JP4867181B2 - Thermosetting resin composition for mounting electronic components - Google Patents

Thermosetting resin composition for mounting electronic components Download PDF

Info

Publication number
JP4867181B2
JP4867181B2 JP2005077139A JP2005077139A JP4867181B2 JP 4867181 B2 JP4867181 B2 JP 4867181B2 JP 2005077139 A JP2005077139 A JP 2005077139A JP 2005077139 A JP2005077139 A JP 2005077139A JP 4867181 B2 JP4867181 B2 JP 4867181B2
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
mounting
electronic component
electronic components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005077139A
Other languages
Japanese (ja)
Other versions
JP2006257280A (en
Inventor
和巳 江後田
友彰 後藤
敏之 管野
克己 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005077139A priority Critical patent/JP4867181B2/en
Publication of JP2006257280A publication Critical patent/JP2006257280A/en
Application granted granted Critical
Publication of JP4867181B2 publication Critical patent/JP4867181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば、回路基板上に半導体チップ等の電子部品をフリップチップ実装する際に用いる電子部品実装用熱硬化性樹脂組成物に関する。   The present invention relates to a thermosetting resin composition for mounting electronic components used when flip-chip mounting electronic components such as semiconductor chips on a circuit board, for example.

近年、電子機器の小型化、高性能化に伴い、パッケージの小型化がなされ、半導体素子等の電子部品を回路基板上に実装する際の、多ピン化、小型化等の高密度実装化が求められている。そして、これらを実現させる実装技術としてCSP(Chip Size Package)、BGA(Ball Grid Array)等のエリアバンプアレイ型のフリップチップ実装が主流となりつつある。   In recent years, with the miniaturization and high performance of electronic devices, the size of packages has been reduced, and when mounting electronic components such as semiconductor elements on circuit boards, high-density mounting such as multi-pin and miniaturization has been achieved. It has been demanded. As a mounting technique for realizing these, area bump array type flip chip mounting such as CSP (Chip Size Package) and BGA (Ball Grid Array) is becoming mainstream.

従来のフリップチップ実装には、鉛や錫等の低融点金属あるいは低融点金属合金等の半田バンプを実装面に形成し、半田バンプのセルフアライメント効果を利用して実装する方法がとられていた。しかしながら、この実装方法では半田溶融を利用するため、さらなる高密度実装に伴う多ピン化、狭ピッチ化に対しては、流動性の多寡により各種不具合、例えば隣接する半田バンプ同士が、溶融により繋がってしまう半田ブリッジ等の問題点があった。   In conventional flip chip mounting, a solder bump made of a low melting point metal such as lead or tin or a low melting point metal alloy is formed on the mounting surface, and the solder bump is mounted using the self-alignment effect. . However, since this mounting method uses solder melting, various problems such as adjacent solder bumps are connected by melting due to fluidity in order to reduce the number of pins and pitch due to higher density mounting. There were problems such as solder bridges.

また、半田の鉛フリー化に伴ない、半田の溶融には比較的高温を要するようになり、電子部品への熱的ダメージが生じ易いという問題があった。   In addition, as the solder becomes lead-free, melting of the solder requires a relatively high temperature, and there is a problem that thermal damage to the electronic component is likely to occur.

そこで、近年では半田溶融を用いない別の実装方法として、圧接接合が利用されつつある。圧接接合としては、例えば、加熱しながら圧着する方法や接合時に超音波をかける方法がある。   Therefore, in recent years, pressure welding is being used as another mounting method that does not use solder melting. Examples of the pressure welding include a method of performing pressure bonding while heating and a method of applying ultrasonic waves during bonding.

また、熱硬化性樹脂からなる樹脂接着剤等を用いて、回路基板に電子部品を実装する方法も行われている。例えば下記特許文献1では、金属粒子と熱硬化性樹脂とを含む熱硬化型導電性接着剤を介して素子電極と回路電極とを接合し、回路基板上に電子部品を実装している。   In addition, a method of mounting an electronic component on a circuit board using a resin adhesive made of a thermosetting resin is also performed. For example, in Patent Document 1 below, an element electrode and a circuit electrode are bonded via a thermosetting conductive adhesive containing metal particles and a thermosetting resin, and an electronic component is mounted on a circuit board.

また下記特許文献2では、回路基板上に接着性を有する樹脂フィルムを配置し、樹脂フィルムを介して電子部品の素子電極と、回路基板の回路電極とを接合し、電子部品の表面と回路基板の表面及び樹脂フィルムの表面を覆うように絶縁性樹脂を塗布・硬化させて回路基板上に電子部品を実装している。   In Patent Document 2 below, a resin film having adhesiveness is disposed on a circuit board, and an element electrode of an electronic component and a circuit electrode of the circuit board are joined via the resin film, and the surface of the electronic component and the circuit board are bonded. An insulating resin is applied and cured so as to cover the surface of the substrate and the surface of the resin film, and the electronic component is mounted on the circuit board.

下記特許文献3では、示差走査熱量測定における連続昇温走査速度10K/minでの発熱ピークが、温度453Kから523Kにある特定の組成を持った熱硬化性樹脂組成物を介して素子電極と回路電極とを接合し、回路基板上に電子部品を実装している。   In the following Patent Document 3, an exothermic peak at a continuous temperature rising scanning speed of 10 K / min in differential scanning calorimetry is measured between a device electrode and a circuit through a thermosetting resin composition having a specific composition at a temperature from 453 K to 523 K. Electrodes are joined and electronic components are mounted on the circuit board.

下記特許文献4では、熱硬化性樹脂を介して電子部品表面の素子電極と回路基板上の回路電極とを接合するにあたり、接合−硬化プロセス直後の熱硬化性樹脂組成物の反応率を40%以下又は70%以上に制御し、反応率が40%以下の場合には半田融点以下の温度で後硬化させる工程を含む該熱硬化性樹脂組成物を硬化させることで素子電極と回路電極とを接合し、回路基板上に電子部品を実装している。
特開2000‐251536号公報 特開2001−35884号公報 特開2003‐171535号公報 特開2003‐289089号公報
In the following Patent Document 4, when the element electrode on the surface of the electronic component and the circuit electrode on the circuit board are bonded via the thermosetting resin, the reaction rate of the thermosetting resin composition immediately after the bonding-curing process is 40%. When the reaction rate is 40% or less, the element electrode and the circuit electrode are cured by curing the thermosetting resin composition including a step of post-curing at a temperature below the solder melting point. The electronic components are mounted on the circuit board.
JP 2000-251536 A JP 2001-35884 A JP 2003-171535 A JP 2003-289089 A

熱硬化性樹脂を含む樹脂接着剤を用いた電子部品の実装方法では、高温特性や熱疲労寿命に問題があり、充分な接合部の信頼性が得られないという問題があった。すなわち、樹脂接着剤を用いた電子部品の実装方法は、熱硬化性樹脂を硬化させて電子部品の素子電極と回路基板の回路電極とを接合させるが、熱硬化性樹脂の急激な加熱・硬化により硬化物中の残留応力が増大し、樹脂硬化物又は電子部品の素子電極に微細なマイクロクラックが生じ、電子部品の信頼性が低下する虞があるからである。上記特許文献1〜3の樹脂組成物であっても接合の信頼性が十分なものではなかった。   In the mounting method of the electronic component using the resin adhesive containing the thermosetting resin, there are problems in high temperature characteristics and thermal fatigue life, and there is a problem that sufficient reliability of the joint portion cannot be obtained. In other words, the mounting method of the electronic component using the resin adhesive is to cure the thermosetting resin to join the element electrode of the electronic component and the circuit electrode of the circuit board, but the rapid heating / curing of the thermosetting resin. This is because the residual stress in the cured product increases, fine microcracks are generated in the resin cured product or the element electrode of the electronic component, and the reliability of the electronic component may be reduced. Even with the resin compositions of Patent Documents 1 to 3, the reliability of bonding was not sufficient.

また、上記特許文献4のように樹脂組成物の硬化反応率を制御することで、マイクロクラックを生じにくくすることができるが、樹脂組成物によって反応率にばらつきが生じやすいことがあり品質が安定しないことがあった。また、樹脂組成物の反応率を適宜管理する必要があるので、製造コスト及び製造時間を要するものでもあった。   In addition, by controlling the curing reaction rate of the resin composition as in Patent Document 4, it is possible to make microcracks less likely to occur, but the reaction rate may vary depending on the resin composition, and the quality is stable. I did not. Moreover, since it is necessary to manage the reaction rate of a resin composition suitably, manufacturing cost and manufacturing time were also required.

したがって、本発明の目的は、電子部品の電極と回路基板上の電極との接合の信頼性が高く、また、隣接電極間の絶縁信頼性を確保しつつ、低コストで電子部品の電極を回路基板に接続できる電子部品実装用熱硬化性樹脂組成物を提供することにある。   Accordingly, an object of the present invention is to provide a high reliability of bonding between an electrode of an electronic component and an electrode on a circuit board, and to secure an insulation reliability between adjacent electrodes, and circuit the electrode of the electronic component at a low cost. It is providing the thermosetting resin composition for electronic component mounting which can be connected to a board | substrate.

上記課題を解決するため、電子部品の電極と回路基板の電極との接合に用いられる電子部品実装用熱硬化性樹脂組成物において、平均粒子径1nm〜1μmのエアロゾル状微粒子を含む無機絶縁材料と、平均粒子径100μm以下の導電性フィラーとを含有し、前記電子部品実装用熱硬化性樹脂組成物の示差走査熱量測定における連続昇温走査速度10K/minでの発熱ピークが、温度373Kから523Kの範囲に少なくとも2つ以上存在し、かつ、該樹脂組成物の未硬化時の温度298Kにおける粘度が0.5〜100Pa・sであることを特徴とする。 To solve the above problems, in the electronic component mounting thermosetting resin composition used for bonding the electrodes of the electronic component and the circuit board electrodes, and the inorganic insulating material comprises an aerosol-like particles having an average particle diameter 1nm~1μm And an electroconductive filler having an average particle diameter of 100 μm or less, and an exothermic peak at a continuous heating rate of 10 K / min in the differential scanning calorimetry of the thermosetting resin composition for mounting electronic components has a temperature from 373 K to 523 K. And the viscosity at a temperature of 298 K when the resin composition is uncured is 0.5 to 100 Pa · s.

示差走査熱量測定における発熱ピークが2つ以上有する熱硬化性樹脂組成物は、加熱による硬化反応が多段階にわたって進行するので、硬化反応が緩やかに進行する。したがって、急速な熱硬化を防止でき、該樹脂組成物の硬化物に残留する応力を低減できる。   In a thermosetting resin composition having two or more exothermic peaks in differential scanning calorimetry, since the curing reaction by heating proceeds in multiple stages, the curing reaction proceeds slowly. Accordingly, rapid thermal curing can be prevented, and stress remaining in the cured product of the resin composition can be reduced.

よって、示差走査熱量測定における連続昇温走査速度10K/minでの発熱ピークが、温度373Kから523Kの範囲に少なくとも2つ以上有する熱硬化性樹脂組成物を、電子部品を回路基板上に実装する際に用いた場合、硬化した該樹脂組成物中にマイクロクラック等のクラックが生じにくいため、電子部品の素子電極と回路基板の回路電極との接合の信頼性が高い。   Therefore, an electronic component is mounted on a circuit board with a thermosetting resin composition having at least two exothermic peaks at a temperature rising scanning speed of 10 K / min in differential scanning calorimetry in a temperature range of 373 K to 523 K. When used at the time, cracks such as microcracks are unlikely to occur in the cured resin composition, so that the reliability of bonding between the element electrode of the electronic component and the circuit electrode of the circuit board is high.

また、未硬化物の粘度を、温度298Kにおける粘度0.5〜100Pa・sに制御することで、導電性フィラー粒子を熱硬化性樹脂液に配合する上で、導電性フィラーの沈降速度を遅らせ樹脂液の配合が不均一になることを抑制でき、かつ回路基板上に塗布した際、熱硬化性樹脂液が流出する事を回避できる効果が期待できる。   In addition, by controlling the viscosity of the uncured product to a viscosity of 0.5 to 100 Pa · s at a temperature of 298 K, the sedimentation rate of the conductive filler is delayed in blending the conductive filler particles with the thermosetting resin liquid. It can be expected that the non-uniform mixing of the resin liquid can be suppressed, and that the thermosetting resin liquid can be prevented from flowing out when applied on the circuit board.

更には、本発明において、前記電子部品実装用熱硬化性樹脂組成物は電子部品実装用熱硬化性樹脂組成物全体に対する前記導電性フィラーの体積含有率が5〜90%であることが好ましい。そして、前記電子部品実装用熱硬化性樹脂組成物全体に対する前記無機絶縁性材料の体積含有率が0.1%〜90%であることが好ましい。 Furthermore, in the present invention, the thermosetting resin composition for mounting an electronic component preferably has a volume content of the conductive filler of 5 to 90% with respect to the entire thermosetting resin composition for mounting an electronic component. . And it is preferable that the volume content rate of the said inorganic insulating material with respect to the said thermosetting resin composition for electronic component mounting is 0.1%-90%.

本発明によれば、平均粒子径1nm〜1μmのエアロゾル状微粒子を含む無機絶縁材料と、平均粒子径100μm以下の導電性フィラーとを含有し、示差走査熱量測定における連続昇温走査速度10K/minでの発熱ピークが、温度373Kから523Kの範囲に少なくとも2つ以上存在し、未硬化時の粘度が0.5〜100Pa・sである熱硬化性樹脂組成物を、電子部品の素子電極と回路基板の回路電極とを接合する際に用いることで、電子部品の素子電極と回路基板の回路電極との接合の信頼性を高め、かつ、隣接電極間の絶縁信頼性を確保することができ、容易な方法で、かつ、低コストで電子部品を回路基板に実装することができる。 According to the present invention, an inorganic insulating material containing aerosol fine particles having an average particle diameter of 1 nm to 1 μm and a conductive filler having an average particle diameter of 100 μm or less are contained, and a continuous temperature rising scanning speed in differential scanning calorimetry is 10 K / min. The thermosetting resin composition having at least two exothermic peaks in the temperature range of 373 K to 523 K and having an uncured viscosity of 0.5 to 100 Pa · s is obtained by using an element electrode and a circuit of an electronic component. By using it when joining the circuit electrodes of the substrate, it is possible to increase the reliability of bonding between the element electrode of the electronic component and the circuit electrode of the circuit substrate, and to ensure the insulation reliability between the adjacent electrodes, An electronic component can be mounted on a circuit board by an easy method and at low cost.

本発明の電子部品用熱硬化性樹脂組成物は、示差走査熱量測定における連続昇温走査速度10K/minでの発熱ピークが、温度373Kから523Kの範囲に少なくとも2つ以上有し、かつ、未硬化時の温度298Kにおける粘度が0.5〜100Pa・sである。このような樹脂組成物は、熱硬化性樹脂に硬化剤や硬化触媒を適宜配合することで調製することができ、特定の組成に限定されるものではない。   The thermosetting resin composition for electronic parts of the present invention has at least two exothermic peaks at a temperature rising scanning speed of 10 K / min in differential scanning calorimetry in the temperature range of 373 K to 523 K, and The viscosity at a temperature of 298K during curing is 0.5 to 100 Pa · s. Such a resin composition can be prepared by appropriately blending a curing agent or a curing catalyst with a thermosetting resin, and is not limited to a specific composition.

樹脂の熱硬化性を評価する普遍的技術としては示差走査熱量測定法(DSC)があり、このDSCとは熱量の変化を測定する評価方法である。熱硬化樹脂の重合硬化中の化学反応は発熱反応であり、この熱変化はDSCを使用し、化学反応の範囲に関連して測定することができる。そして、例えば「Epoxy Resin.Chemistry and Technology」5月版、マルセル・デッカー、1988年、1130頁にハダッドが記載しているように、硬化反応中に放出するエネルギー量は、化学反応の程度に比例するという仮説が立てられている。   As a universal technique for evaluating the thermosetting property of a resin, there is a differential scanning calorimetry (DSC), and this DSC is an evaluation method for measuring a change in calorie. The chemical reaction during polymerization and curing of the thermosetting resin is an exothermic reaction, and this thermal change can be measured using DSC in relation to the range of chemical reaction. And, for example, as described by Hadad in “Epoxy Resin. Chemistry and Technology”, May edition, Marcel Decker, 1988, page 1130, the amount of energy released during the curing reaction is proportional to the degree of the chemical reaction. The hypothesis is to be made.

本発明で使用できる熱硬化性樹脂としては、特に限定はなく、例えばエポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂、シリコーン系樹脂、フェノール系樹脂、メラミン系樹脂、アルキド系樹脂、尿素樹脂、アクリル系樹脂、不飽和ポリエステル樹脂等を挙げることができ、これらを単独、ブレンド又は共重合等して用いることができる。   The thermosetting resin that can be used in the present invention is not particularly limited. For example, epoxy resin, urethane resin, acrylic resin, silicone resin, phenol resin, melamine resin, alkyd resin, urea resin, acrylic resin Resin, unsaturated polyester resin and the like, and these can be used alone, blended or copolymerized.

上記熱硬化性樹脂のうち、特にエポキシ樹脂が好ましく、エポキシ樹脂の具体例としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ポリエステル変性エポキシ樹脂、シリコーン変性エポキシ樹脂のような他のポリマーとの共重合体等が挙げられる。これらのうちでは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が、比較的低粘度であり、耐熱性と耐湿性に優れる等の点から特に好ましい。   Of the above thermosetting resins, epoxy resins are particularly preferable. Specific examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, naphthalene type epoxy resins, and biphenyl type epoxy resins. , Glycidylamine type epoxy resins, alicyclic epoxy resins, dicyclopentadiene type epoxy resins, phenol novolac type epoxy resins, polyester modified epoxy resins, copolymers with other polymers such as silicone modified epoxy resins, etc. . Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, etc. have a relatively low viscosity and excellent heat resistance and moisture resistance. It is particularly preferable in view of the above.

また、エポキシ樹脂を用いた場合、分子構造中にエポキシ基を有する反応性希釈剤を更に添加しても良い。反応性希釈剤としては、例えばtert‐ブチルフェニルグリシジルエーテル、2‐エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、3‐グリシドキシプロピルトリメトキシシラン、3‐グリシドキシプロピルメチルジメトキシシラン、1‐(3−グリシドキシプロピル)1,1,3,3,3‐ペンタメチルジシロキサン、N‐グリシジル‐N,N,‐ビス[3‐(トリメトキシシリル)プロピル]アミン等のモノグリシジル化合物、2‐(3,4‐エポキシシクロヘキシル)エチルトリメトキシシラン等のモノ脂環式エポキシ化合物等が挙げられる。   When an epoxy resin is used, a reactive diluent having an epoxy group in the molecular structure may be further added. Examples of reactive diluents include tert-butylphenyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 1 Monoglycidyl compounds such as-(3-glycidoxypropyl) 1,1,3,3,3-pentamethyldisiloxane, N-glycidyl-N, N, -bis [3- (trimethoxysilyl) propyl] amine And monoalicyclic epoxy compounds such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.

また、エポキシ樹脂には、前記反応性希釈剤の他に、以下に示すエポキシ系化合物を添加しても良い。このようなエポキシ化合物としては、レゾルシンジグリシジルエーテル、ヒドロキノンジグリシジルエーテル、2,5‐ジ‐tert‐ブチルヒドロキノンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ブテンジオールジグリシジルエーテル、ブチンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメテロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等のアルキレングリシジルエーテル、1,3‐ジグリシジル‐5,5‐ジアルキルヒダントイン、1‐グリシジル‐3‐(グリシドキシアルキル)‐5,5‐ジアルキルヒダントイン等のグリシジル基含有ヒダントイン化合物、ジグリシジルフタレート、ジグリシジルテトラヒドロフタレート、ダイマー酸ジグリシジルエステル等のグリシジルエステル、テトラグリシジルジアミノジフ工ニルメタン、トリグリシジル‐p‐アミノフェニルメタン、トリグリジル‐m‐アミノフェニルメタン、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジル‐m‐キシリレンジアミン等のグリシジル基含有アミノ化合物、1,3‐ビス(3‐グリシドキシプロピル)‐1,1,3,3‐テトラメチルジシロキサン、α,β‐ビス(3‐グリシドキシプロピル)ポリジメチルシロキサン等のグリシジル基含有シロキサン、イミダゾール化合物等が挙げられる。   In addition to the reactive diluent, the epoxy compound shown below may be added to the epoxy resin. Examples of such an epoxy compound include resorcin diglycidyl ether, hydroquinone diglycidyl ether, 2,5-di-tert-butylhydroquinone diglycidyl ether, butanediol diglycidyl ether, butenediol diglycidyl ether, butynediol diglycidyl ether, Alkylene glycidyl ethers such as glycerin triglycidyl ether, trimeterolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, 1,3-diglycidyl-5,5-dialkylhydantoin, 1-glycidyl-3- (glycidoxyalkyl) -5 , 5-Dialkylhydantoins and other glycidyl group-containing hydantoin compounds, diglycidyl phthalate, diglycidyl tetrahydrophthalate, dimer Glycidyl esters such as diglycidyl ester, tetraglycidyl diaminodiphenyl ester, triglycidyl-p-aminophenylmethane, triglycidyl-m-aminophenylmethane, diglycidylaniline, diglycidyltoluidine, tetraglycidyl-m-xylylenediamine, etc. Glycidyl group-containing amino compounds, 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane, α, β-bis (3-glycidoxypropyl) polydimethylsiloxane, etc. Glycidyl group-containing siloxane, imidazole compound and the like.

そして、本発明の電子部品実装用熱硬化性樹脂組成物としては、例えば、ビスフェノールF型エポキシ樹脂(エポキシ当量 162 大日本インキ化学工業株式会社製)100質量部に対し、3,5-ジエチル-2,6-トルエンジアミン10質量部、及び、2‐フェニルイミダゾール(四国化成工業株式会社製)3重量部を添加混合し均一に分散させることで調整したものなどが挙げられるが、この事例に限定されるものではない。   The thermosetting resin composition for mounting electronic components of the present invention is, for example, 3,5-diethyl-based on 100 parts by mass of a bisphenol F type epoxy resin (epoxy equivalent 162 manufactured by Dainippon Ink and Chemicals, Inc.). Examples include 10 parts by mass of 2,6-toluenediamine and 3 parts by weight of 2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.), which are prepared by mixing and dispersing uniformly. Is not to be done.

また、本発明の電子部品実装用熱硬化性樹脂組成物は、導電性フィラー及び樹脂層の線膨張係数を調整する為に無機絶縁性材料を更に添加しても良い。   Moreover, in order to adjust the linear expansion coefficient of a conductive filler and a resin layer, you may further add the inorganic insulating material to the thermosetting resin composition for electronic component mounting of this invention.

導電性フィラーの材質としては、Ag、Sn、Cu、Bi、In、Al、Au、Zn及びその2元合金、もしくは3元合金が挙げられ、なかでもSn-In、Sn-Biが好ましい。   Examples of the material of the conductive filler include Ag, Sn, Cu, Bi, In, Al, Au, Zn, and binary alloys or ternary alloys thereof, and among them, Sn—In and Sn—Bi are preferable.

導電性フィラーの平均粒子径は、100μm以下が好ましく、より好ましくは10〜80μmであり、更に好ましくは20〜50μmである。平均粒子径が100μm以上であると、樹脂組成物の粘度が高くなり、例えばディスペンサなどにより樹脂液を電子部品上に供給する上で液詰まりが生じたりファインピッチに対応した導電パターンを形成できなくなる虞れがある。   The average particle diameter of the conductive filler is preferably 100 μm or less, more preferably 10 to 80 μm, and still more preferably 20 to 50 μm. When the average particle size is 100 μm or more, the viscosity of the resin composition increases, and for example, when a resin liquid is supplied onto an electronic component by a dispenser or the like, liquid clogging occurs or a conductive pattern corresponding to a fine pitch cannot be formed. There is a fear.

導電性フィラーの配合量は、電子部品実装用熱硬化性樹脂組成物全体における導電性フィラーの体積含有率が5〜90%となるように配合することが好ましく、より好ましくは10〜50%である。電子部品実装用樹脂組成物中における導電性フィラーの体積含有率が90%以上であると、樹脂液を電子部品上に供給する上で液詰まりが生じる虞れがある。   The blending amount of the conductive filler is preferably blended so that the volume content of the conductive filler in the entire thermosetting resin composition for mounting electronic components is 5 to 90%, more preferably 10 to 50%. is there. When the volume content of the conductive filler in the resin composition for mounting an electronic component is 90% or more, there is a possibility that liquid clogging may occur when the resin liquid is supplied onto the electronic component.

無機絶縁性材料の材質としては、溶融シリカ粉末、石英ガラス粉末、硝子繊維、タルク、アルミナ粉末、カーボンブラック、カーボンナノチューブ等が挙げられ、エアロゾル状の微粒子として用いることが好ましい。ここでエアロゾル状の微粒子とは平均粒子径1nm〜1μm程度の微粒子を意味する。   Examples of the material of the inorganic insulating material include fused silica powder, quartz glass powder, glass fiber, talc, alumina powder, carbon black, and carbon nanotube, and are preferably used as aerosol-like fine particles. Here, the aerosol fine particles mean fine particles having an average particle diameter of about 1 nm to 1 μm.

エアロゾル状の無機絶縁性材料を配合することで、樹脂硬化物全体の線膨張係数を、電子部品に用いられるシリコンや銅の線膨張係数に近づけることができ、実装部品の膨張・収縮にともなう熱応力を低減できると同時に樹脂液の粘度増粘調整にも効果が得られる。   By compounding an aerosol-like inorganic insulating material, the linear expansion coefficient of the entire resin cured product can be brought close to the linear expansion coefficient of silicon and copper used in electronic components, and heat caused by expansion / contraction of mounted components The stress can be reduced, and at the same time, an effect can be obtained for adjusting the viscosity increase of the resin liquid.

エアロゾル状の無機絶縁性材料は例えば、HとOとの混合ガスを燃焼させた1100〜1400℃の炎でSiClガスを酸化、加水分解させることにより作製される一次粒子の平均粒径が5〜50nm程度の非晶質の二酸化ケイ素を主成分とする球状の超微粒子のことで、平均粒径が5〜50nmの範囲にある一次粒子がそれぞれ凝集し、粒径が数〜1μmの二次粒子を形成したものなどが挙げられ、適用する上で特にこれらに限定されるものでは無い。 The aerosol-like inorganic insulating material is, for example, an average particle diameter of primary particles produced by oxidizing and hydrolyzing SiCl 4 gas with a flame of 1100 to 1400 ° C. in which a mixed gas of H 2 and O 2 is burned. Is a spherical ultrafine particle mainly composed of amorphous silicon dioxide having a size of about 5 to 50 nm, and primary particles having an average particle size in the range of 5 to 50 nm are aggregated, and the particle size is several to 1 μm. Examples include secondary particles formed, and are not particularly limited in application.

無機絶縁性材料の配合量は、電子部品実装用熱硬化性樹脂組成物全体における無機絶縁性材料の体積含有率が0.1%以上となるように配合することが好ましく、より好ましくは1〜20%である。電子部品実装用樹脂組成物中における無機絶縁性材料の体積含有率が0.1%未満であると、粘度増粘調整の効果や樹脂硬化物全体の熱膨張係数調整を行なう上で効果が期待できない虞れがある。   The blending amount of the inorganic insulating material is preferably blended so that the volume content of the inorganic insulating material in the entire thermosetting resin composition for mounting electronic components is 0.1% or more, more preferably 1 to 1. 20%. If the volume content of the inorganic insulating material in the resin composition for mounting electronic components is less than 0.1%, the effect of adjusting the viscosity increase and the coefficient of thermal expansion of the entire resin cured product is expected. There is a possibility that it cannot be done.

また本発明の電子部品実装用熱硬化性樹脂組成物中には、平滑性向上のために消泡剤やレベリング剤等を用いてもよい。   Further, in the thermosetting resin composition for mounting electronic parts of the present invention, an antifoaming agent, a leveling agent or the like may be used for improving smoothness.

消泡剤としては、シリコーン系化合物が挙げられる。また、レべリング剤としては、フッ素オイル、シリコーンオイルが挙げられる。   Examples of antifoaming agents include silicone compounds. Examples of the leveling agent include fluorine oil and silicone oil.

以下、実施例を用いて本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to a following example.

(試験例1)
下記式(1)で示されるエポキシ樹脂100質量部に対し、下記式(2)の化合物5質量部と、2-メチルイミダゾール(四国化成工業株式会社製)3重量部とを添加して均一になるまで混合し、熱硬化性樹脂組成物Aを得た。これを電子部品実装用熱硬化性樹脂組成物1として用いた。
(Test Example 1)
To 100 parts by mass of the epoxy resin represented by the following formula (1), 5 parts by mass of the compound of the following formula (2) and 3 parts by weight of 2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) are added uniformly. It mixed until it became, and the thermosetting resin composition A was obtained. This was used as a thermosetting resin composition 1 for mounting electronic components.

次に、この電子部品実装用熱硬化性樹脂組成物1を、清浄な厚さ1mmの石英基板上に流延し、被着体として銅箔/ポリイミド(=12/25μm)にNi/Auメッキを施した基板で挟みこんだ。その後、昇温速度20K/minにて393Kに加温し、393Kで30分温度を保持した後、更に昇温速度20K/minにて453Kに加温し、温度453Kで60分保持して、試験体1を得た。   Next, this thermosetting resin composition 1 for mounting electronic components is cast on a clean quartz substrate with a thickness of 1 mm, and Ni / Au plating is applied to copper foil / polyimide (= 12/25 μm) as an adherend. It was sandwiched between substrates with Then, after heating to 393K at a temperature increase rate of 20 K / min, holding the temperature at 393 K for 30 minutes, further heating to 453 K at a temperature increase rate of 20 K / min, holding at a temperature of 453 K for 60 minutes, A specimen 1 was obtained.

(試験例2)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのAg粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物2を用いた以外は、試験例1と同様にして試験体2を得た。
(Test Example 2)
To the thermosetting resin composition A of Test Example 1, Ag particles having an average particle size of 50 μm were added as a conductive filler so that the volume content in the entire thermosetting resin composition for mounting electronic components was 5 %. A test body 2 was obtained in the same manner as in Test Example 1 except that the obtained thermosetting resin composition 2 for mounting electronic components was used.

(試験例3)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのAg粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が70%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物3を用いた以外は、試験例1と同様にして試験体3を得た。
(Test Example 3)
To the thermosetting resin composition A of Test Example 1, Ag particles having an average particle diameter of 50 μm were added as a conductive filler so that the volume content in the entire thermosetting resin composition for mounting electronic components was 70%. A test body 3 was obtained in the same manner as in Test Example 1 except that the obtained thermosetting resin composition 3 for mounting electronic components was used.

(試験例4)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのSn−In粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が70%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物4を用いた以外は、試験例1と同様にして試験体4を得た。
(Test Example 4)
To the thermosetting resin composition A of Test Example 1, Sn—In particles having an average particle diameter of 50 μm are added as a conductive filler so that the volume content in the entire thermosetting resin composition for mounting electronic components is 70%. A test body 4 was obtained in the same manner as in Test Example 1 except that the thermosetting resin composition 4 for mounting electronic components obtained in this way was used.

(試験例5)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのSn−Bi粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が70%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物5を用いた以外は、試験例1と同様にして試験体5を得た。
(Test Example 5)
Addition of Sn-Bi particles having an average particle size of 50 μm as a conductive filler to the thermosetting resin composition A of Test Example 1 so that the volume content in the entire thermosetting resin composition for mounting electronic components is 70%. A test body 5 was obtained in the same manner as in Test Example 1 except that the thermosetting resin composition 5 for mounting electronic components obtained in this way was used.

(試験例6)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのSn−Ag-Cu粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が70%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物6を用いた以外は、試験例1と同様にして試験体6を得た。
(Test Example 6)
In the thermosetting resin composition A of Test Example 1, Sn—Ag—Cu particles having an average particle diameter of 50 μm as conductive fillers are 70% in volume in the entire thermosetting resin composition for mounting electronic components. A test body 6 was obtained in the same manner as in Test Example 1 except that the thermosetting resin composition 6 for mounting an electronic component obtained by adding to was used.

(試験例7)
試験例1の熱硬化性樹脂組成物Aに平均粒子径0.1μmのエアロゾル微粒子(球状溶融シリカ)を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が0.1%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物7を用いた以外は、試験例1と同様にして試験体7を得た。
(Test Example 7)
The aerosol content (spherical fused silica) with an average particle size of 0.1 μm is added to the thermosetting resin composition A of Test Example 1 so that the volume content of the entire thermosetting resin composition for mounting electronic components is 0.1%. A test body 7 was obtained in the same manner as in Test Example 1 except that the thermosetting resin composition 7 for mounting an electronic component obtained by adding to was used.

(試験例8)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのSn−In粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が70%となるように添加し、かつ、平均粒子径0.1μmのエアロゾル微粒子(球状溶融シリカ)を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が0.1%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物8を用いた以外は、試験例1と同様にして試験体8を得た。
(Test Example 8)
To the thermosetting resin composition A of Test Example 1, Sn—In particles having an average particle diameter of 50 μm are added as a conductive filler so that the volume content in the entire thermosetting resin composition for mounting electronic components is 70%. In addition, electrons obtained by adding aerosol fine particles (spherical fused silica) with an average particle size of 0.1 μm so that the volume content in the entire thermosetting resin composition for mounting electronic components is 0.1%. A test body 8 was obtained in the same manner as in Test Example 1, except that the component mounting thermosetting resin composition 8 was used.

(試験例9)
試験例1の熱硬化性樹脂組成物Aに、導電性フィラーとして平均粒子径50μmのAg粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が95%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物9を用いた以外は、試験例1と同様にして試験体9を得た。
(Test Example 9)
To the thermosetting resin composition A of Test Example 1, Ag particles having an average particle size of 50 μm were added as a conductive filler so that the volume content in the entire thermosetting resin composition for mounting electronic components was 95%. A test body 9 was obtained in the same manner as in Test Example 1 except that the obtained thermosetting resin composition 9 for mounting electronic components was used.

(試験例10)
ビスフェノールF型エポキシ樹脂(エポキシ当量 162 大日本インキ化学工業株式会社製)を100質量部に対し、3,5-ジエチル-2,6-トルエンジアミンを10質量部、さらに、2-フェニルイミダゾール(四国化成工業株式会社製)を3重量部添加混合し、均一に分散させた熱硬化性樹脂組成物Bを電子部品実装用熱硬化性樹脂組成物10として用いた以外は、試験例1と同様にして試験体10を得た。
(Test Example 10)
Bisphenol F-type epoxy resin (epoxy equivalent 162, manufactured by Dainippon Ink & Chemicals, Inc.) with respect to 100 parts by mass, 10 parts by mass of 3,5-diethyl-2,6-toluenediamine, and 2-phenylimidazole (Shikoku) The same as in Test Example 1, except that 3 parts by weight of Kasei Kogyo Co., Ltd.) was added and mixed, and the thermosetting resin composition B uniformly dispersed was used as the thermosetting resin composition 10 for mounting electronic components. Thus, a test body 10 was obtained.

(試験例11)
試験例10の熱硬化性樹脂組成物Bに、導電性フィラーとして平均粒子径50μmのSn-In共晶球状粒子を電子部品実装用熱硬化性樹脂組成物全体における体積含有率が70%となるように添加して得られた電子部品実装用熱硬化性樹脂組成物11を用いた以外は、試験例1と同様にして試験体11を得た。
(Test Example 11)
In the thermosetting resin composition B of Test Example 10, Sn—In eutectic spherical particles having an average particle diameter of 50 μm as the conductive filler are 70% in the entire thermosetting resin composition for mounting electronic components. A test body 11 was obtained in the same manner as in Test Example 1 except that the thermosetting resin composition 11 for mounting an electronic component obtained by adding as described above was used.

<評価項目>
〔樹脂祖組成物の物性〕
(示差走査熱量測定)
示差走査熱量計として「DSC−6200」(セイコーインスツルメンツ製)を用い、室温からの連続昇温走査速度10K/minを、試料量5mg、窒素フロ−50ml/minの条件で、電子部品実装用熱硬化性樹脂組成物の発熱ピークを測定した。
<Evaluation items>
[Physical properties of the resin composition]
(Differential scanning calorimetry)
“DSC-6200” (manufactured by Seiko Instruments Inc.) as a differential scanning calorimeter, electronic component mounting heat under conditions of continuous temperature rising scanning rate from room temperature of 10 K / min, sample amount of 5 mg, nitrogen flow of 50 ml / min The exothermic peak of the curable resin composition was measured.

(粘度測定)
E型粘度計を用い、回転数5rpmにて、電子部品実装用熱硬化性樹脂組成物の調製直後の25℃における電子部品実装用熱硬化性樹脂組成物の粘度を測定した。
(Viscosity measurement)
Using an E-type viscometer, the viscosity of the thermosetting resin composition for mounting electronic components at 25 ° C. immediately after the preparation of the thermosetting resin composition for mounting electronic components was measured at 5 rpm.

〔試験体の評価〕
(クラック性)
恒温恒湿試験(85℃85%RH)へ試験体を投入し500時間経過後に断面観察を行い、樹脂組成物中のクラックの有無を調査した。
[Evaluation of specimen]
(Crack property)
The specimen was put into a constant temperature and humidity test (85 ° C. and 85% RH), and the cross-section was observed after 500 hours, and the presence or absence of cracks in the resin composition was investigated.

電子部品実装用熱硬化性樹脂組成物1〜11、試験体1〜11について上記評価を行った。電子部品実装用熱硬化性樹脂組成物1及び10の発熱ピークを図1に示す。また、電子部品実装用熱硬化性樹脂組成物1〜11の発熱ピーク及び粘度、試験体1〜11のクラック性試験の結果を表1にまとめて記す。   The said evaluation was performed about the thermosetting resin compositions 1-11 for electronic component mounting, and the test bodies 1-11. The exothermic peaks of the thermosetting resin compositions 1 and 10 for mounting electronic components are shown in FIG. Moreover, the exothermic peak and viscosity of the thermosetting resin compositions 1 to 11 for mounting electronic components and the results of the crack property test of the test bodies 1 to 11 are collectively shown in Table 1.

上記結果より、熱硬化性樹脂組成物の発熱ピークが、温度373Kから523Kの範囲に2つ以上有し、温度298Kにおける粘度が0.5〜100Pa・sである電子部品実装用熱硬化性樹脂組成物1〜8を用いた試験体1〜8は、クラック性試験において良好な結果が得られ、接合の信頼性で良好な結果が得られた。   From the above results, the thermosetting resin for mounting electronic components has two or more exothermic peaks of the thermosetting resin composition in the temperature range of 373K to 523K, and the viscosity at the temperature of 298K is 0.5 to 100 Pa · s. In the test bodies 1 to 8 using the compositions 1 to 8, good results were obtained in the cracking test, and good results were obtained with the reliability of bonding.

一方、熱硬化性樹脂組成物の温度298Kにおける粘度が100Pa・s以上である電子部品実装用熱硬化性樹脂組成物9を用いた試験体9、発熱ピークが、温度373Kから523Kの範囲に1つしか有しない電子部品実装用熱硬化性樹脂組成物10、11を用いた試験体10、11はクラック性試験においてクラックが生じやすく、接合の信頼性を充分保持できるものではなかった。   On the other hand, the test piece 9 using the thermosetting resin composition 9 for mounting electronic components whose viscosity at a temperature of 298K of the thermosetting resin composition is 100 Pa · s or more, the exothermic peak is 1 in the temperature range of 373K to 523K. The test bodies 10 and 11 using the thermosetting resin compositions 10 and 11 for mounting an electronic component, which have only one, are prone to cracks in the crack property test, and cannot sufficiently maintain the bonding reliability.

本発明の電子部品実装用熱硬化性樹脂組成物は、例えば、半導体チップ等の電子部品を回路基板にフリップチップ実装する際に好適に用いることができる。   The thermosetting resin composition for mounting an electronic component of the present invention can be suitably used, for example, when flip-chip mounting an electronic component such as a semiconductor chip on a circuit board.

電子部品実装用熱硬化性樹脂組成物の発熱ピークを示す図表である。It is a graph which shows the exothermic peak of the thermosetting resin composition for electronic component mounting.

Claims (3)

電子部品の電極と回路基板の電極との接合に用いられる電子部品実装用熱硬化性樹脂組成物において、
平均粒子径1nm〜1μmのエアロゾル状微粒子を含む無機絶縁材料と、平均粒子径100μm以下の導電性フィラーとを含有し、
前記電子部品実装用熱硬化性樹脂組成物の示差走査熱量測定における連続昇温走査速度10K/minでの発熱ピークが、温度373Kから523Kの範囲に少なくとも2つ以上存在し、かつ、該樹脂組成物の未硬化時の温度298Kにおける粘度が0.5〜100Pa・sであることを特徴とする電子部品実装用熱硬化性樹脂組成物。
In the thermosetting resin composition for electronic component mounting used for joining the electrode of the electronic component and the electrode of the circuit board,
An inorganic insulating material containing aerosol fine particles having an average particle size of 1 nm to 1 μm, and a conductive filler having an average particle size of 100 μm or less ,
There are at least two exothermic peaks at a temperature rising scanning speed of 10 K / min in the differential scanning calorimetry of the thermosetting resin composition for mounting an electronic component in the temperature range of 373 K to 523 K, and the resin composition A thermosetting resin composition for mounting electronic components, wherein the viscosity at an uncured temperature of 298K is 0.5 to 100 Pa · s.
前記電子部品実装用熱硬化性樹脂組成物全体に対する、前記無機絶縁材料の体積含有率が、0.1%〜90%である請求項1に記載の電子部品実装用熱硬化性樹脂組成物。   The thermosetting resin composition for mounting electronic components according to claim 1, wherein a volume content of the inorganic insulating material with respect to the entire thermosetting resin composition for mounting electronic components is 0.1% to 90%. 前記電子部品実装用熱硬化性樹脂組成物全体に対する前記導電性フィラーの体積含有率が5〜90%である請求項1又は2に記載の電子部品実装用熱硬化性樹脂組成物。 The thermosetting resin composition for mounting an electronic component according to claim 1 or 2, wherein a volume content of the conductive filler with respect to the entire thermosetting resin composition for mounting the electronic component is 5 to 90%.
JP2005077139A 2005-03-17 2005-03-17 Thermosetting resin composition for mounting electronic components Expired - Fee Related JP4867181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077139A JP4867181B2 (en) 2005-03-17 2005-03-17 Thermosetting resin composition for mounting electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077139A JP4867181B2 (en) 2005-03-17 2005-03-17 Thermosetting resin composition for mounting electronic components

Publications (2)

Publication Number Publication Date
JP2006257280A JP2006257280A (en) 2006-09-28
JP4867181B2 true JP4867181B2 (en) 2012-02-01

Family

ID=37096888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077139A Expired - Fee Related JP4867181B2 (en) 2005-03-17 2005-03-17 Thermosetting resin composition for mounting electronic components

Country Status (1)

Country Link
JP (1) JP4867181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491856B2 (en) * 2007-03-19 2014-05-14 ナミックス株式会社 Anisotropic conductive paste
JPWO2008153076A1 (en) * 2007-06-14 2010-08-26 積水化学工業株式会社 Optical adhesive for substrate bonding, and cured optical adhesive for substrate bonding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107921A (en) * 1996-06-26 1998-01-13 Hitachi Ltd Thermosetting resin composition and electronic equipment using the same
JPH10154777A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Semiconductor device
JP3173478B2 (en) * 1998-10-30 2001-06-04 株式会社デンソー Circuit board manufacturing method
JP3904798B2 (en) * 1999-04-01 2007-04-11 三井化学株式会社 Anisotropic conductive paste
JP2000294890A (en) * 1999-04-09 2000-10-20 Ngk Spark Plug Co Ltd Paste for filling through hole, printed wiring board using that and its manufacture
JP2001302767A (en) * 2000-04-25 2001-10-31 Matsushita Electric Works Ltd Liquid epoxy resin composition for sealing semiconductor, semiconductor device and method for manufacturing the device

Also Published As

Publication number Publication date
JP2006257280A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
TWI416673B (en) Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
TWI480326B (en) Curable resin compositions useful as underfill sealants for low-k dielectric-containing semiconductor devices
JP2009091510A (en) Liquid epoxy resin composition and semiconductor device using the composition
TWI481685B (en) Adhesive for electronic parts
TWI385211B (en) Manufacturing method of semiconductor device by noflow
JP2009256466A (en) Adhesive for electronic part
JP4867181B2 (en) Thermosetting resin composition for mounting electronic components
JP5070789B2 (en) Liquid resin composition for underfill and semiconductor device
JP2017071707A (en) Liquid thermally conductive resin composition and electronic component
JP6179247B2 (en) Electronic component device manufacturing method and electronic component device
JP4747586B2 (en) Method for producing liquid encapsulating resin composition for semiconductor
KR101035873B1 (en) Fast curable adhesive film composition at high temperature and adhesive film using it
JP4853225B2 (en) Resin composition and semiconductor device produced using resin composition
JP2007142117A (en) Die-bonding paste and semiconductor device using same
JP2009209191A (en) Liquid resin composition for underfill, semiconductor device using the same, and method for producing semiconductor device
JP5862176B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, and manufacturing method of electronic component device
JP5771084B2 (en) Manufacturing method of semiconductor chip package and sealing resin
JP2019151713A (en) Film-like semiconductor encapsulation material
JP4525079B2 (en) Thermosetting liquid encapsulating resin composition and semiconductor device using the same
JP5047632B2 (en) Mounting method using hot-pressure adhesive for flip chip connection
JP6332488B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, electronic component device and manufacturing method thereof
JP2008247951A (en) Liquid epoxy resin composition for protecting semiconductor device, cured epoxy resin, method for producing semiconductor device and semiconductor device
JP4625342B2 (en) Electronic component device and method of manufacturing electronic component device
JP2013107993A (en) Liquid resin composition for semiconductor sealing and semiconductor device using the same
JP6126834B2 (en) Pre-feed type liquid resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees