr) content”) is less than 0.5%, such an effect cannot be sufficiently obtained, while the (Mn + Cr) content is 3. If it exceeds 0%, the effect is saturated, and it is difficult to secure stable strength. Therefore, in this embodiment, the (Mn + Cr) content is limited to 0.5% to 3.0%. The lower limit of the more desirable (Mn + Cr) content is 0.8%, and the upper limit is 2.0%.

P:0.05%以下
P含有量が0.05%を超えると、鋼部材の靱性が大きく劣化する。そこで、本実施の形態では、P含有量は0.05%以下と限定する。
P: 0.05% or less When the P content exceeds 0.05%, the toughness of the steel member is greatly deteriorated. Therefore, in the present embodiment, the P content is limited to 0.05% or less.

S:0.05%以下
S含有量が0.05%を超えると、鋼部材の靱性が大きく劣化する。そこで、本実施の形態では、S含有量は0.05%以下と限定する。
S: 0.05% or less When the S content exceeds 0.05%, the toughness of the steel member is greatly deteriorated. Therefore, in the present embodiment, the S content is limited to 0.05% or less.

Al:1%以下
Alは、焼入れ性を高めかつ焼入れ後の強度の安定確保に有効な元素である。しかし、Al含有量が1%を超えるとこのような効果は飽和し、いたずらにコストの増加を招くこととなる。そこで、本実施の形態では、Al含有量は1%以下と限定する。
Al: 1% or less Al is an element that enhances hardenability and is effective for ensuring stable strength after quenching. However, when the Al content exceeds 1%, such an effect is saturated, and the cost is unnecessarily increased. Therefore, in the present embodiment, the Al content is limited to 1% or less.

N:0.01%以下
Nは、焼入れ性を高めかつ焼入れ後の強度の安定確保に有効な元素である。しかし、N含有量が0.01%を超えるとこのような効果は飽和し、いたずらにコストの増加を招くこととなる。そこで、本実施の形態では、N含有量は0.01%以下と限定する。
さらに、本実施の形態では、以下の元素を任意添加元素として含有してもよいので、これらの任意添加元素についても説明する。
N: 0.01% or less N is an element that enhances hardenability and is effective for ensuring stable strength after quenching. However, when the N content exceeds 0.01%, such an effect is saturated and the cost is unnecessarily increased. Therefore, in the present embodiment, the N content is limited to 0.01% or less.
Further, in the present embodiment, the following elements may be included as optional addition elements, and therefore these optional addition elements will be described.

Ni:2%以下および/またはCu:1%以下
Ni、Cuは、本実施の形態では任意添加元素であり、焼入れ性を高めかつ焼入れ後の強度の安定確保に有効な元素であるので、必要に応じて1種または2種を含有させることができる。しかし、Ni:2%超、Cu:1%超含有させてもその効果は小さく、いたずらにコストの増加を招くこととなる。そこで、Ni、Cuを含有させる場合には、その含有量は、Ni:2%以下および/またはCu:1%以下とすることが望ましい。より望ましいB含有量の下限は、Niについては0.01%であり、Cuについては0.01%である。
Ni: 2% or less and / or Cu: 1% or less Ni and Cu are optional addition elements in the present embodiment, and are necessary because they are elements effective for enhancing hardenability and ensuring stable strength after quenching. 1 type or 2 types can be contained according to. However, even if Ni is contained in excess of 2% and Cu is contained in excess of 1%, the effect is small and the cost is unnecessarily increased. Therefore, when Ni and Cu are contained, the content is desirably Ni: 2% or less and / or Cu: 1% or less. A more desirable lower limit of the B content is 0.01% for Ni and 0.01% for Cu.

B:0.01%以下
Bは、本実施の形態では任意添加元素であり、焼入れ性を高めかつ焼入れ後の強度の安定確保に有効な元素である。また、粒界に偏析して粒界強度を高め、靱性を改善し、曲げ変形時の吸収エネルギーを向上させる点でも重要な元素である。さらに、焼入れ前の昇温時におけるオーステナイト粒の成長を抑制する効果も高い。しかし、B含有量が0.01%を超えるとこのような効果は飽和し、コストの増加を招くこととなる。そこで、Bを含有させる場合には、その含有量は0.01%以下と限定することが望ましい。より望ましいB含有量の下限は0.001%であり、上限は0.0030%である。
B: 0.01% or less B is an optional additive element in the present embodiment, and is an element that enhances hardenability and is effective in ensuring the stability of strength after quenching. It is also an important element in that it segregates at the grain boundaries to increase grain boundary strength, improve toughness, and increase the energy absorbed during bending deformation. Furthermore, the effect of suppressing the growth of austenite grains at the time of temperature rise before quenching is also high. However, when the B content exceeds 0.01%, such an effect is saturated and the cost is increased. Therefore, when B is contained, the content is desirably limited to 0.01% or less. A more desirable lower limit of the B content is 0.001%, and an upper limit is 0.0030%.

Nb:1.0%以下、Ti:1.0%以下、Mo:1.0%以下およびV:1.0%以下からなる群から選ばれた1種または2種以上
Nb、Ti、MoおよびVは、いずれも、任意添加元素であり、Ac点以上に加熱したときに、再結晶を抑制しかつ微細な炭化物を形成してオーステナイト粒を細粒にするため、靱性を大きく改善し、曲げ変形時の吸収エネルギーを向上させる効果を有するので、1種または2種以上を含有させる。しかし、各元素の含有量が1.0%を超えても、このような効果は飽和し、いたずらにコストの増加を招く。そこで、Nb、Ti、MoまたはVを含有させる場合には、その含有量はNb:1.0%以下、Ti:1.0%以下、Mo:1.0%以下またはV:1.0%以下と限定することが望ましい。
One or more selected from the group consisting of Nb: 1.0% or less, Ti: 1.0% or less, Mo: 1.0% or less, and V: 1.0% or less Nb, Ti, Mo and V is an optional additive element, and when heated to Ac 3 or more points, V suppresses recrystallization and forms fine carbides to make the austenite grains fine, thus greatly improving toughness, Since it has the effect of improving the absorbed energy at the time of bending deformation, one or more kinds are contained. However, even if the content of each element exceeds 1.0%, such an effect is saturated and the cost is unnecessarily increased. Therefore, when Nb, Ti, Mo or V is contained, the content is Nb: 1.0% or less, Ti: 1.0% or less, Mo: 1.0% or less, or V: 1.0%. It is desirable to limit to the following.

望ましいNb含有量の下限は0.01%、上限は0.2%であり、さらに望ましいNb含有量の下限は0.02%、上限は0.15%である。また、望ましいTi含有量の下限は0.005%、上限は0.2%であり、さらに望ましい下限は0.01%であり、上限は0.15%である。また、望ましいMo含有量の下限は0.01%であり、上限は0.2%であり、さらに望ましい下限は0.02%であり、上限は0.15%である。さらに、望ましいV含有量の下限は0.01%であり、上限は0.2%であり、さらに望ましい下限は0.02%であり、上限は0.15%である。   A desirable lower limit of the Nb content is 0.01% and an upper limit is 0.2%, and a more desirable lower limit of the Nb content is 0.02% and an upper limit is 0.15%. Further, the lower limit of the desirable Ti content is 0.005%, the upper limit is 0.2%, the more desirable lower limit is 0.01%, and the upper limit is 0.15%. The desirable lower limit of the Mo content is 0.01%, the upper limit is 0.2%, the more desirable lower limit is 0.02%, and the upper limit is 0.15%. Furthermore, the lower limit of the desirable V content is 0.01%, the upper limit is 0.2%, the more desirable lower limit is 0.02%, and the upper limit is 0.15%.

上述した以外の組成は、Feおよび不純物である。
本実施の形態の高強度鋼部材、およびその素材である鋼材は、以上説明した鋼組成を有する。
Compositions other than those described above are Fe and impurities.
The high-strength steel member of the present embodiment and the steel material that is the material thereof have the steel composition described above.

次に、この本実施の形態の高強度鋼部材の製造法を説明する。
本実施の形態では、この実施の形態の高度鋼部材は、上述した鋼組成を有する鋼材を、平均昇温速度1〜100℃/sでAc点以上(Ac点+200℃)以下の温度域に加熱し、この温度域に5分間以下保持した後、上部臨界冷却速度以上の冷却速度で焼入れ処理を施すことにより、製造される。
Next, the manufacturing method of the high strength steel member of this embodiment will be described.
In the present embodiment, the advanced steel member of this embodiment is a steel material having the above-described steel composition at a temperature of Ac 3 points or more (Ac 3 points + 200 ° C.) at an average temperature rising rate of 1 to 100 ° C./s. It is manufactured by heating to a zone and holding at this temperature zone for 5 minutes or less, followed by quenching at a cooling rate equal to or higher than the upper critical cooling rate.

この本実施の形態の高度鋼部材は、上述した鋼組成を有する鋼材を素材として製造されるが、得られる鋼部材の(Ra×PPI)値をより高めて曲げ変形時の吸収エネルギーを向上させるためには、上述した鋼組成を有するとともに(Ra×PPI)値が50以上である鋼材を素材として用いて焼入れ処理を行うことが望ましい。この鋼材の(Ra×PPI)値は、望ましくは100以上であり、さらに望ましくは150以上である。   The advanced steel member according to the present embodiment is manufactured using a steel material having the above-described steel composition as a raw material, and the (Ra × PPI) value of the obtained steel member is further increased to improve the absorbed energy at the time of bending deformation. For this purpose, it is desirable to perform a quenching treatment using a steel material having the above-described steel composition and having a (Ra × PPI) value of 50 or more as a raw material. The (Ra × PPI) value of this steel material is desirably 100 or more, and more desirably 150 or more.

また、鋼部材の内層部のマルテンサイト化を図るために、鋼材をAc点以上に加熱し、上部臨界冷却速度以上で冷却する必要がある。加熱温度については、(Ac点+200℃)を超えて加熱するとスケール発生量が多くなりすぎたり、旧オーステナイト粒が粗大になり部材全体の靱性劣化が著しくなるため、(Ac点+200℃)以下とする。より望ましい範囲は、Ac点以上(Ac点+150℃)以下、さらに望ましい範囲はAc点以上(Ac点+100℃)以下である。 Further, in order to make the inner layer portion of the steel member martensite, it is necessary to heat the steel material to Ac 3 point or higher and to cool at the upper critical cooling rate or higher. As for the heating temperature, if heating exceeds (Ac 3 points + 200 ° C.), the amount of scale generated becomes too large, or the prior austenite grains become coarse and the toughness of the whole member becomes severely deteriorated (Ac 3 points + 200 ° C.). The following. A more desirable range is Ac 3 points or more (Ac 3 points + 150 ° C.) or less, and a further desirable range is Ac 3 points or more (Ac 3 points + 100 ° C.).

鋼材の平均昇温速度を1℃/s以上100℃/s以下とすると、フェライト域での加熱時間が長くなるため、表層の脱炭反応が促進し、焼入れ冷却時に表層にフェライト層が形成されやすくなる。平均昇温速度が1℃/s未満ではフェライト主体層の厚さが15μm以上を超えてしまう。一方、平均昇温速度が100℃/sをこえると、フェライト相の形成が十分ではなくなる。望ましい範囲は1℃/s以上50℃/s以下、さらに望ましい範囲は1℃/s以上20℃/s以下である。   When the average heating rate of the steel material is 1 ° C./s or more and 100 ° C./s or less, the heating time in the ferrite region becomes long, so the decarburization reaction of the surface layer is promoted, and a ferrite layer is formed on the surface layer during quenching cooling. It becomes easy. If the average heating rate is less than 1 ° C./s, the thickness of the ferrite main layer exceeds 15 μm or more. On the other hand, if the average heating rate exceeds 100 ° C./s, the ferrite phase is not sufficiently formed. A desirable range is 1 ° C./s to 50 ° C./s, and a more desirable range is 1 ° C./s to 20 ° C./s.

内層部のマルテンサイトの旧オーステナイト粒細粒化を図るため、昇温後の保持時間は5分間以下とする。望ましくは3分間以下、より望ましくは1分間以下である。なお、ここでいう保持時間とは、Ac点に達した時点からの経過時間を意味する。 In order to refine the prior austenite grains of the martensite in the inner layer, the holding time after the temperature rise is set to 5 minutes or less. Desirably 3 minutes or less, more desirably 1 minute or less. Here, the holding time means the elapsed time from the point when Ac 3 points are reached.

冷却速度は、鋼部材の内層部のマルテンサイト化を図るために、上部臨界冷却速度以上の冷却速度とする。その手段としては、水冷、油冷、金型による冷却等のいずれの手段を用いてもよい。   The cooling rate is set to a cooling rate equal to or higher than the upper critical cooling rate in order to achieve martensite formation of the inner layer portion of the steel member. As the means, any means such as water cooling, oil cooling, and cooling by a mold may be used.

次に、このようにして製造される本実施の形態の高強度鋼部材の表面性状、表層部及び内層部の組織について説明する。
表面から深さ15μmまでの表層部におけるフェライトの組織分率:80%以上
鋼部材の表層部をフェライト主体の組織とすることにより、曲げ変形時の吸収エネルギーを向上することができる。フェライト組織分率が80%未満であると、吸収エネルギーの向上効果が十分ではなくなるので、この表層部におけるフェライトの組織分率を80%以上とする。望ましくは85%以上、さらに望ましくは90%以上である。なお、フェライト主体の組織とする表層部の厚さが15μmを超えると、鋼部材全体の強度が低下するので、表層部は表面から深さで15μmまでの範囲とする。
Next, the surface properties of the high-strength steel member of the present embodiment manufactured as described above, and the structure of the surface layer portion and the inner layer portion will be described.
Structure fraction of ferrite in the surface layer part from the surface to a depth of 15 μm: 80% or more By making the surface layer part of the steel member mainly composed of ferrite, the absorbed energy at the time of bending deformation can be improved. If the ferrite structure fraction is less than 80%, the effect of improving the absorbed energy is not sufficient, so the ferrite structure fraction in the surface layer portion is set to 80% or more. It is desirably 85% or more, and more desirably 90% or more. In addition, when the thickness of the surface layer portion, which is a structure mainly composed of ferrite, exceeds 15 μm, the strength of the entire steel member is lowered. Therefore, the surface layer portion has a depth of 15 μm from the surface.

表層部を除いた内層部:旧オーステナイト平均粒径25μm以下のマルテンサイト主体の組織
上述した表層部を除く鋼部材の内層部のマルテンサイトの旧オーステナイト平均粒径を小さくすることにより、曲げ変形時の吸収エネルギーを向上することができる。旧オーステナイト平均粒径が25μmを超えると、その効果は十分でないので、25μm以下とする。望ましくは20μm以下、さらに望ましくは15μm以下である。なお、本発明におけるマルテンサイトに、残留オーステナイト及びベイナイトを併せて10体積%未満含まれていても、実質的に特性には影響を及ぼさないので、許容される。
Inner layer portion excluding the surface layer portion: Old martensite average particle size of 25 μm or less old martensite-based structure By reducing the old austenite average particle size of martensite in the inner layer portion of the steel member excluding the surface layer portion described above, during bending deformation The absorbed energy can be improved. If the prior austenite average particle diameter exceeds 25 μm, the effect is not sufficient, so the average austenite particle diameter is set to 25 μm or less. The thickness is desirably 20 μm or less, and more desirably 15 μm or less. Even if the martensite in the present invention contains less than 10% by volume of retained austenite and bainite, the properties are not substantially affected, so that it is allowed.

表面の中心線平均粗さRaと、表面粗さ曲線の中心線から0.3175μm以上の山と0.3175μm以上の谷との対の25.4mm当りの数PPIとの積(以降、Ra×PPI値と表記する):200以上
鋼部材の表面における(Ra×PPI)値を大きくすることにより、曲げ変形時の吸収エネルギーが向上する。しかし、(Ra×PPI)値が200未満ではこのような効果が十分ではないので、200以上とする。望ましくは250以上、さらに望ましくは300以上である。
The product of the surface centerline average roughness Ra and the number PPI per 25.4 mm of a pair of a peak of 0.3175 μm or more and a valley of 0.3175 μm or more from the centerline of the surface roughness curve (hereinafter referred to as Ra × (Expressed as PPI value): 200 or more By increasing the (Ra × PPI) value on the surface of a steel member, the absorbed energy at the time of bending deformation is improved. However, if the (Ra × PPI) value is less than 200, such an effect is not sufficient. Desirably 250 or more, more desirably 300 or more.

本実施の形態の高強度鋼部材の引張強さ:780MPa以上
本実施の形態の高強度鋼部材の引張強度は、780MPa以上である。このため、この高強度鋼部材は、センターピラーリンフォースメントやフロントクロスメンバー等の自動車用高強度部品用の素材として極めて望ましいものである。
Tensile strength of the high-strength steel member of this embodiment : 780 MPa or more The tensile strength of the high-strength steel member of this embodiment is 780 MPa or more. For this reason, this high-strength steel member is extremely desirable as a material for high-strength parts for automobiles such as a center pillar reinforcement and a front cross member.

さらに、本発明を実施例を参照しながらより具体的に説明する。
表1に示す化学組成、Ac点および(Ra×PPI)値を有する、板厚は2.3mmの鋼板を鋼部材の素材である鋼材とした。これらの鋼板は、実験室で溶製したスラブを、熱間圧延または熱間圧延後に酸洗を行い冷間圧延により製造した鋼板である。また、鋼板の表面の粗さ調整のため、スキンパス圧延を行った。
Furthermore, the present invention will be described more specifically with reference to examples.
A steel plate having a chemical composition, Ac 3 points and (Ra × PPI) value shown in Table 1 and having a plate thickness of 2.3 mm was used as a steel material. These steel plates are steel plates manufactured by cold rolling by pickling hot-rolled or hot-rolled slabs in a laboratory. In addition, skin pass rolling was performed to adjust the surface roughness of the steel sheet.

これらの鋼板から、厚さ2.3mm、幅70mmおよび長さ160mmの寸法の試料を切断し、大気雰囲気の加熱炉内で、表2に示す条件(昇温速度、加熱温度、保持時間)にて加熱して、加熱炉より取り出し、その直後に水冷焼入れまたは平板の鋼製金型を用いてプレスし焼入れを行った。また鋼板に熱電対を貼付し、冷却速度測定も行った。焼入れ時の冷却速度を表2に併せて示す。   Samples having a thickness of 2.3 mm, a width of 70 mm, and a length of 160 mm were cut from these steel plates, and the conditions shown in Table 2 (temperature increase rate, heating temperature, holding time) were performed in a heating furnace in an air atmosphere. Then, it was taken out from the heating furnace, and immediately after that, it was quenched by water cooling or pressing using a flat steel mold. A thermocouple was attached to the steel plate, and the cooling rate was also measured. Table 2 also shows the cooling rate during quenching.

得られた鋼部材については、断面組織観察、切断法による旧オーステナイト粒径測定、引張試験(JIS5号試験片)、静的3点曲げ試験に供した。
表層部のフェライト組織分率は、断面の光学顕微鏡観察画像または電子顕微鏡観察画像より、画像解析を行って算出した。
About the obtained steel member, it used for the cross-sectional structure | tissue observation, the old austenite particle size measurement by the cutting method, the tension test (JIS No. 5 test piece), and the static three-point bending test.
The ferrite structure fraction of the surface layer portion was calculated by performing image analysis from an optical microscope observation image or an electron microscope observation image of the cross section.

各鋼種のAc点及び上部臨界冷却速度は、次記方法にて測定した。すなわち、熱延鋼板から、図1に示す、直径3.0mmおよび長さ10mmの円柱試験片を切り出し、大気中で900℃まで10℃/sの昇温速度にて加熱し、その温度で5分間保持した後、種々の冷却速度で室温まで冷却した。そのときの加熱、冷却中の試験片の熱膨張変化を測定することにより、Ac点、Ms点を測定した。また、得られた試験片のビッカース硬度測定(荷重49N、測定数:3)及び組織観察を行い、それらの結果から上部臨界冷却速度を見積もった。 The three Ac points and the upper critical cooling rate of each steel type were measured by the following method. That is, a cylindrical test piece having a diameter of 3.0 mm and a length of 10 mm shown in FIG. 1 is cut out from the hot-rolled steel sheet, heated to 900 ° C. at a temperature increase rate of 10 ° C./s, and at that temperature, 5 After holding for a minute, it was cooled to room temperature at various cooling rates. The Ac 3 point and Ms point were measured by measuring the thermal expansion change of the test piece during heating and cooling at that time. Moreover, the Vickers hardness measurement (load 49N, the number of measurements: 3) and structure | tissue observation of the obtained test piece were performed, and the upper critical cooling rate was estimated from those results.

表面粗さに関するRa及びPPIについては、JIS−B0601及びSAEJ911に基づき測定した。
静的3点曲げ試験条件は、ポンチ径R6.5、ストローク速度10mm/min、スパン間隔140mmとした。吸収エネルギーについては、最大荷重までの吸収エネルギーで評価した。
About Ra and PPI regarding surface roughness, it measured based on JIS-B0601 and SAEJ911.
The static three-point bending test conditions were a punch diameter R6.5, a stroke speed of 10 mm / min, and a span interval of 140 mm. The absorbed energy was evaluated by the absorbed energy up to the maximum load.

結果を表2にまとめて示す。表2に示すように、本発明例および比較例それぞれの同一引張強さを有する部材(鋼種No.1−6、2−7、3−8、4−9、5−10)を比較すると、強度は略同じであっても吸収エネルギーに関して、本発明例が約10%程度比較例よりも高くなっていることから、本発明の効果は明らかである。   The results are summarized in Table 2. As shown in Table 2, when the members (steel types No. 1-6, 2-7, 3-8, 4-9, 5-10) having the same tensile strengths of the present invention example and the comparative example are compared, Even if the strength is substantially the same, the effect of the present invention is clear since the example of the present invention is higher than the comparative example by about 10% with respect to the absorbed energy.

また、本発明例の高強度鋼部材は、曲げ変形時の吸収エネルギーが、引張強さに対する曲げ変形時の吸収エネルギ比{(吸収エネルギー)/(引張強さ)}で0.28(J/MPa)以上と、優れるとともに、780MPa以上の引張強さを有する。 また、比較の典型例として、鋼種No.3及びNo.8についての荷重−ストローク曲線を図2にグラフで示す。図2に示す結果から、吸収エネルギーに関して本発明例である鋼種No.3は比較例である鋼種No.8よりも良好であることが明らかである。   Further, in the high strength steel member of the present invention, the absorbed energy at the time of bending deformation is 0.28 (J / J) in the ratio of absorbed energy at the time of bending deformation to the tensile strength {(absorbed energy) / (tensile strength)}. MPa) or more, and excellent tensile strength of 780 MPa or more. In addition, as a typical example of comparison, steel type No. 3 and no. The load-stroke curve for 8 is shown graphically in FIG. From the results shown in FIG. 2, the steel type No. which is an example of the present invention regarding the absorbed energy. 3 is a steel type No. 3 as a comparative example. It is clear that it is better than 8.

Figure 0004867320
Figure 0004867320

Figure 0004867320
Figure 0004867320

C3点及び上部臨界冷却速度測定用試験片を示す説明図である。It is explanatory drawing which shows the test piece for AC3 point and an upper critical cooling rate. 荷重−ストローク曲線である。It is a load-stroke curve.

Claims (6)

質量%で、C:0.08〜0.45%、Si:0.5%以下、Mn+Cr:0.5〜3.0%、P:0.05%以下、S:0.05%以下、Al:1%以下、N:0.01%以下を含有し、残部Feおよび不純物からなる鋼組成を有し、表面から深さ15μmまでの表層部におけるフェライトの組織分率が80%以上であり、さらに、前記表層部を除いた内層部が旧オーステナイト平均粒径25μm以下のマルテンサイトからなり、かつ該表面の中心線平均粗さRaと、表面粗さ曲線の中心線から0.3175μm以上の山と0.3175μm以上の谷との対の25.4mm当りの数PPIとの積が200以上であることを特徴とする、引張強さが780MPa以上の高強度鋼部材。 In mass%, C: 0.08 to 0.45%, Si: 0.5% or less, Mn + Cr: 0.5 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: not more than 1%, N: not more than 0.01%, having a steel composition consisting of the remainder Fe and impurities, and having a structure fraction of ferrite of 80% or more in the surface layer portion from the surface to a depth of 15 μm Furthermore, the inner layer portion excluding the surface layer portion is composed of martensite having a prior austenite average particle size of 25 μm or less, and the center line average roughness Ra of the surface is 0.3175 μm or more from the center line of the surface roughness curve. A high-strength steel member having a tensile strength of 780 MPa or more, characterized in that a product of a number PPI per 25.4 mm of a pair of a mountain and a valley of 0.3175 μm or more is 200 or more. さらに、質量%で、Ni:2%以下および/またはCu:1%以下を含有する請求項1に記載された高強度鋼部材。 The high-strength steel member according to claim 1, further comprising, by mass%, Ni: 2% or less and / or Cu: 1% or less. さらに、質量%で、B:0.01%以下を含有する請求項1または請求項2に記載された高強度鋼部材。 Furthermore, the high-strength steel member described in Claim 1 or Claim 2 which contains B: 0.01% or less by mass%. さらに、質量%で、Nb:1.0%以下、Ti:1.0%以下、Mo:1.0%以下およびV:1.0%以下からなる群から選ばれた1種または2種以上を含有する請求項1から請求項3までのいずれか1項に記載された高強度鋼部材。 Furthermore, by mass%, Nb: 1.0% or less, Ti: 1.0% or less, Mo: 1.0% or less, and V: 1.0% or less selected from the group consisting of 1.0% or less The high-strength steel member according to any one of claims 1 to 3, comprising: 請求項1から請求項までのいずれか1項に記載された鋼組成を有する鋼材を、平均昇温速度1〜100℃/sでAc点以上(Ac点+200℃)以下の温度域に加熱し、該温度域に5分間以下保持した後、上部臨界冷却速度以上の冷却速度で焼入れ処理を施すことを特徴とする請求項1から請求項4までのいずれか1項に記載された高強度鋼部材の製造方法。 The steel having the steel composition described in any one of claims 1 to 4, at an average heating rate 1 to 100 ° C. / s Ac 3 point or more (Ac 3 point + 200 ° C.) below the temperature range 5, and after maintaining at the temperature range for 5 minutes or less, a quenching treatment is performed at a cooling rate that is equal to or higher than the upper critical cooling rate. Manufacturing method of high strength steel members. 前記鋼材は、表面の中心線平均粗さRaと、表面粗さ曲線の中心線から0.3175μm以上の山と0.3175μm以上の谷との対の25.4mmあたりの数PPIとの積が50以上である請求項5に記載された高強度鋼部材の製造方法。 The steel material has a product of the surface center line average roughness Ra and the number PPI per 25.4 mm of a pair of a peak of 0.3175 μm or more and a valley of 0.3175 μm or more from the center line of the surface roughness curve. The method for producing a high-strength steel member according to claim 5, which is 50 or more.
JP2005350788A 2005-12-05 2005-12-05 High strength steel member and manufacturing method thereof Active JP4867320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350788A JP4867320B2 (en) 2005-12-05 2005-12-05 High strength steel member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350788A JP4867320B2 (en) 2005-12-05 2005-12-05 High strength steel member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007154258A JP2007154258A (en) 2007-06-21
JP4867320B2 true JP4867320B2 (en) 2012-02-01

Family

ID=38238995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350788A Active JP4867320B2 (en) 2005-12-05 2005-12-05 High strength steel member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4867320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105163880A (en) * 2013-05-09 2015-12-16 新日铁住金株式会社 Surface grain refining hot-shearing method and product of surface grain refining hot-shearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046721A (en) * 2007-08-17 2009-03-05 Sumitomo Metal Ind Ltd Steel sheet for heat treatment
RU2631216C1 (en) 2013-12-27 2017-09-19 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-pressed steel sheet part, method of its manufacture and steel sheet for hot pressing
CN106119693B (en) * 2016-08-24 2018-01-12 武汉钢铁有限公司 With the thin hot forming steel of tensile strength >=2100MPa of sheet billet Direct Rolling and production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265582B2 (en) * 2001-02-07 2009-05-20 Jfeスチール株式会社 Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JP2003193191A (en) * 2001-12-25 2003-07-09 Jfe Steel Kk High tensile strength cold rolled steel sheet with composite structure having excellent deep drawability and production method therefor
JP4492111B2 (en) * 2003-12-03 2010-06-30 Jfeスチール株式会社 Manufacturing method of super high strength steel plate with good shape
JP4673558B2 (en) * 2004-01-26 2011-04-20 新日本製鐵株式会社 Hot press molding method and automotive member excellent in productivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105163880A (en) * 2013-05-09 2015-12-16 新日铁住金株式会社 Surface grain refining hot-shearing method and product of surface grain refining hot-shearing

Also Published As

Publication number Publication date
JP2007154258A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
KR101814949B1 (en) Hot-formed steel sheet member, and method for producing same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP6103165B1 (en) Hot press-formed parts
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101881234B1 (en) Hot-pressed steel sheet member, production method for same, and hot-press steel sheet
JP5667471B2 (en) High-strength steel plate with excellent deep drawability in warm and its warm working method
EP2821517A1 (en) High-strength steel sheet with excellent warm formability and process for manufacturing same
JP5994748B2 (en) High-strength press parts and manufacturing method thereof
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2014015638A (en) Hot press steel sheet member, method for producing the same and steel sheet for hot press
JP7151890B2 (en) hot stamped body
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
KR102512610B1 (en) High-strength steel sheet and its manufacturing method
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
CN109477181B (en) High-strength steel sheet and method for producing same
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP4867320B2 (en) High strength steel member and manufacturing method thereof
JP6003837B2 (en) Manufacturing method of high strength pressed parts
JP5549450B2 (en) High carbon hot-rolled steel sheet excellent in fine blanking property and manufacturing method thereof
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP2014009376A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP6515386B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP2004315927A (en) Steel sheet for hot forming having excellent hardenability after high temperature forming and method of using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350