WO2012043361A1 - Illumination device and display device - Google Patents

Illumination device and display device Download PDF

Info

Publication number
WO2012043361A1
WO2012043361A1 PCT/JP2011/071576 JP2011071576W WO2012043361A1 WO 2012043361 A1 WO2012043361 A1 WO 2012043361A1 JP 2011071576 W JP2011071576 W JP 2011071576W WO 2012043361 A1 WO2012043361 A1 WO 2012043361A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
refractive index
prism
layer
Prior art date
Application number
PCT/JP2011/071576
Other languages
French (fr)
Japanese (ja)
Inventor
國政文枝
石田壮史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012043361A1 publication Critical patent/WO2012043361A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present invention relates to a lighting device, particularly a lighting device including a light guide plate, and a display device using the same.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • a liquid crystal display device includes an illumination device (backlight) that emits light and a liquid crystal panel that displays a desired image by serving as a shutter for light from a light source provided in the illumination device. It is.
  • the illumination device is roughly classified into a direct type and an edge light type depending on the arrangement of the light source with respect to the liquid crystal panel as an object to be irradiated with light, but the liquid crystal display device has recently been made thinner than the direct type.
  • An edge light type that is easy to draw is generally used. That is, in the edge light type lighting device, the light source is arranged on the side of the liquid crystal panel to reduce the thickness, and a light guide plate having an emission surface arranged to face the non-display surface of the liquid crystal panel is provided. The light from the light source is converted into planar illumination light and applied to the liquid crystal panel.
  • a light guide body into which light from a light source enters, an air layer on the opposite side of the light guide body from the liquid crystal panel A light guide plate having a first light transmission layer, a second light transmission layer, and a micro mirror that are sequentially provided integrally without using a light source is used, and the light use efficiency of the light source can be improved. It was.
  • the first light transmission layer has a refractive index smaller than that of the light guide
  • the second light transmission layer has a refractive index substantially the same as that of the light guide. It was.
  • a plurality of concave portions (prisms) having inclined surfaces are formed on the micro mirror side of the second light transmission layer, and the second light transmission layer is embedded so that the micro mirror embeds the plurality of concave portions.
  • the light from the light source is reflected using a micro mirror made of a metal film such as aluminum or nickel, and is emitted to the liquid crystal panel (irradiated object) as emitted light. It was. For this reason, in this conventional illumination device, the light absorption (loss) generated by the micro mirror cannot be reduced, and the light use efficiency of the light source is significantly reduced.
  • an object of the present invention is to provide an illuminating device excellent in light utilization efficiency capable of reducing an optical loss and obtaining emitted light, and a display device using the illuminating device.
  • an illumination device includes a light source and a light guide plate that guides light from the light source in a predetermined propagation direction and emits the light to an object to be irradiated.
  • the light guide plate is A light guide including a light incident surface for receiving light from the light source, an emission surface for emitting light incident from the light incident surface to the irradiated object side, and a facing surface facing the emission surface.
  • An optical path changing unit that is provided on the light exit surface side or the opposing surface side of the light guide and gradually changes the angle of light guided through the light guide;
  • a low refractive index layer having a refractive index lower than the refractive index of the light guide, and provided on the opposite surface side of the light guide;
  • the low refractive index layer is provided on the opposite side of the light guide, and includes a prism layer having a refractive index higher than the refractive index of the low refractive index layer,
  • the prism layer is provided with a plurality of prisms having at least three surfaces, In the prism, at least the light incident from the low refractive index layer side is sequentially totally reflected by the at least three surfaces and emitted from the emission surface of the light guide to the irradiated object side. Three surfaces are provided.
  • the light guide having the light incident surface, the light exit surface, and the opposing surface, and an optical path changing unit that gradually changes the angle of light guided through the inside of the light guide.
  • the light guide plate is provided with a low refractive index layer having a refractive index lower than the refractive index of the light guide while being provided on the opposite surface side of the light guide.
  • the light guide plate is provided with a prism layer having a refractive index higher than that of the low refractive index layer on the side opposite to the light guide of the low refractive index layer. It is possible to limit the angle range of light entering the light. As a result, light in a limited angle range is reflected to the exit surface side, so that a prism with little light loss can be formed.
  • the prism layer is provided with a plurality of prisms having at least three surfaces. In the prism, light incident from the low refractive index layer side is sequentially totally reflected by at least three surfaces, and the light exit surface of the light guide The at least three surfaces are provided so as to be emitted to the irradiated object side.
  • angles of the surfaces are set so that the incident angle of light is not less than a critical angle on the at least three surfaces.
  • the light loss can be reduced and the light emitted to the irradiated object can be obtained more reliably.
  • a plurality of the prisms are continuously formed in the normal direction of the light incident surface of the light guide in the prism layer.
  • the emitted light to the irradiated object can be emitted more uniformly, and it is possible to reliably prevent uneven brightness from occurring in the emitted light to the irradiated object.
  • the plurality of prisms have substantially the same shape and have the same size.
  • the emitted light to the irradiated object can be emitted more uniformly, and it is possible to reliably prevent uneven brightness from occurring in the emitted light to the irradiated object.
  • the low refractive index layer is attached to the facing surface of the light guide
  • the prism layer may be attached to a surface of the low refractive index layer opposite to the light guide.
  • the light guide plate can be easily thinned, and a compact lighting device can be easily configured.
  • a prism integrally formed on the light exit surface of the light guide may be used as the optical path changing unit.
  • a light guide plate that is easy to manufacture can be configured.
  • a surface on which light incident from the low refractive index layer side is first totally reflected may be set at an angle of 90 degrees or less with respect to the propagation direction. Good.
  • the prism layer can be easily formed.
  • the prism layer may be provided with a light scattering function for scattering light.
  • the angle range of the emitted light can be widened and the viewing angle can be increased.
  • a reflection portion that reflects light emitted from the prism layer to the prism layer side is provided on the opposite side of the prism layer from the low refractive index layer.
  • the light utilization efficiency of the light source can be further improved.
  • one surface included in the at least three surfaces may be provided in parallel to the reflecting portion.
  • the brightness of the emitted light to the irradiated object can be improved by the reflective polarizing plate.
  • one surface included in the at least three surfaces is provided in parallel to the reflecting portion, the front luminance in the emitted light can be reliably improved, and the emitted light by the reflective polarizing plate can be improved.
  • the brightness improvement effect can be increased.
  • a first light diffusion unit that diffuses light from the light source in a direction orthogonal to the propagation direction is provided on the emission surface side or the opposed surface side of the light guide. Also good.
  • a second light diffusion unit that diffuses light from the light source in a direction orthogonal to the propagation direction may be provided on the light incident surface of the light guide.
  • the display device according to the present invention is characterized by using any one of the lighting devices described above.
  • the display device configured as described above, a lighting device with excellent light utilization efficiency that can reduce the light loss and obtain the emitted light is used. Therefore, the display device has high brightness and labor saving. Can be configured easily.
  • a liquid crystal panel may be used as the irradiated object.
  • a high-brightness and labor-saving liquid crystal display device can be easily configured.
  • an illuminating device excellent in light utilization efficiency capable of reducing light loss and obtaining outgoing light it is possible to provide an illuminating device excellent in light utilization efficiency capable of reducing light loss and obtaining outgoing light, and a display device using the same.
  • FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a main configuration of the lighting device illustrated in FIG. 1.
  • FIG. 3 is a side view illustrating a specific configuration of the illumination device illustrated in FIG. 1.
  • FIG. 4 is an enlarged side view showing a main part configuration of the light guide plate of the illumination device shown in FIG. 1.
  • FIG. 5 is a diagram illustrating the configuration of the second prism provided on the light exit surface of the light guide in the illumination device illustrated in FIG. 1.
  • FIG. 6 is a diagram illustrating a configuration of a third prism provided on the light incident surface of the light guide in the illumination device illustrated in FIG. 1.
  • FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a main configuration of the lighting device illustrated in FIG. 1.
  • FIG. 3 is a side view
  • FIG. 7 is a diagram illustrating an illumination device and a liquid crystal display device according to the second embodiment of the present invention.
  • FIG. 8 is an enlarged side view showing the main configuration of the light guide plate of the illumination device shown in FIG.
  • FIG. 9A and FIG. 9B are diagrams for explaining an operation example in the illumination devices of the first and second embodiments, respectively.
  • FIG. 10 is an enlarged side view showing the main configuration of the light guide plate of the illumination device according to the third embodiment of the present invention.
  • Fig.11 (a) and FIG.11 (b) are the figures explaining the operation example in the illuminating device of 1st and 3rd embodiment, respectively.
  • FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a main configuration of the lighting device illustrated in FIG. 1.
  • the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 in which the upper side of FIG. 1 is installed as a viewing side (display surface side), and a non-display surface side of the liquid crystal panel 2 (lower side of FIG. 1).
  • an illuminating device 3 of the present invention that generates illumination light for illuminating the liquid crystal panel 2.
  • the liquid crystal panel 2 and the illumination device 3 are integrally assembled to constitute a transmissive liquid crystal display device 1.
  • the liquid crystal panel 2 includes a color filter substrate 2a and an active matrix substrate 2b constituting a pair of substrates, and constitutes an object to be irradiated with planar illumination light from the illumination device 3. Further, the color filter substrate 2a and the active matrix substrate 2b are made of a transparent synthetic resin such as a flat transparent glass material or an acrylic resin, and between the color filter substrate 2a and the active matrix substrate 2b. The liquid crystal layer (not shown) is sandwiched.
  • the active matrix substrate 2b constitutes one of the pair of substrates.
  • pixel electrodes or thin film transistors are formed in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2.
  • a TFT (Thin Film Transistor) or the like is formed between the liquid crystal layer (not shown).
  • the color filter substrate 2a constitutes the other of the pair of substrates, and the color filter substrate 2a has a color filter, a counter electrode, and the like formed between the liquid crystal layer (not shown). )
  • the liquid crystal panel 2 is provided with a control device (not shown) that controls the driving of the liquid crystal panel 2, and operates the liquid crystal layer in units of pixels to drive the display surface in units of pixels. A desired image is displayed on the display surface.
  • the liquid crystal mode and pixel structure of the liquid crystal panel 2 are arbitrary. Moreover, the drive mode of the liquid crystal panel 2 is also arbitrary. That is, as the liquid crystal panel 2, any liquid crystal panel that can display information can be used. Therefore, the detailed structure of the liquid crystal panel 2 is not shown in FIG.
  • the illumination device 3 includes a light emitting diode 4 as a light source and a light guide plate 5 disposed to face the light emitting diode 4.
  • a plurality of, for example, three light emitting diodes 4 are arranged on a straight line along a direction (X direction) perpendicular to the paper surface of FIG. 1.
  • Each of these light-emitting diodes 4 includes, for example, a blue light-emitting diode and a white light-emitting diode that emits white light with a phosphor, or red (R), green (G), and blue (B) light-emitting diodes.
  • R red
  • G green
  • B blue
  • the light guide plate 5 is configured in a substantially rectangular parallelepiped shape, and receives light from the light emitting diode 4. Further, the light guide plate 5 is configured to guide light from the light emitting diode 4 in a predetermined propagation direction (Z direction) and to emit the light to the liquid crystal panel (object to be irradiated) 2. Further, as will be described later in detail, the light guide plate 5 collects light while concentrating the light emitted to the liquid crystal panel 2 while preventing the occurrence of luminance unevenness as much as possible.
  • the liquid crystal panel 2 is irradiated with emitted light having a luminance or higher. Thereby, in the illuminating device 3 of this embodiment, installation of optical sheets, such as a diffusion plate and a condensing lens, can be abbreviate
  • the illumination device 3 of the present embodiment will be specifically described with reference to FIGS.
  • FIG. 3 is a side view illustrating a specific configuration of the lighting device shown in FIG.
  • FIG. 4 is an enlarged side view showing a main part configuration of the light guide plate of the illumination device shown in FIG. 1.
  • FIG. 5 is a diagram illustrating the configuration of the second prism provided on the light exit surface of the light guide in the illumination device illustrated in FIG. 1.
  • FIG. 6 is a diagram illustrating a configuration of a third prism provided on the light incident surface of the light guide in the illumination device illustrated in FIG. 1.
  • the second and third prisms are not shown for the sake of simplicity.
  • the third prism is not shown for simplification of the drawing.
  • the first and second prisms are not shown for simplification of the drawing.
  • the light emitting diode 4 is disposed to face one side surface of the light guide plate 5. And in the illuminating device 3, as illustrated by arrow L1 of FIG. 3, the light from the light emitting diode 4 is guide
  • the reflection plate 9 as a reflection portion is disposed below the light emitting diode 4 and the light guide plate 5 (lower side in the Y direction), and reflects light from the light guide plate 5 to the light guide plate 5. Is configured to do. For example, a dielectric multilayer mirror, a silver-coated reflector, or a reflector made of white PET resin is used as the reflector 9.
  • the light guide plate 5 has a substantially rectangular parallelepiped light guide 6 made of a transparent material having a refractive index n1, and a refractive index n2 attached to the lower surface (opposing surface 6c) of the light guide 6 without an air layer.
  • a low refractive index layer 7 made of a transparent material and a transparent material having a refractive index n3 attached to the lower surface of the low refractive index layer 7 (surface 7a opposite to the light guide 6) without an air layer.
  • a prism layer 8 is provided.
  • the light guide 6 is made of a transparent synthetic resin such as polycarbonate resin or acrylic resin.
  • the low refractive index layer 7 is made of a transparent synthetic resin having a refractive index n2 lower than the refractive index n1 of the light guide 6, such as a fluorine-based acrylate resin.
  • the prism layer 8 is made of a transparent synthetic resin having a refractive index n3 higher than the refractive index n2 of the low refractive index layer 7, such as a polycarbonate resin or an acrylic resin.
  • the light guide 6, the low refractive index layer 7, and the prism layer 8 use a sheet that is an integral unit of three layers, they may be attached sequentially by a UV curable resin or an adhesive layer (not shown).
  • the light guide 6 opposes the light incident surface 6a for receiving light from the light emitting diode 4, the light emitting surface 6b for emitting light incident from the light incident surface 6a to the liquid crystal panel 2 side, and the light emitting surface 6b.
  • the counter surface 6c is provided.
  • each of the plurality of prisms 8a is provided with three surfaces. The light incident from the low refractive index layer 7 side is totally totally reflected and emitted to the liquid crystal panel 2 side. It is like that.
  • a first prism (prism) 10 is integrally formed on the light exit surface 6 b of the light guide 6 as an optical path changing portion that gradually changes the angle of light guided through the light guide 6.
  • the exit surface 6b is inclined at an inclination angle ⁇ 1 with respect to the parallel portion 10a parallel to the propagation direction (Z direction) and the parallel portion 10a (propagation direction).
  • a plurality of first prisms 10 having vertical portions 10c erected with respect to the inclined portion 10b are formed along the Z direction so as to be parallel to the inclined portion 10b and the Y direction.
  • the first prism 10 is configured to overlap with a later-described second prism 11 formed in the X direction on the emission surface 6b.
  • the angle of light guided through the inside of the light guide 6 is gradually changed by the first prism 10 as illustrated by the arrow L ⁇ b> 1 in FIG. 4. .
  • the light guide 6 is provided with a second prism 11 that is formed in a concave shape on the light exit surface 6 b and is configured integrally with the first prism 10.
  • the second prism 11 constitutes a first light diffusion portion that diffuses light from the light emitting diode 4 in a direction (X direction) orthogonal to the propagation direction, and is inclined obliquely downward to the right in FIG. It has the inclined part 11a and the inclined part 11b inclined in the diagonally lower left direction in FIG. Further, since the second prism 11 is configured integrally with the first prism 10, it is divided by the vertical portion 10c of the first prism 10 in the Z direction (direction perpendicular to the paper surface of FIG. 5). ing.
  • the light guide 6 is provided with a third prism 12 which is formed in a concave shape and integrally with the light incident surface 6 a.
  • the third prism 12 constitutes a second light diffusion portion that diffuses light from the light emitting diode 4 in a direction (X direction) orthogonal to the propagation direction, and is inclined in the diagonally upper right direction in FIG. It has the inclined part 12a and the inclined part 12b inclined in the diagonally upward left direction in FIG.
  • three surfaces P1, P2, and P3 are formed on each prism 8a of the prism layer 8.
  • these three surfaces P1 to P3, as illustrated by an arrow L1 in FIG. 4 light incident from the low refractive index layer 7 side is sequentially totally reflected in the order of the surface P3, the surface P2, and the surface P1. It is like that. That is, on the three surfaces P1 to P3, the angles of the surfaces are set so that the incident angle of light is not less than the critical angle.
  • the plane P1 is configured to have an inclination angle of ⁇ P1 with respect to the propagation direction (Z direction).
  • the plane P2 is configured to have an inclination angle of ⁇ P2 with respect to the propagation direction (Z direction)
  • the plane P3 is configured to have an inclination angle of ⁇ P3 with respect to the propagation direction (Z direction).
  • the inclination angle ⁇ P3 is set to an angle of 90 degrees or less with respect to the propagation direction (Z direction).
  • the light from the light emitting diode 4 entering from the light incident surface 6 a of the light guide 6 reaches the interface between the light guide 6 and the low refractive index layer 7 as illustrated in FIG. 4.
  • the interface At this interface, light whose incident angle ⁇ 1 is larger than the critical angle ⁇ expressed by the following equation (1) is reflected to the inner side of the light guide 6, and as shown by an arrow L1 in FIG.
  • the light guide 6 is guided inside.
  • arcsin (n2 / n1) ⁇ (1)
  • the angle range of the angle (incident angle) ⁇ 2 of the light incident on the low refractive index layer 7 is expressed by the following inequality (1) using the tilt angle ⁇ 1.
  • the angle range of the angle (incident angle) ⁇ 2 ′ of the light entering the prism layer 8 is represented by the following inequality (2).
  • the angles of the surfaces are set so that the light incident angle is equal to or larger than the critical angle on the three surfaces P1 to P3. For this reason, the light incident from the low refractive index layer 7 side first strikes the surface P3 and is totally reflected. Thereafter, the totally reflected light strikes the surface P2 and is totally reflected, and further strikes the surface P1 to be totally reflected, changes the angle in the direction of the exit surface 6b, and exits from the exit surface 6b.
  • the surface P3 can be a total reflection surface.
  • the light guide 6 having the light incident surface 6 a, the light exit surface 6 b, and the facing surface 6 c, and the light guided through the light guide 6.
  • a first prism (optical path changing portion) 10 that gradually changes the angle and a low refractive index layer 7 that is provided on the facing surface 6 c side of the light guide 6 and has a lower refractive index than the refractive index of the light guide 6. are provided on the light guide plate 5.
  • the light from the light emitting diode (light source) 4 entering from the light incident surface 6a can be guided in a predetermined propagation direction away from the light incident surface 6a.
  • Light from the light emitting diode 4 can be emitted from the entire emission surface 6 b of the light guide 6. Further, the brightness of the emitted light can be made uniform by adjusting the density of the first prism 10 in the plane.
  • a prism layer 8 having a refractive index higher than the refractive index of the low refractive index layer 7 is provided on the side opposite to the light guide 6 of the low refractive index layer 7. Therefore, the angle range of light entering the prism layer 8 by the low refractive index layer 7 can be limited.
  • the light from the light exit surface 6b of the light guide 6, that is, the light emitted from the light guide plate 5 to the liquid crystal panel (object to be irradiated) 2 can be condensed, so that high luminance is achieved. Obtainable.
  • the prism layer 8 of the present embodiment is provided with a plurality of prisms 8a having three surfaces P1 to P3.
  • the prism 8a light incident from the low refractive index layer 7 side is sequentially applied to the three surfaces P1 to P3.
  • the three surfaces P1 to P3 are provided so as to be totally reflected and emitted from the emission surface 6b of the light guide 6 to the liquid crystal panel 2 side.
  • the illumination device 3 of the present embodiment emits light by sequentially performing total reflection on the three surfaces P1 to P3 of the prism layer 8 without providing a micro mirror made of a metal film.
  • Light from the diode 4 is condensed and emitted to the liquid crystal panel 2 side.
  • the angles of the surfaces are set so that the incident angle of light is not less than the critical angle on the three surfaces P1 to P3 of the prism 8a.
  • the plurality of prisms 8a are continuously formed in the normal direction of the light incident surface 6a of the light guide 6, the light emitted to the liquid crystal panel 2 is emitted more uniformly. It is possible to reliably prevent uneven brightness in the light emitted to the liquid crystal panel 2.
  • the plurality of prisms 8a have substantially the same shape and are formed to have substantially the same size, so that the light emitted to the liquid crystal panel 2 is emitted more uniformly. Therefore, it is possible to reliably prevent uneven brightness from occurring in the light emitted to the liquid crystal panel 2.
  • the surface P3 on which the light incident from the low refractive index layer 7 side is first totally reflected is set at an angle of 90 degrees or less with respect to the propagation direction (Z direction).
  • Z direction the propagation direction
  • a reflecting plate (reflecting portion) 9 that reflects the light emitted from the prism layer 8 toward the prism layer 8 is provided on the opposite side of the prism layer 8 from the low refractive index layer 7. Therefore, the light use efficiency of the light emitting diode 4 can be further improved.
  • a second prism (first light diffusion portion) 11 that diffuses light from the light emitting diode 4 in a direction orthogonal to the propagation direction is provided on the light exit surface 6 b side of the light guide 6. Therefore, it is possible to emit more uniform outgoing light, and more reliably prevent luminance unevenness from occurring in the outgoing light to the liquid crystal panel 2.
  • the light incident surface 6 a of the light guide 6 is provided with a third prism (second light diffusion portion) 12 that diffuses the light from the light emitting diode 4 in a direction orthogonal to the propagation direction. Therefore, it is possible to emit more uniform outgoing light, and more reliably prevent luminance unevenness from occurring in the outgoing light to the liquid crystal panel 2.
  • the illumination device 3 with excellent light utilization efficiency capable of reducing the optical loss and obtaining the emitted light is used. Therefore, the liquid crystal display device 1 with high luminance and labor saving can be obtained. It can be easily configured.
  • FIG. 7 is a diagram illustrating an illumination device and a liquid crystal display device according to the second embodiment of the present invention.
  • FIG. 8 is an enlarged side view showing the main configuration of the light guide plate of the illumination device shown in FIG.
  • the main difference between this embodiment and the first embodiment is that a reflective polarizing plate is provided on the liquid crystal panel (illuminated object) side of the light guide plate, and each of the prisms includes the three This is that one surface included in the surface is provided in parallel to the reflecting plate (reflecting portion).
  • symbol is attached
  • a reflective polarizing plate 13 is provided between the liquid crystal panel 2 and the illumination device 3. As shown by the arrow L2 or the arrow L3 in FIG. 7, the reflective polarizing plate 13 transmits or reflects light according to the polarization axis of light, and increases the luminance of light emitted to the liquid crystal panel 2. It functions as a brightness enhancement film.
  • one surface P2 among the three surfaces P1 to P3 is parallel to the reflecting plate 9. It is formed as follows. That is, the surface P2 is configured by a horizontal plane parallel to the propagation direction (Z direction). Thereby, in the illuminating device 3 of this embodiment, the front brightness
  • FIG. 9A and FIG. 9B are diagrams for explaining an operation example in the illumination devices of the first and second embodiments, respectively.
  • the surface P2 is configured in the horizontal plane, as illustrated by the arrow L5 in FIG. 9B, the light is emitted from the surface P2 in the direction of the reflecting plate 9,
  • the light reflected by the reflecting plate 9 enters the prism layer 18 from the surface P2, it is emitted from the emission surface 6b at an angle in the vicinity of 90 degrees and can be reused.
  • front luminance can be improved and the luminance improvement effect by the reflective polarizing plate 13 can be increased.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the reflective polarizing plate 13 is provided on the light guide plate 5 on the liquid crystal panel (irradiated object) 2 side.
  • luminance of the emitted light to the liquid crystal panel 2 can be improved.
  • the surface P2 is provided in parallel to the reflecting plate 9, so that the front luminance with the emitted light can be improved reliably, and the output from the reflective polarizing plate 13 can be improved. The effect of improving the brightness of incident light can be increased.
  • FIG. 10 is an enlarged side view showing the main configuration of the light guide plate of the illumination device according to the third embodiment of the present invention.
  • the main difference between the present embodiment and the first embodiment is that a light scattering function for scattering light is added to the prism layer.
  • symbol is attached
  • the surfaces P1 and P3 are configured as curved surfaces, thereby providing a light scattering function for scattering light.
  • production of the brightness nonuniformity by the emitted light to the liquid crystal panel 2 can be prevented more reliably.
  • the angle range of the emitted light can be widened, the liquid crystal panel 2 can have a wide viewing angle.
  • FIG. 11 (a) and FIG. 11 (b) are diagrams for explaining an operation example in the illumination devices of the first and third embodiments, respectively.
  • the light that is sequentially totally reflected by the surfaces P1 to P3 and emitted to the liquid crystal panel 2 is indicated by arrows L6 and L6 ′ in FIG. As illustrated, the light is emitted to the liquid crystal panel 2 without substantially spreading.
  • the angle ⁇ 2 of the light entering the low refractive index layer 7 satisfies the following inequality (4): ⁇ ⁇ ⁇ 2 ⁇ ⁇ -2 ⁇ ⁇ 1 ⁇ (4)
  • the angular spread ⁇ w of the light returning to the low refractive index layer 7 is expressed by the following equation (2).
  • the angle spread ⁇ w of the light returning to the low refractive index layer 7 is set to 2 as illustrated by arrows L7 and L7 ′ in FIG. It can be made larger than x ⁇ 1.
  • the present embodiment can achieve the same operations and effects as the first embodiment. Further, in the present embodiment, in each prism 28a of the prism layer 28, the surfaces P1 and P3 are curved so that a light scattering function for scattering light is given to the surfaces P1 and P3. Thereby, in the present embodiment, it is possible to emit more uniform emitted light, and more reliably prevent uneven brightness from occurring in the emitted light to the liquid crystal panel (object to be irradiated) 2, and The angle range of incident light can be expanded. As a result, in this embodiment, the viewing angle characteristics of the liquid crystal panel 2 can be expanded (wide viewing angle), and the display quality of the liquid crystal display device 1 can be improved.
  • the structure which provides a light-scattering function to the said surfaces P1 and P3 may be given to the surfaces P1 and P3, for example by carrying out embossing and uneven
  • the present invention is applied to a transmissive liquid crystal display device.
  • the lighting device of the present invention is not limited to this, and a transflective liquid crystal display device or a liquid crystal display device is not limited thereto.
  • the present invention can be applied to various display devices such as a projection display device using a panel as a light valve.
  • the present invention is installed on a light box for illuminating X-ray film or photographic negatives for irradiating light to make it easy to see, or on a signboard or a wall in a station. It can be suitably used as a lighting device for a light emitting device that illuminates advertisements and the like.
  • the light emitting diode is used as the light source.
  • the light source of the present invention is not limited to this, and a discharge tube such as a cold cathode fluorescent tube or a hot cathode fluorescent tube is used. You can also
  • the low refractive index layer is attached to the opposite surface of the light guide without an air layer
  • the prism layer is a light guide with a low refractive index layer without an air layer.
  • the low refractive index layer having a lower refractive index than the refractive index of the light guide is provided on the opposite surface side of the light guide, and the refractive index higher than the refractive index of the low refractive index layer.
  • the prism layer is not limited as long as the prism layer is provided on the side opposite to the light guide of the low refractive index layer.
  • a transparent intermediate layer made of a material having a refractive index lower than that of the light guide and greater than that of the low refractive index layer may be provided between the light guide and the low refractive index layer.
  • a transparent intermediate layer made of a material having a refractive index lower than that of the prism layer and larger than that of the low refractive index layer may be provided between the low refractive index layer and the prism layer.
  • an air layer can also be used as the low refractive index layer.
  • the light guide plate can be easily made thinner. This is preferable in that a compact lighting device can be easily configured.
  • the prism layer of the present invention includes a plurality of prisms having at least three surfaces.
  • the at least three surfaces are provided so that light incident from the low refractive index layer side is sequentially totally reflected by at least three surfaces and emitted from the light emitting surface to the irradiated object side.
  • Any prism may be used.
  • a prism having four surfaces that can sequentially reflect light incident from the low refractive index layer side and emit the light toward the irradiated object side may be used.
  • the first prism (prism) formed integrally with the light exit surface of the light guide is used as the optical path changing unit.
  • a saw-shaped prism array or a lenticular lens configured separately from the light guide, or a lens array such as a V-shaped groove, the light exit surface of the light guide or A rough surface having a dot shape or the like on the opposite surface can also be used.
  • the case where the first prism formed integrally on the light exit surface of the light guide is used as in each of the above embodiments is preferable in that a light guide plate that can be easily manufactured can be configured.
  • the reflecting portion of the present invention is provided on the opposite side of the low refractive index layer of the prism layer and is emitted from the prism layer.
  • the reflecting portion There is no limitation as long as it reflects light toward the prism layer.
  • the bottom surface of the housing of the lighting device that houses the light source and the light guide plate can be used as the reflecting portion.
  • the first light diffusing portion the second prism that is formed in a concave shape on the light exit surface of the light guide and is configured integrally with the first prism is used.
  • the first light diffusion portion of the present invention is not limited as long as it is provided on the light exit surface side or the opposite surface side of the light guide and diffuses light from the light source in a direction orthogonal to the propagation direction.
  • a prism array configured separately from the light guide and the first prism may be used.
  • the prism formed in convex shape may be sufficient with respect to the output surface of a light guide. Further, it may be a curved surface.
  • the second light diffusion portion of the present invention is not limited as long as it is provided on the light incident surface of the light guide and diffuses light from the light source in a direction orthogonal to the propagation direction.
  • a prism array configured separately from the light guide may be used.
  • the prism formed in the convex shape may be sufficient with respect to the light-incidence surface of a light guide. Further, it may be a curved surface.
  • the present invention is useful for an illuminating device excellent in light utilization efficiency that can reduce light loss and obtain outgoing light, and a display device using the same.
  • Liquid crystal display device Liquid crystal panel (object to be irradiated) 3 Lighting device 4 Light emitting diode (light source) DESCRIPTION OF SYMBOLS 5 Light guide plate 6 Light guide 6a Light-incidence surface 6b Outgoing surface 6c Opposite surface 7 Low refractive index layer 7a Surface 8, 18, 28 Prism layer 8a, 18a, 28a Prism P1, P2, P3 surface 9 Reflector (reflective part) 10 First prism (optical path changing section) 11 Second prism (first light diffusion portion) 12 3rd prism (2nd light-diffusion part)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The disclosed illumination device (3) is provided with a light-emitting diode (light source) (4) and a light guide plate (5). The light guide plate (5) is provided with a light guide body (6), a first prism (optical path changer) (10) which gradually changes the angle of the light guided through the inside of the light guide body (6), a low refractive index layer (7) with a refractive index lower than that of the light guide body (6), and a prism layer (8) with a refractive index higher than that of the low refractive index layer (7). The prism layer (8) is provided with multiple prisms (8a) having three faces (P1-P3), wherein said three faces (P1-P3) are provided such that light incident from the low refractive index layer (7) is completely reflected in the prisms (8a) sequentially by the three faces (P1-P3) and is emitted from the emitting face (6b) of the light guide body (6) towards a liquid crystal panel (2).

Description

照明装置、及び表示装置Lighting device and display device
 本発明は、照明装置、特に導光板を具備した照明装置、及びそれを用いた表示装置に関する。 The present invention relates to a lighting device, particularly a lighting device including a light guide plate, and a display device using the same.
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置には、光を発光する照明装置(バックライト)と、照明装置に設けられた光源からの光に対しシャッターの役割を果たすことで所望画像を表示する液晶パネルとが含まれている。 In recent years, for example, liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes. Such a liquid crystal display device includes an illumination device (backlight) that emits light and a liquid crystal panel that displays a desired image by serving as a shutter for light from a light source provided in the illumination device. It is.
 また、上記照明装置では、光の被照射物としての液晶パネルに対する光源の配置の仕方により直下型とエッジライト型に大別されるが、液晶表示装置では、昨今、直下型に比べ薄型化を図り易いエッジライト型が一般的に使用されている。すなわち、エッジライト型の照明装置では、光源を液晶パネルの側方に配置することにて薄型化が図られており、液晶パネルの非表示面に対向配置される出射面を備えた導光板を用いて光源からの光を面状の照明光に変換して当該液晶パネルに与えるようになっている。 In addition, the illumination device is roughly classified into a direct type and an edge light type depending on the arrangement of the light source with respect to the liquid crystal panel as an object to be irradiated with light, but the liquid crystal display device has recently been made thinner than the direct type. An edge light type that is easy to draw is generally used. That is, in the edge light type lighting device, the light source is arranged on the side of the liquid crystal panel to reduce the thickness, and a light guide plate having an emission surface arranged to face the non-display surface of the liquid crystal panel is provided. The light from the light source is converted into planar illumination light and applied to the liquid crystal panel.
 また、従来の照明装置には、例えば下記特許文献1に記載されているように、光源からの光が入光される導光体、この導光体の液晶パネルとは反対側で、空気層を介することなく、順次一体的に設けられた第1光透過層、第2光透過層、及びマイクロ・ミラーを備えた導光板が用いられており、光源の光利用効率を改善可能とされていた。 In addition, in a conventional lighting device, for example, as described in Patent Document 1 below, a light guide body into which light from a light source enters, an air layer on the opposite side of the light guide body from the liquid crystal panel A light guide plate having a first light transmission layer, a second light transmission layer, and a micro mirror that are sequentially provided integrally without using a light source is used, and the light use efficiency of the light source can be improved. It was.
 すなわち、この従来の照明装置の導光体には、光源から離れるにつれて、その上面と底面との間の厚み寸法が小さくなる、断面楔型状のものが用いられていた。また、この従来の照明装置では、第1光透過層には導光体よりも屈折率の小さいものが用いられ、第2光透過層には導光体とほぼ同じ屈折率のものが用いられていた。また、この第2光透過層のマイクロ・ミラー側には、傾斜面を有する複数の凹部(プリズム)が形成されており、マイクロ・ミラーが、複数の凹部を埋め込みように、第2光透過層に一体的に設けられている。 That is, as the light guide of this conventional lighting device, the one having a wedge-shaped cross section in which the thickness dimension between the top surface and the bottom surface becomes smaller as the distance from the light source is increased. In this conventional lighting device, the first light transmission layer has a refractive index smaller than that of the light guide, and the second light transmission layer has a refractive index substantially the same as that of the light guide. It was. Further, a plurality of concave portions (prisms) having inclined surfaces are formed on the micro mirror side of the second light transmission layer, and the second light transmission layer is embedded so that the micro mirror embeds the plurality of concave portions. Are integrally provided.
 そして、この従来の照明装置では、光源からの光は、導光体内でその上面と底面との間で反射を繰り返しながら導光される。このとき、導光体の底面に対する光の入射角が徐々に小さくなるように変化されて、導光された光は第1光透過層に入射する。その後、第1光透過層に入射した光は、第2光透過層に入射した後、マイクロ・ミラーによって集光されて、液晶パネル側に反射される。 In this conventional lighting device, light from the light source is guided while being repeatedly reflected between the top surface and the bottom surface in the light guide. At this time, the incident angle of the light with respect to the bottom surface of the light guide is changed so as to be gradually reduced, and the guided light enters the first light transmission layer. Thereafter, the light incident on the first light transmission layer is incident on the second light transmission layer, and then is collected by the micro mirror and reflected to the liquid crystal panel side.
特開2001-110218号公報JP 2001-110218 A
 しかしながら、上記のような従来の照明装置では、アルミニウム、ニッケル等の金属膜からなるマイクロ・ミラーを用いて、光源からの光を反射して、出射光として液晶パネル(被照射物)に出射していた。このため、この従来の照明装置では、マイクロ・ミラーにて生じる光の吸収(ロス)を低減することができずに、光源の光利用効率の大幅な低下を発生した。 However, in the conventional lighting apparatus as described above, the light from the light source is reflected using a micro mirror made of a metal film such as aluminum or nickel, and is emitted to the liquid crystal panel (irradiated object) as emitted light. It was. For this reason, in this conventional illumination device, the light absorption (loss) generated by the micro mirror cannot be reduced, and the light use efficiency of the light source is significantly reduced.
 上記の課題を鑑み、本発明は、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置、及びそれを用いた表示装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an illuminating device excellent in light utilization efficiency capable of reducing an optical loss and obtaining emitted light, and a display device using the illuminating device.
 上記の目的を達成するために、本発明にかかる照明装置は、光源と、前記光源からの光を所定の伝搬方向に導くとともに、被照射物に当該光を出射する導光板を備えた照明装置であって、
 前記導光板は、
 前記光源からの光を入光する入光面、前記入光面から入光された光を前記被照射物側に出射する出射面、及び前記出射面に対向する対向面を具備する導光体と、
 前記導光体の前記出射面側または前記対向面側に設けられるとともに、当該導光体の内部を導光する光の角度を徐々に変化させる光路変化部と、
 前記導光体の前記対向面側に設けられるとともに、前記導光体の屈折率よりも低い屈折率の低屈折率層と、
 前記低屈折率層の前記導光体とは反対側に設けられるとともに、前記低屈折率層の屈折率よりも高い屈折率のプリズム層を備え、
 前記プリズム層には、少なくとも3つの面を有するプリズムが複数設けられ、
 前記プリズムでは、前記低屈折率層側から入射した光が前記少なくとも3つの面で順次全反射されて、前記導光体の前記出射面から前記被照射物側に出射されるように、当該少なくとも3つの面が設けられていることを特徴とするものである。
In order to achieve the above object, an illumination device according to the present invention includes a light source and a light guide plate that guides light from the light source in a predetermined propagation direction and emits the light to an object to be irradiated. Because
The light guide plate is
A light guide including a light incident surface for receiving light from the light source, an emission surface for emitting light incident from the light incident surface to the irradiated object side, and a facing surface facing the emission surface. When,
An optical path changing unit that is provided on the light exit surface side or the opposing surface side of the light guide and gradually changes the angle of light guided through the light guide;
A low refractive index layer having a refractive index lower than the refractive index of the light guide, and provided on the opposite surface side of the light guide;
The low refractive index layer is provided on the opposite side of the light guide, and includes a prism layer having a refractive index higher than the refractive index of the low refractive index layer,
The prism layer is provided with a plurality of prisms having at least three surfaces,
In the prism, at least the light incident from the low refractive index layer side is sequentially totally reflected by the at least three surfaces and emitted from the emission surface of the light guide to the irradiated object side. Three surfaces are provided.
 上記のように構成された照明装置では、上記入光面、出射面、及び対向面を有する導光体と、導光体の内部を導光する光の角度を徐々に変化させる光路変化部と、導光体の対向面側に設けられるとともに、導光体の屈折率よりも低い屈折率の低屈折率層とが導光板に設けられている。これにより、導光板では、入光面から入光した光源からの光を、当該入光面から遠ざかる所定の伝搬方向に導光することができ、導光体の出射面全面から光源からの光を出射することができる。また、導光板には、低屈折率層の屈折率よりも高い屈折率のプリズム層が当該低屈折率層の導光体とは反対側に設けられているので、低屈折率層によってプリズム層に入光する光の角度範囲を制限することができる。この結果、限られた角度範囲の光に対して出射面側に反射させるので、光ロスの少ないプリズムを形成することが可能となる。さらに、上記プリズム層には、少なくとも3つの面を有するプリズムが複数設けられ、プリズムでは、低屈折率層側から入射した光が少なくとも3つの面で順次全反射されて、導光体の出射面から被照射物側に出射されるように、当該少なくとも3つの面が設けられている。これにより、上記従来例と異なり、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置を構成することができる。 In the illuminating device configured as described above, the light guide having the light incident surface, the light exit surface, and the opposing surface, and an optical path changing unit that gradually changes the angle of light guided through the inside of the light guide. The light guide plate is provided with a low refractive index layer having a refractive index lower than the refractive index of the light guide while being provided on the opposite surface side of the light guide. Thereby, in the light guide plate, the light from the light source that has entered from the light entrance surface can be guided in a predetermined propagation direction away from the light entrance surface, and the light from the light source from the entire light exit surface of the light guide. Can be emitted. The light guide plate is provided with a prism layer having a refractive index higher than that of the low refractive index layer on the side opposite to the light guide of the low refractive index layer. It is possible to limit the angle range of light entering the light. As a result, light in a limited angle range is reflected to the exit surface side, so that a prism with little light loss can be formed. Further, the prism layer is provided with a plurality of prisms having at least three surfaces. In the prism, light incident from the low refractive index layer side is sequentially totally reflected by at least three surfaces, and the light exit surface of the light guide The at least three surfaces are provided so as to be emitted to the irradiated object side. Thus, unlike the conventional example, it is possible to configure an illumination device with excellent light utilization efficiency that can reduce the light loss and obtain outgoing light.
 また、上記照明装置において、前記少なくとも3つの面では、光の入射角が臨界角以上となるように、面の角度が各々設定されていることが好ましい。 In the illumination device, it is preferable that the angles of the surfaces are set so that the incident angle of light is not less than a critical angle on the at least three surfaces.
 この場合、光ロスを低減させて、被照射物への出射光をより確実に得ることができる。 In this case, the light loss can be reduced and the light emitted to the irradiated object can be obtained more reliably.
 また、上記照明装置において、前記プリズム層では、複数の前記プリズムが前記導光体の前記入光面の法線方向に互いに連続的に形成されていることが好ましい。 In the illumination device, it is preferable that a plurality of the prisms are continuously formed in the normal direction of the light incident surface of the light guide in the prism layer.
 この場合、被照射物への出射光をより均一に出射することができ、被照射物への出射光に輝度ムラが生じるのを確実に防ぐことができる。 In this case, the emitted light to the irradiated object can be emitted more uniformly, and it is possible to reliably prevent uneven brightness from occurring in the emitted light to the irradiated object.
 また、上記照明装置において、前記プリズム層では、複数の前記プリズムが互いに実質的に同一の形状で、かつ、互いに実質的に同一の大きさに形成されていることが好ましい。 In the illumination device, it is preferable that in the prism layer, the plurality of prisms have substantially the same shape and have the same size.
 この場合、被照射物への出射光をより均一に出射することができ、被照射物への出射光に輝度ムラが生じるのを確実に防ぐことができる。 In this case, the emitted light to the irradiated object can be emitted more uniformly, and it is possible to reliably prevent uneven brightness from occurring in the emitted light to the irradiated object.
 また、上記照明装置において、前記低屈折率層は、前記導光体の前記対向面に貼り付けられ、
 前記プリズム層は、前記低屈折率層の前記導光体とは反対側の表面に貼り付けられてもよい。
In the illumination device, the low refractive index layer is attached to the facing surface of the light guide,
The prism layer may be attached to a surface of the low refractive index layer opposite to the light guide.
 この場合、導光板の薄型化を容易に図ることができ、コンパクトな照明装置を容易に構成することができる。 In this case, the light guide plate can be easily thinned, and a compact lighting device can be easily configured.
 また、上記照明装置において、前記光路変化部として、前記導光体の前記出射面に一体的に形成されたプリズムが用いられてもよい。 Further, in the illumination device, a prism integrally formed on the light exit surface of the light guide may be used as the optical path changing unit.
 この場合、製造簡単な導光板を構成することができる。 In this case, a light guide plate that is easy to manufacture can be configured.
 また、上記照明装置において、前記複数の各プリズムでは、前記低屈折率層側から入射した光が最初に全反射される面は前記伝搬方向に対して、90度以下の角度に設定されてもよい。 In the illumination device, in each of the plurality of prisms, a surface on which light incident from the low refractive index layer side is first totally reflected may be set at an angle of 90 degrees or less with respect to the propagation direction. Good.
 この場合、プリズム層を容易に形成することができる。 In this case, the prism layer can be easily formed.
 また、上記照明装置において、前記プリズム層には、光を散乱させる光散乱機能が付与されてもよい。 In the illumination device, the prism layer may be provided with a light scattering function for scattering light.
 この場合、出射光の角度範囲を広げることができ、広視野角化することができる。 In this case, the angle range of the emitted light can be widened and the viewing angle can be increased.
 また、上記照明装置において、前記プリズム層の前記低屈折率層とは反対側には、前記プリズム層から出射した光を当該プリズム層側に反射させる反射部が設けられていることが好ましい。 Further, in the illumination device, it is preferable that a reflection portion that reflects light emitted from the prism layer to the prism layer side is provided on the opposite side of the prism layer from the low refractive index layer.
 この場合、光源の光利用効率をより向上させることができる。 In this case, the light utilization efficiency of the light source can be further improved.
 また、上記照明装置において、前記導光板の前記被照射物側に設けられた反射型偏光板を備えるとともに、
 前記複数の各プリズムでは、前記少なくとも3つの面に含まれた1つの面を前記反射部に平行に設けてもよい。
Moreover, in the said illuminating device, While providing the reflective polarizing plate provided in the said to-be-irradiated object side of the said light-guide plate,
In each of the plurality of prisms, one surface included in the at least three surfaces may be provided in parallel to the reflecting portion.
 この場合、反射型偏光板により、被照射物への出射光の輝度を向上させることができる。また、上記少なくとも3つの面に含まれた1つの面が、反射部に平行に設けられているので、出射光での正面輝度を確実に向上させることができ、反射型偏光板による出射光の輝度向上効果を大きくすることができる。 In this case, the brightness of the emitted light to the irradiated object can be improved by the reflective polarizing plate. In addition, since one surface included in the at least three surfaces is provided in parallel to the reflecting portion, the front luminance in the emitted light can be reliably improved, and the emitted light by the reflective polarizing plate can be improved. The brightness improvement effect can be increased.
 また、上記照明装置において、前記導光体の前記出射面側または前記対向面側には、前記光源からの光を前記伝搬方向と直交する方向に拡散する第1の光拡散部が設けられてもよい。 Further, in the illumination device, a first light diffusion unit that diffuses light from the light source in a direction orthogonal to the propagation direction is provided on the emission surface side or the opposed surface side of the light guide. Also good.
 この場合、さらに均一な出射光を出射することができ、被照射物への出射光に輝度ムラが生じるのをより確実に防ぐことができる。 In this case, more uniform outgoing light can be emitted, and it is possible to more surely prevent uneven brightness in the outgoing light to the irradiated object.
 また、上記照明装置において、前記導光体の前記入光面には、前記光源からの光を前記伝搬方向と直交する方向に拡散する第2の光拡散部が設けられてもよい。 Further, in the illumination device, a second light diffusion unit that diffuses light from the light source in a direction orthogonal to the propagation direction may be provided on the light incident surface of the light guide.
 この場合、さらに均一な出射光を出射することができ、被照射物への出射光に輝度ムラが生じるのをより確実に防ぐことができる。 In this case, more uniform outgoing light can be emitted, and it is possible to more surely prevent uneven brightness in the outgoing light to the irradiated object.
 また、本発明にかかる表示装置は、上記いずれかに記載の照明装置を用いたことを特徴とする。 Further, the display device according to the present invention is characterized by using any one of the lighting devices described above.
 上記のように構成された表示装置では、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置が用いられているので、高輝度で、省力化された表示装置を容易に構成することができる。 In the display device configured as described above, a lighting device with excellent light utilization efficiency that can reduce the light loss and obtain the emitted light is used. Therefore, the display device has high brightness and labor saving. Can be configured easily.
 また、上記表示装置において、前記被照射物として、液晶パネルが用いられてもよい。 In the display device, a liquid crystal panel may be used as the irradiated object.
 この場合、高輝度で、省力化された液晶表示装置を容易に構成することができる。 In this case, a high-brightness and labor-saving liquid crystal display device can be easily configured.
 本発明によれば、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置、及びそれを用いた表示装置を提供することが可能となる。 According to the present invention, it is possible to provide an illuminating device excellent in light utilization efficiency capable of reducing light loss and obtaining outgoing light, and a display device using the same.
図1は、本発明の第1の実施形態にかかる照明装置、及び液晶表示装置を説明する図である。FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention. 図2は、図1に示した照明装置の要部構成を示す斜視図である。FIG. 2 is a perspective view illustrating a main configuration of the lighting device illustrated in FIG. 1. 図3は、図1に示した照明装置の具体的な構成を説明する側面図である。FIG. 3 is a side view illustrating a specific configuration of the illumination device illustrated in FIG. 1. 図4は、図1に示した照明装置の導光板の要部構成を示す拡大側面図である。FIG. 4 is an enlarged side view showing a main part configuration of the light guide plate of the illumination device shown in FIG. 1. 図5は、図1に示した照明装置において、導光体の出射面に設けられた第2のプリズムの構成を説明する図である。FIG. 5 is a diagram illustrating the configuration of the second prism provided on the light exit surface of the light guide in the illumination device illustrated in FIG. 1. 図6は、図1に示した照明装置において、導光体の入光面に設けられた第3のプリズムの構成を説明する図である。FIG. 6 is a diagram illustrating a configuration of a third prism provided on the light incident surface of the light guide in the illumination device illustrated in FIG. 1. 図7は、本発明の第2の実施形態にかかる照明装置、及び液晶表示装置を説明する図である。FIG. 7 is a diagram illustrating an illumination device and a liquid crystal display device according to the second embodiment of the present invention. 図8は、図7に示した照明装置の導光板の要部構成を示す拡大側面図である。FIG. 8 is an enlarged side view showing the main configuration of the light guide plate of the illumination device shown in FIG. 図9(a)及び図9(b)は、それぞれ第1及び第2の実施形態の照明装置での動作例を説明する図である。FIG. 9A and FIG. 9B are diagrams for explaining an operation example in the illumination devices of the first and second embodiments, respectively. 図10は、本発明の第3の実施形態にかかる照明装置の導光板の要部構成を示す拡大側面図である。FIG. 10 is an enlarged side view showing the main configuration of the light guide plate of the illumination device according to the third embodiment of the present invention. 図11(a)及び図11(b)は、それぞれ第1及び第3の実施形態の照明装置での動作例を説明する図である。Fig.11 (a) and FIG.11 (b) are the figures explaining the operation example in the illuminating device of 1st and 3rd embodiment, respectively.
 以下、本発明の照明装置、及びそれを用いた表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、本発明を透過型の液晶表示装置に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, preferred embodiments of the illumination device of the present invention and a display device using the same will be described with reference to the drawings. In the following description, the case where the present invention is applied to a transmissive liquid crystal display device will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる照明装置、及び液晶表示装置を説明する図である。図2は、図1に示した照明装置の要部構成を示す斜視図である。図1において、本実施形態の液晶表示装置1は、図1の上側が視認側(表示面側)として設置される液晶パネル2と、液晶パネル2の非表示面側(図1の下側)に配置されて、当該液晶パネル2を照明する照明光を発生する本発明の照明装置3とが設けられている。そして、本実施形態では、液晶パネル2と照明装置3とが一体的に組み付けられ、透過型の液晶表示装置1が構成されている。
[First Embodiment]
FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention. FIG. 2 is a perspective view illustrating a main configuration of the lighting device illustrated in FIG. 1. 1, the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 in which the upper side of FIG. 1 is installed as a viewing side (display surface side), and a non-display surface side of the liquid crystal panel 2 (lower side of FIG. 1). And an illuminating device 3 of the present invention that generates illumination light for illuminating the liquid crystal panel 2. In the present embodiment, the liquid crystal panel 2 and the illumination device 3 are integrally assembled to constitute a transmissive liquid crystal display device 1.
 液晶パネル2は、一対の基板を構成するカラーフィルタ基板2a及びアクティブマトリクス基板2bを具備しており、照明装置3から面状の照明光が照射される被照射物を構成している。また、カラーフィルタ基板2a及びアクティブマトリクス基板2bには、平板状の透明なガラス材またはアクリル樹脂などの透明な合成樹脂が使用されており、これらのカラーフィルタ基板2a及びアクティブマトリクス基板2bの間には、図示を省略した液晶層が狭持されている。 The liquid crystal panel 2 includes a color filter substrate 2a and an active matrix substrate 2b constituting a pair of substrates, and constitutes an object to be irradiated with planar illumination light from the illumination device 3. Further, the color filter substrate 2a and the active matrix substrate 2b are made of a transparent synthetic resin such as a flat transparent glass material or an acrylic resin, and between the color filter substrate 2a and the active matrix substrate 2b. The liquid crystal layer (not shown) is sandwiched.
 また、アクティブマトリクス基板2bは、上記一対の基板の一方の基板を構成するものであり、アクティブマトリクス基板2bでは、液晶パネル2の表示面に含まれる複数の画素に応じて、画素電極や薄膜トランジスタ(TFT:Thin Film Transistor)などが上記液晶層との間に形成されている(図示せず。)。一方、カラーフィルタ基板2aは、一対の基板の他方の基板を構成するものであり、カラーフィルタ基板2aには、カラーフィルタや対向電極などが上記液晶層との間に形成されている(図示せず)。 The active matrix substrate 2b constitutes one of the pair of substrates. In the active matrix substrate 2b, pixel electrodes or thin film transistors (thin film transistors (thin film transistors)) are formed in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2. A TFT (Thin Film Transistor) or the like is formed between the liquid crystal layer (not shown). On the other hand, the color filter substrate 2a constitutes the other of the pair of substrates, and the color filter substrate 2a has a color filter, a counter electrode, and the like formed between the liquid crystal layer (not shown). )
 また、液晶パネル2では、当該液晶パネル2の駆動制御を行う制御装置(図示せず)が設けられており、上記液晶層を画素単位に動作することで表示面を画素単位に駆動して、当該表示面上に所望画像を表示するようになっている。 Further, the liquid crystal panel 2 is provided with a control device (not shown) that controls the driving of the liquid crystal panel 2, and operates the liquid crystal layer in units of pixels to drive the display surface in units of pixels. A desired image is displayed on the display surface.
 尚、液晶パネル2の液晶モードや画素構造は任意である。また、液晶パネル2の駆動モードも任意である。すなわち、液晶パネル2としては、情報を表示できる任意の液晶パネルを用いることができる。それ故、図1においては液晶パネル2の詳細な構造を図示せず、その説明も省略する。 The liquid crystal mode and pixel structure of the liquid crystal panel 2 are arbitrary. Moreover, the drive mode of the liquid crystal panel 2 is also arbitrary. That is, as the liquid crystal panel 2, any liquid crystal panel that can display information can be used. Therefore, the detailed structure of the liquid crystal panel 2 is not shown in FIG.
 図2も参照して、照明装置3は、光源としての発光ダイオード4と、発光ダイオード4に対向して配置された導光板5とを備えている。照明装置3では、複数、例えば3個の発光ダイオード4が図1の紙面に垂直な方向(X方向)に沿って直線上に配列されている。これらの各発光ダイオード4には、例えば青色の発光ダイオードと蛍光体によって白色の光を発光する白色の発光ダイオード、あるいは赤色(R)、緑色(G)、及び青色(B)の発光ダイオードを一体的に構成した、いわゆる3in1の白色の発光ダイオードが用いられている。また、発光ダイオード4は、白色のものでなくてもよい。 Referring also to FIG. 2, the illumination device 3 includes a light emitting diode 4 as a light source and a light guide plate 5 disposed to face the light emitting diode 4. In the illumination device 3, a plurality of, for example, three light emitting diodes 4 are arranged on a straight line along a direction (X direction) perpendicular to the paper surface of FIG. 1. Each of these light-emitting diodes 4 includes, for example, a blue light-emitting diode and a white light-emitting diode that emits white light with a phosphor, or red (R), green (G), and blue (B) light-emitting diodes. A so-called 3 in 1 white light emitting diode is used. The light emitting diode 4 may not be white.
 導光板5は、略直方体状に構成されており、発光ダイオード4からの光を入光するようになっている。また、導光板5は、発光ダイオード4からの光を所定の伝搬方向(Z方向)に導くとともに、液晶パネル(被照射物)2に当該光を出射するよう構成されている。さらに、導光板5では、後に詳述するように、液晶パネル2への出射光が均一な面状光、すなわち当該出射光に輝度ムラが生じるのを極力防ぎつつ、集光することによって所定の輝度以上の出射光を液晶パネル2に照射するようになっている。これにより、本実施形態の照明装置3では、液晶パネル2と導光板5との間に、拡散板や集光レンズなどの光学シートの設置を省略可能に構成されている。 The light guide plate 5 is configured in a substantially rectangular parallelepiped shape, and receives light from the light emitting diode 4. Further, the light guide plate 5 is configured to guide light from the light emitting diode 4 in a predetermined propagation direction (Z direction) and to emit the light to the liquid crystal panel (object to be irradiated) 2. Further, as will be described later in detail, the light guide plate 5 collects light while concentrating the light emitted to the liquid crystal panel 2 while preventing the occurrence of luminance unevenness as much as possible. The liquid crystal panel 2 is irradiated with emitted light having a luminance or higher. Thereby, in the illuminating device 3 of this embodiment, installation of optical sheets, such as a diffusion plate and a condensing lens, can be abbreviate | omitted between the liquid crystal panel 2 and the light-guide plate 5. FIG.
 ここで、図3~図6も参照して、本実施形態の照明装置3について具体的に説明する。 Here, the illumination device 3 of the present embodiment will be specifically described with reference to FIGS.
 図3は、図1に示した照明装置の具体的な構成を説明する側面図である。図4は、図1に示した照明装置の導光板の要部構成を示す拡大側面図である。図5は、図1に示した照明装置において、導光体の出射面に設けられた第2のプリズムの構成を説明する図である。図6は、図1に示した照明装置において、導光体の入光面に設けられた第3のプリズムの構成を説明する図である。なお、図1及び図3では、図面の簡略化のために、第2及び第3のプリズムの図示は省略している。また、図5では、図面の簡略化のために、第3のプリズムの図示は省略している。また、図6では、図面の簡略化のために、第1及び第2のプリズムの図示は省略している。 FIG. 3 is a side view illustrating a specific configuration of the lighting device shown in FIG. FIG. 4 is an enlarged side view showing a main part configuration of the light guide plate of the illumination device shown in FIG. 1. FIG. 5 is a diagram illustrating the configuration of the second prism provided on the light exit surface of the light guide in the illumination device illustrated in FIG. 1. FIG. 6 is a diagram illustrating a configuration of a third prism provided on the light incident surface of the light guide in the illumination device illustrated in FIG. 1. In FIGS. 1 and 3, the second and third prisms are not shown for the sake of simplicity. In FIG. 5, the third prism is not shown for simplification of the drawing. In FIG. 6, the first and second prisms are not shown for simplification of the drawing.
 図3に例示するように、本実施形態の照明装置3では、発光ダイオード4が導光板5の一側面に対向配置されている。そして、照明装置3では、図3の矢印L1にて例示するように、発光ダイオード4からの光を上記伝搬方向(Z方向)に導いて、液晶パネル2(図1)側に適宜出射するようになっている(詳細は後述。)。また、照明装置3では、反射部としての反射板9が発光ダイオード4及び導光板5の下方(Y方向の下側)に配置されており、導光板5からの光を当該導光板5に反射するように構成されている。また、この反射板9には、例えば誘電体多層膜ミラー、銀をコーティングした反射板、もしくは白色PET樹脂からなる反射板などが用いられている。 As illustrated in FIG. 3, in the illumination device 3 of the present embodiment, the light emitting diode 4 is disposed to face one side surface of the light guide plate 5. And in the illuminating device 3, as illustrated by arrow L1 of FIG. 3, the light from the light emitting diode 4 is guide | induced to the said propagation direction (Z direction), and it radiate | emits suitably to the liquid crystal panel 2 (FIG. 1) side. (Details will be described later). In the illuminating device 3, the reflection plate 9 as a reflection portion is disposed below the light emitting diode 4 and the light guide plate 5 (lower side in the Y direction), and reflects light from the light guide plate 5 to the light guide plate 5. Is configured to do. For example, a dielectric multilayer mirror, a silver-coated reflector, or a reflector made of white PET resin is used as the reflector 9.
 導光板5には、屈折率n1の透明材料からなる略直方体の導光体6と、空気層を介することなく、導光体6の下面(対向面6c)に貼り付けられた屈折率n2の透明材料からなる低屈折率層7と、空気層を介することなく、低屈折率層7の下面(導光体6とは反対側の表面7a)に貼り付けられた屈折率n3の透明材料からなるプリズム層8が設けられている。 The light guide plate 5 has a substantially rectangular parallelepiped light guide 6 made of a transparent material having a refractive index n1, and a refractive index n2 attached to the lower surface (opposing surface 6c) of the light guide 6 without an air layer. A low refractive index layer 7 made of a transparent material and a transparent material having a refractive index n3 attached to the lower surface of the low refractive index layer 7 (surface 7a opposite to the light guide 6) without an air layer. A prism layer 8 is provided.
 具体的にいえば、導光体6には、例えばポリカーボネート樹脂やアクリル樹脂などの透明な合成樹脂が用いられている。また、低屈折率層7には、導光体6の屈折率n1よりも低い屈折率n2を有する透明な合成樹脂、例えばフッ素系のアクリレート樹脂が用いられている。また、プリズム層8には、低屈折率層7の屈折率n2よりも高い屈折率n3を有する透明な合成樹脂、例えばポリカーボネート樹脂やアクリル樹脂などが用いられている。さらに、導光体6、低屈折率層7、及びプリズム層8は、3層一体となったシートを用いるが、図示しないUV硬化樹脂や接着層によって順次貼り付けられていてもよい。 Specifically, the light guide 6 is made of a transparent synthetic resin such as polycarbonate resin or acrylic resin. The low refractive index layer 7 is made of a transparent synthetic resin having a refractive index n2 lower than the refractive index n1 of the light guide 6, such as a fluorine-based acrylate resin. The prism layer 8 is made of a transparent synthetic resin having a refractive index n3 higher than the refractive index n2 of the low refractive index layer 7, such as a polycarbonate resin or an acrylic resin. Furthermore, although the light guide 6, the low refractive index layer 7, and the prism layer 8 use a sheet that is an integral unit of three layers, they may be attached sequentially by a UV curable resin or an adhesive layer (not shown).
 導光体6は、発光ダイオード4からの光を入光する入光面6a、入光面6aから入光された光を液晶パネル2側に出射する出射面6b、及び出射面6bに対向する上記対向面6cを具備している。 The light guide 6 opposes the light incident surface 6a for receiving light from the light emitting diode 4, the light emitting surface 6b for emitting light incident from the light incident surface 6a to the liquid crystal panel 2 side, and the light emitting surface 6b. The counter surface 6c is provided.
 また、プリズム層8の低屈折率層7と反対側の表面には、複数のプリズム8aが導光体6の出射面6bを覆うように、導光体6の入光面6aの法線方向(Z方向)に、当該表面で隙間なく、互いに連続的に形成されている。これらのプリズム8aは、インプリントやインジェクションなどによって形成されたものであり、複数のプリズム8aは、互いに実質的に同一の形状で、かつ、互いに実質的に同一の大きさに形成されている。また、複数の各プリズム8aには、後に詳述するように、3つの面が設けられており、低屈折率層7側から入射した光を順次全反射して、液晶パネル2側に出射するようになっている。 Further, the normal direction of the light incident surface 6 a of the light guide 6 so that the plurality of prisms 8 a covers the light exit surface 6 b of the light guide 6 on the surface of the prism layer 8 opposite to the low refractive index layer 7. They are continuously formed in the (Z direction) with no gaps on the surface. These prisms 8a are formed by imprinting, injection, or the like, and the plurality of prisms 8a are formed in substantially the same shape and in the same size. Further, as will be described in detail later, each of the plurality of prisms 8a is provided with three surfaces. The light incident from the low refractive index layer 7 side is totally totally reflected and emitted to the liquid crystal panel 2 side. It is like that.
 また、導光体6の出射面6bには、当該導光体6の内部を導光する光の角度を徐々に変化させる光路変化部としての第1のプリズム(プリズム)10が一体的に形成されている。具体的にいえば、図4に示すように、出射面6bには、伝搬方向(Z方向)と平行な平行部10a、この平行部10a(伝搬方向)に対し、傾斜角φ1で傾斜された傾斜部10bと、Y方向と平行となるように、傾斜部10bに対し、立設された垂直部10cを有する第1のプリズム10がZ方向に沿って複数形成されている。また、この第1のプリズム10は、出射面6bにおいて、X方向に形成された後述の第2のプリズム11と互いに重ね合わせた形状で構成されている。そして、導光体6では、第1のプリズム10によって、図4の矢印L1にて例示するように、導光体6の内部を導光する光の角度を徐々に変化させるようになっている。 In addition, a first prism (prism) 10 is integrally formed on the light exit surface 6 b of the light guide 6 as an optical path changing portion that gradually changes the angle of light guided through the light guide 6. Has been. Specifically, as shown in FIG. 4, the exit surface 6b is inclined at an inclination angle φ1 with respect to the parallel portion 10a parallel to the propagation direction (Z direction) and the parallel portion 10a (propagation direction). A plurality of first prisms 10 having vertical portions 10c erected with respect to the inclined portion 10b are formed along the Z direction so as to be parallel to the inclined portion 10b and the Y direction. Further, the first prism 10 is configured to overlap with a later-described second prism 11 formed in the X direction on the emission surface 6b. In the light guide 6, the angle of light guided through the inside of the light guide 6 is gradually changed by the first prism 10 as illustrated by the arrow L <b> 1 in FIG. 4. .
 また、図5に例示するように、導光体6には、その出射面6bに凹形状に形成されるとともに、第1のプリズム10と一体的に構成された第2のプリズム11が設けられている。この第2のプリズム11は、発光ダイオード4からの光を伝搬方向と直交する方向(X方向)に拡散する第1の光拡散部を構成しており、図5の右斜め下方向に傾斜した傾斜部11aと図5の左斜め下方向に傾斜した傾斜部11bを有している。また、第2のプリズム11は、第1のプリズム10と一体的に構成されているので、Z方向(図5の紙面に垂直な方向)において、第1のプリズム10の垂直部10cによって区切られている。 Further, as illustrated in FIG. 5, the light guide 6 is provided with a second prism 11 that is formed in a concave shape on the light exit surface 6 b and is configured integrally with the first prism 10. ing. The second prism 11 constitutes a first light diffusion portion that diffuses light from the light emitting diode 4 in a direction (X direction) orthogonal to the propagation direction, and is inclined obliquely downward to the right in FIG. It has the inclined part 11a and the inclined part 11b inclined in the diagonally lower left direction in FIG. Further, since the second prism 11 is configured integrally with the first prism 10, it is divided by the vertical portion 10c of the first prism 10 in the Z direction (direction perpendicular to the paper surface of FIG. 5). ing.
 また、図6に例示するように、導光体6には、その入光面6aに凹形状に、かつ、一体的に形成された第3のプリズム12が設けられている。この第3のプリズム12は、発光ダイオード4からの光を伝搬方向と直交する方向(X方向)に拡散する第2の光拡散部を構成しており、図6の右斜め上方向に傾斜した傾斜部12aと図5の左斜め上方向に傾斜した傾斜部12bを有している。 Further, as illustrated in FIG. 6, the light guide 6 is provided with a third prism 12 which is formed in a concave shape and integrally with the light incident surface 6 a. The third prism 12 constitutes a second light diffusion portion that diffuses light from the light emitting diode 4 in a direction (X direction) orthogonal to the propagation direction, and is inclined in the diagonally upper right direction in FIG. It has the inclined part 12a and the inclined part 12b inclined in the diagonally upward left direction in FIG.
 また、図4に示すように、プリズム層8の各プリズム8aには、3つの面P1、P2、P3が形成されている。これらの3つの面P1~P3では、図4に矢印L1にて例示するように、低屈折率層7側から入射した光を面P3、面P2、及び面P1の順番で、順次全反射するようになっている。つまり、3つの面P1~P3では、光の入射角が臨界角以上となるように、面の角度が各々設定されている。具体的にいえば、図4に示すように、面P1では、伝搬方向(Z方向)に対し、φP1の傾斜角を有するよう構成されている。また、面P2では、伝搬方向(Z方向)に対し、φP2の傾斜角を有するよう構成され、面P3では、伝搬方向(Z方向)に対し、φP3の傾斜角を有するよう構成されている。また、低屈折率層7側から入射した光が最初に全反射される面P3では、その傾斜角φP3は伝搬方向(Z方向)に対して、90度以下の角度に設定されている。 Further, as shown in FIG. 4, three surfaces P1, P2, and P3 are formed on each prism 8a of the prism layer 8. In these three surfaces P1 to P3, as illustrated by an arrow L1 in FIG. 4, light incident from the low refractive index layer 7 side is sequentially totally reflected in the order of the surface P3, the surface P2, and the surface P1. It is like that. That is, on the three surfaces P1 to P3, the angles of the surfaces are set so that the incident angle of light is not less than the critical angle. Specifically, as shown in FIG. 4, the plane P1 is configured to have an inclination angle of φP1 with respect to the propagation direction (Z direction). Further, the plane P2 is configured to have an inclination angle of φP2 with respect to the propagation direction (Z direction), and the plane P3 is configured to have an inclination angle of φP3 with respect to the propagation direction (Z direction). On the surface P3 where light incident from the low refractive index layer 7 side is first totally reflected, the inclination angle φP3 is set to an angle of 90 degrees or less with respect to the propagation direction (Z direction).
 以下、図4を用いて、発光ダイオード4からの光が導光板5内を導光されて、液晶パネル2に出射される動作について具体的に説明する。 Hereinafter, the operation in which light from the light emitting diode 4 is guided through the light guide plate 5 and emitted to the liquid crystal panel 2 will be described in detail with reference to FIG.
 導光板5では、導光体6の入光面6aから入光した発光ダイオード4からの光は、図4に例示するように、導光体6と低屈折率層7との界面に達する。この界面では、その入射角θ1が下記(1)式で示される臨界角θより大きな角度の光は、導光体6の内部側に反射されるため、図4の矢印L1にて示すように、導光体6の内部を導光する。 In the light guide plate 5, the light from the light emitting diode 4 entering from the light incident surface 6 a of the light guide 6 reaches the interface between the light guide 6 and the low refractive index layer 7 as illustrated in FIG. 4. At this interface, light whose incident angle θ1 is larger than the critical angle θ expressed by the following equation (1) is reflected to the inner side of the light guide 6, and as shown by an arrow L1 in FIG. The light guide 6 is guided inside.
 θ=arcsin(n2/n1)              ―――(1)
 また、導光体6の内部を導光する光が、第1のプリズム10の傾斜部10bに到達すると、この傾斜部10bにて導光する角度が変えられて、導光体6の内部側に反射される。そして、導光体6と低屈折率層7との界面に対して、臨界角θ以下の角度で入射すると、この光は、図4の矢印L1にて示すように、低屈折率層7に入光した後、プリズム層8に入光する。そして、プリズム層8のプリズム8aによって光の方向が出射面6b方向に変換され、出射面6bより出射される。つまり、低屈折率層7によって、プリズム層8に入光する光の角度範囲を制限することができる。
θ = arcsin (n2 / n1) ――― (1)
Further, when the light guided inside the light guide 6 reaches the inclined portion 10b of the first prism 10, the angle of light guided by the inclined portion 10b is changed, and the inside of the light guide 6 is changed. Is reflected. When the light is incident on the interface between the light guide 6 and the low refractive index layer 7 at an angle equal to or smaller than the critical angle θ, the light enters the low refractive index layer 7 as indicated by an arrow L1 in FIG. After entering the light, the light enters the prism layer 8. Then, the direction of light is converted to the direction of the emission surface 6b by the prism 8a of the prism layer 8, and the light is emitted from the emission surface 6b. In other words, the angle range of light entering the prism layer 8 can be limited by the low refractive index layer 7.
 具体的にいえば、低屈折率層7に入光する光の角度(入射角)θ2の角度範囲は、傾斜角φ1を用いた次の不等式(1)で示される。 Specifically, the angle range of the angle (incident angle) θ2 of the light incident on the low refractive index layer 7 is expressed by the following inequality (1) using the tilt angle φ1.
 θ-2×φ1≦θ2≦θ               ―――(1)
 また、プリズム層8に入光する光の角度(入射角)θ2’の角度範囲は、次の不等式(2)で示される。
θ-2 × φ1 ≦ θ2 ≦ θ ――― (1)
Further, the angle range of the angle (incident angle) θ2 ′ of the light entering the prism layer 8 is represented by the following inequality (2).
 arcsin(n1×sin(θ-2×φ1)/n3≦θ2’≦arcsin(n1×sin(θ)/n3)                    ―――(2)
 また、プリズム8aでは、上述したように、3つの面P1~P3において、光の入射角が臨界角以上となるように、面の角度が各々設定されている。このため、低屈折率層7側から入射した光は、まず面P3に当たって全反射する。その後、全反射した光は、面P2に当たって全反射し、さらに面P1に当たって全反射して出射面6b方向へ角度を変換し、出射面6bより出射する。
arcsin (n1 × sin (θ−2 × φ1) / n3 ≦ θ2 ′ ≦ arcsin (n1 × sin (θ) / n3) ――― (2)
In the prism 8a, as described above, the angles of the surfaces are set so that the light incident angle is equal to or larger than the critical angle on the three surfaces P1 to P3. For this reason, the light incident from the low refractive index layer 7 side first strikes the surface P3 and is totally reflected. Thereafter, the totally reflected light strikes the surface P2 and is totally reflected, and further strikes the surface P1 to be totally reflected, changes the angle in the direction of the exit surface 6b, and exits from the exit surface 6b.
 また、プリズム層8の屈折率n3が、下記の不等式(3)を満たすとき、面P3の傾斜角φP3を90度以下としても、この面P3への光の入射角は臨界角以上となり、当該面P3を全反射面とすることができる。 Further, when the refractive index n3 of the prism layer 8 satisfies the following inequality (3), even if the inclination angle φP3 of the surface P3 is 90 degrees or less, the incident angle of light on the surface P3 becomes a critical angle or more, The surface P3 can be a total reflection surface.
 90°-θ2’≧arcsin(1/n3)         ―――(3)
 以上のように構成された本実施形態の照明装置3では、上記入光面6a、出射面6b、及び対向面6cを有する導光体6と、導光体6の内部を導光する光の角度を徐々に変化させる第1のプリズム(光路変化部)10と、導光体6の対向面6c側に設けられるとともに、導光体6の屈折率よりも低い屈折率の低屈折率層7とが導光板5に設けられている。これにより、本実施形態の導光板5では、入光面6aから入光した発光ダイオード(光源)4からの光を、当該入光面6aから遠ざかる所定の伝搬方向に導光することができ、導光体6の出射面6b全面から発光ダイオード4からの光を出射することができる。また、第1のプリズム10の密度を面内で調整することにより、出射光の輝度を均一にすることができる。
90 ° -θ2 '≧ arcsin (1 / n3) ――― (3)
In the illuminating device 3 of the present embodiment configured as described above, the light guide 6 having the light incident surface 6 a, the light exit surface 6 b, and the facing surface 6 c, and the light guided through the light guide 6. A first prism (optical path changing portion) 10 that gradually changes the angle and a low refractive index layer 7 that is provided on the facing surface 6 c side of the light guide 6 and has a lower refractive index than the refractive index of the light guide 6. Are provided on the light guide plate 5. Thereby, in the light guide plate 5 of the present embodiment, the light from the light emitting diode (light source) 4 entering from the light incident surface 6a can be guided in a predetermined propagation direction away from the light incident surface 6a. Light from the light emitting diode 4 can be emitted from the entire emission surface 6 b of the light guide 6. Further, the brightness of the emitted light can be made uniform by adjusting the density of the first prism 10 in the plane.
 また、本実施形態の導光板5には、低屈折率層7の屈折率よりも高い屈折率のプリズム層8が当該低屈折率層7の導光体6とは反対側に設けられているので、低屈折率層7によってプリズム層8に入光する光の角度範囲を制限することができる。この結果、本実施形態の照明装置3では、導光体6の出射面6bからの光、つまり導光板5から液晶パネル(被照射物)2への出射光を集光できるため、高い輝度を得ることができる。 In the light guide plate 5 of the present embodiment, a prism layer 8 having a refractive index higher than the refractive index of the low refractive index layer 7 is provided on the side opposite to the light guide 6 of the low refractive index layer 7. Therefore, the angle range of light entering the prism layer 8 by the low refractive index layer 7 can be limited. As a result, in the illuminating device 3 of the present embodiment, the light from the light exit surface 6b of the light guide 6, that is, the light emitted from the light guide plate 5 to the liquid crystal panel (object to be irradiated) 2 can be condensed, so that high luminance is achieved. Obtainable.
 さらに、本実施形態のプリズム層8には、3つの面P1~P3を有するプリズム8aが複数設けられ、プリズム8aでは、低屈折率層7側から入射した光が3つの面P1~P3で順次全反射されて、導光体6の出射面6bから液晶パネル2側に出射されるように、当該3つの面P1~P3が設けられている。すなわち、本実施形態の照明装置3では、上記従来例と異なり、金属膜からなるマイクロ・ミラーを設けることなく、プリズム層8の3つの面P1~P3で順次全反射を行わせることにより、発光ダイオード4からの光を集光して液晶パネル2側に出射している。これにより、本実施形態では、上記従来例と異なり、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置3を構成することができる。 Further, the prism layer 8 of the present embodiment is provided with a plurality of prisms 8a having three surfaces P1 to P3. In the prism 8a, light incident from the low refractive index layer 7 side is sequentially applied to the three surfaces P1 to P3. The three surfaces P1 to P3 are provided so as to be totally reflected and emitted from the emission surface 6b of the light guide 6 to the liquid crystal panel 2 side. In other words, unlike the above-described conventional example, the illumination device 3 of the present embodiment emits light by sequentially performing total reflection on the three surfaces P1 to P3 of the prism layer 8 without providing a micro mirror made of a metal film. Light from the diode 4 is condensed and emitted to the liquid crystal panel 2 side. Thereby, in this embodiment, unlike the above-described conventional example, it is possible to configure the illumination device 3 excellent in light utilization efficiency that can reduce the light loss and obtain the emitted light.
 また、本実施形態では、プリズム8aの3つの面P1~P3において、光の入射角が臨界角以上となるように、面の角度が各々設定されている。これにより、本実施形態では、光ロスを低減させて、液晶パネル2への出射光をより確実に得ることができる。 In this embodiment, the angles of the surfaces are set so that the incident angle of light is not less than the critical angle on the three surfaces P1 to P3 of the prism 8a. Thereby, in this embodiment, light loss can be reduced and the emitted light to the liquid crystal panel 2 can be obtained more reliably.
 また、本実施形態では、複数のプリズム8aが導光体6の入光面6aの法線方向に互いに連続的に形成されているので、液晶パネル2への出射光をより均一に出射することができ、液晶パネル2への出射光に輝度ムラが生じるのを確実に防ぐことができる。 In the present embodiment, since the plurality of prisms 8a are continuously formed in the normal direction of the light incident surface 6a of the light guide 6, the light emitted to the liquid crystal panel 2 is emitted more uniformly. It is possible to reliably prevent uneven brightness in the light emitted to the liquid crystal panel 2.
 また、本実施形態では、複数のプリズム8aが互いに実質的に同一の形状で、かつ、互いに実質的に同一の大きさに形成されているので、液晶パネル2への出射光をより均一に出射することができ、液晶パネル2への出射光に輝度ムラが生じるのを確実に防ぐことができる。 In the present embodiment, the plurality of prisms 8a have substantially the same shape and are formed to have substantially the same size, so that the light emitted to the liquid crystal panel 2 is emitted more uniformly. Therefore, it is possible to reliably prevent uneven brightness from occurring in the light emitted to the liquid crystal panel 2.
 また、本実施形態では、複数の各プリズム8aでは、低屈折率層7側から入射した光が最初に全反射される面P3は伝搬方向(Z方向)に対し、90度以下の角度に設定されている。これにより、インプリントやインジェクションなどを用いて、プリズム層8にプリズム8aを形成するときに、金型を容易に離間させることができ、プリズム層8を容易に形成することができる。 In this embodiment, in each of the plurality of prisms 8a, the surface P3 on which the light incident from the low refractive index layer 7 side is first totally reflected is set at an angle of 90 degrees or less with respect to the propagation direction (Z direction). Has been. Accordingly, when the prism 8a is formed on the prism layer 8 using imprint or injection, the mold can be easily separated, and the prism layer 8 can be easily formed.
 また、本実施形態では、プリズム層8の低屈折率層7とは反対側に、プリズム層8から出射した光を当該プリズム層8側に反射させる反射板(反射部)9が設けられているので、発光ダイオード4の光利用効率をより向上させることができる。 In the present embodiment, a reflecting plate (reflecting portion) 9 that reflects the light emitted from the prism layer 8 toward the prism layer 8 is provided on the opposite side of the prism layer 8 from the low refractive index layer 7. Therefore, the light use efficiency of the light emitting diode 4 can be further improved.
 また、本実施形態では、導光体6の出射面6b側に、発光ダイオード4からの光を伝搬方向と直交する方向に拡散する第2のプリズム(第1の光拡散部)11が設けられているので、さらに均一な出射光を出射することができ、液晶パネル2への出射光に輝度ムラが生じるのをより確実に防ぐことができる。 In the present embodiment, a second prism (first light diffusion portion) 11 that diffuses light from the light emitting diode 4 in a direction orthogonal to the propagation direction is provided on the light exit surface 6 b side of the light guide 6. Therefore, it is possible to emit more uniform outgoing light, and more reliably prevent luminance unevenness from occurring in the outgoing light to the liquid crystal panel 2.
 また、本実施形態では、導光体6の入光面6aに、発光ダイオード4からの光を伝搬方向と直交する方向に拡散する第3のプリズム(第2の光拡散部)12が設けられているので、さらに均一な出射光を出射することができ、液晶パネル2への出射光に輝度ムラが生じるのをより確実に防ぐことができる。 In the present embodiment, the light incident surface 6 a of the light guide 6 is provided with a third prism (second light diffusion portion) 12 that diffuses the light from the light emitting diode 4 in a direction orthogonal to the propagation direction. Therefore, it is possible to emit more uniform outgoing light, and more reliably prevent luminance unevenness from occurring in the outgoing light to the liquid crystal panel 2.
 また、本実施形態では、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置3が用いられているので、高輝度で、省力化された液晶表示装置1を容易に構成することができる。 In the present embodiment, the illumination device 3 with excellent light utilization efficiency capable of reducing the optical loss and obtaining the emitted light is used. Therefore, the liquid crystal display device 1 with high luminance and labor saving can be obtained. It can be easily configured.
 [第2の実施形態]
 図7は、本発明の第2の実施形態にかかる照明装置、及び液晶表示装置を説明する図である。図8は、図7に示した照明装置の導光板の要部構成を示す拡大側面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、反射型偏光板を導光板の液晶パネル(被照射物)側に設けるとともに、複数の各プリズムにおいて、上記3つの面に含まれた1つの面を反射板(反射部)に平行に設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Second Embodiment]
FIG. 7 is a diagram illustrating an illumination device and a liquid crystal display device according to the second embodiment of the present invention. FIG. 8 is an enlarged side view showing the main configuration of the light guide plate of the illumination device shown in FIG. In the figure, the main difference between this embodiment and the first embodiment is that a reflective polarizing plate is provided on the liquid crystal panel (illuminated object) side of the light guide plate, and each of the prisms includes the three This is that one surface included in the surface is provided in parallel to the reflecting plate (reflecting portion). In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図7に示すように、本実施形態の液晶表示装置1では、液晶パネル2と照明装置3との間に、反射型偏光板13が設けられている。この反射型偏光板13は、図7の矢印L2または矢印L3にてそれぞれ示すように、光の偏光軸によって光を透過または反射させるものであり、液晶パネル2への出射光の輝度を上昇させる輝度上昇フィルムとして機能するようになっている。 That is, as shown in FIG. 7, in the liquid crystal display device 1 of the present embodiment, a reflective polarizing plate 13 is provided between the liquid crystal panel 2 and the illumination device 3. As shown by the arrow L2 or the arrow L3 in FIG. 7, the reflective polarizing plate 13 transmits or reflects light according to the polarization axis of light, and increases the luminance of light emitted to the liquid crystal panel 2. It functions as a brightness enhancement film.
 また、図8に例示するように、本実施形態の照明装置3では、プリズム層18の各プリズム18aにおいて、上記3つの面P1~P3のうち、1つの面P2は反射板9と平行となるように形成されている。すなわち、面P2は、伝搬方向(Z方向)と平行な水平面によって構成されている。これにより、本実施形態の照明装置3では、液晶パネル2への出射光での正面輝度を確実に向上させることができる。 Further, as illustrated in FIG. 8, in the illumination device 3 of the present embodiment, in each prism 18 a of the prism layer 18, one surface P2 among the three surfaces P1 to P3 is parallel to the reflecting plate 9. It is formed as follows. That is, the surface P2 is configured by a horizontal plane parallel to the propagation direction (Z direction). Thereby, in the illuminating device 3 of this embodiment, the front brightness | luminance with the emitted light to the liquid crystal panel 2 can be improved reliably.
 ここで、図9(a)及び図9(b)を用いて、面P2を上記水平面とすることによる効果について具体的に説明する。 Here, with reference to FIG. 9 (a) and FIG. 9 (b), the effect obtained by setting the surface P2 to the horizontal plane will be described in detail.
 図9(a)及び図9(b)は、それぞれ第1及び第2の実施形態の照明装置での動作例を説明する図である。 FIG. 9A and FIG. 9B are diagrams for explaining an operation example in the illumination devices of the first and second embodiments, respectively.
 図9(a)の矢印L4にて例示するように、反射型偏光板13にて反射された光が、導光体6に対して、90度近傍で入射されると、この光は、プリズム層8で方向が変換される。このため、図9(a)の矢印L4にて例示するように、反射板9で反射されても出射面6bの正面方向(90度方向、つまりY方向)に戻る光が少なく、正面輝度の向上効果が小さい。 As illustrated by the arrow L4 in FIG. 9A, when the light reflected by the reflective polarizing plate 13 is incident on the light guide 6 near 90 degrees, the light is converted into a prism. At layer 8 the direction is changed. For this reason, as illustrated by the arrow L4 in FIG. 9A, even when reflected by the reflecting plate 9, there is little light returning to the front direction (90-degree direction, that is, Y direction) of the emission surface 6b, and the front luminance is reduced. Improvement effect is small.
 これに対して、本実施形態では、面P2が上記水平面に構成されているので、図9(b)の矢印L5にて例示するように、面P2から反射板9の方向に出射して、当該反射板9で反射した光が面P2からプリズム層18に入射すると、90度近傍の角度で出射面6bから出射されて再利用することができる。このため、本実施形態では、正面輝度を向上させることができ、反射型偏光板13による輝度向上効果を大きくすることができる。 On the other hand, in this embodiment, since the surface P2 is configured in the horizontal plane, as illustrated by the arrow L5 in FIG. 9B, the light is emitted from the surface P2 in the direction of the reflecting plate 9, When the light reflected by the reflecting plate 9 enters the prism layer 18 from the surface P2, it is emitted from the emission surface 6b at an angle in the vicinity of 90 degrees and can be reused. For this reason, in this embodiment, front luminance can be improved and the luminance improvement effect by the reflective polarizing plate 13 can be increased.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、反射型偏光板13が導光板5の液晶パネル(被照射物)2側に設けられている。これにより、液晶パネル2への出射光の輝度を向上させることができる。また、本実施形態の複数の各プリズム18aでは、面P2が反射板9に平行に設けられているので、出射光での正面輝度を確実に向上させることができ、反射型偏光板13による出射光の輝度向上効果を大きくすることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the present embodiment, the reflective polarizing plate 13 is provided on the light guide plate 5 on the liquid crystal panel (irradiated object) 2 side. Thereby, the brightness | luminance of the emitted light to the liquid crystal panel 2 can be improved. Further, in each of the plurality of prisms 18a of the present embodiment, the surface P2 is provided in parallel to the reflecting plate 9, so that the front luminance with the emitted light can be improved reliably, and the output from the reflective polarizing plate 13 can be improved. The effect of improving the brightness of incident light can be increased.
 [第3の実施形態]
 図10は、本発明の第3の実施形態にかかる照明装置の導光板の要部構成を示す拡大側面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、プリズム層に、光を散乱させる光散乱機能を付与した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Third Embodiment]
FIG. 10 is an enlarged side view showing the main configuration of the light guide plate of the illumination device according to the third embodiment of the present invention. In the figure, the main difference between the present embodiment and the first embodiment is that a light scattering function for scattering light is added to the prism layer. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図10に示すように、本実施形態の照明装置3では、プリズム層28の各プリズム28aにおいて、例えば面P1、P3が曲面に構成されることにより、光を散乱させる光散乱機能が付与されている。これにより、本実施形態の照明装置3では、液晶パネル2への出射光での輝度ムラの発生をより確実に防ぐことができるようになっている。また、上記出射光において、その光の角度範囲を広げることができるので、液晶パネル2において、広視野角化を図ることができる。 That is, as shown in FIG. 10, in the illuminating device 3 of this embodiment, in each prism 28a of the prism layer 28, for example, the surfaces P1 and P3 are configured as curved surfaces, thereby providing a light scattering function for scattering light. Has been. Thereby, in the illuminating device 3 of this embodiment, generation | occurrence | production of the brightness nonuniformity by the emitted light to the liquid crystal panel 2 can be prevented more reliably. Further, since the angle range of the emitted light can be widened, the liquid crystal panel 2 can have a wide viewing angle.
 ここで、図11(a)及び図11(b)を用いて、面P1、P3を曲面とすることによる効果について具体的に説明する。 Here, with reference to FIG. 11A and FIG. 11B, the effect of making the surfaces P1 and P3 curved surfaces will be described in detail.
 図11(a)及び図11(b)は、それぞれ第1及び第3の実施形態の照明装置での動作例を説明する図である。 FIG. 11 (a) and FIG. 11 (b) are diagrams for explaining an operation example in the illumination devices of the first and third embodiments, respectively.
 面P1、P3が曲面ではなく鏡面で構成されている場合、面P1~P3で順次全反射されて、液晶パネル2に出射される光は、図11(a)の矢印L6、L6’にて例示するように、殆ど広がらずに、液晶パネル2に出射される。具体的には、低屈折率層7へ入光する光の角度θ2が、下記の不等式(4)を満足する場合、
 θ≦θ2≦θ-2×φ1               ―――(4)
 低屈折率層7に戻る光の角度の広がりθwは、次の(2)式で表される。
When the surfaces P1 and P3 are configured as mirror surfaces instead of curved surfaces, the light that is sequentially totally reflected by the surfaces P1 to P3 and emitted to the liquid crystal panel 2 is indicated by arrows L6 and L6 ′ in FIG. As illustrated, the light is emitted to the liquid crystal panel 2 without substantially spreading. Specifically, when the angle θ2 of the light entering the low refractive index layer 7 satisfies the following inequality (4):
θ ≦ θ2 ≦ θ-2 × φ1 ――― (4)
The angular spread θw of the light returning to the low refractive index layer 7 is expressed by the following equation (2).
 θw=2×φ1                   ―――(2)
 これに対して、面P1、P3を曲面に構成することにより、図11(b)の矢印L7、L7’にて例示するように、低屈折率層7へ戻る光の角度の広がりθwを2×φ1より大きくすることができる。
θw = 2 × φ1 ――― (2)
On the other hand, by forming the surfaces P1 and P3 into curved surfaces, the angle spread θw of the light returning to the low refractive index layer 7 is set to 2 as illustrated by arrows L7 and L7 ′ in FIG. It can be made larger than xφ1.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、プリズム層28の各プリズム28aにおいて、面P1、P3を曲面とすることにより、当該面P1、P3に光を散乱させる光散乱機能が付与されている。これにより、本実施形態では、さらに均一な出射光を出射することができ、液晶パネル(被照射物)2への出射光に輝度ムラが生じるのをより確実に防ぐことができるとともに、当該出射光の角度範囲を広げることができる。この結果、本実施形態では、液晶パネル2の視野角特性を広げること(広視野角化)ができ、液晶表示装置1の表示品位を向上させることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. Further, in the present embodiment, in each prism 28a of the prism layer 28, the surfaces P1 and P3 are curved so that a light scattering function for scattering light is given to the surfaces P1 and P3. Thereby, in the present embodiment, it is possible to emit more uniform emitted light, and more reliably prevent uneven brightness from occurring in the emitted light to the liquid crystal panel (object to be irradiated) 2, and The angle range of incident light can be expanded. As a result, in this embodiment, the viewing angle characteristics of the liquid crystal panel 2 can be expanded (wide viewing angle), and the display quality of the liquid crystal display device 1 can be improved.
 尚、上記の曲面に代えて、例えば面P1、P3において、その表面にシボ加工や凹凸形成を行うことによって、当該面P1、P3に光散乱機能を付与する構成でもよい。 In addition, it may replace with said curved surface, and the structure which provides a light-scattering function to the said surfaces P1 and P3 may be given to the surfaces P1 and P3, for example by carrying out embossing and uneven | corrugated formation on the surface.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、本発明を透過型の液晶表示装置に適用した場合について説明したが、本発明の照明装置はこれに限定されるものではなく、半透過型の液晶表示装置、あるいは液晶パネルをライトバルブに用いた投写型表示装置などの各種表示装置に適用することができる。 For example, in the above description, the case where the present invention is applied to a transmissive liquid crystal display device has been described. However, the lighting device of the present invention is not limited to this, and a transflective liquid crystal display device or a liquid crystal display device is not limited thereto. The present invention can be applied to various display devices such as a projection display device using a panel as a light valve.
 また、上記の説明以外に、本発明は、レントゲン写真に光を照射するシャウカステンあるいは写真ネガ等に光を照射して視認をし易くするためのライトボックスや、看板や駅構内の壁面などに設置される広告等をライトアップする発光装置の照明装置として好適に用いることができる。 In addition to the above explanation, the present invention is installed on a light box for illuminating X-ray film or photographic negatives for irradiating light to make it easy to see, or on a signboard or a wall in a station. It can be suitably used as a lighting device for a light emitting device that illuminates advertisements and the like.
 また、上記の説明では、光源として発光ダイオードを用いた場合について説明したが、本発明の光源はこれに限定されるものではなく、例えば冷陰極蛍光管や熱陰極蛍光管などの放電管を用いることもできる。 In the above description, the light emitting diode is used as the light source. However, the light source of the present invention is not limited to this, and a discharge tube such as a cold cathode fluorescent tube or a hot cathode fluorescent tube is used. You can also
 また、上記の説明では、低屈折率層が、空気層を介することなく、導光体の対向面に貼り付けられ、プリズム層が、空気層を介することなく、低屈折率層の導光体とは反対側の表面に貼り付けられた場合について説明した。しかしながら、本発明の照明装置は、導光体の屈折率よりも低い屈折率の低屈折率層が導光体の対向面側に設けられるとともに、低屈折率層の屈折率よりも高い屈折率のプリズム層が低屈折率層の導光体とは反対側に設けられたものであれば何等限定されない。 In the above description, the low refractive index layer is attached to the opposite surface of the light guide without an air layer, and the prism layer is a light guide with a low refractive index layer without an air layer. The case where it affixed on the surface on the opposite side to was demonstrated. However, in the lighting device of the present invention, the low refractive index layer having a lower refractive index than the refractive index of the light guide is provided on the opposite surface side of the light guide, and the refractive index higher than the refractive index of the low refractive index layer. The prism layer is not limited as long as the prism layer is provided on the side opposite to the light guide of the low refractive index layer.
 具体的には、導光体と低屈折率層との間に、屈折率が導光体の屈折率以下で低屈折率層の屈折率よりも大きい材質からなる透明な中間層を設けてもよい。また、低屈折率層とプリズム層との間に、屈折率がプリズム層の屈折率以下で低屈折率層の屈折率よりも大きい材質からなる透明な中間層を設けてもよい。さらに、低屈折率層として、空気層を用いることもできる。 Specifically, a transparent intermediate layer made of a material having a refractive index lower than that of the light guide and greater than that of the low refractive index layer may be provided between the light guide and the low refractive index layer. Good. Further, a transparent intermediate layer made of a material having a refractive index lower than that of the prism layer and larger than that of the low refractive index layer may be provided between the low refractive index layer and the prism layer. Furthermore, an air layer can also be used as the low refractive index layer.
 但し、上記の各実施形態のように、導光体、低屈折率層、及びプリズム層が互いに一体的に形成されている場合の方が、導光板の薄型化を容易に図ることができ、コンパクトな照明装置を容易に構成することができる点で好ましい。 However, in the case where the light guide, the low refractive index layer, and the prism layer are integrally formed with each other as in each of the above embodiments, the light guide plate can be easily made thinner. This is preferable in that a compact lighting device can be easily configured.
 また、上記の説明では、プリズム層に3つの面を有するプリズムを設けた場合について説明したが、本発明のプリズム層は、少なくとも3つの面を有するプリズムが複数設けられるとともに、複数の各プリズムでは、低屈折率層側から入射した光が少なくとも3つの面で順次全反射されて、導光体の出射面から被照射物側に出射されるように、当該少なくとも3つの面が設けられているものであればよく、例えば低屈折率層側から入射した光を順次全反射して、被照射物側に出射可能な4つの面を有するプリズムを用いてもよい。 In the above description, the case where the prism layer is provided with a prism having three surfaces has been described. However, the prism layer of the present invention includes a plurality of prisms having at least three surfaces. The at least three surfaces are provided so that light incident from the low refractive index layer side is sequentially totally reflected by at least three surfaces and emitted from the light emitting surface to the irradiated object side. Any prism may be used. For example, a prism having four surfaces that can sequentially reflect light incident from the low refractive index layer side and emit the light toward the irradiated object side may be used.
 また、上記の説明では、光路変化部として、導光体の出射面に一体的に形成された第1のプリズム(プリズム)が用いられた場合について説明したが、本発明の光路変化部は、導光体の出射面側または対向面側に設けられるとともに、当該導光体の内部を導光する光の角度を徐々に変化させるものであれば何等限定されない。 In the above description, the case where the first prism (prism) formed integrally with the light exit surface of the light guide is used as the optical path changing unit has been described. There is no limitation as long as it is provided on the light exiting surface side or the opposing surface side of the light guide and the angle of light guided through the light guide is gradually changed.
 具体的には、光路変化部として、導光体とは別体に構成された鋸状のプリズム列やレンチキュラーレンズ、あるいはV字状溝などのレンズ列を用いたり、導光体の出射面または対向面にドット形状などを施した粗面を用いたりすることもできる。 Specifically, as the optical path changing unit, a saw-shaped prism array or a lenticular lens configured separately from the light guide, or a lens array such as a V-shaped groove, the light exit surface of the light guide or A rough surface having a dot shape or the like on the opposite surface can also be used.
 但し、上記の各実施形態のように、導光体の出射面に一体的に形成された第1のプリズムを用いる場合の方が、製造簡単な導光板を構成することができる点で好ましい。 However, the case where the first prism formed integrally on the light exit surface of the light guide is used as in each of the above embodiments is preferable in that a light guide plate that can be easily manufactured can be configured.
 また、上記の説明では、反射部として、反射板を用いた場合について説明したが、本発明の反射部は、プリズム層の低屈折率層とは反対側に設けられて、プリズム層から出射した光を当該プリズム層側に反射させるものであれば何等限定されない。具体的には、例えば光源及び導光板を収容する照明装置の筐体の底面を反射部として用いることもできる。 In the above description, the case where a reflecting plate is used as the reflecting portion has been described. However, the reflecting portion of the present invention is provided on the opposite side of the low refractive index layer of the prism layer and is emitted from the prism layer. There is no limitation as long as it reflects light toward the prism layer. Specifically, for example, the bottom surface of the housing of the lighting device that houses the light source and the light guide plate can be used as the reflecting portion.
 また、上記の説明では、第1の光拡散部として、導光体の出射面に凹形状に形成されるとともに、第1のプリズムと一体的に構成された第2のプリズムを用いた場合について説明した。しかしながら、本発明の第1の光拡散部は、導光体の出射面側または対向面側に設けられて、光源からの光を伝搬方向と直交する方向に拡散するものであれば何等限定されない。具体的には、導光体及び第1のプリズムとは別個に構成されたプリズム列でもよい。また、導光体の出射面に対して、凸形状に形成されたプリズムでもよい。また、曲面でもよい。 In the above description, as the first light diffusing portion, the second prism that is formed in a concave shape on the light exit surface of the light guide and is configured integrally with the first prism is used. explained. However, the first light diffusion portion of the present invention is not limited as long as it is provided on the light exit surface side or the opposite surface side of the light guide and diffuses light from the light source in a direction orthogonal to the propagation direction. . Specifically, a prism array configured separately from the light guide and the first prism may be used. Moreover, the prism formed in convex shape may be sufficient with respect to the output surface of a light guide. Further, it may be a curved surface.
 また、上記の説明では、第2の光拡散部として、導光体の入光面に凹形状に、かつ、一体的に形成された第3のプリズムを用いた場合について説明した。しかしながら、本発明の第2の光拡散部は、導光体の入光面に設けられて、光源からの光を伝搬方向と直交する方向に拡散するものであれば何等限定されない。具体的には、導光体とは別個に構成されたプリズム列でもよい。また、導光体の入光面に対して、凸形状に形成されたプリズムでもよい。また、曲面でもよい。 Further, in the above description, a case has been described in which the third prism formed integrally with the concave shape on the light incident surface of the light guide is used as the second light diffusion portion. However, the second light diffusion portion of the present invention is not limited as long as it is provided on the light incident surface of the light guide and diffuses light from the light source in a direction orthogonal to the propagation direction. Specifically, a prism array configured separately from the light guide may be used. Moreover, the prism formed in the convex shape may be sufficient with respect to the light-incidence surface of a light guide. Further, it may be a curved surface.
 本発明は、光ロスを低減させて、出射光を得ることができる光利用効率に優れた照明装置、及びそれを用いた表示装置に対して有用である。 The present invention is useful for an illuminating device excellent in light utilization efficiency that can reduce light loss and obtain outgoing light, and a display device using the same.
 1 液晶表示装置
 2 液晶パネル(被照射物)
 3 照明装置
 4 発光ダイオード(光源)
 5 導光板
 6 導光体
 6a 入光面
 6b 出射面
 6c 対向面
 7 低屈折率層
 7a 表面
 8、18、28 プリズム層
 8a、18a、28a プリズム
 P1、P2、P3 面
 9 反射板(反射部)
 10 第1のプリズム(光路変化部)
 11 第2のプリズム(第1の光拡散部)
 12 第3のプリズム(第2の光拡散部)
1 Liquid crystal display device 2 Liquid crystal panel (object to be irradiated)
3 Lighting device 4 Light emitting diode (light source)
DESCRIPTION OF SYMBOLS 5 Light guide plate 6 Light guide 6a Light-incidence surface 6b Outgoing surface 6c Opposite surface 7 Low refractive index layer 7a Surface 8, 18, 28 Prism layer 8a, 18a, 28a Prism P1, P2, P3 surface 9 Reflector (reflective part)
10 First prism (optical path changing section)
11 Second prism (first light diffusion portion)
12 3rd prism (2nd light-diffusion part)

Claims (14)

  1. 光源と、前記光源からの光を所定の伝搬方向に導くとともに、被照射物に当該光を出射する導光板を備えた照明装置であって、
     前記導光板は、
     前記光源からの光を入光する入光面、前記入光面から入光された光を前記被照射物側に出射する出射面、及び前記出射面に対向する対向面を具備する導光体と、
     前記導光体の前記出射面側または前記対向面側に設けられるとともに、当該導光体の内部を導光する光の角度を徐々に変化させる光路変化部と、
     前記導光体の前記対向面側に設けられるとともに、前記導光体の屈折率よりも低い屈折率の低屈折率層と、
     前記低屈折率層の前記導光体とは反対側に設けられるとともに、前記低屈折率層の屈折率よりも高い屈折率のプリズム層を備え、
     前記プリズム層には、少なくとも3つの面を有するプリズムが複数設けられ、
     前記プリズムでは、前記低屈折率層側から入射した光が前記少なくとも3つの面で順次全反射されて、前記導光体の前記出射面から前記被照射物側に出射されるように、当該少なくとも3つの面が設けられている、
     ことを特徴とする照明装置。
    A light source and a lighting device including a light guide plate that guides light from the light source in a predetermined propagation direction and emits the light to an irradiated object,
    The light guide plate is
    A light guide including a light incident surface for receiving light from the light source, an emission surface for emitting light incident from the light incident surface to the irradiated object side, and a facing surface facing the emission surface. When,
    An optical path changing unit that is provided on the light exit surface side or the opposing surface side of the light guide and gradually changes the angle of light guided through the light guide;
    A low refractive index layer having a refractive index lower than the refractive index of the light guide, and provided on the opposite surface side of the light guide;
    The low refractive index layer is provided on the opposite side of the light guide, and includes a prism layer having a refractive index higher than the refractive index of the low refractive index layer,
    The prism layer is provided with a plurality of prisms having at least three surfaces,
    In the prism, at least the light incident from the low refractive index layer side is sequentially totally reflected by the at least three surfaces and emitted from the emission surface of the light guide to the irradiated object side. Three faces are provided,
    A lighting device characterized by that.
  2. 前記少なくとも3つの面では、光の入射角が臨界角以上となるように、面の角度が各々設定されている請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the angle of each of the at least three surfaces is set so that an incident angle of light is not less than a critical angle.
  3. 前記プリズム層では、複数の前記プリズムが前記導光体の前記入光面の法線方向に互いに連続的に形成されている請求項1または2に記載の照明装置。 The lighting device according to claim 1, wherein a plurality of the prisms are continuously formed in the prism layer in a normal direction of the light incident surface of the light guide.
  4. 前記プリズム層では、複数の前記プリズムが互いに実質的に同一の形状で、かつ、互いに実質的に同一の大きさに形成されている請求項1~3のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 3, wherein in the prism layer, the plurality of prisms have substantially the same shape and the same size.
  5. 前記低屈折率層は、前記導光体の前記対向面に貼り付けられ、
     前記プリズム層は、前記低屈折率層の前記導光体とは反対側の表面に貼り付けられている請求項1~4のいずれか1項に記載の照明装置。
    The low refractive index layer is attached to the facing surface of the light guide,
    The lighting device according to any one of claims 1 to 4, wherein the prism layer is affixed to a surface of the low refractive index layer opposite to the light guide.
  6. 前記光路変化部として、前記導光体の前記出射面に一体的に形成されたプリズムが用いられている請求項1~5のいずれか1項に記載の照明装置。 The illumination device according to any one of claims 1 to 5, wherein a prism formed integrally with the light exit surface of the light guide is used as the optical path changing portion.
  7. 前記複数の各プリズムでは、前記低屈折率層側から入射した光が最初に全反射される面は前記伝搬方向に対して、90度以下の角度に設定されている請求項1~6のいずれか1項に記載の照明装置。 7. In each of the plurality of prisms, a surface on which light incident from the low refractive index layer side is first totally reflected is set at an angle of 90 degrees or less with respect to the propagation direction. The lighting device according to claim 1.
  8. 前記プリズム層には、光を散乱させる光散乱機能が付与されている請求項1~7のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 7, wherein the prism layer is provided with a light scattering function for scattering light.
  9. 前記プリズム層の前記低屈折率層とは反対側には、前記プリズム層から出射した光を当該プリズム層側に反射させる反射部が設けられている請求項1~8のいずれか1項に記載の照明装置。 The reflective portion that reflects light emitted from the prism layer to the prism layer side is provided on the opposite side of the prism layer from the low refractive index layer. Lighting equipment.
  10. 前記導光板の前記被照射物側に設けられた反射型偏光板を備えるとともに、
     前記複数の各プリズムでは、前記少なくとも3つの面に含まれた1つの面を前記反射部に平行に設けた請求項9に記載の照明装置。
    While including a reflective polarizing plate provided on the irradiated object side of the light guide plate,
    The lighting device according to claim 9, wherein each of the plurality of prisms is provided with one surface included in the at least three surfaces in parallel to the reflecting portion.
  11. 前記導光体の前記出射面側または前記対向面側には、前記光源からの光を前記伝搬方向と直交する方向に拡散する第1の光拡散部が設けられている請求項1~10のいずれか1項に記載の照明装置。 11. The first light diffusion portion for diffusing light from the light source in a direction orthogonal to the propagation direction is provided on the light exit surface side or the opposed surface side of the light guide. The lighting device according to any one of the above.
  12. 前記導光体の前記入光面には、前記光源からの光を前記伝搬方向と直交する方向に拡散する第2の光拡散部が設けられている請求項1~11のいずれか1項に記載の照明装置。 The second light diffusing section for diffusing light from the light source in a direction orthogonal to the propagation direction is provided on the light incident surface of the light guide. The lighting device described.
  13. 請求項1~12のいずれか1項に記載の照明装置を用いたことを特徴とする表示装置。 A display device using the illumination device according to any one of claims 1 to 12.
  14. 前記被照射物として、液晶パネルが用いられている請求項13に記載の表示装置。 The display device according to claim 13, wherein a liquid crystal panel is used as the irradiation object.
PCT/JP2011/071576 2010-09-29 2011-09-22 Illumination device and display device WO2012043361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-218288 2010-09-29
JP2010218288 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043361A1 true WO2012043361A1 (en) 2012-04-05

Family

ID=45892812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071576 WO2012043361A1 (en) 2010-09-29 2011-09-22 Illumination device and display device

Country Status (1)

Country Link
WO (1) WO2012043361A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045256A (en) * 2020-01-06 2020-04-21 京东方科技集团股份有限公司 Backlight module and display device
CN111176016A (en) * 2020-01-07 2020-05-19 京东方科技集团股份有限公司 Backlight module and display device
US11442219B2 (en) * 2019-03-05 2022-09-13 Hewlett-Packard Development Company, L.P. Frustrum reflector plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228589A (en) * 2005-02-18 2006-08-31 Minebea Co Ltd Planar lighting device
JP2006261064A (en) * 2005-03-18 2006-09-28 Hitachi Chem Co Ltd Light guide plate and backlight device
JP2007294465A (en) * 2007-05-17 2007-11-08 Epson Imaging Devices Corp Lighting system, electro-optic device and electronic equipment
WO2010100784A1 (en) * 2009-03-06 2010-09-10 シャープ株式会社 Planar illumination device and display device provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228589A (en) * 2005-02-18 2006-08-31 Minebea Co Ltd Planar lighting device
JP2006261064A (en) * 2005-03-18 2006-09-28 Hitachi Chem Co Ltd Light guide plate and backlight device
JP2007294465A (en) * 2007-05-17 2007-11-08 Epson Imaging Devices Corp Lighting system, electro-optic device and electronic equipment
WO2010100784A1 (en) * 2009-03-06 2010-09-10 シャープ株式会社 Planar illumination device and display device provided with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11442219B2 (en) * 2019-03-05 2022-09-13 Hewlett-Packard Development Company, L.P. Frustrum reflector plate
CN111045256A (en) * 2020-01-06 2020-04-21 京东方科技集团股份有限公司 Backlight module and display device
CN111176016A (en) * 2020-01-07 2020-05-19 京东方科技集团股份有限公司 Backlight module and display device

Similar Documents

Publication Publication Date Title
US7973880B2 (en) Illumination device and liquid crystal display device
US7360937B2 (en) White light generating unit, backlight assembly having the same and liquid crystal display device having the same
JP4923671B2 (en) Liquid crystal display
US7810977B2 (en) Backlight device and display device using the same
US20110058389A1 (en) Brightness enhancement film and backlight module
WO2011065052A1 (en) Planar lighting device and display device having same
KR20150026044A (en) Optical sheet, backlight unit and display device comprising the same
US8427600B2 (en) Surface light source apparatus and liquid crystal display apparatus
US8310624B2 (en) Backlight module and liquid crystal display apparatus
WO2009141953A1 (en) Liquid crystal display device
WO2016194716A1 (en) Edge-lit backlight device and liquid crystal display device
US20100309682A1 (en) Brightness enhancement film and backlight module
US20150146132A1 (en) Surface light source device, display device, and lighting device
US8405796B2 (en) Illumination device, surface light source device, and liquid crystal display device
US20110109840A1 (en) Light guide unit, surface light source device and liquid crystal display device
US20110292684A1 (en) Illumination device, surface illuminant device, and liquid crystal display device
JP2010232101A (en) Light guide unit, lighting system, and liquid crystal display
WO2012043361A1 (en) Illumination device and display device
KR20200039324A (en) Display appartus
JP3516466B2 (en) Lighting device and liquid crystal display device
JP5434403B2 (en) Illumination unit and display device
US20110037923A1 (en) Light condensing film, backlight module and liquid crystal display
KR20140141304A (en) Light guide plate having rounded polyggon pattern and liquid cyrstal display device having thereof
JP5184240B2 (en) Display device
JP2009271379A (en) Transmission type display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP