JP4866206B2 - Method and apparatus for purifying silica particles and purified silica particles - Google Patents

Method and apparatus for purifying silica particles and purified silica particles Download PDF

Info

Publication number
JP4866206B2
JP4866206B2 JP2006290419A JP2006290419A JP4866206B2 JP 4866206 B2 JP4866206 B2 JP 4866206B2 JP 2006290419 A JP2006290419 A JP 2006290419A JP 2006290419 A JP2006290419 A JP 2006290419A JP 4866206 B2 JP4866206 B2 JP 4866206B2
Authority
JP
Japan
Prior art keywords
silica particles
gas
magnetic field
tank
purified gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006290419A
Other languages
Japanese (ja)
Other versions
JP2007145698A (en
Inventor
稔 神田
義行 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Super Quartz Corp
Original Assignee
Japan Super Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Super Quartz Corp filed Critical Japan Super Quartz Corp
Priority to JP2006290419A priority Critical patent/JP4866206B2/en
Publication of JP2007145698A publication Critical patent/JP2007145698A/en
Application granted granted Critical
Publication of JP4866206B2 publication Critical patent/JP4866206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリカガラスの原料粉であるシリカ粒子の精製方法と精製装置、および精製シリカ粒子に関する。   The present invention relates to a purification method and a purification device for silica particles, which are raw material powder of silica glass, and purified silica particles.

シリカ粒子は、IC、LSI等のプラスチックパッケイジ用フィラーの原料として用いられ、あるいは半導体材料のシリコン単結晶を引き上げる石英ガラスルツボの原料粉末等として用いられている。これらのシリカ粒子に不純物が含まれていると半導体製品に悪影響を及ぼすので、不純物の少ない精製シリカ粒子が必要とされる。   Silica particles are used as a raw material for plastic packaging fillers such as IC and LSI, or as a raw material powder for a quartz glass crucible for pulling up a silicon single crystal of a semiconductor material. If impurities are contained in these silica particles, the semiconductor product is adversely affected, so that purified silica particles with few impurities are required.

シリカ粒子の精製方法としては、例えば、シリカ粒子に1000〜1500℃の温度下で、塩素または塩素化合物を含有するガスを導入してシリカ粒子を流動化した状態で脱水する方法が知られている(特許文献1)。また、ロータリーキルンに石英粉を連続的に供給すると共にキルン内部に塩化水素と塩素の混合ガス等を導入して石英粉と接触させ、石英粉に含まれているアルカリ金属等を塩化物にして揮発除去する方法が知られている(特許文献2)。さらに、シリカ粒子を塩素性処理ガスによって流動化することによって金属不純物を除去する方法が知られている(特許文献3)。   As a method for purifying silica particles, for example, a method of dehydrating silica particles in a fluidized state by introducing a gas containing chlorine or a chlorine compound at a temperature of 1000 to 1500 ° C. is known. (Patent Document 1). In addition, quartz powder is continuously supplied to the rotary kiln and a mixed gas of hydrogen chloride and chlorine is introduced into the kiln to bring it into contact with the quartz powder. The alkali metal contained in the quartz powder is converted into chloride and volatilized. A removal method is known (Patent Document 2). Furthermore, a method for removing metal impurities by fluidizing silica particles with a chlorinated treatment gas is known (Patent Document 3).

一方、固体の石英ガラスに直流高電圧を印加することによって、ガラス内部のアルカリ金属等を陰極側に移動させて石英ガラスを純化する電解精製方法が知られている(特許文献4)。また、電解精製を石英ガラスルツボに適用した例(特許文献5)も知られており、石英粉に高電圧を加えて吸着されている不純物粒子を帯電させ、これを静電選別する石英粉の精製方法も知られている(特許文献6)。   On the other hand, there is known an electrolytic purification method in which a quartz glass is purified by applying a DC high voltage to solid quartz glass to move an alkali metal or the like inside the glass to the cathode side (Patent Document 4). In addition, an example in which electrolytic purification is applied to a quartz glass crucible (Patent Document 5) is also known, and a high voltage is applied to the quartz powder to charge the adsorbed impurity particles and electrostatically sort the quartz powder. A purification method is also known (Patent Document 6).

シリカ粒子を精製ガスによって流動化状態にして不純物を除去する従来の上記方法において、精製ガスとして塩素系ガスを用いるものが多く、水素を添加したガスを用いる例も知られている。しかし、水素ガスを用いるものは短時間で精製できる利点はあるが、爆発的な反応をする危険性があるためガス濃度のコントロールが厳しく、その取り扱いが難しいと云う問題がある。また、反応速度を高めるためには処理温度も1300℃程度以上の高温が必要であった。   In the above-described conventional method for removing impurities by making silica particles fluidized with a refined gas, many use a chlorine-based gas as the refined gas, and an example using a gas added with hydrogen is also known. However, there is an advantage that hydrogen gas can be purified in a short time, but there is a risk that explosive reaction may occur, so that the gas concentration is strictly controlled and its handling is difficult. Further, in order to increase the reaction rate, the processing temperature is required to be about 1300 ° C. or higher.

一方、精製ガスとして、塩素ガスや塩化水素ガスを用いる方法も、不純物の除去効果は高いものの、その精製には長時間を要し、実用的な時間で精製するには、精製温度を1250℃以上の高温にしなければ高い精製効率を得ることは出来ず、生産性に問題があった。また、従来の電解精製方法も処理時間がかかる。
特開平06−40713号公報 特開平08−290911号公報 特表2002−544102号公報 特公平07−14822号公報 特開2004−307222号公報 特開2003−119018号公報
On the other hand, the method using chlorine gas or hydrogen chloride gas as a purification gas also has a high effect of removing impurities, but it takes a long time for purification, and the purification temperature is 1250 ° C. for purification in a practical time. Unless the temperature is higher than that, high purification efficiency cannot be obtained, and there is a problem in productivity. The conventional electrolytic purification method also takes time.
Japanese Patent Laid-Open No. 06-40713 Japanese Patent Application Laid-Open No. 08-290911 Special Table 2002-544102 Japanese Patent Publication No. 07-14822 JP 2004-307222 A JP 2003-1119018 A

本発明は、シリカ粒子について従来の精製方法における上記問題を解決したものであり、シリカ粒子中のイオン性の高い不純物を短時間に除去することができる精製効果に優れた処理方法と精製装置および精製シリカ粒子を提供する。   The present invention solves the above-mentioned problems in the conventional purification method for silica particles, a treatment method and a purification apparatus excellent in purification effect capable of removing impurities with high ionicity in silica particles in a short time, and Purified silica particles are provided.

本発明は、以下の構成からなるシリカ粒子の精製方法と精製装置および精製シリカ粒子に関する。
(1)シリカ粒子を流動状態にし、高温下で流動状態のシリカ粒子に精製ガスを接触させてシリカ粒子の不純物成分を除去する精製方法において、流動状態のシリカ粒子を磁場領域内に位置させて、シリカ粒子の移動により生じる電場によってシリカ粒子に電圧を印加した状態にして精製ガスと接触させることを特徴とするシリカ粒子の精製方法。
(2)流動状態のシリカ粒子を、10ガウス以上の磁場領域内に位置させて、1000℃以上の温度下で精製ガスと接触させる上記(1)の精製方法。
(3)精製ガスが、ハロゲンガスおよびハロゲン化水素ガスの何れか又は両方を含む上記(1)または(2)に記載するシリカ粒子の精製方法。
(4)精製温度が1000℃以上〜1300℃以下である上記(1)〜(3)の何れかに記載するシリカ粒子の精製方法。
(5)シリカ粒子を流動化する流動槽、あるいは流動化したシリカ粒子を受け入れる反応容器、流動槽ないし反応容器に精製ガスを導入する手段、流動槽内あるいは反応容器内を1000℃〜1300℃に加熱する手段、流動槽内あるいは反応容器内に10ガウス以上の磁場を形成する手段を有することを特徴とするシリカ粒子の精製装置。
(6)流動槽が反応容器を兼用しており、縦型筒状の流動槽の下部は多数の通気孔を有する床板によって仕切られ、該床板上側にシリカ粒子が充填され、床板下側には精製ガスの導入口が設けられており、該流動槽の上部にはガスの排気口が設けられており、一方、流動槽の外周にはヒータが設けられており、さらに該ヒータの外側に磁場形成手段が設けられており、流動槽下部から導入した精製ガスによって槽内のシリカ粒子を流動状態にし、さらに上記ヒータによって流動槽内を1000℃以上〜1300℃以下に加熱し、上記磁場形成手段によって10ガウス以上の磁場を形成する上記(5)のシリカ粒子の精製装置。
(7)上記(1)〜(4)の何れかに記載する精製方法によって不純物成分を除去したことを特徴とする精製シリカ粒子。
The present invention relates to a method and apparatus for purifying silica particles and purified silica particles having the following constitution.
(1) In a purification method in which silica particles are brought into a fluidized state and purified gas is brought into contact with the silica particles in a fluidized state at a high temperature to remove impurity components of the silica particles, the silica particles in a fluidized state are positioned in a magnetic field region. A method for purifying silica particles, wherein a voltage is applied to the silica particles by an electric field generated by the movement of the silica particles and the silica particles are brought into contact with the purified gas.
(2) The purification method according to the above (1), wherein the silica particles in a fluidized state are positioned in a magnetic field region of 10 gauss or more and contacted with a purification gas at a temperature of 1000 ° C. or more.
(3) The method for purifying silica particles according to the above (1) or (2), wherein the purification gas contains one or both of a halogen gas and a hydrogen halide gas.
(4) The method for purifying silica particles according to any one of (1) to (3) above, wherein the purification temperature is 1000 ° C. or higher and 1300 ° C. or lower.
(5) Fluidizing tank for fluidizing silica particles, reaction vessel for receiving fluidized silica particles, means for introducing purified gas into the fluidizing vessel or reaction vessel, the inside of the fluidizing vessel or the reaction vessel at 1000 ° C. to 1300 ° C. An apparatus for purifying silica particles, comprising means for heating, means for forming a magnetic field of 10 gauss or more in a fluidized tank or a reaction vessel.
(6) The fluid tank also serves as a reaction vessel, and the lower part of the vertical cylindrical fluid tank is partitioned by a floor plate having a large number of ventilation holes, silica particles are filled on the upper side of the floor plate, A purified gas introduction port is provided, and a gas exhaust port is provided in the upper part of the fluid tank. On the other hand, a heater is provided on the outer periphery of the fluid tank, and a magnetic field is provided outside the heater. Forming means is provided, the silica particles in the tank are made into a fluid state by the purified gas introduced from the lower part of the fluidized tank, and the fluidized tank is heated to 1000 ° C. to 1300 ° C. by the heater, and the magnetic field forming means (5) The silica particle purifier according to the above (5), which forms a magnetic field of 10 gauss or more.
(7) Purified silica particles, wherein impurity components are removed by the purification method according to any one of (1) to (4) above.

本発明の精製方法は、流動状態のシリカ粒子を1000℃以上の温度下で10ガウス以上の磁場領域内に位置させることによって、シリカ粒子の移動により生じる電場によってシリカ粒子に電圧を印加した状態にして精製ガスと接触させるので、シリカ粒子に含まれるイオン性不純物成分が電場によって誘引されて粒子表面に拡散し、精製ガスと反応しやすくなるので、短時間に高い精製効果を得ることができる。この不純物成分は精製ガスと反応して気体状の化合物ガスとして系外に除去される。   In the purification method of the present invention, the silica particles in a fluidized state are positioned in a magnetic field region of 10 gauss or more at a temperature of 1000 ° C. or higher, so that a voltage is applied to the silica particles by an electric field generated by the movement of the silica particles. Since the ionic impurity component contained in the silica particles is attracted by the electric field and diffuses to the particle surface and easily reacts with the purified gas, a high purification effect can be obtained in a short time. This impurity component reacts with the purified gas and is removed from the system as a gaseous compound gas.

本発明の処理方法は、従来のガス精製方法の平均処理温度よりも低い1000℃〜1300℃の温度下で高い精製効果を得ることができるので、エネルギーコストが低いと云う利点がある。また、精製ガスとしてハロゲンガスを用いれば、爆発の危険性がなく、安全に操業することができる。   Since the treatment method of the present invention can obtain a high purification effect at a temperature of 1000 ° C. to 1300 ° C. lower than the average treatment temperature of the conventional gas purification method, there is an advantage that the energy cost is low. In addition, if halogen gas is used as the purified gas, there is no risk of explosion and safe operation is possible.

以下、本発明を実施例と共に具体的に説明する。
本発明の精製方法は、シリカ粒子を流動状態にし、高温下で流動状態のシリカ粒子に精製ガスを接触させてシリカ粒子の不純物成分を除去する精製方法において、流動状態のシリカ粒子を磁場領域内に位置させて、シリカ粒子の移動により生じる電場によってシリカ粒子に電圧を印加した状態にして精製ガスと接触させることを特徴とするシリカ粒子の精製方法である。
Hereinafter, the present invention will be specifically described together with examples.
The purification method of the present invention is a purification method in which silica particles are made into a fluid state, and purified gas is brought into contact with the silica particles in a fluid state at a high temperature to remove impurity components of the silica particles. The method for purifying silica particles is characterized in that the silica particles are brought into contact with the purified gas in a state where a voltage is applied to the silica particles by an electric field generated by movement of the silica particles.

本発明の精製方法は、好ましくは、シリカ粒子を流動状態にし、高温下で流動状態のシリカ粒子に精製ガスを接触させてシリカ粒子の不純物成分を除去する精製方法において、流動状態のシリカ粒子を、10ガウス以上の磁場領域内に位置させて、1000℃以上の温度下で精製ガスと接触させるシリカ粒子の精製方法である。   The purification method of the present invention is preferably a purification method in which silica particles in a fluidized state are brought into contact, and the purified gas is brought into contact with the silica particles in a fluidized state at a high temperature to remove impurity components of the silica particles. This is a method for purifying silica particles that is placed in a magnetic field region of 10 gauss or more and is brought into contact with a purified gas at a temperature of 1000 ° C. or more.

本発明の精製方法は、流動状態のシリカ粒子を磁場領域内に位置させる。磁場領域に位置する流動状態のシリカ粒子は、粒子が移動することによって、フレミングの法則に従って電場が生じ、シリカ粒子に電圧を印加した状態になり、シリカ粒子内部のイオン性不純物成分が電場によって誘引され、粒子表面に拡散してくる。このため精製ガスと反応しやすくなり、短時間に高い精製効果を得ることができる。   In the purification method of the present invention, the silica particles in a fluidized state are positioned in the magnetic field region. The flowing silica particles located in the magnetic field region generate an electric field according to Fleming's law when the particles move, and a voltage is applied to the silica particles, and the ionic impurity components inside the silica particles are attracted by the electric field. And diffuse to the particle surface. For this reason, it becomes easy to react with purified gas, and a high purification effect can be acquired in a short time.

磁場領域内でシリカ粒子が自由に移動できるように、磁場領域内のシリカ粒子を流動状態に保つ。なお、流動状態とは、対流を生じるようなものに限らず、シリカ粒子が自由に移動できればよいので、本発明では浮遊状態などを含めて流動状態と云う。   The silica particles in the magnetic field region are kept in a fluid state so that the silica particles can freely move in the magnetic field region. Note that the fluidized state is not limited to the one that causes convection, and it is sufficient that the silica particles can move freely. Therefore, in the present invention, the fluidized state includes the suspended state.

上記磁場の強さは10ガウス以上が適当である。磁場の強さがこれより低いと不純物成分の拡散を促す効果が低く、精製効果が十分に向上しない。好ましくは、磁場の強さは10ガウス以上〜150ガウス以下が適当である。この範囲で良好な精製効果を得ることができる。   The strength of the magnetic field is suitably 10 gauss or more. If the strength of the magnetic field is lower than this, the effect of promoting the diffusion of impurity components is low, and the purification effect is not sufficiently improved. Preferably, the strength of the magnetic field is 10 gauss or more and 150 gauss or less. A good purification effect can be obtained in this range.

流動化したシリカ粒子が精製ガスと接触する反応温度は1000℃以上〜1300℃が好ましい。反応温度が1000℃より低いと、シリカ粒子に含まれる不純物成分がイオン性挙動を示さず、粒子表面への拡散速度を高めるのが難しい。反応温度が1300℃より高いと高温化のためにコスト高になる。本発明の精製方法は1200℃前後の温度下で優れた精製効果を得ることができる。   The reaction temperature at which the fluidized silica particles come into contact with the purified gas is preferably 1000 ° C. to 1300 ° C. When the reaction temperature is lower than 1000 ° C., the impurity component contained in the silica particles does not exhibit ionic behavior, and it is difficult to increase the diffusion rate to the particle surface. If the reaction temperature is higher than 1300 ° C., the cost increases due to the higher temperature. The purification method of the present invention can obtain an excellent purification effect at a temperature of around 1200 ° C.

シリカ粒子に含まれる不純物成分を粒子表面に拡散移動させるには、シリカ粒子を流動化状態にして磁場内に位置させることが必要である。シリカ粒子を流動化して磁場内に位置させるには、例えば、磁場形成手段を備えた流動槽にシリカ粒子を充填し、槽内に空気または不活性ガスなどを吹き込んでシリカ粒子を流動化して流動槽内に磁場を形成すればよい。または、磁場形成手段を備えたサイクロン状の容器を用い、空気または不活性ガスなどと共にシリカ粒子を容器内に吹き込んで流動状態にして磁場を形成すればよい。なお、シリカ粒子を流動化するために精製ガスを用いても良い。   In order to diffuse and move the impurity component contained in the silica particles to the particle surface, it is necessary to place the silica particles in a fluidized state and place them in a magnetic field. In order to fluidize the silica particles and place them in the magnetic field, for example, the silica particles are filled in a fluid tank equipped with a magnetic field forming means, and the silica particles are fluidized by blowing air or an inert gas into the tank. What is necessary is just to form a magnetic field in a tank. Alternatively, a cyclone container provided with magnetic field forming means may be used, and silica particles may be blown into the container together with air or inert gas to form a magnetic field. A purified gas may be used to fluidize the silica particles.

精製ガスとしては、粒子表面の不純物成分と反応してガス化するものが用いられる。具体的には、例えば、塩素ガス等のハロゲンガス、または塩化水素ガス等のハロゲン化水素ガスを用いることができる。磁場内の流動化したシリカ粒子に精製ガスを導入し、または磁場内でシリカ粒子を精製ガスによって流動化することによって、シリカ粒子に含まれる不純物成分の拡散が促されて粒子表面に移動し、不純物成分が粒子表面で精製ガスと接触して反応し、塩化物ガス等になって除去される。   As the purified gas, a gas that reacts with an impurity component on the particle surface and gasifies is used. Specifically, for example, a halogen gas such as chlorine gas or a hydrogen halide gas such as hydrogen chloride gas can be used. By introducing purified gas into fluidized silica particles in a magnetic field or fluidizing silica particles with purified gas in a magnetic field, diffusion of impurity components contained in the silica particles is promoted and moved to the particle surface, Impurity components come into contact with the purified gas on the particle surface and react to become chloride gas and the like, and are removed.

本発明の精製方法によって、短時間の精製で不純物成分が大幅に少ない精製シリカ粒子を得ることができる。不純物成分の中でも、アルカリ性不純物成分は高温でイオン性挙動を示す度合いが強く、最も精製効果が高い。特にイオン性の高いLi等の除去には優れた効果を示す。   According to the purification method of the present invention, purified silica particles with significantly less impurity components can be obtained with a short purification. Among the impurity components, the alkaline impurity component has a strong degree of ionic behavior at a high temperature and has the highest purification effect. In particular, it has an excellent effect on removal of Li having high ionicity.

本発明の精製方法を実施するには、例えば、シリカ粒子を流動化する流動槽、あるいは流動化したシリカ粒子を受け入れる反応容器、流動槽ないし反応容器に精製ガスを導入する手段、流動槽内あるいは反応容器内を1000℃〜1300℃に加熱する手段、流動槽内あるいは反応容器内に10ガウス以上の磁場を形成する手段を有する精製装置を用いると良い。   To carry out the purification method of the present invention, for example, a fluidized tank for fluidizing silica particles, a reaction vessel for receiving fluidized silica particles, a means for introducing purified gas into a fluidized tank or a reaction vessel, a fluidized tank or A purification apparatus having means for heating the inside of the reaction vessel to 1000 ° C. to 1300 ° C., means for forming a magnetic field of 10 gauss or more in the fluidized tank or in the reaction vessel may be used.

本発明の実施装置は流動槽が反応容器を兼用するものでも良い。例えば、縦型筒状の流動槽を用い、その下部を多数の通気孔を有する床板によって仕切り、該床板上側にシリカ粒子を充填し、床板下側には精製ガスの導入口を設け、該流動槽の上部にはガスの排気口を設ける。一方、流動槽の外周にはヒータを設け、さらに該ヒータの外側に磁場形成手段を設ける。流動槽下部から導入した精製ガスによって槽内のシリカ粒子を流動状態にし、さらに上記ヒータによって流動槽内を1000℃以上〜1300℃以下に加熱し、上記磁場形成手段によって槽内を含む領域に10ガウス以上の磁場を形成し、精製ガスとシリカ粒子の不純物成分と反応させ、不純物成分を気化させる。反応によって生成したガスは未反応の精製ガスと共に流動槽から抜き出す。   The apparatus for carrying out the present invention may be one in which the fluid tank also serves as a reaction vessel. For example, a vertical cylindrical fluid tank is used, the lower part of which is partitioned by a floor plate having a number of ventilation holes, silica particles are filled on the upper side of the floor plate, and an inlet for purified gas is provided on the lower side of the floor plate. A gas exhaust port is provided at the top of the tank. On the other hand, a heater is provided on the outer periphery of the fluid tank, and a magnetic field forming means is provided outside the heater. The silica particles in the tank are made into a fluid state by the purified gas introduced from the lower part of the fluid tank, and further the inside of the fluid tank is heated to 1000 ° C. to 1300 ° C. by the heater, and the magnetic field forming means 10 A magnetic field of Gauss or higher is formed, and the purified gas reacts with the impurity component of the silica particles to vaporize the impurity component. The gas produced by the reaction is withdrawn from the fluidized tank together with the unreacted purified gas.

なお、精製ガスの導入に先立ち、精製ガス導入口を通じて予め流動槽内に空気と共にシリカ粒子を導入してシリカ粒子を流動化し、その後、空気に代えて精製ガスを槽内に導入し、あるいは空気と共に精製ガスを槽内に導入しても良い。   Prior to the introduction of the purified gas, the silica particles are introduced into the fluidized tank in advance through the purified gas inlet to fluidize the silica particles, and then the purified gas is introduced into the tank instead of the air, or the air At the same time, purified gas may be introduced into the tank.

処理条件は、例えば、1000℃〜1300℃の温度下で、精製ガス濃度1%〜15%で、60分〜90分精製ガスとシリカ粒子を接触させれば良い。
上記流動槽に代えてサイクロン状の容器を用い、容器内の温度を1000℃〜1300℃にすると共に容器内を含む領域に10ガウス以上の磁場を形成し、この容器内に空気と共にシリカ粉を導入してシリカ粒子を流動状態にし、ここに精製ガスを吹き込んでシリカ粒子の不純物成分と反応させる。反応によって生成したガスは未反応の精製ガスと共に反応容器から抜き出す。
For example, the treatment condition may be that the purified gas and the silica particles are brought into contact with each other at a purified gas concentration of 1% to 15% at a temperature of 1000 ° C. to 1300 ° C. for 60 minutes to 90 minutes.
A cyclonic container is used in place of the fluidized tank, the temperature in the container is set to 1000 ° C. to 1300 ° C., a magnetic field of 10 gauss or more is formed in the region including the inside of the container, and silica powder is mixed with air in the container. The silica particles are introduced into a fluidized state, and purified gas is blown into the silica particles to react with the impurity components of the silica particles. The gas produced by the reaction is withdrawn from the reaction vessel together with the unreacted purified gas.

本発明の精製方法を実施する装置例を図1に示す。図示するように、精製装置10は、縦型筒状の流動槽11と、該流動槽11を取り囲むヒータ12を有し、該ヒータ12の外側に流動槽およびヒータを囲むように一対の磁石13が設けられている。該流動槽11は石英管によって形成されており、底部に精製ガスの導入口と、上部に排気口が設けられている。さらに、流動槽11の内部には床板14が設けられており、該床板14には多数の通気孔が設けられている。   An example of an apparatus for carrying out the purification method of the present invention is shown in FIG. As shown in the figure, the refining device 10 has a vertical cylindrical flow tank 11 and a heater 12 surrounding the flow tank 11, and a pair of magnets 13 so as to surround the flow tank and the heater outside the heater 12. Is provided. The fluid tank 11 is formed of a quartz tube, and has a purified gas inlet at the bottom and an exhaust outlet at the top. Further, a floor plate 14 is provided inside the fluid tank 11, and the floor plate 14 is provided with a number of vent holes.

流動槽11の底部から導入された精製ガスは、床板14の通気孔を通じて流動槽11の上部に向かって流れ、床板14の上側に堆積したシリカ粒子15を流動状態にし、流動槽上部の排気口から外部に排出される。一方、ヒータ12によって流動槽内は1200℃前後に加熱され、さらに、磁石13によって槽内に10ガウス以上の磁場が形成される。   The purified gas introduced from the bottom of the fluidized tank 11 flows toward the upper part of the fluidized tank 11 through the vent holes of the floor plate 14, makes the silica particles 15 deposited on the upper side of the floor plate 14 into a fluidized state, and the exhaust port at the upper part of the fluidized tank 11. Is discharged to the outside. On the other hand, the inside of the fluidized tank is heated to about 1200 ° C. by the heater 12, and a magnetic field of 10 gauss or more is formed in the tank by the magnet 13.

精製ガスによって流動状態に維持されたシリカ粒子は、10ガウス以上の磁場をシリカ粒子が移動することによって電場を生じ、シリカ粒子に電圧を印加した状態となり、シリカ粒子内部のイオン性不純物成分、例えばリチウムイオンなどがこの電場によって粒子表面に誘引され、1200℃前後の高温下で精製ガスに接触して反応し、塩化物を形成してガス化し、シリカ粒子から除去される。   The silica particles maintained in a fluidized state by the purified gas generate an electric field by moving the silica particles in a magnetic field of 10 gauss or more, and a voltage is applied to the silica particles, and ionic impurity components inside the silica particles, for example, Lithium ions and the like are attracted to the particle surface by this electric field, and react with contact with the purified gas at a high temperature of around 1200 ° C. to form chloride and gasify, and are removed from the silica particles.

平均粒径220μmのシリカ粒子20kgを、内径φ250mmの石英反応容器に入れ、キャリアガスとして空気を用いて流動層を形成すると共に流動領域に磁場を形成し、高温下で精製ガスを導入してシリカ粒子を精製処理した(実施例)。なお、流動領域に磁場を形成せずに精製ガスを導入して処理した(比較例)。これらの処理効果を表1に対比して示した。本発明の実施例では、1時間の処理時間内で、アルカリ金属含有量が何れも0.15ppm以下であり、部分的には0.05ppm以下である。特にLiは大幅に除去されている。一方、比較例のアルカリ金属含有量は何れも0.3ppm以上であり、特にLiは殆ど除去されていない。 20 kg of silica particles having an average particle size of 220 μm are put into a quartz reaction vessel having an inner diameter of φ250 mm, a fluidized bed is formed using air as a carrier gas, a magnetic field is formed in a fluidized region, and purified gas is introduced at a high temperature to introduce silica. The particles were purified (Example). In addition, it processed by introducing refined gas, without forming a magnetic field in a flow area | region (comparative example). These treatment effects are shown in comparison with Table 1. In the examples of the present invention, the alkali metal content is 0.15 ppm or less and partially 0.05 ppm or less within the treatment time of 1 hour. In particular, Li has been greatly removed. On the other hand, the alkali metal contents of the comparative examples are each 0.3 ppm or more, and in particular, Li is hardly removed.

Figure 0004866206
Figure 0004866206

本発明の精製装置を示す概念図The conceptual diagram which shows the refinement | purification apparatus of this invention

符号の説明Explanation of symbols

10−精製装置、11−流動槽、12−ヒータ、13−磁石、14−床板、15−シリカ粒子。 10-purifier, 11-fluid tank, 12-heater, 13-magnet, 14-floor plate, 15-silica particles.

Claims (10)

シリカ粒子を流動状態にし、高温下で流動状態のシリカ粒子に精製ガスを接触させてシリカ粒子の不純物成分を除去する精製方法において、流動状態のシリカ粒子を10ガウス以上の磁場領域内に位置させて化水素ガスを含む精製ガスと接触させる工程と、シリカ粒子の移動により生じる電場によってシリカ粒子に電圧を印加した状態にする工程とを含む、精製ガスと接触させることを特徴とするシリカ粒子の精製方法。 In a purification method in which silica particles are put into a fluidized state and purified gas is brought into contact with the silica particles in a fluidized state at a high temperature to remove impurity components of the silica particles, the fluidized silica particles are positioned in a magnetic field region of 10 gauss or more. silica particles comprising the steps of contacting a purified gas containing salt hydrogen gas, by an electric field caused by the movement of the silica particles and a step of a state where a voltage is applied to the silica particles, comprising contacting a purified gas Te Purification method. 流動状態の前記シリカ粒子を、1000℃以上の温度下で精製ガスと接触させる請求項1の精製方法。   The purification method according to claim 1, wherein the silica particles in a fluidized state are brought into contact with a purified gas at a temperature of 1000 ° C. or higher. 前記精製ガスが、塩素ガスおよび化水素ガスの両方を含む請求項1または2に記載するシリカ粒子の精製方法。 The purified gas is purification method of the silica particles according to claim 1 or 2 including both chlorine gas and salts of hydrogen gas. 精製温度が1000℃以上〜1300℃以下である請求項1〜3の何れかに記載するシリカ粒子の精製方法。   The method for purifying silica particles according to claim 1, wherein the purification temperature is 1000 ° C. or higher and 1300 ° C. or lower. 前記磁場領域が磁石によって生じる磁場である、請求項1〜4の何れかに記載するシリカ粒子の精製方法。   The method for purifying silica particles according to claim 1, wherein the magnetic field region is a magnetic field generated by a magnet. 前記精製ガス中の塩素ガスおよび化水素ガスの濃度が合計で1%〜15%であり、且つ前記精製ガスは前記塩素ガスを1%以上、前記化水素ガスを0.2%以上含む、請求項1〜5の何れかに記載するシリカ粒子の精製方法。 Including the from 1% to 15% concentration is the sum of chlorine gas and the salt of hydrogen gas in the purified gas, and the purified gas is the chlorine gas 1% or more, the salts of the hydrogen gas to 0.2% The purification method of the silica particle in any one of Claims 1-5. シリカ粒子を流動化する流動槽、あるいは流動化したシリカ粒子を受け入れる反応容器、流動槽ないし反応容器に化水素ガスを含む精製ガスを導入する手段、流動槽内あるいは反応容器内を1000℃〜1300℃に加熱する手段、流動槽内あるいは反応容器内に10ガウス以上の磁場を形成する手段を有することを特徴とするシリカ粒子の精製装置。 Fluidization vessel to fluidize the silica particles, or the reaction vessel for receiving a fluidized silica particles, means for introducing a purified gas containing salt hydrogen gas to the fluidizing tank through the reactor, the flow tank or the reaction vessel 1000 ° C. ~ An apparatus for purifying silica particles, comprising means for heating to 1300 ° C., means for forming a magnetic field of 10 gauss or more in a fluidized tank or reaction vessel. 流動槽が反応容器を兼用しており、縦型筒状の流動槽の下部は多数の通気孔を有する床板によって仕切られ、該床板上側にシリカ粒子が充填され、床板下側には精製ガスの導入口が設けられており、該流動槽の上部にはガスの排気口が設けられており、一方、流動槽の外周にはヒータが設けられており、さらに該ヒータの外側に磁場形成手段が設けられており、流動槽下部から導入した精製ガスによって槽内のシリカ粒子を流動状態にし、さらに上記ヒータによって流動槽内を1000℃以上〜1300℃以下に加熱し、上記磁場形成手段によって10ガウス以上の磁場を形成する請求項5のシリカ粒子の精製装置。   The fluid tank also serves as a reaction vessel. The lower part of the vertical cylindrical fluid tank is partitioned by a floor plate having a large number of vent holes, and silica particles are filled on the upper side of the floor plate, and purified gas is placed on the lower side of the floor plate. An inlet is provided, a gas exhaust port is provided at the top of the fluid tank, and a heater is provided on the outer periphery of the fluid tank, and a magnetic field forming means is provided outside the heater. The silica particles in the tank are made into a fluidized state by the purified gas introduced from the lower part of the fluidized tank, and further the interior of the fluidized tank is heated to 1000 ° C. to 1300 ° C. by the heater, and 10 gauss by the magnetic field forming means. The apparatus for purifying silica particles according to claim 5, which forms the above magnetic field. 前記磁場形成手段が磁石である、請求項8のシリカ粒子の精製装置。   The apparatus for purifying silica particles according to claim 8, wherein the magnetic field forming means is a magnet. 前記精製ガス中の塩素ガスおよび化水素ガスの濃度が合計で1%〜15%であり、且つ前記精製ガスは前記塩素ガスを1%以上、前記化水素ガスを0.2%以上含む、請求項8または9に記載のシリカ粒子の精製装置。 Including the from 1% to 15% concentration is the sum of chlorine gas and the salt of hydrogen gas in the purified gas, and the purified gas is the chlorine gas 1% or more, the salts of the hydrogen gas to 0.2% The apparatus for purifying silica particles according to claim 8 or 9.
JP2006290419A 2005-10-28 2006-10-25 Method and apparatus for purifying silica particles and purified silica particles Active JP4866206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290419A JP4866206B2 (en) 2005-10-28 2006-10-25 Method and apparatus for purifying silica particles and purified silica particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005313795 2005-10-28
JP2005313795 2005-10-28
JP2006290419A JP4866206B2 (en) 2005-10-28 2006-10-25 Method and apparatus for purifying silica particles and purified silica particles

Publications (2)

Publication Number Publication Date
JP2007145698A JP2007145698A (en) 2007-06-14
JP4866206B2 true JP4866206B2 (en) 2012-02-01

Family

ID=38207545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290419A Active JP4866206B2 (en) 2005-10-28 2006-10-25 Method and apparatus for purifying silica particles and purified silica particles

Country Status (1)

Country Link
JP (1) JP4866206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117120366A (en) * 2021-03-31 2023-11-24 电化株式会社 Metal oxide powder and method for producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800375B2 (en) * 1990-06-18 1998-09-21 三菱マテリアル株式会社 Purification method of natural quartz powder
JPH04154613A (en) * 1990-10-18 1992-05-27 Mitsubishi Materials Corp Synthetic silica powder having high purity
DE19921059A1 (en) * 1999-05-07 2000-11-16 Heraeus Quarzglas Process for cleaning Si0¶2¶ particles, device for carrying out the process, and grain produced by the process
JP4331374B2 (en) * 2000-03-17 2009-09-16 ジャパンスーパークォーツ株式会社 Purification method and equipment for quartz powder
JP4000810B2 (en) * 2001-10-11 2007-10-31 ジャパンスーパークォーツ株式会社 Purification method of quartz powder and purified quartz crucible
JP4339003B2 (en) * 2003-04-02 2009-10-07 ジャパンスーパークォーツ株式会社 Method for producing quartz glass crucible
JP4526311B2 (en) * 2004-06-30 2010-08-18 ジャパンスーパークォーツ株式会社 Method for producing quartz glass crucible

Also Published As

Publication number Publication date
JP2007145698A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR101145339B1 (en) Method for purification of silica particles, purifier, and purified silica particles
JP5768714B2 (en) Method for producing silicon
JP4381512B2 (en) Method for treating silica granules using a porous graphite crucible
US20190210882A1 (en) System and Method for Producing High Purity Particulate Graphite
TWI757789B (en) Purification of quartz powders by removal of microparticles of refractory materials
JP4866206B2 (en) Method and apparatus for purifying silica particles and purified silica particles
JP2007224368A (en) Metal refining method, and method for manufacturing active metal using it
JP4557441B2 (en) Method and apparatus for refining quartz powder and quartz glass product
JPH03150327A (en) Manufacture of metallic ti
CN100447083C (en) Purification of finely divided, pyrogenically prepared metal oxide particles
JP2021031361A (en) Method of treating used active carbon and method for producing titanium tetrachloride
TWI539997B (en) Powder processing device and powder processing method
JPH04224195A (en) Improved polysilicon and method therefor
Cho et al. SyntheSiS of Silica MicroSphereS containing iron oxide nanoparticleS for reMoval of organic pollutant by adSorption and photocatalytic decoMpoSition
JP2004002059A (en) Process for manufacturing fused silica particle
WO2022056234A1 (en) Valorization of waste streams
KR20140006835A (en) Methods and systems for producing silane
JP2002179410A (en) Method of manufacturing fine oxide particle
JPH0694366B2 (en) Heating equipment for polycrystalline silicon
JP2003126646A (en) Gas treatment method using water proof spherical silica as adsorbent
JP2018053282A (en) Method for producing nickel oxide
JP2016182537A (en) Processing method of 1,2,3-triazole compound

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250