JP4866230B2 - Double-sided light emitting surface light source element and liquid crystal display device using the same - Google Patents

Double-sided light emitting surface light source element and liquid crystal display device using the same Download PDF

Info

Publication number
JP4866230B2
JP4866230B2 JP2006354470A JP2006354470A JP4866230B2 JP 4866230 B2 JP4866230 B2 JP 4866230B2 JP 2006354470 A JP2006354470 A JP 2006354470A JP 2006354470 A JP2006354470 A JP 2006354470A JP 4866230 B2 JP4866230 B2 JP 4866230B2
Authority
JP
Japan
Prior art keywords
light
light source
double
emitting surface
source element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006354470A
Other languages
Japanese (ja)
Other versions
JP2008166120A (en
Inventor
敦 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006354470A priority Critical patent/JP4866230B2/en
Publication of JP2008166120A publication Critical patent/JP2008166120A/en
Application granted granted Critical
Publication of JP4866230B2 publication Critical patent/JP4866230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、携帯電話機や案内表示板、広告用看板、非常灯などに利用される表裏両面に表示可能な液晶表示装置およびこれに用いることができる両面発光可能な面光源素子に関する。   The present invention relates to a liquid crystal display device capable of displaying on both front and back surfaces used for a mobile phone, a guidance display board, an advertising signboard, an emergency light, and the like, and a surface light source element capable of emitting light on both sides.

携帯電話機、情報携帯端末、パーソナルコンピューター、ゲーム機などに広く利用されている液晶表示装置には面光源素子(バックライト)が必要とされる。特に上述した用途においては、液晶表示装置を薄くしたいという潜在的な要求があるため、導光板の側面に冷陰極管や発光ダイオード(LED)などの光源を配置した導光方式の面光源素子を用いることが通常である。ここ最近、携帯電話機のように筐体の両面に互いに背中合わせに液晶表示パネルが配設された液晶表示装置が増えている。この液晶表示装置は特許文献1のように、2組の面光源素子を背中合わせにして使用しているのが一般的である。しかし、部品点数が多いため組立工数が増す、携帯電話機の厚みが増す、更にはコストアップにつながるといった課題を有する。   Surface light source elements (backlights) are required for liquid crystal display devices widely used in mobile phones, portable information terminals, personal computers, game machines, and the like. In particular, in the above-mentioned applications, there is a potential demand for thinning the liquid crystal display device. Therefore, a light guide type surface light source element in which a light source such as a cold cathode tube or a light emitting diode (LED) is arranged on the side surface of the light guide plate. It is usual to use. Recently, a liquid crystal display device in which liquid crystal display panels are arranged back to back on both sides of a housing like a mobile phone has been increasing. In general, this liquid crystal display device uses two sets of surface light source elements back to back as disclosed in Patent Document 1. However, since the number of parts is large, there are problems that the number of assembling steps increases, the thickness of the mobile phone increases, and further the cost increases.

また、両面に液晶表示パネルが配設される別の液晶表示装置として、案内表示板、広告用看板、非常灯なども挙げられる。これらの液晶表示装置においても面光源素子と液晶表示パネルを2組ずつ使用することが一般的である。   As another liquid crystal display device in which a liquid crystal display panel is disposed on both sides, a guidance display board, an advertising signboard, an emergency light, and the like can be given. In these liquid crystal display devices, it is common to use two sets of surface light source elements and liquid crystal display panels.

以上に挙げた組立工数の増加、厚み増加、コストアップといった課題に対して、1枚の導光板の両面に散乱印刷を施すことにより両面発光させる方法が特許文献2に提案されている。しかし、この方法では発光面となる該導光体の表面に印刷された散乱部位が遮光部位として作用し、光利用効率の低下を招くという弊害を生じる。   Patent Document 2 proposes a method of emitting light on both sides by performing scattering printing on both surfaces of a single light guide plate in order to solve the problems such as increase in the number of assembly steps, increase in thickness, and cost increase. However, in this method, the scattering portion printed on the surface of the light guide serving as the light emitting surface acts as a light shielding portion, which causes a detrimental effect that the light use efficiency is reduced.

また、導光板の側面に光源を設け、該導光板の上下面に均一化層と拡散板を設け、該導光板内にその水平方向の中心位置からずらした位置に反射層を形成したものがある(特許文献3)。この方法によれば反射層の位置により上面および下面に出射される光量を調整することが可能であるが、原理的に上下面ともに同じ大きさの発光エリアを有する面光源素子のみしか実現できない。したがって、上面および下面の液晶表示装置の大きさを変える場合には、不要部分を遮光するなどの対処が必要であるため、光利用効率の低下を避けることはできない。   Also, a light source is provided on the side surface of the light guide plate, a uniform layer and a diffusion plate are provided on the upper and lower surfaces of the light guide plate, and a reflective layer is formed in the light guide plate at a position shifted from the horizontal center position. Yes (Patent Document 3). According to this method, the amount of light emitted to the upper surface and the lower surface can be adjusted by the position of the reflective layer, but in principle, only a surface light source element having a light emitting area of the same size on both the upper and lower surfaces can be realized. Therefore, when the size of the liquid crystal display device on the upper surface and the lower surface is changed, it is necessary to take measures such as shielding unnecessary portions, so that a decrease in light utilization efficiency cannot be avoided.

これらに対して特許文献4では、導光板の上下両面に複数の凸部が設けられた出射光制御板を密着させることで、両面発光可能な面光源素子を実現している。この方法によれば非常に薄い両面発光面光源素子を得ることができるものの、該導光板の側面に配置した光源からの光を該面光源素子の上面および下面に分配するため、光量の低下を避けることは困難であり、それ故、光が液晶表示パネルを透過した際に明るさが大きく低下するといった課題を有する。   On the other hand, in patent document 4, the surface light source element which can light-emit on both sides is implement | achieved by closely_contact | adhering the emitted light control board in which several convex part was provided in the upper and lower surfaces of a light-guide plate. According to this method, although a very thin double-sided light emitting surface light source element can be obtained, the light from the light source disposed on the side surface of the light guide plate is distributed to the upper surface and the lower surface of the surface light source element. It is difficult to avoid, and therefore, there is a problem that the brightness is greatly reduced when light is transmitted through the liquid crystal display panel.

また、液晶表示装置における光利用効率の向上を目的に、特許文献5、6および7では、異なるポリマーで形成される交互の層からなる反射型偏光子が開示されている。該反射型偏光子を面光源素子と液晶表示パネルとの間に配設することにより、面光源素子から発せられるランダム偏光から直線偏光を取り出せるために、液晶表示パネルから出射される光の効率を高めることができる。しかし、面光源素子側に反射シートなどの光反射性の部材を用いなければならないため、片面発光の面光源素子に利用されるのが一般的である。
特開平10−187075号公報 特開平7−182914号公報 特開平6−243826号公報 特開2002−133906号公報 特表平9−506837号公報 特表平9−506985号公報 特表平9−507308号公報
For the purpose of improving the light utilization efficiency in the liquid crystal display device, Patent Documents 5, 6 and 7 disclose reflective polarizers composed of alternating layers formed of different polymers. By disposing the reflective polarizer between the surface light source element and the liquid crystal display panel, linearly polarized light can be extracted from the random polarized light emitted from the surface light source element. Can be increased. However, since a light-reflective member such as a reflection sheet has to be used on the surface light source element side, it is generally used for a single-sided surface light source element.
JP-A-10-187075 JP 7-182914 A JP-A-6-243826 JP 2002-133906 A Japanese National Patent Publication No. 9-506837 Japanese National Patent Publication No. 9-506985 JP-T 9-507308

本発明は上記問題点に鑑みてなされたもので、薄型化可能であり、かつ光利用効率の高い両面発光面光源素子を提供することを第1の課題とする。また、本発明は、該両面発光面光源素子を利用した液晶表示装置を提供することを第2の課題とする。   The present invention has been made in view of the above problems, and a first object is to provide a double-sided light emitting surface light source element that can be thinned and has high light utilization efficiency. Moreover, this invention makes it the 2nd subject to provide the liquid crystal display device using this double-sided light emission surface light source element.

上記第1の課題は、透明材料からなる1つの導光板と、前記導光板の側面に配置された少なくとも1つの光源とを有する両面発光面光源素子において、
a)前記導光板の対向する2つの面にそれぞれ配置される、複数の凸部が形成された2つの出射光制御板、および
b)前記導光板の対向する2つの面にそれぞれ配置される、偏光透過軸が互いに直交する2つの偏光分離素子を備え、
前記出射光制御板の凸部の断面は、放物線状、楕円状、台形状あるいはこれらの組合せからなる形状をして、前記導光板、前記出射光制御板および前記偏光分離素子が光学的に密着して構成されることを特徴とする両面発光面光源素子を得ることにより解決される。
The first problem is a double-sided light emitting surface light source element having one light guide plate made of a transparent material and at least one light source disposed on a side surface of the light guide plate.
a) two outgoing light control plates formed with a plurality of convex portions respectively disposed on two opposing surfaces of the light guide plate; and b) respectively disposed on two opposing surfaces of the light guide plate. Comprising two polarization separation elements whose polarization transmission axes are orthogonal to each other;
The cross section of the convex portion of the outgoing light control plate has a parabolic shape, an elliptical shape, a trapezoidal shape, or a combination thereof, and the light guide plate, the outgoing light control plate, and the polarization separation element are in optical contact with each other. This is solved by obtaining a double-sided light emitting surface light source element characterized by being configured as described above.

上記の本発明の両面発光面光源素子において、前記2つの偏光分離素子は、前記導光板と前記出射光制御板の間に配設されることが好ましい。   In the above-described double-sided light emitting surface light source element of the present invention, the two polarization separation elements are preferably disposed between the light guide plate and the outgoing light control plate.

また、本発明の両面発光面光源素子において、前記2つの偏光分離素子は、それぞれ前記導光板の対向する2つの面に光学的に密着した前記出射光制御板の出射側表面に配設されることが好ましい。   Also, in the double-sided light emitting surface light source element of the present invention, the two polarization separation elements are respectively disposed on the exit side surface of the exit light control plate that is optically in close contact with the two opposing surfaces of the light guide plate. It is preferable.

さらにまた、本発明の両面発光面光源素子において、前記偏光分離素子は、非吸収型の偏光分離素子であることが好ましい。   Furthermore, in the double-sided light emitting surface light source element of the present invention, it is preferable that the polarization separation element is a non-absorption type polarization separation element.

また、上記第2の課題は、本発明に係る上記両面発光面光源素子の両面にそれぞれ配設される2つの液晶表示パネルを有する液晶表示装置を得ることにより解決される。   The second problem is solved by obtaining a liquid crystal display device having two liquid crystal display panels respectively disposed on both surfaces of the double-sided light emitting surface light source element according to the present invention.

前記液晶表示パネルは、液晶セルの両面に偏光板を有しており、前記両面発光面光源素子側の偏光板の偏光透過軸は、対応する前記両面発光面光源素子の偏光分離素子の偏光透過軸と一致していることが好ましい。   The liquid crystal display panel has polarizing plates on both sides of the liquid crystal cell, and the polarization transmission axis of the polarizing plate on the double-sided light emitting surface light source element side is the polarized light transmission of the polarization separating element of the corresponding double-sided light emitting surface light source element. It is preferable to coincide with the axis.

本発明によれば、1つの導光板のみで両面発光面光源素子を実現できるために薄型化が可能である。また、該両面発光面光源素子は異なる出射面で電場ベクトルの直交する直線偏光を発光できるため、液晶表示パネルを使用する液晶表示装置において高い光利用効率を実現することができる。   According to the present invention, since the double-sided light emitting surface light source element can be realized with only one light guide plate, the thickness can be reduced. In addition, since the double-sided light-emitting surface light source element can emit linearly polarized light whose electric field vectors are orthogonal on different exit surfaces, high light utilization efficiency can be realized in a liquid crystal display device using a liquid crystal display panel.

以下、図面を参照して本発明を詳細に説明する。本発明の両面発光面光源素子の一例の概略断面図を図1に示す。この両面発光面光源素子は、冷陰極管やLEDなどからなる光源1と、側面に該光源が設けられた導光板2と、該導光板2から光を取り出すとともに、取り出された光の出射角度の分布を制御するための出射光制御板31、32とからなる。該出射光制御板31、32には多数の凸部61、62が形成されており、この凸部61、62の先端41、42が該導光板2の対向する2つの面それぞれに光学的に密着している。更に、本発明の両面発光面光源素子には後述する偏光分離素子71、72が光学的に密着されている。なお、図1においては、偏光透過軸が互いに直交する2つの偏光分離素子71、72が導光板2と出射光制御板31、32との間に光学的に密着されているが、図2に示すように、導光板と凸部を介して光学的に密着された出射光制御板31、32の出射側表面51、52に該偏光分離素子71、72を光学的に密着しても良い。   Hereinafter, the present invention will be described in detail with reference to the drawings. A schematic cross-sectional view of an example of the double-sided light emitting surface light source element of the present invention is shown in FIG. The double-sided light-emitting surface light source element includes a light source 1 composed of a cold cathode tube, an LED, and the like, a light guide plate 2 provided with the light source on a side surface, and light output from the light guide plate 2 and an emission angle of the extracted light. Output light control plates 31 and 32 for controlling the distribution of light. The emitted light control plates 31 and 32 are formed with a large number of convex portions 61 and 62, and the tips 41 and 42 of the convex portions 61 and 62 are optically formed on two opposing surfaces of the light guide plate 2. It is in close contact. Furthermore, polarization separation elements 71 and 72 described later are optically adhered to the double-sided light emitting surface light source element of the present invention. In FIG. 1, two polarization separation elements 71 and 72 whose polarization transmission axes are orthogonal to each other are in optical contact between the light guide plate 2 and the outgoing light control plates 31 and 32. As shown, the polarization separation elements 71 and 72 may be optically in close contact with the exit-side surfaces 51 and 52 of the outgoing light control plates 31 and 32 optically in close contact with the light guide plate and the convex portion.

出射光制御板の凸部の断面形状は凸部内に取込まれた光が壁面で全反射し、所望の出射光分布が得られるような形状であることが必要であることから、本発明においては、放物線状、楕円状、台形状、あるいはこれらの組合せからなる形状が用いられる。また、この凸部はシリンドリカルレンズのような1次元的なパターンが可能であるばかりでなく、マイクロレンズのような2次元的なパターンも可能である。 In the present invention, the sectional shape of the convex portion of the outgoing light control plate needs to be a shape that allows the light taken into the convex portion to be totally reflected on the wall surface and obtain a desired outgoing light distribution . A shape made of a parabola, an ellipse, a trapezoid, or a combination thereof is used. In addition, the convex portion can have not only a one-dimensional pattern like a cylindrical lens but also a two-dimensional pattern like a microlens.

凸部底部の長さで表される1つの凸部の大きさは、0.005mm〜1.0mmであることが表示品位、作製の容易さなどの点で好ましい。また、凸部の間隔は発光エリアの大きさ、導光板の厚み、観察者との距離に応じて適宜選択されるものであるが、0.001mm〜5mmの範囲内にあることが好適である。更に、発光面の面内輝度分布を一定にするために、光源の近くで凸部の間隔を大きく、光源から離れるにしたがって間隔が小さくなるように面内で変調させることが望ましい。   The size of one convex portion represented by the length of the convex bottom portion is preferably 0.005 mm to 1.0 mm in view of display quality, ease of manufacture, and the like. Moreover, although the space | interval of a convex part is suitably selected according to the magnitude | size of a light emission area, the thickness of a light-guide plate, and the distance with an observer, it is suitable to exist in the range of 0.001 mm-5 mm. . Further, in order to make the in-plane luminance distribution of the light emitting surface constant, it is desirable to modulate in-plane so that the interval between the convex portions is large near the light source and the interval becomes small as the distance from the light source is increased.

図3を用いて本発明の両面発光面光源素子の発光原理について説明する。なお、図3は図1の構成の両面発光面光源素子における光線の軌跡を示す図である。図中の矢印は光線の軌跡を示し、電場ベクトルの互いに直交する直線偏光Aおよび直線偏光Bが図中に示す記号でそれぞれ表され、2つの記号が並んで示されている線は、分離前のランダム偏光を示している。両面発光面光源素子における上面の偏光分離素子71を直線偏光Bが透過する様に配置すると、ランダム偏光のうち直線偏光Bは出射光制御板31に取り出される。これに対して、直線偏光Aは偏光分離素子71で反射されることになる。したがって、上側の出射光制御板31からは直線偏光Bのみが取り出される。更に、下面の偏光分離素子72を直線偏光Aが透過するように配置すると、出射光制御板32の凸部においてランダム偏光から直線偏光Aのみが取り出される。これに対して、直線偏光Bは導光板と該偏光分離素子72の界面で反射される。また、出射光制御板における凸部の存在しない領域に入射するランダム偏光は出射光制御板に取り出されること無く、導光板内で伝搬を繰返すこととなる。以上のような理由で、本発明のように偏光透過軸が互いに直交する2つの偏光分離素子71、72を、導光板の対向する出射面側に配設することにより、一方の出射面からは直線偏光Aのみが得られ、他方の出射面からは直線偏光Bのみが得られることとなる。なお、図3の例においては偏光分離素子として反射型偏光子を表しているため直線偏光Aおよび直線偏光Bは正反射するが、偏光分離素子として散乱型偏光子を使用する場合は直線偏光Aおよび直線偏光Bは散乱反射することは言うまでも無く、本発明においてはどちらの偏光分離素子も使用することが可能である。   The light emission principle of the double-sided light emitting surface light source element of the present invention will be described with reference to FIG. FIG. 3 is a diagram showing the locus of light rays in the double-sided light emitting surface light source element having the configuration shown in FIG. The arrows in the figure indicate the trajectories of the rays, and the linearly polarized light A and the linearly polarized light B, which are orthogonal to each other, of the electric field vector are represented by the symbols shown in the figure, respectively. Random polarization is shown. When the polarization separation element 71 on the upper surface of the double-sided light emitting surface light source element is arranged so that the linearly polarized light B is transmitted, the linearly polarized light B out of the random polarized light is extracted to the outgoing light control plate 31. On the other hand, the linearly polarized light A is reflected by the polarization separation element 71. Accordingly, only the linearly polarized light B is extracted from the upper outgoing light control plate 31. Further, when the polarization separation element 72 on the lower surface is arranged so that the linearly polarized light A is transmitted, only the linearly polarized light A is extracted from the random polarized light at the convex portion of the outgoing light control plate 32. On the other hand, the linearly polarized light B is reflected at the interface between the light guide plate and the polarization separation element 72. In addition, the random polarized light incident on the region where the convex portion does not exist in the outgoing light control plate is repeatedly extracted in the light guide plate without being taken out by the outgoing light control plate. For the reasons as described above, by disposing the two polarization separation elements 71 and 72 whose polarization transmission axes are orthogonal to each other as in the present invention on the opposite exit surface side of the light guide plate, from one exit surface, Only the linearly polarized light A is obtained, and only the linearly polarized light B is obtained from the other exit surface. In the example of FIG. 3, the linearly polarized light A and the linearly polarized light B are specularly reflected because they represent a reflective polarizer as the polarization separating element, but the linearly polarized light A is used when a scattering polarizer is used as the polarization separating element. Needless to say, the linearly polarized light B is scattered and reflected. In the present invention, either polarization separation element can be used.

次に、図2に示した構成の両面発光面光源素子の発光原理について図4を用いて説明する。導光板2を伝搬するランダム偏光は出射光制御板31の凸部61で取り出され、該凸部の壁面で反射された後、該出射光制御板31と偏光分離素子71の界面に達する。このとき、該偏光分離素子71を直線偏光Bが透過する様に配置すると、ランダム偏光のうち直線偏光Bのみが外部に出射され、直線偏光Aは界面で反射される。反射された直線偏光Aは対向する面における出射光制御板32と偏光分離素子72の界面に入射する。このとき直線偏光Aが透過する様に該偏光分離素子72を配置すると、直線偏光Aが外部に出射される。また、出射光制御板における凸部の存在しない領域に入射するランダム偏光は出射光制御板に取り出されることなく、導光板内で伝播を繰返すこととなる。以上のような理由で、一方の出射面からは直線偏光Aのみが得られ、他方の出射面からは直線偏光Bのみが得られることとなる。   Next, the light emission principle of the double-sided light emitting surface light source element having the configuration shown in FIG. 2 will be described with reference to FIG. Random polarized light propagating through the light guide plate 2 is extracted by the convex portion 61 of the outgoing light control plate 31, reflected by the wall surface of the convex portion, and then reaches the interface between the outgoing light control plate 31 and the polarization separation element 71. At this time, when the polarization separation element 71 is arranged so that the linearly polarized light B is transmitted, only the linearly polarized light B out of the random polarized light is emitted to the outside, and the linearly polarized light A is reflected at the interface. The reflected linearly polarized light A enters the interface between the outgoing light control plate 32 and the polarization separation element 72 on the opposite surface. If the polarization separation element 72 is arranged so that the linearly polarized light A is transmitted at this time, the linearly polarized light A is emitted to the outside. In addition, the random polarized light incident on the region where the convex portion does not exist in the outgoing light control plate is repeatedly extracted within the light guide plate without being taken out by the outgoing light control plate. For the above reasons, only linearly polarized light A is obtained from one exit surface, and only linearly polarized light B is obtained from the other exit surface.

出射光制御板の凸部の頂部と導光板もしくは偏光分離素子との密着部は、出射光制御板に光を取り出すために光学的に密着する必要がある。このように密着するためには紫外線硬化性接着剤、ホットメルト接着剤、粘着剤、および両面テープなどのうち、透明性に優れるものを選択して用いること、あるいは溶融圧着方式などの直接接合法を用いることで実現できる。   The contact portion between the top of the convex portion of the outgoing light control plate and the light guide plate or the polarization separation element needs to be optically in close contact with the outgoing light control plate in order to extract light. In order to make such close contact, UV curable adhesives, hot melt adhesives, pressure-sensitive adhesives, double-sided tapes, and the like are selected and used, or a direct bonding method such as a melt-bonding method. This can be realized by using

上述した両面発光面光源素子に対して、各々の出射面側に異なる液晶表示パネルを配置することにより、図5に示す液晶表示装置9を実現することができる。なお、この例は図1の両面発光面光源素子を用いたものであるが、図2の両面発光面光源素子を用いることも可能である。液晶表示パネル81においては、両面発光面光源素子側の偏光板811の偏光透過軸を、対応する偏光分離素子71の偏光透過軸と一致させることが必要となる。また、液晶表示パネル82においても同様に両面発光面光源素子側の偏光板821と偏光分離素子72の偏光透過軸を一致させなければならない。ただし、どちらの液晶表示パネルにおいても、両面発光面光源素子でない側の偏光板812および822の偏光透過軸は該液晶表示パネルの液晶表示モードに依存するため、偏光板812、822の偏光透過軸は偏光分離素子71、72の偏光透過軸と一致していても直交していても良い。   The liquid crystal display device 9 shown in FIG. 5 can be realized by disposing different liquid crystal display panels on the exit surface sides of the above-described double-sided light emitting surface light source element. Although this example uses the double-sided light emitting surface light source element of FIG. 1, it is also possible to use the double-sided light emitting surface light source element of FIG. In the liquid crystal display panel 81, it is necessary to make the polarization transmission axis of the polarizing plate 811 on the double-sided light emitting surface light source element side coincide with the polarization transmission axis of the corresponding polarization separation element 71. Similarly, in the liquid crystal display panel 82, the polarization transmission axes of the polarizing plate 821 on the double-sided light emitting surface light source element side and the polarization separating element 72 must be matched. However, in both liquid crystal display panels, the polarization transmission axes of the polarizing plates 812 and 822 on the side that is not the double-sided light emitting surface light source element depend on the liquid crystal display mode of the liquid crystal display panel. May coincide with or be orthogonal to the polarization transmission axes of the polarization separating elements 71 and 72.

またここでは図示しないが、液晶表示パネルにおいては両面発光面光源素子側の偏光板811、821は用いなくとも良い。本発明の両面発光面光源素子からは直線偏光が出射されるためであり、偏光板811、821を用いずとも、良好な画像を表示することができるからである。この構成によれば、液晶表示装置の薄型化およびコストダウンを達成できる。   Although not shown here, in the liquid crystal display panel, the polarizing plates 811 and 821 on the double-sided light emitting surface light source element side may not be used. This is because linearly polarized light is emitted from the double-sided light emitting surface light source element of the present invention, and a good image can be displayed without using the polarizing plates 811 and 821. According to this configuration, it is possible to reduce the thickness and cost of the liquid crystal display device.

上述した理由により、本発明の両面発光面光源素子およびそれを用いた液晶表示装置は従来の技術に比べて、光利用効率の高いことがわかる。つまり、本発明の両面発光面光源素子を用いることで光源から出射されるランダム偏光を直線偏光として出射することが可能となり、本発明の液晶表示装置においては液晶表示パネルで光をロスすることなく有効に利用できるからである。   For the reasons described above, it can be seen that the double-sided light emitting surface light source element of the present invention and the liquid crystal display device using the same have higher light utilization efficiency than the prior art. That is, by using the double-sided light emitting surface light source element of the present invention, random polarized light emitted from the light source can be emitted as linearly polarized light, and in the liquid crystal display device of the present invention, light is not lost in the liquid crystal display panel. This is because it can be used effectively.

本発明の偏光分離素子としては、吸収型以外の非吸収型偏光子を用いるのが好ましい。つまり、ランダム偏光から直線偏光を選択的に透過し、その直線偏光とは電場ベクトルが直交する直線偏光を反射または散乱する機能を有する反射型偏光子や散乱型偏光子と呼ばれているものが好ましい。例としては住友スリーエム株式会社のDBEFおよびDRPFなどが挙げられる。また、ワイヤグリッド型偏光子やフォトニッククリスタルなども用いることができる。   As the polarization separation element of the present invention, it is preferable to use a non-absorption type polarizer other than the absorption type. In other words, linearly polarized light is selectively transmitted from random polarized light, and the linearly polarized light is called a reflective polarizer or a scattering polarizer having a function of reflecting or scattering linearly polarized light whose electric field vectors are orthogonal. preferable. Examples include DBEF and DRPF from Sumitomo 3M Limited. Further, a wire grid type polarizer or a photonic crystal can be used.

本発明の両面発光面光源素子においては、表裏面の発光エリアを同じくすることも可能であるし、異なるサイズにすることもできる。つまり、導光板の表裏面に配設する出射光制御板を同サイズとすれば、発光エリアは両面で等しくなる。一方、表裏面の出射光制御板のサイズを変えることにより、異なる発光エリアを実現することもできる。これは出射光制御板の凸部が導光板と光学的に密着する部分のみから光を取り出すことができるためである。したがって、携帯電話などのようにメインディスプレイおよびサブディスプレイを必要とする液晶表示装置に、本発明の両面発光面光源素子を用いることが非常に適している。   In the double-sided light emitting surface light source element of the present invention, the light emitting areas on the front and back surfaces can be the same or different sizes. That is, if the outgoing light control plates disposed on the front and back surfaces of the light guide plate are the same size, the light emitting areas are equal on both sides. On the other hand, different light emitting areas can be realized by changing the sizes of the outgoing light control plates on the front and back surfaces. This is because light can be extracted only from the portion where the convex portion of the outgoing light control plate is in optical contact with the light guide plate. Therefore, it is very suitable to use the double-sided light emitting surface light source element of the present invention for a liquid crystal display device that requires a main display and a sub display such as a mobile phone.

導光板の側面に光を入射させる光源として、冷陰極管、熱陰極管、LEDなど、導光板の側面を照射することができればいずれも使用することができる。また、該光源は導光板の側面に直接配置しても良いし、該光源と該導光板との間に光導波路のような部材を介しても良い。本発明における光源は、図1で示したように1つの側面のみに配置するものでも良いし、対向する2つの側面に配置しても良い。更には導光板の出射側表面を除く4つの面に配置しても良い。また、導光板の側面全体でなく、コーナー部のみに光源を配置しても良い。   Any light source can be used as long as it can irradiate the side surface of the light guide plate, such as a cold cathode tube, a hot cathode tube, and an LED, as a light source for making light incident on the side surface of the light guide plate. The light source may be disposed directly on the side surface of the light guide plate, or a member such as an optical waveguide may be interposed between the light source and the light guide plate. The light source in the present invention may be disposed only on one side as shown in FIG. 1 or may be disposed on two opposite side surfaces. Furthermore, you may arrange | position on four surfaces except the output side surface of a light-guide plate. Moreover, you may arrange | position a light source only to a corner part instead of the whole side surface of a light-guide plate.

本発明の両面発光面光源素子に用いる導光板としては、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、環状オレフィン樹脂などの透明性に優れた樹脂またはガラスを所定の形状に加工したものを用いることができる。ただし、本発明においては導光板中を伝搬する光の偏光状態を変化させてはならないため、複屈折性の小さな材料を用いなければならない。したがって、本発明においては上述した材料の中でもアクリル樹脂が特に好適である。また、該導光板の加工方法としては、押出板またはキャスト板から切り出す方法、加熱プレス、射出成形等の溶融成形法などが好適に用いられる。   As the light guide plate used in the double-sided light emitting surface light source element of the present invention, a resin having excellent transparency such as acrylic resin, polycarbonate resin, polystyrene resin, cyclic olefin resin, or glass processed into a predetermined shape can be used. . However, in the present invention, since the polarization state of light propagating through the light guide plate must not be changed, a material having a small birefringence must be used. Therefore, acrylic resin is particularly suitable among the materials described above in the present invention. Moreover, as a processing method of this light-guide plate, the method of cutting out from an extrusion plate or a cast board, melt molding methods, such as a hot press and injection molding, etc. are used suitably.

出射光制御板の凸部形状は、スタンパ、雌金型またはロール型などの凹型を用いて、紫外線照射による光重合成形法、熱可塑性樹脂による射出成形法、押出成形法等によって得ることができるが、出射光制御板中を伝搬する光の偏光状態を変化させてはならないため、複屈折性の小さな紫外線硬化性樹脂を用いることが特に好ましい。このとき用いられる凹型は、例えばガラス基板上にネガ型あるいはポジ型の感光性樹脂をコーティングし、この感光性樹脂をフォトマスクを介して露光現像後、電鋳を行うことにより作製することができるし、金属板の切削により直接彫刻して作製することもできる。   The convex shape of the outgoing light control plate can be obtained by using a concave mold such as a stamper, a female mold, or a roll mold, by a photopolymerization molding method using ultraviolet irradiation, an injection molding method using a thermoplastic resin, an extrusion molding method, or the like. However, since the polarization state of the light propagating through the outgoing light control plate must not be changed, it is particularly preferable to use an ultraviolet curable resin having a small birefringence. The concave mold used at this time can be produced, for example, by coating a negative or positive photosensitive resin on a glass substrate, exposing and developing the photosensitive resin through a photomask, and performing electroforming. However, it can also be directly engraved by cutting a metal plate.

以下、実施例および比較例を示す。   Examples and comparative examples are shown below.

(実施例1)
両面発光面光源素子に用いる出射光制御板を以下の手順で作製した。ガラス基板上にポジ型レジストをスピンコートし、任意のパターンが描画されたフォトマスクを介して露光現像を行った。このようにして得られたレジストの凹凸形状は、両面発光面光源素子で必要とされる出射光制御板の凸部形状となるように設計されており、凹凸形状に対してニッケル電鋳を施すことにより出射光制御板のニッケルスタンパを作製できる。なお、該凸部の配列は該フォトマスクに描画された遮光パターンにより調整することができるため、実施例1においては凸部底部の大きさを0.02mm、凸部の間隔を0.03mm〜0.8mmとした。また、該凸部の断面形状は高さ0.02mmの台形とし、これを中心軸で回転した立体を実施例1の凸部とした。
Example 1
An outgoing light control plate used for a double-sided light emitting surface light source element was produced by the following procedure. A positive resist was spin-coated on a glass substrate, and exposure and development were performed through a photomask on which an arbitrary pattern was drawn. The uneven shape of the resist thus obtained is designed to be the convex shape of the outgoing light control plate required for the double-sided light emitting surface light source element, and nickel electroforming is applied to the concave and convex shape. Thus, a nickel stamper for the outgoing light control plate can be manufactured. In addition, since the arrangement | sequence of this convex part can be adjusted with the light-shielding pattern drawn on this photomask, in Example 1, the magnitude | size of a convex part bottom part is 0.02 mm, and the space | interval of a convex part is 0.03 mm- It was set to 0.8 mm. Moreover, the cross-sectional shape of this convex part was made into the trapezoid of height 0.02 mm, and the solid which rotated this with the central axis was made into the convex part of Example 1. FIG.

次に、アクリレート系モノマーおよびアクリレート系オリゴマーに紫外線重合開始剤を添加した紫外線硬化性樹脂(UVX4370:東亞合成株式会社製)を該ニッケルスタンパに流し込み、57mm×75mm×0.1mmの「アートン」(登録商標)フィルム(JSR株式会社製)をラミネートした。更に、該アートンフィルム上から所定量の紫外線を照射することで、該紫外線硬化性樹脂を硬化した。次いで、該ニッケルスタンパと該アートンフィルムを剥離することで、表面に複数の凸部の形成された57mm×75mm×0.2mmの出射光制御板を得ることができた。これと同様な手順で形状およびサイズの同じ出射光制御板を更に作製した。   Next, an ultraviolet curable resin (UVX4370: manufactured by Toagosei Co., Ltd.) obtained by adding an ultraviolet polymerization initiator to an acrylate monomer and an acrylate oligomer is poured into the nickel stamper, and “Arton” (57 mm × 75 mm × 0.1 mm) ( (Registered trademark) film (manufactured by JSR Corporation) was laminated. Furthermore, the ultraviolet curable resin was cured by irradiating a predetermined amount of ultraviolet rays from the arton film. Next, the nickel stamper and the arton film were peeled off to obtain a 57 mm × 75 mm × 0.2 mm emission light control plate having a plurality of convex portions formed on the surface. In the same procedure, an outgoing light control plate having the same shape and size was produced.

次に導光板として67mm×85mm×0.8mmのPMMAキャスト板(「パラグラス」(登録商標):株式会社クラレ製)を用い、0.01mm厚さのアクリレート系紫外線硬化性接着剤層(UVX4332:東亞合成株式会社製)を介して、該出射光制御板の凸部の頂部と接着した。なお、このとき2つの出射光制御板は該導光板の対向する2つの面にそれぞれ接着した。   Next, a 67 mm × 85 mm × 0.8 mm PMMA cast plate (“Paraglass” (registered trademark): manufactured by Kuraray Co., Ltd.) was used as the light guide plate, and a 0.01 mm thick acrylate-based ultraviolet curable adhesive layer (UVX4332: It was bonded to the top of the convex portion of the emitted light control plate via Toagosei Co., Ltd.). At this time, the two outgoing light control plates were bonded to the two opposing surfaces of the light guide plate, respectively.

続いて出射光制御板の表面に0.05mm厚さの粘着剤層(SKダイン:綜研化学株式会社製)を介して偏光分離素子を貼合した。なお、本実施例1においては偏光分離素子として57mm×75mm×0.13mmの2枚の反射型偏光子(DBEF:住友スリーエム株式会社製)を用い、該偏光分離素子の偏光透過軸が互いに直交するように、表裏面の出射光制御板とそれぞれ貼合した。   Subsequently, a polarization separation element was bonded to the surface of the outgoing light control plate via an adhesive layer having a thickness of 0.05 mm (SK Dyne: manufactured by Soken Chemical Co., Ltd.). In Example 1, two reflective polarizers (DBEF: manufactured by Sumitomo 3M Co., Ltd.) of 57 mm × 75 mm × 0.13 mm are used as the polarization separation elements, and the polarization transmission axes of the polarization separation elements are orthogonal to each other. As shown in the figure, they were respectively bonded to the outgoing light control plates on the front and back surfaces.

最後に該導光板のひとつの側面(67mmの辺)に4つのLED(NACW008:日亜化学工業株式会社製)を均等の間隔で配置することで、総厚み1.58mmの両面発光面光源素子を得ることができた。   Finally, by arranging four LEDs (NACW008: manufactured by Nichia Corporation) on one side surface (67 mm side) of the light guide plate at equal intervals, a double-sided light emitting surface light source element having a total thickness of 1.58 mm Could get.

該両面発光面光源素子の各々のLEDに対して30mAの電流を印加し、両面発光面光源素子を発光させた。色彩輝度計(BM−7A:トプコン株式会社製)を用いて、該両面発光面光源素子の中央部における正面輝度を測定したところ、両面ともに2000cd/mであった。 A current of 30 mA was applied to each LED of the double-sided light emitting surface light source element to cause the double-sided light emitting surface light source element to emit light. When the front luminance at the center of the double-sided light emitting surface light source element was measured using a color luminance meter (BM-7A: manufactured by Topcon Corporation), both sides were 2000 cd / m 2 .

(比較例1)
実施例1と同様な手順で、57mm×75mm×0.2mmの出射光制御板を作製し、導光板として用いた67mm×85mm×0.8mmのPMMAキャスト板(実施例1で用いたものと同じ)の両面に、0.01mm厚さのアクリレート系紫外線硬化性接着剤層(実施例1で用いたものと同じ)を介して貼合した。なお、比較例1においては、偏光分離素子は併用していない。
(Comparative Example 1)
A 57 mm × 75 mm × 0.2 mm outgoing light control plate was produced in the same procedure as in Example 1, and a 67 mm × 85 mm × 0.8 mm PMMA cast plate (as used in Example 1) was used as the light guide plate. It was bonded to both sides of the same) via a 0.01 mm thick acrylate-based UV curable adhesive layer (same as used in Example 1). In Comparative Example 1, the polarization separation element is not used together.

次に該導光板のひとつの側面(67mmの辺)に実施例1で用いたものと同じ4つのLEDを均等の間隔で配置することで、総厚み1.22mmの両面発光面光源素子を得ることができた。   Next, the same four LEDs as those used in Example 1 are arranged at equal intervals on one side surface (side of 67 mm) of the light guide plate to obtain a double-sided light emitting surface light source element having a total thickness of 1.22 mm. I was able to.

該両面発光面光源素子の各々のLEDに対して30mAの電流を印加し、両面発光面光源素子を発光させた。色彩輝度計を用いて、該両面発光面光源素子の中央部における正面輝度を測定したところ、両面ともに2000cd/mであった。 A current of 30 mA was applied to each LED of the double-sided light emitting surface light source element to cause the double-sided light emitting surface light source element to emit light. When the front luminance at the center of the double-sided light emitting surface light source element was measured using a color luminance meter, both sides were 2000 cd / m 2 .

実施例1と比較例1の結果を比較すると、比較例1の面光源素子の正面輝度は実施例1のものと同等であるものの、比較例1はランダム偏光が出射されるのに対して、実施例1は直線偏光が出射されるため、液晶表示パネルを併用した場合に実施例1の方が光利用効率の高いものとなる。   Comparing the results of Example 1 and Comparative Example 1, the front luminance of the surface light source element of Comparative Example 1 is equivalent to that of Example 1, whereas Comparative Example 1 emits randomly polarized light, Since linearly polarized light is emitted in the first embodiment, the light utilization efficiency of the first embodiment is higher when the liquid crystal display panel is used in combination.

(実施例2)
実施例1と同様な手順で両面発光面光源素子に用いる出射光制御板を作製した。ただし、出射光制御板のサイズはそれぞれ36mm×45mm×0.2mm、20mm×16mm×0.2mmとした。なお、両方の出射光制御板ともに、凸部底部の大きさは0.02mmであり、凸部の間隔を0.03mm〜0.8mmで調整した。また、該凸部の断面形状は高さ0.02mmの台形とし、これを中心軸で回転した立体を凸部とした。
(Example 2)
An outgoing light control plate used for a double-sided light emitting surface light source element was produced in the same procedure as in Example 1. However, the sizes of the outgoing light control plates were 36 mm × 45 mm × 0.2 mm and 20 mm × 16 mm × 0.2 mm, respectively. In both the outgoing light control plates, the size of the bottom of the convex portion was 0.02 mm, and the interval between the convex portions was adjusted to 0.03 mm to 0.8 mm. Moreover, the cross-sectional shape of this convex part was made into the trapezoid of height 0.02mm, and the solid which rotated this about the central axis was made into the convex part.

次に導光板として46mm×55mm×0.8mmのPMMAキャスト板(実施例1と同じ)を用い、0.05mm厚さの粘着剤層を介して偏光分離素子を貼合した。なお、本実施例2においては偏光分離素子として36mm×45mm×0.13mm、および20mm×16mm×0.13mmの散乱型偏光子(DRPF:住友スリーエム株式会社製)を用い、該偏光分離素子の偏光透過軸が互いに直交するように該導光板の表裏面に貼合した。   Next, a 46 mm × 55 mm × 0.8 mm PMMA cast plate (same as in Example 1) was used as the light guide plate, and the polarization separation element was bonded via a 0.05 mm thick adhesive layer. In Example 2, a 36 mm × 45 mm × 0.13 mm and 20 mm × 16 mm × 0.13 mm scattering polarizer (DRPF: manufactured by Sumitomo 3M Limited) was used as the polarization separation element. The light guide plates were bonded to the front and back surfaces so that the polarization transmission axes were orthogonal to each other.

続いて偏光分離素子の表面に0.01mm厚さのアクリレート系紫外線硬化性接着剤層(実施例1と同じ)を介して、前述した2つの出射光制御板を貼合した。なお、貼合する該出射光制御板と該偏光分離素子のサイズは同じとした。   Subsequently, the two outgoing light control plates described above were bonded to the surface of the polarization separation element via an acrylate-based ultraviolet curable adhesive layer (same as Example 1) having a thickness of 0.01 mm. In addition, the size of the outgoing light control plate to be bonded and the polarization separating element was the same.

最後に該導光板のひとつの側面(55mmの辺)に実施例1で用いたものと同じ4つのLEDを均等の間隔で配置することで、総厚み1.58mmの両面発光面光源素子を得ることができた。   Finally, the same four LEDs used in Example 1 are arranged at equal intervals on one side surface (55 mm side) of the light guide plate to obtain a double-sided light emitting surface light source element having a total thickness of 1.58 mm. I was able to.

該両面発光面光源素子の各々のLEDに対して30mAの電流を印加し、両面発光面光源素子を発光させた。実施例1で用いた色彩輝度計を用いて、該両面発光面光源素子の正面輝度を測定したところ、36mm×45mmのサイズの発光エリアの中央部は3000cd/m、20mm×16mmのサイズの発光エリアの中央部は2000cd/mであった。 A current of 30 mA was applied to each LED of the double-sided light emitting surface light source element to cause the double-sided light emitting surface light source element to emit light. When the front luminance of the double-sided light emitting surface light source element was measured using the color luminance meter used in Example 1, the central portion of the light emitting area of 36 mm × 45 mm was 3000 cd / m 2 and 20 mm × 16 mm in size. The central part of the light emitting area was 2000 cd / m 2 .

更に、該両面発光面光源素子に2組のTNモードの液晶表示パネルを載せることで、液晶表示装置を作製した。なお、液晶表示パネルにおける両面発光面光源素子側の偏光板の偏光透過軸は、該両面発光面光源素子の対応する偏光分離素子の偏光透過軸と同じ方向とした。該液晶表示装置において画像情報を表示したところ、両側の液晶表示装置ともに明るく良好な画像を視認することができた。   Furthermore, a liquid crystal display device was manufactured by mounting two sets of TN mode liquid crystal display panels on the double-sided light emitting surface light source element. In addition, the polarization transmission axis of the polarizing plate on the double-sided light emitting surface light source element side in the liquid crystal display panel was set in the same direction as the polarization transmission axis of the corresponding polarization separation element of the double-sided light emitting surface light source element. When image information was displayed on the liquid crystal display device, a bright and good image could be visually recognized on both the liquid crystal display devices.

(比較例2)
導光板として46mm×55mm×0.8mmのPMMAキャスト板(実施例1と同じ)を用い、両面にスクリーン印刷法で白色ドット印刷を施した。なお、印刷エリアのサイズはそれぞれ、36mm×45mm、20mm×16mmとした。更に、該導光板の上には印刷エリアと同サイズの0.14mmの拡散シート(PC−YBS:恵和株式会社製)1枚、および0.15mmのレンズを互いに直交したプリズムシート(BEFIII:住友スリーエム株式会社製)2枚をそれぞれの面に載せた。
(Comparative Example 2)
A 46 mm × 55 mm × 0.8 mm PMMA cast plate (same as Example 1) was used as the light guide plate, and white dot printing was performed on both sides by screen printing. The sizes of the print areas were 36 mm × 45 mm and 20 mm × 16 mm, respectively. Furthermore, on the light guide plate, one 0.14 mm diffusion sheet (PC-YBS: manufactured by Eiwa Co., Ltd.) having the same size as the printing area, and a prism sheet (BEFIII: Two sheets (manufactured by Sumitomo 3M Limited) were placed on each surface.

最後に該導光板のひとつの側面(55mmの辺)に実施例1で用いたものと同じ4つのLEDを均等の間隔で配置することで、総厚み1.68mmの両面発光面光源素子を得ることができた。   Finally, the same four LEDs used in Example 1 are arranged at equal intervals on one side surface (55 mm side) of the light guide plate to obtain a double-sided light emitting surface light source element having a total thickness of 1.68 mm. I was able to.

該両面発光面光源素子の各々のLEDに対して30mAの電流を印加し、両面発光面光源素子を発光させた。色彩輝度計を用いて、該両面発光面光源素子の正面輝度を測定したところ、36mm×45mmのサイズの発光エリアの中央部は2500cd/m、20mm×16mmのサイズの発光エリアの中央部は1000cd/mであった。なお、20mm×16mmの白色ドット印刷を施した面は、該白色ドット印刷を施してない領域からも光を発光していたため、大きく光をロスしていることが判った。 A current of 30 mA was applied to each LED of the double-sided light emitting surface light source element to cause the double-sided light emitting surface light source element to emit light. When the front luminance of the double-sided light emitting surface light source element was measured using a color luminance meter, the central part of the light emitting area with a size of 36 mm × 45 mm was 2500 cd / m 2 , and the central part of the light emitting area with a size of 20 mm × 16 mm was It was 1000 cd / m 2 . In addition, it turned out that the surface which gave the white dot printing of 20 mm x 16 mm emitted light also from the area | region which has not performed this white dot printing, and has lost light greatly.

更に、該両面発光面光源素子に2組のTNモードの液晶表示パネルを載せることで、液晶表示装置を作製した。該液晶表示装置において画像情報を表示したところ、両側の液晶表示装置ともに暗く不鮮明な画像しか視認することができなかった。   Furthermore, a liquid crystal display device was manufactured by mounting two sets of TN mode liquid crystal display panels on the double-sided light emitting surface light source element. When image information was displayed on the liquid crystal display device, only a dark and unclear image could be seen on both liquid crystal display devices.

本発明の両面発光面光源素子を示す概略断面図である。It is a schematic sectional drawing which shows the double-sided light emission surface light source element of this invention. 本発明の別の一例の両面発光面光源素子を示す概略断面図である。It is a schematic sectional drawing which shows the double-sided light emission surface light source element of another example of this invention. 本発明の両面発光面光源素子における光線の軌跡を示す図である。It is a figure which shows the locus | trajectory of the light ray in the double-sided light emission surface light source element of this invention. 本発明の別の一例の両面発光面光源素子における光線の軌跡を示す図である。It is a figure which shows the locus | trajectory of the light ray in the double-sided light emission surface light source element of another example of this invention. 本発明の液晶表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal display device of this invention.

符号の説明Explanation of symbols

1:光源
2:導光板
31:出射光制御板
41:入射面
51:発光面
61:凸部
71:偏光分離素子
81:液晶表示パネル
811:両面発光面光源素子側の偏光板
812:両面発光面光源素子側でない側の偏光板
9:液晶表示装置
1: Light source 2: Light guide plate 31: Emission light control plate 41: Incident surface 51: Light emitting surface 61: Convex portion 71: Polarization separation element 81: Liquid crystal display panel 811: Double-sided light emitting surface Light source element side polarizing plate 812: Double-sided light emission Polarizing plate 9 on the side other than the surface light source element side: liquid crystal display device

Claims (6)

透明材料からなる1つの導光板と、前記導光板の側面に配置された少なくとも1つの光源とを有する両面発光面光源素子において、
a)前記導光板の対向する2つの面にそれぞれ配置される、複数の凸部が形成された2つの出射光制御板、および
b)前記導光板の対向する2つの面にそれぞれ配置される、偏光透過軸が互いに直交する2つの偏光分離素子を備え、
前記出射光制御板の凸部の断面は、放物線状、楕円状、台形状あるいはこれらの組合せからなる形状をして、前記導光板、前記出射光制御板および前記偏光分離素子が光学的に密着して構成されることを特徴とする両面発光面光源素子。
In a double-sided light emitting surface light source element having one light guide plate made of a transparent material and at least one light source disposed on a side surface of the light guide plate,
a) two outgoing light control plates formed with a plurality of convex portions respectively disposed on two opposing surfaces of the light guide plate; and b) respectively disposed on two opposing surfaces of the light guide plate. Comprising two polarization separation elements whose polarization transmission axes are orthogonal to each other;
The cross section of the convex portion of the outgoing light control plate has a parabolic shape, an elliptical shape, a trapezoidal shape, or a combination thereof, and the light guide plate, the outgoing light control plate, and the polarization separation element are in optical contact with each other. A double-sided light emitting surface light source element characterized by being configured as described above.
前記2つの偏光分離素子が、それぞれ前記導光板と前記出射光制御板の間に配設されることを特徴とする請求項1に記載の両面発光面光源素子。   The double-sided light emitting surface light source element according to claim 1, wherein the two polarization separation elements are respectively disposed between the light guide plate and the outgoing light control plate. 前記2つの偏光分離素子が、前記導光板の対向する2つの面にそれぞれ光学的に密着した前記出射光制御板の出射光側表面にそれぞれ配設されることを特徴とする請求項1に記載の両面発光面光源素子。   The said two polarization splitting elements are each arrange | positioned by the outgoing light side surface of the said outgoing light control board each optically closely_contact | adhered to the two surfaces which the said light-guide plate opposes, respectively. Double-sided light emitting surface light source element. 前記偏光分離素子が、非吸収型の偏光分離素子であることを特徴とする請求項1に記載の両面発光面光源素子。   The double-sided light-emitting surface light source element according to claim 1, wherein the polarization separation element is a non-absorption type polarization separation element. 請求項1から4のいずれか1項に記載の両面発光面光源素子の両面に、それぞれ配設される2つの液晶表示パネルを有することを特徴とする液晶表示装置。   5. A liquid crystal display device comprising two liquid crystal display panels respectively disposed on both surfaces of the double-sided light emitting surface light source element according to claim 1. 前記液晶表示パネルは、液晶セルの両面に偏光板を有しており、前記両面発光面光源素子側の偏光板の偏光透過軸は、対応する前記両面発光面光源素子の偏光分離素子の偏光透過軸と一致している請求項5に記載の液晶表示装置。   The liquid crystal display panel has polarizing plates on both sides of the liquid crystal cell, and the polarization transmission axis of the polarizing plate on the double-sided light emitting surface light source element side is the polarized light transmission of the polarization separating element of the corresponding double-sided light emitting surface light source element. The liquid crystal display device according to claim 5, wherein the liquid crystal display device coincides with an axis.
JP2006354470A 2006-12-28 2006-12-28 Double-sided light emitting surface light source element and liquid crystal display device using the same Expired - Fee Related JP4866230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354470A JP4866230B2 (en) 2006-12-28 2006-12-28 Double-sided light emitting surface light source element and liquid crystal display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354470A JP4866230B2 (en) 2006-12-28 2006-12-28 Double-sided light emitting surface light source element and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JP2008166120A JP2008166120A (en) 2008-07-17
JP4866230B2 true JP4866230B2 (en) 2012-02-01

Family

ID=39695308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354470A Expired - Fee Related JP4866230B2 (en) 2006-12-28 2006-12-28 Double-sided light emitting surface light source element and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP4866230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046009A1 (en) * 2009-10-15 2011-04-21 コニカミノルタホールディングス株式会社 Sheet type lighting apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521940B2 (en) * 1992-10-09 2004-04-26 旭硝子株式会社 Lighting device and liquid crystal display device
JP4628538B2 (en) * 2000-10-25 2011-02-09 株式会社クラレ Surface light source element and display device using the same
JP4042516B2 (en) * 2002-04-26 2008-02-06 カシオ計算機株式会社 Display device
JP2004046050A (en) * 2002-05-15 2004-02-12 Mitsubishi Electric Corp Liquid crystal displaying device
JP2005243259A (en) * 2004-02-24 2005-09-08 Omron Corp Double-screen image display device and surface light source device

Also Published As

Publication number Publication date
JP2008166120A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
TWI521246B (en) Light guide plate, film layer, light guide device and methods of making thereof
JP5809629B2 (en) Optical waveguide
TWI477821B (en) Light guides
JP3769327B2 (en) Prism lens sheet, backlight system and liquid crystal display device
JP2007256575A (en) Lens array sheet, optical sheet, and back light
WO2007119584A1 (en) Liquid crystal display device
JP2009043565A (en) Light guide plate, planar light unit, and display device
JP4423933B2 (en) Optical sheet and backlight unit and display using the same
CN106990609B (en) Backlight device and display device including the same
KR20150041324A (en) Light guide plate and backlight assembly comprising thereof
JP2006330032A (en) Optical sheet, and backlight unit and display using same
JP5098575B2 (en) Optical sheet, backlight unit and display device
KR102101204B1 (en) Liquid crystal display device and method for fabricating the same
JP4866230B2 (en) Double-sided light emitting surface light source element and liquid crystal display device using the same
JP2001312915A (en) Surface light source element and display device using the same
JP4628538B2 (en) Surface light source element and display device using the same
JP2010135220A (en) Surafce light source element and image display device using the same
KR102082679B1 (en) Liquid crystal display device and method for fabricating the same
WO2012043361A1 (en) Illumination device and display device
JP4935992B2 (en) Optical member and backlight unit and display device using the same
KR102113631B1 (en) Liquid crystal display device and method for fabricating the same
JP4693441B2 (en) Surface light source element with polarization functional layer and liquid crystal display device using the same
KR101749750B1 (en) Backlight Unit And Liquid Crystal Diplay
KR100793092B1 (en) Optical film, backlight unit and liquid crystal display device using the same
KR20210067148A (en) Optical film with narrow vewing angle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees