JP4865772B2 - Metal colloidal particles and dispersions thereof - Google Patents

Metal colloidal particles and dispersions thereof Download PDF

Info

Publication number
JP4865772B2
JP4865772B2 JP2008219930A JP2008219930A JP4865772B2 JP 4865772 B2 JP4865772 B2 JP 4865772B2 JP 2008219930 A JP2008219930 A JP 2008219930A JP 2008219930 A JP2008219930 A JP 2008219930A JP 4865772 B2 JP4865772 B2 JP 4865772B2
Authority
JP
Japan
Prior art keywords
metal
acid
mass
group
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008219930A
Other languages
Japanese (ja)
Other versions
JP2009074171A5 (en
JP2009074171A (en
Inventor
泰助 伊勢田
範子 生武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2008219930A priority Critical patent/JP4865772B2/en
Publication of JP2009074171A publication Critical patent/JP2009074171A/en
Publication of JP2009074171A5 publication Critical patent/JP2009074171A5/ja
Application granted granted Critical
Publication of JP4865772B2 publication Critical patent/JP4865772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)

Description

本発明は、金属ナノ粒子(銀ナノ粒子など)を含む金属コロイド粒子、この金属コロイド粒子を含む分散液および金属コロイド粒子の製造方法に関する。   The present invention relates to a metal colloid particle containing metal nanoparticles (such as silver nanoparticles), a dispersion containing the metal colloid particles, and a method for producing the metal colloid particles.

金属ナノ粒子(又は金属コロイド粒子)は、非線形光学特性などの物性を有し、バルクや金属原子とは異なる性質を有することが知られており、電気・通信分野などの多様な分野への応用が期待されている。   Metal nanoparticles (or metal colloid particles) are known to have physical properties such as nonlinear optical properties and properties different from those of bulk and metal atoms, and can be applied to various fields such as electrical and communication fields. Is expected.

このような金属ナノ粒子の製造方法は気相法と液相法とに大別される。気相法に関し、特許3341361号公報(特許文献1)には、超微粒子の材料を不活性ガス中で加熱蒸発し、不活性ガスとの衝突により蒸気を急冷することにより超微粒子を形成し、この超微粒子を基板上に付着させる工程と、この基板上にマトリックスを形成させる工程とを交互に行って超微粒子分散材料を製造する方法において、前記マトリックスを形成させる工程が、テトラメトキシシランなどの有機化合物またはシリコン水素化物の気体が化学反応に関与する化学的気相堆積法による工程である超微粒子分散材料の製造方法が開示されている。この方法では、交互堆積法により超微粒子の凝集成長を抑制でき、粒径分布のバラツキの小さな超微粒子分散材料を作製できる。しかし、気相法は、誘導加熱装置や真空装置などの高価で大掛かりな装置を必要とするとともに、金属ナノ粒子が真空装置内で生成するため、一度に得られる金属ナノ粒子の生成量が少なく、金属ナノ粒子を大量生産するのに適していない。   Such a method for producing metal nanoparticles is roughly classified into a gas phase method and a liquid phase method. Regarding the gas phase method, Japanese Patent No. 3341361 (Patent Document 1) discloses that ultrafine particles are heated and evaporated in an inert gas, and the vapor is rapidly cooled by collision with the inert gas to form ultrafine particles. In the method of manufacturing the ultrafine particle dispersed material by alternately performing the step of attaching the ultrafine particles on the substrate and the step of forming the matrix on the substrate, the step of forming the matrix includes tetramethoxysilane and the like. A method for producing an ultrafine particle dispersed material, which is a process by a chemical vapor deposition method in which a gas of an organic compound or silicon hydride is involved in a chemical reaction, is disclosed. In this method, it is possible to suppress the ultrafine particle agglomeration growth by the alternate deposition method, and it is possible to produce an ultrafine particle dispersed material with a small variation in particle size distribution. However, the vapor phase method requires an expensive and large-scale apparatus such as an induction heating apparatus or a vacuum apparatus, and metal nanoparticles are generated in the vacuum apparatus, so that the amount of metal nanoparticles obtained at one time is small. It is not suitable for mass production of metal nanoparticles.

一方、液相法は、簡便である上に大量生産にも適する特徴を有する。このような液相法による金属ナノ粒子の製造方法として、溶液中において、金属化合物を、この金属化合物の保護コロイドに成りうる化合物(又は分散剤)の存在下で還元する方法が知られている。   On the other hand, the liquid phase method is not only simple but also suitable for mass production. As a method for producing metal nanoparticles by such a liquid phase method, a method is known in which a metal compound is reduced in a solution in the presence of a compound (or a dispersant) that can be a protective colloid of the metal compound. .

このような保護コロイドを用いる方法において、保護コロイドとしては、インキなどの分野で知られている顔料分散剤を使用することが提案されている。そして、着色性や金属光沢の向上を目的として、保護コロイドとしての高分子分散剤の使用も提案されている。   In such a method using a protective colloid, it has been proposed to use a pigment dispersant known in the field of ink or the like as the protective colloid. For the purpose of improving colorability and metallic luster, use of a polymer dispersant as a protective colloid has also been proposed.

例えば、特開平11−80647号公報(特許文献2)には、貴金属又は銅のコロイド粒子及び高分子量顔料分散剤を含むことを特徴とする貴金属又は銅のコロイド溶液が開示されている。この文献には、高分子量顔料分散剤として、(1)顔料親和性基を主鎖及び/又は複数の側鎖に有し、かつ、溶媒和部分を構成する複数の側鎖を有する櫛形構造の高分子、(2)主鎖中に顔料親和性基からなる複数の顔料親和部分を有する高分子、(3)主鎖の片末端に顔料親和性基からなる顔料親和部分を有する直鎖状の高分子を使用できるとし、具体的に使用できる市販品としては、例えば、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(ゼネカ社製);ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190(ビックケミー社製);EFKA−46、EFKA−47、EFKA−48、EFKA−49(EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(味の素社製);フローレンDOPA−158、フローレンDOPA−22、フローレンDOPA−17、フローレンTG−730W、フローレンG−700、フローレンTG−720W(共栄社化学社製)などを挙げている。   For example, Japanese Patent Application Laid-Open No. 11-80647 (Patent Document 2) discloses a colloidal solution of noble metal or copper including colloidal particles of noble metal or copper and a high molecular weight pigment dispersant. In this document, as a high molecular weight pigment dispersant, (1) a comb-shaped structure having a pigment affinity group in a main chain and / or a plurality of side chains and a plurality of side chains constituting a solvation part. A polymer, (2) a polymer having a plurality of pigment-affinity moieties comprising pigment affinity groups in the main chain, and (3) a linear chain having a pigment affinity moiety comprising a pigment affinity group at one end of the main chain. Examples of commercially available products that can be used as polymers include Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse 28000 (manufactured by Geneca); Dispersic 160, Dispersic 161, Dispersic 162 Dispersic 163, Dispersic 166, Dispersic 170, Dispersic 180, Dispa Bic 182, Disperbic 184, Disperbic 190 (manufactured by Big Chemie); EFKA-46, EFKA-47, EFKA-48, EFKA-49 (manufactured by EFKA Chemical); Polymer 100, Polymer 120, Polymer 150, Polymer 400, Polymer 401, Polymer 402, Polymer 403, Polymer 450, Polymer 451, Polymer 452, Polymer 453 (manufactured by EFKA Chemical Co., Ltd.); Examples include DOPA-22, florene DOPA-17, florene TG-730W, florene G-700, and florene TG-720W (manufactured by Kyoeisha Chemical Co., Ltd.).

また、特開2004−256722号公報(特許文献3)には、着色剤として、金、銀、白金及び銅から選ばれるコロイド粒子と、溶剤と、分散剤とを少なくとも含有する筆記具用金属光沢色インキ組成物が開示されている。この文献には、分散剤としては、高分子重合体に顔料(コロイド粒子)表面に対する親和性の高い官能基が導入された両親媒性の共重合体が記載されており、具体的に使用できる分散剤として前記と同様の分散剤が挙げられている。   Japanese Patent Application Laid-Open No. 2004-256722 (Patent Document 3) describes a metallic luster color for writing instruments which contains at least colloidal particles selected from gold, silver, platinum and copper, a solvent, and a dispersant as a colorant. An ink composition is disclosed. This document describes an amphiphilic copolymer in which a functional group having a high affinity for the pigment (colloid particle) surface is introduced into a polymer as a dispersant, and can be specifically used. Examples of the dispersant include the same dispersants as described above.

これらの文献に記載の方法のように、高分子を分散剤とした場合、粒子表面に吸着した高分子が粒子間の凝集を妨げるため、ナノ粒子は良好な分散性を示し、室温保存においても安定なナノ粒子分散液が得られる。しかし、これらの文献に記載の方法では、金属ナノ粒子が得られるものの、粗大粒子(例えば、一次粒子径が100nm以上の粒子)が生成しやすい。特に、反応系における金属化合物の濃度を大きくすると、粗大粒子が著しく生成しやすくなり、金属ナノ粒子の収率が大きく低下する。また、これらの文献で得られた金属ナノ粒子を基板に塗布し、導電性の金属膜とする場合、分散剤である高分子の分解・気化温度が高いため、低温焼成(例えば、300℃未満の焼成)では、低抵抗の金属膜を得ることは困難である。   As in the methods described in these documents, when a polymer is used as a dispersant, the polymer adsorbed on the particle surface prevents aggregation between the particles, so that the nanoparticles exhibit good dispersibility and can be stored at room temperature. A stable nanoparticle dispersion is obtained. However, in the methods described in these documents, although metal nanoparticles are obtained, coarse particles (for example, particles having a primary particle diameter of 100 nm or more) are easily generated. In particular, when the concentration of the metal compound in the reaction system is increased, coarse particles are remarkably easily generated, and the yield of the metal nanoparticles is greatly reduced. In addition, when the metal nanoparticles obtained in these documents are applied to a substrate to form a conductive metal film, the decomposition and vaporization temperature of the polymer as the dispersant is high, so low temperature firing (for example, less than 300 ° C.) ), It is difficult to obtain a low resistance metal film.

さらに、特開2007−63580号公報(特許文献4)には、銀ナノ粒子を製造する方法であって、(1)アミン化合物、(2)銀塩、及び(3)カルボキシル基を有する多環式炭化水素化合物(コール酸、デオキシコール酸、デヒドロコール酸、ケノデオキシコール酸、12−オキソケノデオキシコール酸、グリココール酸、コラン酸、リトコール酸、ヒオデオキシコール酸、ウルソデオキシコール酸、アポコール酸、タウロコール酸、アビエチン酸、グリチルリチン酸及びグリシルリジン酸など)を含む出発原料を熱処理する工程を含むことを特徴とする製造方法が開示されている。   Furthermore, Japanese Patent Application Laid-Open No. 2007-63580 (Patent Document 4) discloses a method for producing silver nanoparticles, comprising (1) an amine compound, (2) a silver salt, and (3) a polycyclic ring having a carboxyl group. Formula hydrocarbon compounds (cholic acid, deoxycholic acid, dehydrocholic acid, chenodeoxycholic acid, 12-oxochenodeoxycholic acid, glycocholic acid, colanic acid, lithocholic acid, hyodeoxycholic acid, ursodeoxycholic acid, apocholic acid, taurocholic acid And a starting material containing abietic acid, glycyrrhizic acid, glycyrrhizic acid, etc.) is disclosed.

しかし、この文献に記載の方法では、金属ナノ粒子を得るためには、多量のカルボキシル基を有する多環式炭化水素化合物が必要であり、実用的でない。また、多量に用いるため、現実的には、金属コロイド粒子の精製操作が必要となる。さらに、前記炭化水素化合物の量を減らすと、粗大粒子が生成する。そのため、高濃度で小粒径の金属ナノ粒子を含む金属コロイド粒子を得ることが困難である。
特許3341361号公報(請求項1) 特開平11−80647号公報(請求項1、段落番号[0020]、[0035]) 特開2004−256722号公報(請求項1〜5、段落[0008]〜[0016]) 特開2007−63580号公報(請求項)
However, the method described in this document requires a polycyclic hydrocarbon compound having a large amount of carboxyl groups in order to obtain metal nanoparticles, and is not practical. Moreover, since it is used in a large amount, it is practically necessary to purify the metal colloidal particles. Further, when the amount of the hydrocarbon compound is reduced, coarse particles are generated. Therefore, it is difficult to obtain metal colloidal particles containing metal nanoparticles having a high concentration and a small particle size.
Japanese Patent No. 3341361 (Claim 1) JP 11-80647 A (Claim 1, paragraph numbers [0020], [0035]) JP 2004-256722 A (Claims 1 to 5, paragraphs [0008] to [0016]) JP 2007-63580 A (Claims)

従って、本発明の目的は、粗大粒子(又は比較的大きな粒子)の生成が抑制された金属ナノ粒子を含む金属コロイド粒子(金属ナノ粒子複合体)、この金属コロイド粒子を含む分散液、およびその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a metal colloid particle (metal nanoparticle composite) containing metal nanoparticles in which the generation of coarse particles (or relatively large particles) is suppressed, a dispersion containing the metal colloid particles, and the It is to provide a manufacturing method.

本発明の他の目的は、高濃度で金属ナノ粒子を含んでいるにもかかわらず、長期間の保存安定性に優れた金属コロイド粒子、この金属コロイド粒子を含む分散液、およびその製造方法を提供することにある。   Another object of the present invention is to provide a metal colloid particle having excellent long-term storage stability despite containing metal nanoparticles at a high concentration, a dispersion containing the metal colloid particle, and a method for producing the same. It is to provide.

本発明のさらに他の目的は、分散性および保存安定性に優れるとともに、低温焼結(例えば、300℃未満での焼結)可能な金属コロイド粒子、この金属コロイド粒子を含む分散液、およびその製造方法を提供することにある。   Still another object of the present invention is to provide metal colloidal particles that are excellent in dispersibility and storage stability and that can be sintered at a low temperature (for example, sintering at less than 300 ° C.), dispersions containing the metal colloidal particles, and the like It is to provide a manufacturing method.

本発明の別の目的は、反応系内(反応溶媒中)の金属濃度が高くても、粗大粒子の生成が少ない金属ナノ粒子を高収率で得ることができる金属コロイド粒子(又はその分散液)の製造方法を提供することにある。   Another object of the present invention is to provide metal colloid particles (or dispersions thereof) that can obtain metal nanoparticles in a high yield with little generation of coarse particles even when the metal concentration in the reaction system (in the reaction solvent) is high. ) Manufacturing method.

前記のように、金属ナノ粒子を被覆又は保護する保護コロイド(又は分散剤)を、高分子の分散剤とすると、粗大粒子が生成しやすくなり、また、低温焼成で低抵抗の金属膜を得ることが困難である。一方、低分子を分散剤として用いた場合、低分子の分解又は気化温度が低いため、低温焼成(例えば、300℃未満の焼成)においても、良好な導電性の金属膜を得ることが可能であるが、粒子間の凝集・焼結が起こりやすく、長期間の保存によって抵抗値が増大するといった問題点があった。   As described above, when the protective colloid (or dispersant) that coats or protects the metal nanoparticles is used as a polymer dispersant, coarse particles are easily generated, and a low-resistance metal film is obtained by low-temperature firing. Is difficult. On the other hand, when a low molecule is used as a dispersant, the low molecular decomposition or vaporization temperature is low, and therefore, it is possible to obtain a good conductive metal film even in low-temperature firing (for example, firing at less than 300 ° C.). However, there is a problem that the particles are easily aggregated and sintered, and the resistance value increases due to long-term storage.

本発明者は、前記課題を達成するため鋭意検討した結果、金属ナノ粒子を被覆又は保護する保護コロイド(又は分散剤)を、カルボキシル基を有する有機化合物と、高分子分散剤(特に、カルボキシル基を有する高分子分散剤)とで構成することにより、粗大粒子の生成が抑制された金属コロイド粒子が得られること、特に、このような保護コロイドを使用することにより、反応系の金属濃度を高めても粗大粒子の生成を著しく抑制でき、高濃度で金属ナノ粒子を含む金属コロイド粒子が得られること、また、前記特定の分散剤の組み合わせにより、分散性、保存安定性、低温焼結性という相反する性質を両立できる金属コロイド粒子が得られること、さらには、長期間保存しても金属膜(焼結膜)において優れた導電性を維持でき、かつ低温焼結可能な金属コロイド粒子が得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has obtained a protective colloid (or dispersant) for coating or protecting metal nanoparticles, an organic compound having a carboxyl group, and a polymer dispersant (in particular, a carboxyl group). In this way, it is possible to obtain metal colloidal particles in which the formation of coarse particles is suppressed, and in particular, by using such protective colloids, the metal concentration in the reaction system is increased. However, the production of coarse particles can be remarkably suppressed, and metal colloidal particles containing metal nanoparticles at a high concentration can be obtained. In addition, the combination of the specific dispersants allows for dispersibility, storage stability, and low temperature sintering. It is possible to obtain metal colloidal particles that have compatible properties and to maintain excellent conductivity in a metal film (sintered film) even when stored for a long period of time. Found that sinterable metal colloid particles are obtained, and have completed the present invention.

すなわち、本発明の金属コロイド粒子は、金属ナノ粒子(A)と、この金属ナノ粒子(A)を被覆する保護コロイド(B)とで構成された金属コロイド粒子であって、前記保護コロイド(B)が、カルボキシル基を有する有機化合物(B1)と、高分子分散剤(B2)とで構成されている。前記金属ナノ粒子(A)を構成する金属は、少なくとも貴金属を含む金属(例えば、銀など)であってもよい。   That is, the metal colloid particles of the present invention are metal colloid particles composed of metal nanoparticles (A) and a protective colloid (B) covering the metal nanoparticles (A), and the protective colloid (B ) Is composed of an organic compound (B1) having a carboxyl group and a polymer dispersant (B2). The metal constituting the metal nanoparticles (A) may be a metal (for example, silver) containing at least a noble metal.

前記有機化合物(B1)は、脂肪族カルボン酸(例えば、C1−24脂肪族カルボン酸好ましくはC1−20脂肪族カルボン酸、さらに好ましくはC1−18脂肪族カルボン酸、特にC1−18アルカン酸)およびヒドロキシカルボン酸[例えば、脂肪族ヒドロキシカルボン酸(例えば、コール酸などのC14−34縮合多環式脂肪族ヒドロキシカルボン酸など)など]から選択された少なくとも1種であってもよい。 The organic compound (B1) may be an aliphatic carboxylic acid (for example, a C 1-24 aliphatic carboxylic acid, preferably a C 1-20 aliphatic carboxylic acid, more preferably a C 1-18 aliphatic carboxylic acid, particularly C 1- 18 alkanoic acid) and a hydroxycarboxylic acid [for example, an aliphatic hydroxycarboxylic acid (for example, a C 14-34 condensed polycyclic aliphatic hydroxycarboxylic acid such as cholic acid, etc.)] Also good.

また、前記高分子分散剤(B2)は、カルボキシル基を有していてもよい。代表的には、前記有機化合物(B1)がC1−18脂肪族カルボン酸およびC2−34脂肪族ヒドロキシカルボン酸から選択された少なくとも1種であってもよい。 The polymer dispersant (B2) may have a carboxyl group. Typically, the organic compound (B1) may be at least one selected from C 1-18 aliphatic carboxylic acid and C 2-34 aliphatic hydroxycarboxylic acid.

前記金属コロイド粒子において、前記有機化合物(B1)と前記高分子分散剤(B2)との割合は、例えば、前者/後者(質量比)=95/5〜2/98(例えば、86/14〜4/96)程度であってもよい。代表的には、前記保護コロイド(B)の割合が、金属ナノ粒子(A)100質量部に対して1.0〜60質量部程度であり、かつ、有機化合物(B1)と高分子分散剤(B2)との割合が、前者/後者(質量比)=90/10〜3/97(例えば、86/14〜4/96)程度であってもよい。   In the metal colloid particles, the ratio of the organic compound (B1) and the polymer dispersant (B2) is, for example, the former / the latter (mass ratio) = 95/5 to 2/98 (for example, 86/14 to It may be about 4/96). Typically, the ratio of the protective colloid (B) is about 1.0 to 60 parts by mass with respect to 100 parts by mass of the metal nanoparticles (A), and the organic compound (B1) and the polymer dispersant. The ratio with (B2) may be the former / the latter (mass ratio) = 90/10 to 3/97 (for example, 86/14 to 4/96).

本発明の金属コロイド粒子は、前記のように粗大粒子が少ない金属ナノ粒子を含んでいる。例えば、前記金属コロイド粒子は、金属ナノ粒子(A)の平均一次粒子径が1〜100nm程度であり、かつ、一次粒子径が100nm以上の粒子の割合が、金属の質量基準で1質量%以下であってもよい。   As described above, the metal colloid particles of the present invention contain metal nanoparticles with few coarse particles. For example, in the metal colloidal particles, the average primary particle diameter of the metal nanoparticles (A) is about 1 to 100 nm, and the proportion of particles having a primary particle diameter of 100 nm or more is 1% by mass or less based on the mass of the metal. It may be.

本発明には、前記金属コロイド粒子および溶媒を含む分散液も含む。このような分散液において、前記溶媒は、少なくとも水を含む溶媒(水、水と水溶性溶媒との混合液、特に水)であってもよい。また、分散液を構成する前記溶媒の極性パラメータは、3.1〜10.2程度であってもよい。   The present invention also includes a dispersion containing the metal colloid particles and a solvent. In such a dispersion, the solvent may be a solvent containing at least water (water, a mixed solution of water and a water-soluble solvent, particularly water). The polarity parameter of the solvent constituting the dispersion may be about 3.1 to 10.2.

また、本発明には、前記金属ナノ粒子(A)に対応する金属化合物を、前記保護コロイド(B)および還元剤の存在下、溶媒(反応溶媒)中で還元し、前記金属コロイド粒子を製造する方法も含まれる。このような方法において、溶媒(反応溶媒)中の金属化合物の濃度は、金属の質量換算で、5〜30質量%程度であってもよい。本発明では、このような高濃度で反応させても粗大粒子の生成を抑制できる。また、前記方法において、還元剤は、例えば、水素化ホウ素ナトリウム、第3級アミン、エチレングリコール、タンニン酸などであってもよい。代表的には、前記還元剤はアルカノールアミン類(例えば、ジメチルアミノエタノールなど)であってもよく、還元剤の使用量は、金属原子換算で金属化合物1モルに対して1〜5モル程度であってもよい。   In the present invention, the metal compound corresponding to the metal nanoparticle (A) is reduced in a solvent (reaction solvent) in the presence of the protective colloid (B) and a reducing agent to produce the metal colloid particle. The method of doing is also included. In such a method, the concentration of the metal compound in the solvent (reaction solvent) may be about 5 to 30% by mass in terms of metal mass. In the present invention, the formation of coarse particles can be suppressed even when the reaction is performed at such a high concentration. In the above method, the reducing agent may be, for example, sodium borohydride, tertiary amine, ethylene glycol, tannic acid and the like. Typically, the reducing agent may be an alkanolamine (for example, dimethylaminoethanol, etc.), and the amount of the reducing agent used is about 1 to 5 moles per mole of the metal compound in terms of metal atoms. There may be.

本発明では、金属ナノ粒子を被覆する保護コロイドとして、特定の保護コロイドを使用するので、粗大粒子の生成が抑制された金属ナノ粒子を含む金属コロイド粒子(金属ナノ粒子複合体)が得られる。特に、本発明の金属コロイド粒子は、高濃度で金属ナノ粒子を含んでいるにもかかわらず、長期間の保存安定性に優れている。また、本発明の金属コロイド粒子は、分散性および保存安定性に優れるとともに、低温焼結(例えば、300℃未満での焼結)可能である。そのため、本発明の金属コロイド粒子は、長期間の保存によっても、十分な導電性を有する金属膜を得ることができる。さらに、本発明の方法では、前記特定の保護コロイドを用いることより、反応系内(反応溶媒中)の金属濃度(又は金属化合物濃度)が高くても、粗大粒子の生成が少ない金属ナノ粒子を高収率で得ることができる。   In the present invention, since a specific protective colloid is used as the protective colloid for coating the metal nanoparticles, metal colloid particles (metal nanoparticle composite) containing metal nanoparticles in which the generation of coarse particles is suppressed can be obtained. In particular, the metal colloidal particles of the present invention are excellent in long-term storage stability despite containing metal nanoparticles at a high concentration. Moreover, the metal colloid particles of the present invention are excellent in dispersibility and storage stability, and can be sintered at a low temperature (for example, sintering at less than 300 ° C.). Therefore, the metal colloid particles of the present invention can obtain a metal film having sufficient conductivity even after long-term storage. Furthermore, in the method of the present invention, by using the specific protective colloid, even when the metal concentration (or the metal compound concentration) in the reaction system (in the reaction solvent) is high, metal nanoparticles with little generation of coarse particles are obtained. It can be obtained in high yield.

[金属コロイド粒子]
本発明の金属コロイド粒子は、金属ナノ粒子(A)と、この金属ナノ粒子(A)を被覆する保護コロイド(B)で構成された金属コロイド粒子であって、前記保護コロイド(B)が、特定の化合物の組み合わせで構成されている。
[Metallic colloidal particles]
The metal colloid particles of the present invention are metal colloid particles composed of metal nanoparticles (A) and protective colloids (B) covering the metal nanoparticles (A), wherein the protective colloids (B) are: It consists of a combination of specific compounds.

(金属ナノ粒子(A))
金属ナノ粒子(A)を構成する金属(金属原子)としては、例えば、遷移金属(例えば、チタン、ジルコニウムなどの周期表第4A族金属;バナジウム、ニオブなどの周期表第5A族金属;モリブデン、タングステンなどの周期表第6A族金属;マンガンなどの周期表第7A族金属;鉄、ニッケル、コバルト、ルテニウム、ロジウム、パラジウム、レニウム、イリジウム、白金などの周期表第8族金属;銅、銀、金などの周期表第1B族金属など)、周期表第2B族金属(例えば、亜鉛、カドミウムなど)、周期表第3B族金属(例えば、アルミニウム、ガリウム、インジウムなど)、周期表第4B族金属(例えば、ゲルマニウム、スズ、鉛など)、周期表第5B族金属(例えば、アンチモン、ビスマスなど)などが挙げられる。金属は、周期表第8族金属(鉄、ニッケル、ロジウム、パラジウム、白金など)、周期表第1B族金属(銅、銀、金など)、周期表第3B族金属(アルミニウムなど)及び周期表第4B族金属(スズなど)などであってもよい。なお、金属(金属原子)は、保護コロイドに対する配位性の高い金属、例えば、周期表第8族金属、周期表第1B族金属などである場合が多い。
(Metal nanoparticles (A))
Examples of the metal (metal atom) constituting the metal nanoparticle (A) include transition metals (for example, periodic table group 4A metals such as titanium and zirconium; periodic table group 5A metals such as vanadium and niobium; molybdenum, Periodic Table Group 6A metals such as tungsten; Periodic Table Group 7A metals such as manganese; Periodic Table Group 8 metals such as iron, nickel, cobalt, ruthenium, rhodium, palladium, rhenium, iridium, platinum; copper, silver, Periodic Table Group 1B metals such as gold), Periodic Table Group 2B metals (eg, zinc, cadmium, etc.), Periodic Table Group 3B metals (eg, aluminum, gallium, indium, etc.), Periodic Table Group 4B metals (Eg, germanium, tin, lead, etc.), periodic table group 5B metals (eg, antimony, bismuth, etc.), and the like. Metals are periodic group 8 metal (iron, nickel, rhodium, palladium, platinum, etc.), periodic table group 1B metal (copper, silver, gold, etc.), periodic table group 3B metal (aluminum, etc.) and periodic table. It may be a Group 4B metal (such as tin). In many cases, the metal (metal atom) is a metal having a high coordination property to the protective colloid, for example, a Group 8 metal of the periodic table, a Group 1B metal of the periodic table, or the like.

金属ナノ粒子(A)は、前記金属単体、前記金属の合金、金属酸化物、金属水酸化物、金属硫化物、金属炭化物、金属窒化物、金属ホウ化物などであってもよい。これらの金属ナノ粒子(A)は単独で又は二種以上組み合わせて使用できる。金属ナノ粒子(A)は、通常、金属単体粒子、又は金属合金粒子である場合が多い。なかでも、金属ナノ粒子(A)を構成する金属は、少なくとも銀などの貴金属(特に周期表第1B族金属)を含む金属(金属単体および金属合金)、特に貴金属単体(例えば、銀単体など)であるのが好ましい。   The metal nanoparticles (A) may be the metal simple substance, the metal alloy, metal oxide, metal hydroxide, metal sulfide, metal carbide, metal nitride, metal boride and the like. These metal nanoparticles (A) can be used alone or in combination of two or more. In many cases, the metal nanoparticles (A) are usually single metal particles or metal alloy particles. Among them, the metal constituting the metal nanoparticles (A) is a metal (metal simple substance and metal alloy) including at least a noble metal such as silver (especially Group 1B metal of the periodic table), particularly a noble metal simple substance (for example, silver simple substance). Is preferred.

金属ナノ粒子(A)はナノメーターサイズである。例えば、本発明の金属コロイド粒子における金属ナノ粒子(A)の平均粒子径(平均一次粒子径)は、1〜100nm、好ましくは1.5〜80nm、さらに好ましくは2〜70nm、特に3〜50nm程度であってもよく、通常1〜40nm(例えば、2〜30nm)程度であってもよい。   The metal nanoparticles (A) are nanometer size. For example, the average particle diameter (average primary particle diameter) of the metal nanoparticles (A) in the metal colloid particles of the present invention is 1 to 100 nm, preferably 1.5 to 80 nm, more preferably 2 to 70 nm, and particularly 3 to 50 nm. It may be about 1 to 40 nm (for example, 2 to 30 nm).

また、本発明の金属コロイド粒子は、粗大粒子をほとんど含んでいなくてもよい。そのため、前記金属ナノ粒子(A)の最大一次粒子径は、例えば、200nm以下、好ましくは150nm以下、さらに好ましくは100nm以下である。さらに、金属ナノ粒子(A)(又は金属コロイド粒子)において、一次粒子径が100nm以上の粒子の割合は、金属(又は金属成分)の質量基準で、例えば、10質量%以下(例えば、0〜8質量%程度)、好ましくは5質量%以下(例えば、0.01〜3質量%)、さらに好ましくは1質量%以下(例えば、0.02〜0.5質量%程度)であってもよい。   Further, the metal colloid particles of the present invention may contain almost no coarse particles. Therefore, the maximum primary particle diameter of the metal nanoparticles (A) is, for example, 200 nm or less, preferably 150 nm or less, and more preferably 100 nm or less. Furthermore, in the metal nanoparticles (A) (or metal colloid particles), the proportion of particles having a primary particle diameter of 100 nm or more is, for example, 10% by mass or less (for example, 0 to 0%) based on the mass of the metal (or metal component). 8 mass%), preferably 5 mass% or less (for example, 0.01 to 3 mass%), more preferably 1 mass% or less (for example, about 0.02 to 0.5 mass%). .

(保護コロイド(B))
保護コロイド(B)は、カルボキシル基を有する有機化合物(B1)と、高分子分散剤(B2)とで構成されている。
(Protective colloid (B))
The protective colloid (B) is composed of an organic compound (B1) having a carboxyl group and a polymer dispersant (B2).

(カルボキシル基を有する有機化合物(B1))
有機化合物(B1)は、カルボキシル基を有している。このようなカルボキシル基の数は、有機化合物(B1)1分子あたり、1以上であれば特に限定されず、例えば、1〜10、好ましくは1〜5、さらに好ましくは1〜3程度であってもよい。
(Organic compound having carboxyl group (B1))
The organic compound (B1) has a carboxyl group. The number of such carboxyl groups is not particularly limited as long as it is 1 or more per molecule of the organic compound (B1), and is, for example, 1 to 10, preferably 1 to 5, and more preferably about 1 to 3. Also good.

なお、有機化合物(B1)において、一部又は全部のカルボキシル基は、塩(アミンとの塩、金属塩など)を形成していてもよい。特に、本発明では、カルボキシル基(特に、すべてのカルボキシル基)が、塩[特に、塩基性化合物との塩(アミンとの塩又はアミン塩など)]を形成していない有機化合物(すなわち、遊離のカルボキシル基を有する有機化合物)を好適に使用できる。   In the organic compound (B1), some or all of the carboxyl groups may form a salt (a salt with an amine, a metal salt, or the like). In particular, in the present invention, an organic compound in which a carboxyl group (particularly, all carboxyl groups) does not form a salt [particularly, a salt with a basic compound (a salt with an amine or an amine salt)] The organic compound having a carboxyl group can be preferably used.

また、有機化合物(B1)は、カルボキシル基を有している限り、カルボキシル基以外の官能基(又は金属化合物又は金属ナノ粒子に対する配位性基など)を有していてもよい。このようなカルボキシル基以外の官能基(又は配位性基)としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、窒素原子、酸素原子、及び硫黄原子から選択された少なくとも1種のヘテロ原子を有する基{又は官能基、例えば、窒素原子を有する基[アミノ基、置換アミノ基(ジアルキルアミノ基など)、イミノ基(−NH−)、窒素環基(ピリジル基などの5〜8員窒素環基、カルバゾール基、モルホリニル基など)、アミド基(−CON<)、シアノ基、ニトロ基など]、酸素原子を有する基[ヒドロキシル基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのC1−6アルコキシ基)、ホルミル基、カルボニル基(−CO−)、エステル基(−COO−)、酸素環基(テトラヒドロピラニル基などの5〜8員酸素環基など)など]、硫黄原子を有する基[例えば、チオ基、チオール基、チオカルボニル基(−SO−)、アルキルチオ基(メチルチオ基、エチルチオ基などのC1−4アルキルチオ基など)、スルホ基、スルファモイル基、スルフィニル基(−SO−)など]、これらの塩を形成した基(アンモニウム塩基など)など}などが挙げられる。これらの官能基は、単独で又は2種以上組み合わせて有機化合物(B1)が有していてもよい。 Moreover, as long as the organic compound (B1) has a carboxyl group, the organic compound (B1) may have a functional group other than the carboxyl group (or a coordinating group for the metal compound or the metal nanoparticle). The functional group (or coordinating group) other than the carboxyl group is selected from, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), nitrogen atom, oxygen atom, and sulfur atom. A group having at least one heteroatom {or a functional group such as a group having a nitrogen atom [amino group, substituted amino group (dialkylamino group etc.), imino group (—NH—), nitrogen ring group (pyridyl group) 5-8 membered nitrogen ring group, carbazole group, morpholinyl group, etc.), amide group (—CON <), cyano group, nitro group etc.), group having oxygen atom [hydroxyl group, alkoxy group (for example, methoxy group, etc.) , An ethoxy group, a propoxy group, a butoxy group and other C 1-6 alkoxy groups), a formyl group, a carbonyl group (—CO—), an ester group (—COO—), oxygen A cyclic group (such as a 5- to 8-membered oxygen ring group such as a tetrahydropyranyl group)], a group having a sulfur atom [for example, a thio group, a thiol group, a thiocarbonyl group (—SO—), an alkylthio group (a methylthio group, C 1-4 alkylthio group such as ethylthio group, etc.), sulfo group, sulfamoyl group, sulfinyl group (—SO 2 —) and the like], groups forming these salts (such as ammonium base), etc.}. These functional groups may be contained in the organic compound (B1) alone or in combination of two or more.

有機化合物(B1)は、これらの官能基のうち、カルボキシル基と塩を形成可能な塩基性基(特に、アミノ基、置換アミノ基、イミノ基、アンモニウム塩基など)を有していない化合物であるのが好ましい。   The organic compound (B1) is a compound that does not have a basic group (in particular, an amino group, a substituted amino group, an imino group, or an ammonium base) that can form a salt with a carboxyl group among these functional groups. Is preferred.

代表的な有機化合物(B1)には、カルボン酸が含まれる。このようなカルボン酸としては、例えば、モノカルボン酸、ポリカルボン酸、ヒドロキシカルボン酸(又はオキシカルボン酸)などが挙げられる。   Representative organic compounds (B1) include carboxylic acids. Examples of such carboxylic acid include monocarboxylic acid, polycarboxylic acid, and hydroxycarboxylic acid (or oxycarboxylic acid).

モノカルボン酸としては、例えば、脂肪族モノカルボン酸[飽和脂肪族モノカルボン酸(例えば、ギ酸、酢酸、プロピオン酸、酪酸、カプリル酸、カプロン酸、ヘキサン酸、カプリン酸、ラウリン酸、ミリスチン酸、ステアリン酸、シクロヘキサンカルボン酸、デヒドロコール酸、コラン酸などのC1−34脂肪族モノカルボン酸、好ましくはC1−30脂肪族モノカルボン酸など)、不飽和脂肪族モノカルボン酸(例えば、オレイン酸、エルカ酸、リノール酸、アビエチン酸などのC4−34不飽和脂肪族カルボン酸、好ましくはC10−30不飽和脂肪族カルボン酸)]、芳香族モノカルボン酸(安息香酸、ナフトエ酸などのC7−12芳香族モノカルボン酸など)などが挙げられる。 Examples of monocarboxylic acids include aliphatic monocarboxylic acids [saturated aliphatic monocarboxylic acids (eg, formic acid, acetic acid, propionic acid, butyric acid, caprylic acid, caproic acid, hexanoic acid, capric acid, lauric acid, myristic acid, C 1-34 aliphatic monocarboxylic acid such as stearic acid, cyclohexanecarboxylic acid, dehydrocholic acid, colanic acid, preferably C1-30 aliphatic monocarboxylic acid), unsaturated aliphatic monocarboxylic acid (for example, olein) C4-34 unsaturated aliphatic carboxylic acid such as acid, erucic acid, linoleic acid, and abietic acid, preferably C10-30 unsaturated aliphatic carboxylic acid)], aromatic monocarboxylic acid (benzoic acid, naphthoic acid, etc.) C 7-12 aromatic monocarboxylic acid, etc.).

ポリカルボン酸としては、例えば、脂肪族ポリカルボン酸[例えば、脂肪族飽和ポリカルボン酸(例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、シクロヘキサンジカルボン酸などのC2−14脂肪族飽和ポリカルボン酸、好ましくはC2−10脂肪族飽和ポリカルボン酸など)、脂肪族不飽和ポリカルボン酸(例えば、マレイン酸、フマル酸、イタコン酸、ソルビン酸、テトラヒドロフタル酸などのC4−14脂肪族不飽和ポリカルボン酸、好ましくはC4−10脂肪族不飽和ポリカルボン酸など)など]、芳香族ポリカルボン酸(例えば、フタル酸、トリメリット酸などのC8−12芳香族ポリカルボン酸など)などが挙げられる。 Examples of polycarboxylic acids include aliphatic polycarboxylic acids [for example, aliphatic saturated polycarboxylic acids (for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, cyclohexanedicarboxylic acid, etc. C 2-14 aliphatic saturated polycarboxylic acid, preferably C 2-10 aliphatic saturated polycarboxylic acid, etc., aliphatic unsaturated polycarboxylic acid (eg maleic acid, fumaric acid, itaconic acid, sorbic acid, tetrahydro C 4-14 aliphatic unsaturated polycarboxylic acid such as phthalic acid, preferably C 4-10 aliphatic unsaturated polycarboxylic acid etc.], aromatic polycarboxylic acid (eg phthalic acid, trimellitic acid etc.) C 8-12 aromatic polycarboxylic acid and the like).

ヒドロキシカルボン酸としては、ヒドロキシモノカルボン酸[脂肪族ヒドロキシモノカルボン酸(例えば、グリコール酸、乳酸、オキシ酪酸、グリセリン酸、6−ヒドロキシヘキサン酸、コール酸、デオキシコール酸、ケノデオキシコール酸、12−オキソケノデオキシコール酸、グリココール酸、リトコール酸、ヒオデオキシコール酸、ウルソデオキシコール酸、アポコール酸、タウロコール酸などのC2−50脂肪族ヒドロキシモノカルボン酸、好ましくはC2−34脂肪族ヒドロキシモノカルボン酸、さらに好ましくはC2−30脂肪族ヒドロキシモノカルボン酸など)、芳香族ヒドロキシモノカルボン酸(サリチル酸、オキシ安息香酸、没食子酸などのC7−12芳香族ヒドロキシモノカルボン酸など)など]、ヒドロキシポリカルボン酸[脂肪族ヒドロキシポリカルボン酸(例えば、タルトロン酸、酒石酸、クエン酸、リンゴ酸などのC2−10脂肪族ヒドロキシポリカルボン酸など)など]などが挙げられる。 Hydroxycarboxylic acids include hydroxymonocarboxylic acids [aliphatic hydroxymonocarboxylic acids (eg, glycolic acid, lactic acid, oxybutyric acid, glyceric acid, 6-hydroxyhexanoic acid, cholic acid, deoxycholic acid, chenodeoxycholic acid, 12-oxo C 2-50 aliphatic hydroxymonocarboxylic acids, preferably C 2-34 aliphatic hydroxymonocarboxylic acids such as chenodeoxycholic acid, glycocholic acid, lithocholic acid, hyodeoxycholic acid, ursodeoxycholic acid, apocholic acid, taurocholic acid More preferably, C 2-30 aliphatic hydroxy monocarboxylic acid, etc.), aromatic hydroxy monocarboxylic acid (eg, C 7-12 aromatic hydroxy monocarboxylic acid such as salicylic acid, oxybenzoic acid, gallic acid, etc.)], hydroxy Polica Rubonic acid [aliphatic hydroxypolycarboxylic acid (for example, C 2-10 aliphatic hydroxypolycarboxylic acid such as tartronic acid, tartaric acid, citric acid, malic acid and the like)] and the like.

なお、これらのカルボン酸は、塩を形成していてもよく、無水物、水和物などであってもよい。なお、カルボン酸は、前記と同様に、塩(特に、アミンとの塩などの塩基性化合物との塩)を形成していない場合が多い。   These carboxylic acids may form a salt, and may be anhydrides, hydrates, and the like. As described above, the carboxylic acid often does not form a salt (in particular, a salt with a basic compound such as a salt with an amine).

有機化合物(B1)は、単独で又は2種以上組み合わせてもよい。   The organic compound (B1) may be used alone or in combination of two or more.

これらの有機化合物(B1)のうち、脂肪族カルボン酸(例えば、C1−24脂肪族カルボン酸、好ましくはC1−20脂肪族カルボン酸、さらに好ましくはC1−18脂肪族カルボン酸)や、脂肪族ヒドロキシカルボン酸(脂肪族ヒドロキシモノカルボン酸および脂肪族ヒドロキシポリカルボン酸、例えば、C2−34脂肪族ヒドロキシカルボン酸)などのヒドロキシカルボン酸が好ましい。脂肪族カルボン酸の中でも、飽和脂肪族カルボン酸(例えば、ギ酸、酢酸、プロピオン酸、ステアリン酸などのC1−24アルカン酸(アルカンカルボン酸)、好ましくはC1−20アルカン酸、さらに好ましくはC1−18アルカン酸)が好ましい。また、脂肪族ヒドロキシカルボン酸の中でも、さらに、脂環族ヒドロキシカルボン酸(又は脂環族骨格を有するヒドロキシカルボン酸、例えば、コール酸などのC6−34脂環族ヒドロキシカルボン酸、好ましくはC10−34脂環族ヒドロキシカルボン酸、さらに好ましくはC16−30脂環族ヒドロキシカルボン酸)が好ましい。 Of these organic compounds (B1), aliphatic carboxylic acid (for example, C 1-24 aliphatic carboxylic acid, preferably C 1-20 aliphatic carboxylic acid, more preferably C 1-18 aliphatic carboxylic acid) or Hydroxy carboxylic acids such as aliphatic hydroxy carboxylic acids (aliphatic hydroxy monocarboxylic acids and aliphatic hydroxy polycarboxylic acids such as C2-34 aliphatic hydroxy carboxylic acids) are preferred. Among aliphatic carboxylic acids, saturated aliphatic carboxylic acids (for example, C 1-24 alkanoic acids (alkane carboxylic acids) such as formic acid, acetic acid, propionic acid, stearic acid, preferably C 1-20 alkanoic acids, more preferably C 1-18 alkanoic acid) is preferred. Among the aliphatic hydroxycarboxylic acids, alicyclic hydroxycarboxylic acids (or hydroxycarboxylic acids having an alicyclic skeleton, for example, C 6-34 alicyclic hydroxycarboxylic acids such as cholic acid, preferably C 10-34 alicyclic hydroxycarboxylic acid, more preferably C16-30 alicyclic hydroxycarboxylic acid) is preferable.

また、コール酸などの多環式脂肪族ヒドロキシカルボン酸(例えば、縮合多環式脂肪族ヒドロキシカルボン酸、好ましくはC10−34縮合多環式脂肪族ヒドロキシカルボン酸、好ましくはC14−34縮合多環式脂肪族ヒドロキシカルボン酸、さらに好ましくはC18−30縮合多環式脂肪族ヒドロキシカルボン酸)、デヒドロコール酸、コラン酸などの多環式脂肪族カルボン酸(例えば、縮合多環式脂肪族カルボン酸、好ましくはC10−34縮合多環式脂肪族カルボン酸、好ましくはC14−34縮合多環式脂肪族ヒドロキシカルボン酸、さらに好ましくはC18−30縮合多環式脂肪族カルボン酸)などの多環式脂肪族カルボン酸(例えば、C10−50縮合多環式脂肪族カルボン酸、好ましくはC12−40縮合多環式脂肪族カルボン酸、さらに好ましくはC14−34縮合多環式脂肪族カルボン酸、特にC18−30縮合多環式脂肪族カルボン酸)は、嵩高い構造を有しており、金属ナノ粒子の凝集を抑制する効果が大きいためか好ましい。 In addition, polycyclic aliphatic hydroxycarboxylic acids such as cholic acid (for example, condensed polycyclic aliphatic hydroxycarboxylic acids, preferably C10-34 condensed polycyclic aliphatic hydroxycarboxylic acids, preferably C14-34 condensed). Polycyclic aliphatic hydroxycarboxylic acids, more preferably C18-30 condensed polycyclic aliphatic hydroxycarboxylic acids), dehydrocholic acid, colanic acid, and other polycyclic aliphatic carboxylic acids (eg, condensed polycyclic aliphatic acids) Aliphatic carboxylic acids, preferably C 10-34 condensed polycyclic aliphatic carboxylic acids, preferably C 14-34 condensed polycyclic aliphatic hydroxy carboxylic acids, more preferably C 18-30 condensed polycyclic aliphatic carboxylic acids ) polycyclic aliphatic carboxylic acids (e.g., C 10-50 condensed polycyclic aliphatic carboxylic acids such as, preferably C 12-40 condensed polycyclic aliphatic Carboxylic acid, more preferably C 14-34 condensed polycyclic aliphatic carboxylic acids, particularly C 18-30 condensed polycyclic aliphatic carboxylic acids), has a bulky structure, agglomeration of the metal nanoparticles It is preferable because of the large suppression effect.

なお、有機化合物(B1)の分子量は、例えば、1000以下(例えば、46〜900程度)、好ましくは800以下(例えば、50〜700程度)、さらに好ましくは600以下(例えば、100〜500程度)であってもよい。   The molecular weight of the organic compound (B1) is, for example, 1000 or less (for example, about 46 to 900), preferably 800 or less (for example, about 50 to 700), and more preferably 600 or less (for example, about 100 to 500). It may be.

また、有機化合物(B1)のpKa値は、例えば、1以上(例えば、1〜10程度)、好ましくは2以上(例えば、2〜8程度)程度であってもよい。   Further, the pKa value of the organic compound (B1) may be, for example, about 1 or more (for example, about 1 to 10), preferably about 2 or more (for example, about 2 to 8).

(高分子分散剤(B2))
本発明では、保護コロイドを、前記有機化合物(B1)と高分子分散剤(B2)とで組み合わせて構成する。このような組み合わせで保護コロイドを構成することにより、粗大粒子が著しく少ない金属ナノ粒子を含む金属コロイド粒子が得られる。特に、本発明では、前記特定の保護コロイドの組み合わせにより、粗大粒子が少ないにもかかわらず、金属ナノ粒子の割合を大きくでき、金属コロイド粒子(およびその分散液)の保存安定性にも優れている。前記組み合わせによりこのような優れた金属コロイド粒子となる理由は定かではないが、以下のような理由が考えられる。
(Polymer dispersant (B2))
In the present invention, the protective colloid is constituted by combining the organic compound (B1) and the polymer dispersant (B2). By forming the protective colloid in such a combination, metal colloid particles containing metal nanoparticles with extremely few coarse particles can be obtained. In particular, in the present invention, the combination of the specific protective colloids can increase the proportion of metal nanoparticles even though there are few coarse particles, and the storage stability of the metal colloid particles (and dispersions thereof) is also excellent. Yes. The reason why such an excellent colloidal metal particle is obtained by the combination is not clear, but the following reasons are conceivable.

まず、高分子分散剤は、その構造から、比較的大きな粒子を分散安定化する効果に優れているが、比較的小さな粒子の安定化効果が十分ではないため、金属ナノ粒子原料の濃度を大きくすると、生成する粒子を十分に安定化できなくなる。一方、このようなナノ粒子の合成初期段階に生成する比較的小さい粒子を、前記有機化合物が分散安定化する。このような有機化合物(B1)と高分子分散剤(B2)との相乗的な作用により、金属ナノ粒子の原料が高濃度であっても粗大粒子の生成を抑えて金属ナノ粒子を生成できるものと考えられる。   First, the polymer dispersant is excellent in the effect of stabilizing the dispersion of relatively large particles due to its structure, but since the stabilization effect of relatively small particles is not sufficient, the concentration of the metal nanoparticle raw material is increased. Then, the generated particles cannot be sufficiently stabilized. On the other hand, the organic compound disperses and stabilizes relatively small particles generated at the initial synthesis stage of such nanoparticles. A synergistic action of the organic compound (B1) and the polymer dispersant (B2) that can generate metal nanoparticles while suppressing the formation of coarse particles even when the concentration of the metal nanoparticles is high. it is conceivable that.

また、保護コロイドは、短いタイムスケールでは、金属ナノ粒子表面に対して吸着、脱離を繰り返しているが、高分子分散剤で保護した場合、吸着した部分が瞬間的に脱離した場合であっても、立体障害が大きく、また、脱離しても、吸着に関与していた基に代わり他の基が金属ナノ粒子表面に吸着するため、粒子間の凝集や焼結が生じにくい。従って、良好な保存安定性を示す一方、その高い保護能力、分解温度のため、焼成温度も高温でなければ金属ナノ粒子の焼結は起こらず、高分子分散剤のみでは、低抵抗の導体を得ることはできない。一方、カルボキシル基を有する有機化合物は、通常金属ナノ粒子表面に対する吸着力は弱く、また、気化温度が低い場合が多い。そのため、低温焼成により低抵抗の導体を得やすいが、室温のような低温においても金属ナノ粒子の凝集、焼結が生じやすく、保存安定性が十分でないため、安定して金属膜などを形成することが困難である。   In addition, the protective colloid repeatedly adsorbs and desorbs on the surface of the metal nanoparticles on a short time scale. However, when the protective colloid is protected with a polymer dispersant, the adsorbed portion is desorbed momentarily. However, the steric hindrance is large, and even when desorbed, other groups are adsorbed on the surface of the metal nanoparticles instead of the groups involved in the adsorption, so that aggregation and sintering between the particles hardly occur. Therefore, while exhibiting good storage stability, due to its high protective ability and decomposition temperature, the sintering of the metal nanoparticles does not occur unless the firing temperature is high. I can't get it. On the other hand, an organic compound having a carboxyl group usually has a weak adsorption force on the surface of metal nanoparticles, and often has a low vaporization temperature. Therefore, it is easy to obtain a low-resistance conductor by low-temperature firing, but metal nanoparticles are likely to agglomerate and sinter even at low temperatures such as room temperature, and the storage stability is not sufficient, so a metal film or the like is stably formed. Is difficult.

そこで、本発明では、高分子分散剤とカルボキシル基を有する有機化合物とを組み合わせる。このような組み合わせにより、金属ナノ粒子表面には高分子分散剤が吸着した部分、前記有機化合物が吸着した部分が形成されている。そして、前記高分子分散剤が吸着した部分は、強い表面保護能力により安定化されて、保存安定性が向上されている一方、前記有機化合物が吸着した部分は金属ナノ粒子表面から脱離しやすく、低温焼結の反応サイトとしての役割を担う。このような反応サイトは、室温程度の雰囲気においては高分子分散剤の作用により保護されているが、比較的低温での焼成温度(例えば、数十度以上)において焼結反応を開始し、結果として低温焼成でも低抵抗の金属膜などを得ることができるようである。特に、焼成温度が高くなれば、さらに高分子分散剤の保護能力よりも粒子間衝突や焼結性が高くなるため、導電性はバルク並になる。また、高分子分散剤は、基材に対する密着性を向上させる効果があり、しかも、本発明の導電性基材においてはこのような高分子分散剤の残存量を小さくでき、体積収縮が小さい緻密かつ密着性の高い膜を形成できるため、これらの点も基材に対する密着性に優れるとともに基材に強固に固定され、かつ金属膜の導電性を向上できる要因となっている。   Therefore, in the present invention, a polymer dispersant and an organic compound having a carboxyl group are combined. By such a combination, a portion where the polymer dispersant is adsorbed and a portion where the organic compound is adsorbed are formed on the surface of the metal nanoparticles. And, the portion where the polymer dispersant is adsorbed is stabilized by strong surface protection ability, and the storage stability is improved, while the portion where the organic compound is adsorbed is easily detached from the surface of the metal nanoparticles, It plays a role as a reaction site for low-temperature sintering. Such a reaction site is protected by the action of the polymer dispersant in an atmosphere of about room temperature, but starts a sintering reaction at a relatively low firing temperature (for example, several tens of degrees or more). It seems that a low-resistance metal film can be obtained even by low-temperature firing. In particular, the higher the firing temperature, the higher the interparticle collision and sinterability than the protective ability of the polymer dispersant, so that the conductivity is comparable to the bulk. In addition, the polymer dispersant has an effect of improving the adhesion to the substrate, and in the conductive substrate of the present invention, the residual amount of such a polymer dispersant can be reduced and the volume shrinkage is small. In addition, since a film having high adhesion can be formed, these points are also factors that are excellent in adhesion to the base material, are firmly fixed to the base material, and can improve the conductivity of the metal film.

高分子分散剤(又は高分子型分散剤)(B2)としては、金属ナノ粒子(A)を被覆可能であれば特に限定されないが、両親媒性の高分子分散剤(又はオリゴマー型分散剤)を好適に使用できる。   The polymer dispersant (or polymer type dispersant) (B2) is not particularly limited as long as it can coat the metal nanoparticles (A), but the amphiphilic polymer dispersant (or oligomer type dispersant). Can be suitably used.

高分子分散剤としては、通常、塗料、インキ分野などで着色剤の分散に用いられている高分子分散剤が例示できる。このような分散剤には、スチレン系樹脂(スチレン−(メタ)アクリル酸共重合体、スチレン−無水マレイン酸共重合体など)、アクリル系樹脂((メタ)アクリル酸メチル−(メタ)アクリル酸共重合体、ポリ(メタ)アクリル酸などの(メタ)アクリル酸系樹脂など)、水溶性ウレタン樹脂、水溶性アクリルウレタン樹脂、水溶性エポキシ樹脂、水溶性ポリエステル系樹脂、セルロース誘導体(ニトロセルロース;エチルセルロースなどのアルキルセルロース、エチルヒドロキシエチルセルロースなどのアルキル−ヒドロキシアルキルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、カルボキシメチルセルロースなどのカルボキシアルキルセルロースなどのセルロースエーテル類など)、ポリビニルアルコール、ポリアルキレングリコール(液状のポリエチレングリコール、ポリプロピレングリコールなど)、天然高分子(ゼラチン、デキストリンなど)、ポリエチレンスルホン酸又はその塩、ポリスチレンスルホン酸又はその塩、ナフタレンスルホン酸のホルマリン縮合物、窒素原子含有高分子化合物[例えば、ポリアルキレンイミン(ポリエチレンイミンなど)、ポリビニルピロリドン、ポリアリルアミン、ポリエーテルポリアミン(ポリオキシエチレンポリアミンなど)などのアミノ基を有する高分子化合物]などが含まれる。   Examples of the polymer dispersant include polymer dispersants usually used for dispersing colorants in the paint and ink fields. Such dispersants include styrene resins (styrene- (meth) acrylic acid copolymers, styrene-maleic anhydride copolymers, etc.), acrylic resins ((meth) methyl acrylate- (meth) acrylic acid). Copolymers, (meth) acrylic acid resins such as poly (meth) acrylic acid), water-soluble urethane resins, water-soluble acrylic urethane resins, water-soluble epoxy resins, water-soluble polyester resins, cellulose derivatives (nitrocellulose; Cellulose ethers such as alkyl celluloses such as ethyl cellulose, alkyl-hydroxyalkyl celluloses such as ethyl hydroxyethyl cellulose, hydroxyalkyl celluloses such as hydroxyethyl cellulose and hydroxypropyl cellulose, and carboxyalkyl celluloses such as carboxymethyl cellulose. Ters), polyvinyl alcohol, polyalkylene glycol (liquid polyethylene glycol, polypropylene glycol, etc.), natural polymers (gelatin, dextrin, etc.), polyethylene sulfonic acid or its salt, polystyrene sulfonic acid or its salt, naphthalene sulfonic acid Formalin condensates, nitrogen atom-containing polymer compounds [for example, polymer compounds having amino groups such as polyalkyleneimine (polyethyleneimine, etc.), polyvinylpyrrolidone, polyallylamine, polyether polyamine (polyoxyethylene polyamine, etc.), etc. included.

代表的な高分子分散剤(両親媒性の高分子分散剤)としては、親水性モノマーで構成された親水性ユニット(又は親水性ブロック)を含む樹脂(又は水溶性樹脂、水分散性樹脂)が含まれる。   As a typical polymer dispersant (amphiphilic polymer dispersant), a resin (or water-soluble resin, water-dispersible resin) containing a hydrophilic unit (or hydrophilic block) composed of a hydrophilic monomer. Is included.

前記親水性モノマーとしては、例えば、カルボキシル基又は酸無水物基含有単量体(アクリル酸、メタクリル酸などの(メタ)アクリル系単量体、マレイン酸などの不飽和多価カルボン酸、無水マレイン酸など)、ヒドロキシル基含有単量体(2−ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、ビニルフェノールなど)などの付加重合系モノマー;アルキレンオキシド(エチレンオキシドなど)などの縮合系モノマーなどが例示できる。前記縮合系モノマーは、ヒドロキシル基などの活性基(例えば、前記ヒドロキシル基含有単量体など)との反応により、親水性ユニットを形成していてもよい。親水性モノマーは、単独で又は2種以上組み合わせて親水性ユニットを形成していてもよい。   Examples of the hydrophilic monomer include carboxyl group or acid anhydride group-containing monomers ((meth) acrylic monomers such as acrylic acid and methacrylic acid, unsaturated polycarboxylic acids such as maleic acid, and maleic anhydride. Acid), hydroxyl group-containing monomers (hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, vinylphenol, etc.) and other addition polymerization monomers; condensation monomers such as alkylene oxide (ethylene oxide, etc.) Etc. can be exemplified. The condensed monomer may form a hydrophilic unit by a reaction with an active group such as a hydroxyl group (for example, the hydroxyl group-containing monomer). The hydrophilic monomers may form a hydrophilic unit alone or in combination of two or more.

高分子分散剤は、少なくとも親水性ユニット(又は親水性ブロック)を含んでいればよく、親水性モノマーの単独又は共重合体(例えば、ポリアクリル酸又はその塩など)であってもよく、前記例示のスチレン系樹脂やアクリル系樹脂などのように、親水性モノマーと疎水性モノマーとのコポリマーであってもよい。疎水性モノマー(非イオン性モノマー)としては、(メタ)アクリル酸エステル[(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリルなどの(メタ)アクリル酸C1−20アルキル、(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸シクロアルキル、(メタ)アクリル酸フェニルなどの(メタ)アクリル酸アリール、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−フェニルエチルなどの(メタ)アクリル酸アラルキルなど]などの(メタ)アクリル系モノマー;スチレン、α−メチルスチレン、ビニルトルエンなどのスチレン系モノマー;α−C2−20オレフィン(エチレン、プロピレン、1−ブテン、イソブチレン、1−ヘキセン、1−オクテン、1−ドデセンなど)などのオレフィン系モノマー;酢酸ビニル、酪酸ビニルなどのカルボン酸ビニルエステル系モノマーなどが挙げられる。疎水性モノマーは、単独で又は2種以上組み合わせて疎水性ユニットを構成していてもよい。 The polymer dispersant only needs to contain at least a hydrophilic unit (or hydrophilic block), and may be a homopolymer or a copolymer of a hydrophilic monomer (for example, polyacrylic acid or a salt thereof). It may be a copolymer of a hydrophilic monomer and a hydrophobic monomer, such as an exemplary styrene resin or acrylic resin. Examples of hydrophobic monomers (nonionic monomers) include (meth) acrylic acid esters [methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate. , (Meth) acrylic acid lauryl, (meth) acrylic acid C 1-20 alkyl such as stearyl (meth) acrylate, (meth) acrylic acid cycloalkyl such as cyclohexyl, (meth) acrylic acid phenyl, etc. (Meth) acrylic monomers such as aryl (meth) acrylate, benzyl (meth) acrylate, aralkyl (meth) acrylate such as 2-phenylethyl (meth) acrylate, etc .; styrene, α-methylstyrene, styrenic monomers such as vinyl toluene; α-C 2-20 olefin (ethylene , Propylene, 1-butene, isobutylene, 1-hexene, 1-octene, 1-dodecene, etc.) olefin monomers such as, vinyl acetate, and the like carboxylic acid vinyl ester monomers such as vinyl butyrate. Hydrophobic monomers may constitute a hydrophobic unit alone or in combination of two or more.

高分子分散剤がコポリマー(例えば、親水性モノマーと疎水性モノマーとのコポリマー)である場合、コポリマーは、ランダムコポリマー、交互共重合体、ブロックコポリマー(例えば、親水性モノマーで構成された親水性ブロックと、疎水性モノマーで構成された疎水性ブロックとで構成されたコポリマー)、くし型コポリマー(又はくし型グラフトコポリマー)などであってもよい。前記ブロックコポリマーの構造は、特に限定されず、ジブロック構造、トリブロック構造(ABA型、BAB型)などであってもよい。また、前記くし型コポリマーにおいて、主鎖は、前記親水性ブロックで構成してもよく、前記疎水性ブロックで構成してもよく、親水性ブロックおよび疎水性ブロックで構成してもよい。   When the polymeric dispersant is a copolymer (eg, a copolymer of a hydrophilic monomer and a hydrophobic monomer), the copolymer can be a random copolymer, an alternating copolymer, a block copolymer (eg, a hydrophilic block composed of hydrophilic monomers). And a copolymer composed of a hydrophobic block composed of a hydrophobic monomer), a comb-type copolymer (or a comb-type graft copolymer), and the like. The structure of the block copolymer is not particularly limited, and may be a diblock structure, a triblock structure (ABA type, BAB type), or the like. In the comb copolymer, the main chain may be composed of the hydrophilic block, the hydrophobic block, or the hydrophilic block and the hydrophobic block.

なお、前記のように、親水性ユニットは、アルキレンオキシド(エチレンオキシドなど)で構成された親水性ブロック(ポリエチレンオキシド、ポリエチレンオキシド−ポリプロピレンオキシドなどのポリアルキレンオキシド)などの縮合系ブロックで構成することもできる。親水性ブロック(ポリアルキレンオキシドなど)と疎水性ブロック(ポリオレフィンブロックなど)とは、エステル結合、アミド結合、エーテル結合、ウレタン結合などの連結基を介して結合していてもよい。これらの結合は、例えば、疎水性ブロック(ポリオレフィンなど)を変性剤[不飽和カルボン酸又はその無水物((無水)マレイン酸など)、ラクタム又はアミノカルボン酸、ヒドロキシルアミン、ジアミンなど]で変性した後、親水性ブロックを導入することにより形成してもよい。また、ヒドロキシル基やカルボキシル基などの親水性基を有するモノマー(前記ヒドロキシアルキル(メタ)アクリレートなど)から得られるポリマーと、前記縮合系の親水性モノマー(エチレンオキシドなど)とを反応(又は結合)させることにより、くし型コポリマー(主鎖が疎水性ブロックで構成されたくし型コポリマー)を形成してもよい。   As described above, the hydrophilic unit may be composed of a condensation block such as a hydrophilic block (polyalkylene oxide such as polyethylene oxide or polyethylene oxide-polypropylene oxide) composed of alkylene oxide (such as ethylene oxide). it can. The hydrophilic block (such as polyalkylene oxide) and the hydrophobic block (such as polyolefin block) may be bonded via a linking group such as an ester bond, an amide bond, an ether bond, or a urethane bond. For example, the hydrophobic block (polyolefin, etc.) is modified with a modifying agent [unsaturated carboxylic acid or its anhydride ((anhydrous) maleic acid), lactam or aminocarboxylic acid, hydroxylamine, diamine, etc.]. Later, it may be formed by introducing a hydrophilic block. In addition, a polymer obtained from a monomer having a hydrophilic group such as a hydroxyl group or a carboxyl group (such as the hydroxyalkyl (meth) acrylate) is reacted (or bonded) with the condensed hydrophilic monomer (such as ethylene oxide). By doing so, a comb-type copolymer (comb-type copolymer having a main chain composed of a hydrophobic block) may be formed.

さらに、共重合成分として、親水性の非イオン性モノマーを使用することにより、親水性と疎水性とのバランスを調整してもよい。このような成分としては、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、ポリエチレングリコールモノメタクリレート(例えば、数平均分子量200〜1000程度)などのアルキレンオキシ(特にエチレンオキシ)ユニットを有するモノマー又はオリゴマーなどを例示できる。また、親水性基(カルボキシル基など)を変性(例えば、エステル化)することにより親水性と疎水性とのバランスを調整してもよい。   Furthermore, the balance between hydrophilicity and hydrophobicity may be adjusted by using a hydrophilic nonionic monomer as a copolymerization component. Examples of such components include monomers having alkyleneoxy (particularly ethyleneoxy) units such as 2- (2-methoxyethoxy) ethyl (meth) acrylate and polyethylene glycol monomethacrylate (for example, a number average molecular weight of about 200 to 1,000). An oligomer etc. can be illustrated. Further, the balance between hydrophilicity and hydrophobicity may be adjusted by modifying (for example, esterifying) a hydrophilic group (such as a carboxyl group).

高分子分散剤(B2)は、官能基を有していてもよい。このような官能基としては、例えば、酸基(又は酸性基、例えば、カルボキシル基(又は酸無水物基)、スルホ基(スルホン酸基)など)、塩基性基(例えば、アミノ基など)、ヒドロキシル基などが挙げられる。これらの官能基は、単独で又は2種以上組み合わせて高分子分散剤(B2)が有していてもよい。   The polymer dispersant (B2) may have a functional group. Examples of such functional groups include acid groups (or acidic groups such as carboxyl groups (or acid anhydride groups) and sulfo groups (sulfonic acid groups)), basic groups (such as amino groups), A hydroxyl group etc. are mentioned. These functional groups may be contained in the polymer dispersant (B2) alone or in combination of two or more.

これらの官能基のうち、高分子分散剤(B2)は、酸基又は塩基性基、特に、カルボキシル基を有しているのが好ましい。   Among these functional groups, the polymer dispersant (B2) preferably has an acid group or a basic group, particularly a carboxyl group.

また、高分子分散剤(B2)が、酸基(カルボキシル基など)を有している場合、少なくとも一部又は全部の酸基(カルボキシル基など)は、塩(アミンとの塩、金属塩など)を形成していてもよいが、特に、本発明では、カルボキシル基(特に、すべてのカルボキシル基)などの酸基が、塩[特に、塩基性化合物との塩(アミンとの塩又はアミン塩など)]を形成していない高分子分散剤[すなわち、遊離の酸基(特にカルボキシル基)を有する高分子分散剤]を好適に使用できる。   Further, when the polymer dispersant (B2) has an acid group (such as a carboxyl group), at least a part or all of the acid group (such as a carboxyl group) is a salt (a salt with an amine, a metal salt, or the like). In particular, in the present invention, an acid group such as a carboxyl group (especially all carboxyl groups) is a salt [especially a salt with a basic compound (a salt with an amine or an amine salt). Etc.]] [that is, a polymer dispersant having a free acid group (particularly a carboxyl group)] can be suitably used.

酸基(特にカルボキシル基)を有する高分子分散剤(B2)において、酸価は、例えば、1mgKOH/g以上(例えば、2〜1500mgKOH/g程度)、好ましくは3mgKOH/g以上(例えば、4〜1200mgKOH/g程度)、さらに好ましく5mgKOH/g以上(例えば、8〜1000mgKOH/g程度)、特に10mgKOH/g以上(例えば、12〜900mgKOH/g程度)の範囲から選択できる。特に、酸基(特にカルボキシル基)を有する高分子分散剤(B2)が、親水性ユニットおよび疎水性ユニットを有する化合物などである場合、酸価は、1mgKOH/g以上(例えば、2〜100mgKOH/g程度)、好ましくは3mgKOH/g以上(例えば、4〜90mgKOH/g程度)、さらに好ましくは5mgKOH/g以上(例えば、6〜80mgKOH/g程度)、特に7mgKOH/g以上(例えば、8〜70mgKOH/g程度)であってもよく、通常3〜50mgKOH/g(例えば、5〜30mgKOH/g)程度であってもよい。酸基を有する高分子分散剤(B2)において、アミン価は0(又はほぼ0)であってもよい。   In the polymer dispersant (B2) having an acid group (particularly a carboxyl group), the acid value is, for example, 1 mgKOH / g or more (for example, about 2 to 1500 mgKOH / g), preferably 3 mgKOH / g or more (for example, 4 to 4). It can be selected from the range of about 1200 mgKOH / g), more preferably 5 mgKOH / g or more (for example, about 8 to 1000 mgKOH / g), particularly 10 mgKOH / g or more (for example, about 12 to 900 mgKOH / g). In particular, when the polymer dispersant (B2) having an acid group (particularly a carboxyl group) is a compound having a hydrophilic unit and a hydrophobic unit, the acid value is 1 mgKOH / g or more (for example, 2 to 100 mgKOH / g), preferably 3 mgKOH / g or more (for example, about 4 to 90 mgKOH / g), more preferably 5 mgKOH / g or more (for example, about 6 to 80 mgKOH / g), particularly 7 mgKOH / g or more (for example, 8 to 70 mgKOH). / G) or about 3 to 50 mg KOH / g (for example, 5 to 30 mg KOH / g). In the polymer dispersant (B2) having an acid group, the amine value may be 0 (or almost 0).

なお、高分子分散剤において、上記のような官能基の位置は、特に限定されず、主鎖であってもよく、側鎖であってもよく、主鎖および側鎖に位置していてもよい。このような官能基は、例えば、親水性モノマー又は親水性ユニット由来の官能基(例えば、ヒドロキシル基など)であってもよく、官能基を有する共重合性モノマー(例えば、無水マレイン酸など)の共重合によりポリマー中に導入することもできる。   In the polymer dispersant, the position of the functional group as described above is not particularly limited, and may be a main chain, a side chain, or a main chain and a side chain. Good. Such a functional group may be, for example, a hydrophilic monomer or a functional group derived from a hydrophilic unit (for example, a hydroxyl group), or a copolymerizable monomer having a functional group (for example, maleic anhydride). It can also be introduced into the polymer by copolymerization.

高分子分散剤(B2)は単独で使用してもよく、2種以上を併用してもよい。   The polymer dispersant (B2) may be used alone or in combination of two or more.

なお、高分子分散剤として、前記特許文献2の記載の高分子分散剤(高分子量顔料分散剤)を使用してもよい。   In addition, you may use the polymer dispersing agent (high molecular weight pigment dispersing agent) of the said patent document 2 as a polymer dispersing agent.

また、高分子分散剤は、合成したものを用いてもよく、市販品を用いてもよい。以下に、市販の高分子分散剤(又は少なくとも両親媒性の分散剤で構成された分散剤)を具体的に例示すると、ソルスパース13240、ソルスパース13940、ソルスパース32550、ソルスパース31845、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース41090などのソルスパースシリーズ[アビシア(株)製];ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック164、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック191、ディスパービック192、ディスパービック193、ディスパービック194、ディスパービック2001、ディスパービック2050などのディスパービックシリーズ[ビックケミー(株)製];EFKA−46、EFKA−47、EFKA−48、EFKA−49、EFKA−1501、EFKA−1502、EFKA−4540、EFKA−4550、ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453[EFKAケミカル(株)製];アジスパーPB711、アジスパーPAl11、アジスパーPB811、アジスパーPB821、アジスパーPW911などのアジスパーシリーズ[味の素(株)製];フローレンDOPA−158、フローレンDOPA−22、フローレンDOPA−17、フローレンTG−700、フローレンTG−720W、フローレン−730W、フローレン−740W、フローレン−745Wなどのフローレンシリーズ[共栄社化学(株)製];ジョンクリル678、ジョンクリル679、ジョンクリル62などのジョンクリルシリーズ[ジョンソンポリマー(株)製]などが挙げられる。   The polymer dispersant may be a synthesized one or a commercially available product. Specific examples of commercially available polymer dispersants (or dispersants composed of at least an amphiphilic dispersant) include Solsperse 13240, Solsperse 13940, Solsperse 32550, Solsperse 31845, Solsperse 24000, Solsperse 26000, Solsperse series such as Solsperse 27000, Solsperse 28000, Solsperse 41090 [manufactured by Avicia Co., Ltd.]; Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 164, Dispersic 166, Dispersic 170, Dispers Big 180, Dispersic 182, Dispersic 184, Dispersic 190, Dispersic 191, Dispersic 92, Disperbic 193, Disperbic 194, Disperbic 2001, Disperbic 2050, etc. Disperbic series [manufactured by Big Chemie Co., Ltd.]; EFKA-46, EFKA-47, EFKA-48, EFKA-49, EFKA-1501, EFKA-1502, EFKA-4540, EFKA-4550, polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 402, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453 [EFKA Chemical Co., Ltd.] Manufactured by Ajisper PB711, Azisper PAl11, Azisper PB811, Azisper PB821, Azisper PW911, etc. [Ajinomoto Co., Ltd.]; Lorne series such as Len DOPA-158, Floren DOPA-22, Floren DOPA-17, Floren TG-700, Floren TG-720W, Floren-730W, Floren-740W, Floren-745W [manufactured by Kyoeisha Chemical Co., Ltd.]; John Examples include John Crill series such as Kuril 678, John Crill 679, and John Crill 62 [manufactured by Johnson Polymer Co., Ltd.].

これらのうち、代表的な酸基を有する高分子分散剤には、ポリ(メタ)アクリル酸類[又はポリアクリル酸系樹脂、例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と共重合性単量体(例えば、(メタ)アクリレート、無水マレイン酸など)との共重合体などの(メタ)アクリル酸を主成分とするポリマー、これらの塩(例えば、ポリアクリル酸ナトリウムなどのアルカリ金属塩など)など]、ディスパービック190、ディスパービック194などが挙げられる。また、代表的な塩基性基(アミノ基)を有する高分子分散剤には、ポリアルキレンイミン(ポリエチレンイミンなど)、ポリビニルピロリドン、ポリアリルアミン、ポリエーテルポリアミン(ポリオキシエチレンポリアミンなど)などが挙げられる。   Among these, polymer dispersants having typical acid groups include poly (meth) acrylic acids [or polyacrylic resins such as poly (meth) acrylic acid and (meth) acrylic acid. Polymers mainly composed of (meth) acrylic acid, such as copolymers with monomers (for example, (meth) acrylate, maleic anhydride, etc.), and salts thereof (for example, alkali metal salts such as sodium polyacrylate) Etc.), Dispersic 190, Dispersic 194 and the like. Examples of the polymer dispersant having a typical basic group (amino group) include polyalkyleneimine (polyethyleneimine etc.), polyvinylpyrrolidone, polyallylamine, polyether polyamine (polyoxyethylene polyamine etc.) and the like. .

高分子分散剤(B2)の数平均分子量は、1000〜1000000(例えば、1200〜800000)の範囲から選択でき、例えば、1500〜500000(例えば、1500〜100000)、好ましくは2000〜80000(例えば、2000〜60000)、さらに好ましくは3000〜50000(例えば、5000〜30000)、特に7000〜20000程度であってもよい。   The number average molecular weight of the polymer dispersant (B2) can be selected from the range of 1000 to 1000000 (for example, 1200 to 800000), for example, 1500 to 500000 (for example, 1500 to 100000), preferably 2000 to 80000 (for example, 2000 to 60000), more preferably 3000 to 50000 (for example, 5000 to 30000), particularly about 7000 to 20000.

本発明の金属コロイド粒子において、保護コロイド(B)(有機化合物(B1)および高分子分散剤(B2)の総量)の割合は、金属ナノ粒子(A)100質量部に対して、例えば、0.1〜100質量部(例えば、0.5〜80質量部)、好ましくは1.0〜60質量部(例えば、1.5〜50質量部)、さらに好ましくは2〜40質量部(例えば、3〜30質量部)、特に4〜25質量部(例えば、5〜20質量部)程度であってもよく、通常10〜50質量部程度であってもよい。特に、本発明の金属コロイド粒子において、保護コロイド(B)の割合は、金属ナノ粒子(A)100質量部に対して、0.5〜20質量部(例えば、0.8〜18質量部)、好ましくは1〜15質量部、さらに好ましくは1.2〜12質量部(例えば、1.5〜10質量部)程度であってもよい。本発明では、前記特定の組み合わせにより保護コロイドを構成するので、上記のような比較的少ない量の保護コロイドであっても、粗大粒子の少ない金属ナノ粒子とすることができる。   In the metal colloid particles of the present invention, the ratio of the protective colloid (B) (total amount of the organic compound (B1) and the polymer dispersant (B2)) is, for example, 0 with respect to 100 parts by mass of the metal nanoparticles (A). 0.1 to 100 parts by mass (for example, 0.5 to 80 parts by mass), preferably 1.0 to 60 parts by mass (for example, 1.5 to 50 parts by mass), and more preferably 2 to 40 parts by mass (for example, 3 to 30 parts by mass), particularly about 4 to 25 parts by mass (for example, 5 to 20 parts by mass), and usually about 10 to 50 parts by mass. In particular, in the metal colloid particles of the present invention, the proportion of the protective colloid (B) is 0.5 to 20 parts by mass (for example, 0.8 to 18 parts by mass) with respect to 100 parts by mass of the metal nanoparticles (A). 1 to 15 parts by mass, preferably 1.2 to 12 parts by mass (for example, 1.5 to 10 parts by mass). In the present invention, since the protective colloid is constituted by the specific combination, even a relatively small amount of the protective colloid as described above can be formed into metal nanoparticles with few coarse particles.

なお、金属コロイド粒子において、有機化合物(B1)の割合は、例えば、金属ナノ粒子(A)100質量部に対して、例えば、0.05〜70質量部(例えば、0.1〜50質量部)、好ましくは0.5〜40質量部(例えば、1〜30質量部)、さらに好ましくは2〜20質量部(例えば、3〜15質量部)程度であってもよい。特に、本発明の金属コロイド粒子において、有機化合物(B1)の割合は、金属ナノ粒子(A)100質量部に対して、0.05〜10質量部(例えば、0.1〜8質量部)、好ましくは0.12〜7質量部(例えば、0.15〜5質量部)、さらに好ましくは0.18〜4質量部(例えば、0.2〜3質量部)程度であってもよい。   In addition, in a metal colloid particle, the ratio of an organic compound (B1) is 0.05-70 mass parts (for example, 0.1-50 mass parts) with respect to 100 mass parts of metal nanoparticles (A), for example. ), Preferably 0.5 to 40 parts by mass (eg 1 to 30 parts by mass), more preferably about 2 to 20 parts by mass (eg 3 to 15 parts by mass). In particular, in the metal colloid particles of the present invention, the proportion of the organic compound (B1) is 0.05 to 10 parts by mass (for example, 0.1 to 8 parts by mass) with respect to 100 parts by mass of the metal nanoparticles (A). The amount may be preferably about 0.12 to 7 parts by mass (for example, 0.15 to 5 parts by mass), more preferably about 0.18 to 4 parts by mass (for example, 0.2 to 3 parts by mass).

また、金属コロイド粒子において、高分子分散剤(B2)の割合は、例えば、金属ナノ粒子(A)100質量部に対して、例えば、0.01〜50質量部(例えば、0.05〜30質量部)、好ましくは0.1〜30質量部(例えば、0.5〜20質量部)、さらに好ましくは1〜15質量部(例えば、2〜10質量部)程度であってもよい。特に、本発明の金属コロイド粒子において、高分子分散剤(B2)の割合は、金属ナノ粒子(A)100質量部に対して、0.05〜15質量部(例えば、0.1〜12質量部)、好ましくは0.12〜10質量部(例えば、0.15〜8質量部)、さらに好ましくは0.18〜7質量部(例えば、0.2〜6質量部)程度であってもよい。   In the metal colloidal particles, the ratio of the polymer dispersant (B2) is, for example, 0.01 to 50 parts by mass (for example, 0.05 to 30) with respect to 100 parts by mass of the metal nanoparticles (A). Part by mass), preferably 0.1 to 30 parts by mass (for example, 0.5 to 20 parts by mass), and more preferably about 1 to 15 parts by mass (for example, 2 to 10 parts by mass). In particular, in the metal colloid particles of the present invention, the ratio of the polymer dispersant (B2) is 0.05 to 15 parts by mass (for example, 0.1 to 12 parts by mass with respect to 100 parts by mass of the metal nanoparticles (A)). Part), preferably 0.12 to 10 parts by mass (for example, 0.15 to 8 parts by mass), more preferably about 0.18 to 7 parts by mass (for example, 0.2 to 6 parts by mass). Good.

さらに、金属コロイド粒子において、有機化合物(B1)と高分子分散剤(B2)との割合(溶媒などを含む場合は固形分)は、前者/後者(質量比)=99/1〜1/99(例えば、95/5〜5/95)、好ましくは85/15〜10/90(例えば、75/25〜15/85)、さらに好ましくは70/30〜20/80(例えば、60/40〜25/75)、特に55/45〜30/70(例えば、50/50〜35/65)程度であってもよい。特に、金属コロイド粒子において、有機化合物(B1)と高分子分散剤(B2)との割合は、前者/後者(質量比)=97/3〜1/99(例えば、96/4〜1/99)、好ましくは95/5〜2/98(例えば、93/7〜2/98)、さらに好ましくは92/8〜3/97(例えば、90/10〜3/97)、通常87/13〜3/97(例えば、86/14〜4/96)程度であってもよい。   Further, in the metal colloid particles, the ratio of the organic compound (B1) to the polymer dispersant (B2) (solid content when a solvent or the like is included) is the former / the latter (mass ratio) = 99/1 to 1/99. (For example, 95/5 to 5/95), preferably 85/15 to 10/90 (for example, 75/25 to 15/85), more preferably 70/30 to 20/80 (for example, 60/40 to 25/75), especially about 55/45 to 30/70 (for example, 50/50 to 35/65). In particular, in the metal colloid particles, the ratio of the organic compound (B1) and the polymer dispersant (B2) is the former / the latter (mass ratio) = 97/3 to 1/99 (for example, 96/4 to 1/99). ), Preferably 95/5 to 2/98 (e.g. 93/7 to 2/98), more preferably 92/8 to 3/97 (e.g. 90/10 to 3/97), usually 87/13 to It may be about 3/97 (for example, 86/14 to 4/96).

なお、本発明の金属コロイド粒子は、保護コロイドとして少なくとも前記保護コロイド(B)を含んでいればよく、他の保護コロイドを含んでいてもよい。他の保護コロイドは、無機化合物であってもよいが、通常、有機化合物である。   In addition, the metal colloid particle of this invention should just contain the said protective colloid (B) at least as a protective colloid, and may contain the other protective colloid. Other protective colloids may be inorganic compounds, but are usually organic compounds.

他の保護コロイドとしては、例えば、酸素原子含有有機化合物{例えば、アルコール類[例えば、アルカノール類(ヘキサノール、オクタノール、デカノール、ドデカノール、オクタデカノールなどのC6−20アルカンモノオール)、シクロアルカノール類(シクロヘキサノールなど)、アルカンジオール類(エチレングリコール、プロピレングリコールなど)、ポリアルキレングリコール類(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールなど)、アラルキルアルコール類、多価アルコール類など]、エーテル類(セロソルブ類、カルビトール類など)、ケトン類[例えば、アルカノン類、シクロアルカノン類、ジケトン類(アセチルアセトンなどのβ−ジケトン類)など]、エステル類(例えば、脂肪酸エステル類、グリコールエーテルエステル類など)、アルデヒド類(カプリルアルデヒド、ラウリルアルデヒド、パルミトアルデヒド、ステアリルアルデヒドなどのC6−20脂肪族アルデヒド)など}、硫黄原子含有有機化合物[例えば、スルホキシド類、スルホン酸類(例えば、アルカンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸などのアレーンスルホン酸など)など]などが挙げられる。これらの他の保護コロイドは、単独で又は2種以上組み合わせてもよい。 Other protective colloids include, for example, oxygen atom-containing organic compounds {eg, alcohols [eg, alkanols (C 6-20 alkane monools such as hexanol, octanol, decanol, dodecanol, octadecanol, etc.), cycloalkanols] (Cyclohexanol, etc.), alkanediols (ethylene glycol, propylene glycol, etc.), polyalkylene glycols (diethylene glycol, triethylene glycol, polyethylene glycol, etc.), aralkyl alcohols, polyhydric alcohols, etc.], ethers (cellosolves) , Carbitols, etc.), ketones [eg, alkanones, cycloalkanones, diketones (β-diketones such as acetylacetone)], esters (eg, fatty acid esters). Ethers, such as glycol ether esters), aldehydes (capryl aldehyde, lauryl aldehyde, palmitoyl aldehydes, C 6-20 aliphatic aldehydes such as stearyl aldehyde) such}, a sulfur atom-containing organic compound [e.g., sulfoxides, sulfones Acids (eg, arene sulfonic acids such as alkane sulfonic acid, benzene sulfonic acid, toluene sulfonic acid, etc.)] and the like. These other protective colloids may be used alone or in combination of two or more.

他の保護コロイドの割合は、前記保護コロイド(B)100質量部に対して、例えば、0.1〜100質量部、好ましくは0.5〜50質量部、さらに好ましくは1〜30質量部程度であってもよい。   The ratio of the other protective colloid is, for example, 0.1 to 100 parts by mass, preferably 0.5 to 50 parts by mass, and more preferably about 1 to 30 parts by mass with respect to 100 parts by mass of the protective colloid (B). It may be.

なお、金属コロイド粒子中の(B1)、(B2)などの割合は、慣用の方法、例えば、熱分析(例えば、熱質量/示差熱同時分析など)により、測定することができる。   The ratio of (B1), (B2), etc. in the metal colloid particles can be measured by a conventional method, for example, thermal analysis (for example, thermal mass / differential thermal simultaneous analysis).

[分散液]
本発明には、前記金属コロイド粒子を含む分散液も含まれる。このような分散液は、前記金属コロイド粒子および溶媒を含んでいる。なお、溶媒は、新たに混合してもよく、少なくとも後述の金属コロイド粒子の製造において使用する溶媒で構成してもよく、これらを組み合わせてもよい。
[Dispersion]
The present invention also includes a dispersion containing the metal colloid particles. Such a dispersion contains the metal colloid particles and a solvent. In addition, a solvent may be newly mixed, may be comprised with the solvent used in manufacture of the below-mentioned metal colloid particle, and may combine these.

溶媒としては、前記金属コロイド粒子を分散可能な限り特に限定されず、保護コロイドの種類に応じて、極性溶媒(水溶性溶媒)であっても、疎水性溶媒(非水溶性溶媒)であってもよい。   The solvent is not particularly limited as long as the metal colloid particles can be dispersed. Depending on the type of protective colloid, the solvent may be a polar solvent (water-soluble solvent) or a hydrophobic solvent (water-insoluble solvent). Also good.

極性溶媒には、例えば、水、アルコール類(メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどのC1−4アルカノールなど)、脂肪族多価アルコール類(エチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリンなど)、アミド類(ホルムアミド、アセトアミドなどのアシルアミド類、N−メチルホルムアミド、N−メチルアセトアミド,N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのモノ又はジC1−4アシルアミド類など)、ケトン類(アセトンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、有機カルボン酸類(酢酸など)、セロソルブ類(メチルセロソルブ、エチルセロソルブなどのC1−4アルキルセロソルブ類など)、セロソルブアセテート類(エチルセロソルブアセテートなどのC1−4アルキルセロソルブアセテート類)、カルビトール類(メチルカルビトール、エチルカルビトール、プロピルカルビトール、ブチルカルビトールなどのC1−4アルキルカルビトール類など)、ハロゲン系溶媒(塩化メチレン、クロロホルム、ジクロロエタンなどのハロゲン化炭化水素類)などが例示できる。これらの極性溶媒は、単独で又は二種以上組み合わせて使用できる。なお、これらの極性溶媒の極性パラメータは、通常、後述の極性パラメータの範囲内にある場合が多い。 Examples of polar solvents include water, alcohols (C 1-4 alkanols such as methanol, ethanol, propanol, isopropanol, butanol, etc.), aliphatic polyhydric alcohols (ethylene glycol, diethylene glycol, polyethylene glycol, glycerin, etc.), Amides (acylamides such as formamide and acetamide, mono- or di-C 1-4 acylamides such as N-methylformamide, N-methylacetamide, N, N-dimethylformamide and N, N-dimethylacetamide), ketones (such as acetone), ethers (dioxane, tetrahydrofuran, etc.), (such as acetate) organic carboxylic acids, cellosolves (methyl cellosolve, C 1-4 alkyl cellosolve such as ethyl cellosolve, etc.), cellosolves Seteto acids (C 1-4 alkyl cellosolve acetates such as ethyl cellosolve acetate), carbitol (methyl carbitol, ethyl carbitol, propyl carbitol, C 1-4 alkyl carbitols such as butyl carbitol, etc.), Examples thereof include halogenated solvents (halogenated hydrocarbons such as methylene chloride, chloroform and dichloroethane). These polar solvents can be used alone or in combination of two or more. The polar parameters of these polar solvents are usually in the range of the polar parameters described later in many cases.

また、これらの極性溶媒のうち、環境保全性及び簡便性などの観点から、少なくとも水を含む極性溶媒であってもよい。さらに、用途に応じて、溶媒の蒸発を抑制するなどの点から、水にアルコール類(特に、グリセリンなどの脂肪族多価アルコール)を組み合わせてもよい。アルコール類の割合は、水100質量部に対して、例えば、0.1〜50質量部、好ましくは1〜30質量部、さらに好ましくは3〜20質量部(特に5〜15質量部)程度であってもよい。   Of these polar solvents, a polar solvent containing at least water may be used from the viewpoints of environmental conservation and simplicity. Furthermore, alcohol (especially aliphatic polyhydric alcohols such as glycerin) may be combined with water from the standpoint of suppressing evaporation of the solvent depending on the application. The proportion of alcohol is, for example, about 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, and more preferably about 3 to 20 parts by mass (particularly 5 to 15 parts by mass) with respect to 100 parts by mass of water. There may be.

疎水性溶媒としては、例えば、炭化水素類(ヘキサン、トリメチルペンタン、オクタン、デカン、ドデカン、テトラデカンなどの脂肪族炭化水素類;シクロヘキサンなどの脂環式炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジクロロメタン、トリクロロエタンなどのハロゲン化炭化水素類など)、エステル類(酢酸メチル、酢酸エチルなど)、ケトン類(メチルエチルケトン、メチルイソブチルケトンなど)、エーテル類(ジエチルエーテル、ジプロピルエーテルなど)などが例示できる。これらの疎水性溶媒は、単独で又は二種以上組み合わせて使用できる。   Examples of the hydrophobic solvent include hydrocarbons (aliphatic hydrocarbons such as hexane, trimethylpentane, octane, decane, dodecane, and tetradecane; alicyclic hydrocarbons such as cyclohexane; aromatic carbonization such as toluene and xylene. Hydrogens: halogenated hydrocarbons such as dichloromethane and trichloroethane), esters (such as methyl acetate and ethyl acetate), ketones (such as methyl ethyl ketone and methyl isobutyl ketone), ethers (such as diethyl ether and dipropyl ether) Can be illustrated. These hydrophobic solvents can be used alone or in combination of two or more.

溶媒は、少なくとも極性溶媒(特に非芳香族系極性溶媒又は脂肪族系極性溶媒)で構成するのが好ましい。このような溶媒の極性パラメータ(Snyderによる極性パラメータ)は、例えば、2.8〜11、好ましくは3〜10.5、さらに好ましくは3.1〜10.2程度であってもよい。   The solvent is preferably composed of at least a polar solvent (particularly a non-aromatic polar solvent or an aliphatic polar solvent). The polarity parameter (polarity parameter by Snyder) of such a solvent may be, for example, 2.8 to 11, preferably 3 to 10.5, and more preferably about 3.1 to 10.2.

また、本発明では、溶媒としては、環境の負荷が少なく、取り扱いが簡便である点から、水溶性溶媒、特に、少なくとも水を含む溶媒(水、又は水および水溶性溶媒を含む混合溶媒など、特に水)が好ましい。   In the present invention, the solvent is a water-soluble solvent, particularly a solvent containing at least water (water or a mixed solvent containing water and a water-soluble solvent, etc. Particularly preferred is water).

このような分散液中において、金属コロイド粒子(又は金属ナノ粒子(A))は、溶媒に対して高い分散性を有し、長期間に亘り高い分散安定性を示す。分散液中の金属ナノ粒子(A)の濃度は、高い分散性を有するため、特に制限されないが、例えば、0.1〜60質量%、好ましくは1〜50質量%、さらに好ましくは3〜40質量%程度である。   In such a dispersion, the metal colloid particles (or metal nanoparticles (A)) have a high dispersibility in the solvent and show a high dispersion stability over a long period of time. Although the density | concentration of the metal nanoparticle (A) in a dispersion liquid has high dispersibility, it is not restrict | limited especially, For example, 0.1-60 mass%, Preferably it is 1-50 mass%, More preferably, it is 3-40. It is about mass%.

特に、前記分散液中の金属ナノ粒子(A)の濃度は、5質量%以上(例えば、6〜50質量%)、好ましくは8質量%以上(例えば、9〜40質量%)、さらに好ましくは10質量%以上(例えば、12〜30質量%)、通常5〜30質量%程度の高濃度であってもよい。   In particular, the concentration of the metal nanoparticles (A) in the dispersion is 5% by mass or more (for example, 6 to 50% by mass), preferably 8% by mass or more (for example, 9 to 40% by mass), and more preferably. The high concentration may be 10% by mass or more (for example, 12 to 30% by mass), usually about 5 to 30% by mass.

なお、分散液には、ペーストも含まれる。ぺースト(ペースト状分散液)中の金属ナノ粒子(A)の濃度は、例えば、30〜95質量%、好ましくは50〜90質量%、さらに好ましくは70〜85質量%程度であってもよい。   The dispersion includes paste. The concentration of the metal nanoparticles (A) in the paste (paste-like dispersion) may be, for example, 30 to 95% by mass, preferably 50 to 90% by mass, and more preferably about 70 to 85% by mass. .

本発明の分散液(ペースト状分散液を含む)は、このような高濃度で金属ナノ粒子(A)を含んでいても、沈降などを生じることなく長期安定性(保存安定性)に優れている。そのため、例えば、分散液(ペーストなど)を長期間保存後、金属膜(焼結膜)を形成しても、金属膜において抵抗値が増大することなく、優れた導電性を維持できる。   The dispersion of the present invention (including the paste-like dispersion) is excellent in long-term stability (storage stability) without causing sedimentation even when the metal nanoparticles (A) are contained at such a high concentration. Yes. Therefore, for example, even if a metal film (sintered film) is formed after a dispersion (paste, etc.) is stored for a long period of time, excellent conductivity can be maintained without increasing the resistance value in the metal film.

なお、分散液中において、保護コロイドで被覆された金属ナノ粒子(A)もナノメーターサイズであり、その平均粒子径(平均一次粒子径)などは、前記と同様の範囲から選択できる。   In the dispersion, the metal nanoparticles (A) coated with the protective colloid are also nanometer-sized, and the average particle size (average primary particle size) can be selected from the same range as described above.

本発明の分散液には、用途に応じて、慣用の添加剤、例えば、バインダー樹脂(ポリビニルアルコール、ポリエチレングリコールなどの親水性高分子など)、着色剤(染顔料など)、色相改良剤、染料定着剤、光沢付与剤、金属腐食防止剤、安定剤(酸化防止剤、紫外線吸収剤など)、界面活性剤又は分散剤(アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤など)、分散安定化剤、増粘剤又は粘度調整剤、保湿剤、チクソトロピー性賦与剤、レベリング剤、消泡剤、殺菌剤、充填剤などが含まれていてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。   In the dispersion of the present invention, conventional additives such as binder resins (hydrophilic polymers such as polyvinyl alcohol and polyethylene glycol), colorants (dyeing pigments, etc.), hue improvers, dyes are used depending on the application. Fixing agent, gloss imparting agent, metal corrosion inhibitor, stabilizer (antioxidant, UV absorber, etc.), surfactant or dispersant (anionic surfactant, cationic surfactant, nonionic surfactant, Amphoteric surfactants, etc.), dispersion stabilizers, thickeners or viscosity modifiers, humectants, thixotropic agents, leveling agents, antifoaming agents, bactericides, fillers and the like may be included. These additives can be used alone or in combination of two or more.

なお、分散液の(分散液を構成する)固形分全体に対する金属ナノ粒子(A)の固形分濃度(又は金属コロイド粒子における金属ナノ粒子(A)の濃度)は、用途に応じて限定されないが、例えば、50質量%以上(例えば、55〜99.5質量%)、好ましくは60質量%以上(例えば、70〜99質量%)、さらに好ましくは80質量%以下(例えば、85〜98.5質量%)、通常90〜99質量%程度であってもよい。また、インクジェット用インキなどとして用いる場合、分散液の固形分全体に対する金属ナノ粒子(A)の固形分濃度は、60質量%以下(例えば、1〜60質量%程度)、好ましくは50質量%以下(例えば、3〜45質量%)、好ましくは40質量%以下(例えば、5〜35質量%)、さらに好ましくは30質量%以下(例えば、8〜25質量%)程度であってもよい。上記のような範囲で分散液又は金属コロイド粒子中の金属ナノ粒子濃度を調整すると、十分な金属光沢が得られやすい。   Note that the solid content concentration of the metal nanoparticles (A) relative to the entire solid content of the dispersion (which constitutes the dispersion) (or the concentration of the metal nanoparticles (A) in the metal colloid particles) is not limited depending on the application. For example, 50% by mass or more (for example, 55 to 99.5% by mass), preferably 60% by mass or more (for example, 70 to 99% by mass), and more preferably 80% by mass or less (for example, 85 to 98.5). Mass%), usually about 90 to 99 mass%. When used as an inkjet ink, the solid content concentration of the metal nanoparticles (A) with respect to the total solid content of the dispersion is 60% by mass or less (for example, about 1 to 60% by mass), preferably 50% by mass or less. (For example, 3 to 45% by mass), preferably 40% by mass or less (for example, 5 to 35% by mass), more preferably about 30% by mass or less (for example, 8 to 25% by mass). When the concentration of the metal nanoparticles in the dispersion or the metal colloid particles is adjusted within the above range, a sufficient metallic luster is easily obtained.

[金属コロイド粒子および分散液の製造方法]
本発明の金属コロイド粒子(又は前記分散液)は、慣用の方法、例えば、前記金属ナノ粒子(A)に対応する金属化合物を、保護コロイド(B)(および必要に応じて前記他の保護コロイド)および還元剤の存在下、溶媒中で還元することにより調製できる。
[Method of producing metal colloidal particles and dispersion]
The metal colloid particles (or the dispersion liquid) of the present invention are prepared by a conventional method, for example, by applying a metal compound corresponding to the metal nanoparticles (A) to the protective colloid (B) (and, if necessary, the other protective colloids). ) And a reducing agent in the presence of a reducing agent.

前記金属ナノ粒子(A)に対応する金属化合物は、例えば、金属酸化物、金属水酸化物、金属硫化物、金属ハロゲン化物、金属酸塩[金属無機酸塩(硫酸塩、硝酸塩、過塩素酸塩などのオキソ酸塩など)、金属有機酸塩(酢酸塩など)など]などであってもよい。なお、金属塩の形態は、単塩、複塩又は錯塩のいずれであってもよく、多量体(例えば、2量体)などであってもよい。これらの金属化合物は単独で又は二種以上組み合わせて使用できる。これらの金属化合物のうち、金属ハロゲン化物、金属酸塩[金属無機酸塩(硫酸塩、硝酸塩、過塩素酸塩などのオキソ酸塩など)、金属有機酸塩(酢酸塩など)など]などを使用する場合が多い。なお、これらの金属化合物は、溶媒に溶解又は分散させて(例えば、水溶液などの水系溶媒の溶液の形態で)用いてもよい。   The metal compound corresponding to the metal nanoparticles (A) includes, for example, metal oxide, metal hydroxide, metal sulfide, metal halide, metal acid salt [metal inorganic acid salt (sulfate, nitrate, perchloric acid). Oxo acid salts such as salts), metal organic acid salts (such as acetates), and the like]. In addition, the form of the metal salt may be any of a single salt, a double salt, or a complex salt, and may be a multimer (for example, a dimer). These metal compounds can be used alone or in combination of two or more. Among these metal compounds, metal halides, metal acid salts [metal inorganic acid salts (such as sulfates, nitrates, perchlorates, etc.), metal organic acid salts (such as acetates), etc.] Often used. These metal compounds may be used by dissolving or dispersing in a solvent (for example, in the form of a solution of an aqueous solvent such as an aqueous solution).

還元剤としては、慣用の成分、例えば、水素化ホウ素ナトリウム類(水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素ナトリウムなど)、水素化アルミニウムリチウム、次亜リン酸又はその塩(ナトリウム塩など)、ボラン類(ジボラン、ジメチルアミンボランなど)、ヒドラジン、ホルマリン、アミン類、アルコール類(前記例示のアルコール類、例えば、エチレングリコールなど)、フェノール性水酸基を有するカルボン酸(例えば、タンニン酸)などが例示できる。   Examples of the reducing agent include conventional components such as sodium borohydride (sodium borohydride, sodium cyanoborohydride, sodium triethylborohydride, etc.), lithium aluminum hydride, hypophosphorous acid or a salt thereof (sodium). Salts), boranes (diborane, dimethylamine borane, etc.), hydrazine, formalin, amines, alcohols (the alcohols exemplified above, such as ethylene glycol), carboxylic acids having a phenolic hydroxyl group (eg, tannic acid) And the like.

アミン類としては、脂肪族アミン類(例えば、プロピルアミン、ブチルアミン、ヘキシルアミン、ジエチルアミン、ジプロピルアミン、ジメチルエチルアミン、ジエチルメチルアミン、トリエチルアミン、エチレンジアミン、N,N,N′,N′−テトラメチルエチレンジアミン、1,3−ジアミノプロパン、N,N,N′,N′−テトラメチル−1,3−ジアミノプロパンなどのアルカンアミン;トリエチレンテトラミン、テトラエチレンペンタミンなどのポリアルキレンポリアミンなど)、脂環式アミン類(例えば、ピペリジン、N−メチルピペリジン、ピペラジン、N,N′−ジメチルピペラジン、ピロリジン、N−メチルピロリジン、モルホリンなど)、芳香族アミン類(例えば、アニリン、N−メチルアニリン、N,N−ジメチルアニリン、トルイジン、アニシジン、フェネチジンなど)、芳香脂肪族アミン類(例えば、ベンジルアミン、N−メチルベンジルアミン、N,N−ジメチルベンジルアミン、フェネチルアミン、キシリレンジアミン、N,N,N′,N′−テトラメチルキシリレンジアミンなどのアラルキルアミン)、アルコールアミン類[特にアルカノールアミン類、例えば、メチルアミノエタノール、ジメチルアミノエタノール(2−(ジメチルアミノ)エタノール)、エタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、プロパノールアミン、2−(3−アミノプロピルアミノ)エタノール、ブタノールアミン、ヘキサノールアミン、ジメチルアミノプロパノールなどのC2−10アルカノールアミン、好ましくはC2−6アルカノールアミン]が挙げることができる。 Examples of amines include aliphatic amines (for example, propylamine, butylamine, hexylamine, diethylamine, dipropylamine, dimethylethylamine, diethylmethylamine, triethylamine, ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine). 1,3-diaminopropane, alkaneamines such as N, N, N ′, N′-tetramethyl-1,3-diaminopropane; polyalkylene polyamines such as triethylenetetramine and tetraethylenepentamine), and alicyclic rings Formula amines (eg piperidine, N-methylpiperidine, piperazine, N, N′-dimethylpiperazine, pyrrolidine, N-methylpyrrolidine, morpholine, etc.), aromatic amines (eg aniline, N-methylaniline, N, N-dimethyl Nilin, toluidine, anisidine, phenetidine, etc.), araliphatic amines (for example, benzylamine, N-methylbenzylamine, N, N-dimethylbenzylamine, phenethylamine, xylylenediamine, N, N, N ′, N ′ Aralkylamines such as tetramethylxylylenediamine), alcohol amines [especially alkanolamines such as methylaminoethanol, dimethylaminoethanol (2- (dimethylamino) ethanol), ethanolamine, diethanolamine, triethanolamine, methyl diethanolamine, propanolamine, 2- (3-aminopropyl amino) ethanol, butanol amine, hexanol amine, C 2-10 alkanol amines such as dimethylamino propanol, preferably May be mentioned is C 2-6 alkanolamine.

これらのうち、水素化ホウ素ナトリウム、第3級アミン(例えば、2−(ジメチルアミノ)エタノール、N−メチルジエタノールアミンなどの第3級アルカノールアミン)、エチレングリコール、タンニン酸などを好適に使用できる。また、安全性などの点で、アミン類、特に、アルカノールアミン類などのアルコールアミン類が好ましい。アルカノールアミン類は、通常、水溶性である場合が多く、水又は水系溶媒を溶媒とする場合には、好適である。   Among these, sodium borohydride, tertiary amine (for example, tertiary alkanolamine such as 2- (dimethylamino) ethanol and N-methyldiethanolamine), ethylene glycol, tannic acid and the like can be preferably used. In view of safety, amines, particularly alcohol amines such as alkanolamines are preferred. Alkanolamines are usually water-soluble in many cases, and are suitable when water or an aqueous solvent is used as a solvent.

これらの還元剤は単独で又は二種以上組み合わせて使用できる。   These reducing agents can be used alone or in combination of two or more.

還元剤の使用量は、金属原子換算で前記金属化合物1当量(又は1モル)に対して、1〜30モル(例えば、1.2〜20モル)、好ましくは1.5〜15モル、さらに好ましくは2〜10モル程度であってもよく、通常1〜5モル程度であってもよい。   The amount of the reducing agent used is 1 to 30 mol (for example, 1.2 to 20 mol), preferably 1.5 to 15 mol, based on 1 equivalent (or 1 mol) of the metal compound in terms of metal atom. Preferably, it may be about 2 to 10 mol, and usually about 1 to 5 mol.

還元反応は、慣用の方法、例えば、温度10〜75℃(例えば、15〜50℃、好ましくは20〜35℃)程度で行うことができる。反応系の雰囲気は、空気、不活性ガス(窒素ガスなど)であってもよく、還元性ガス(水素ガスなど)を含む雰囲気であってもよい。また、反応は、通常、攪拌下(又は攪拌しながら)で行ってもよい。   The reduction reaction can be performed by a conventional method, for example, at a temperature of about 10 to 75 ° C. (for example, about 15 to 50 ° C., preferably about 20 to 35 ° C.). The atmosphere of the reaction system may be air, an inert gas (such as nitrogen gas), or an atmosphere containing a reducing gas (such as hydrogen gas). Moreover, you may perform reaction under stirring (or stirring) normally.

なお、反応溶媒は、前記と同様の溶媒(例えば、水など)を使用できる。反応溶媒は、前記分散液を構成する前記溶媒を用いてもよく、前記分散液を構成する溶媒とは異なる溶媒を用いてもよい。具体的には、反応溶媒は、保護コロイドの種類に応じて、前記極性溶媒及び疎水性溶媒の中から選択でき、通常、保護コロイドが水溶性化合物である場合には、水などの極性溶媒を用いることが多い。極性溶媒は反応系に添加される成分、例えば、還元剤などの溶媒に由来してもよい。一方、保護コロイドが非水溶性化合物である場合には、脂肪族炭化水素類(トリメチルペンタンなど)などの疎水性溶媒を用いることが多く、必要により、疎水性溶媒と極性溶媒(例えば、エタノール、イソプロパノールなどのアルコール類、アセトンなどのケトン類、ジオキサン、テトラヒドロフランなどの環状エーテル類、ジメチルアセトアミドなどのアミド類など)との混合溶媒を用いてもよい。なお、反応溶媒中の前記金属化合物の濃度は、金属の質量換算で、前記分散液中の金属ナノ粒子(A)の濃度と同様の濃度、例えば、5質量%以上(例えば、6〜50質量%)、好ましくは8質量%以上(例えば、9〜40質量%)、さらに好ましくは10質量%以上(例えば、12〜30質量%)、通常5〜30質量%程度の高濃度であってもよい。本発明では、このような高濃度で反応させても、粗大粒子の生成をおさえつつ効率よく金属ナノ粒子を得ることができる。   In addition, the solvent (for example, water etc.) similar to the above can be used for the reaction solvent. As the reaction solvent, the solvent constituting the dispersion may be used, or a solvent different from the solvent constituting the dispersion may be used. Specifically, the reaction solvent can be selected from the polar solvent and the hydrophobic solvent according to the type of the protective colloid. Usually, when the protective colloid is a water-soluble compound, a polar solvent such as water is used. Often used. The polar solvent may be derived from a component added to the reaction system, for example, a solvent such as a reducing agent. On the other hand, when the protective colloid is a water-insoluble compound, a hydrophobic solvent such as aliphatic hydrocarbons (such as trimethylpentane) is often used, and if necessary, a hydrophobic solvent and a polar solvent (for example, ethanol, Alcohols such as isopropanol, ketones such as acetone, cyclic ethers such as dioxane and tetrahydrofuran, and amides such as dimethylacetamide) may be used. In addition, the density | concentration of the said metal compound in a reaction solvent is the density | concentration similar to the density | concentration of the metal nanoparticle (A) in the said dispersion liquid in conversion of the mass of a metal, for example, 5 mass% or more (for example, 6-50 mass) %), Preferably 8% by mass or more (for example, 9 to 40% by mass), more preferably 10% by mass or more (for example, 12 to 30% by mass), usually even at a high concentration of about 5 to 30% by mass. Good. In the present invention, even when the reaction is performed at such a high concentration, metal nanoparticles can be obtained efficiently while suppressing the generation of coarse particles.

なお、反応溶媒の種類などに応じて反応系のpHを調製してもよい。   The pH of the reaction system may be adjusted according to the type of reaction solvent.

pH調整は、慣用の方法、例えば、酸(塩酸、硫酸、硝酸、リン酸などの無機酸、酢酸などの有機酸)、アルカリ[水酸化ナトリウム、アンモニアなどの無機塩基、アミン類(例えば、アルキルアミン、アルカノールアミンなどの第三級アミン類などの有機塩基)などの塩基類]を用いて行うことができる。   The pH is adjusted by a conventional method, for example, an acid (an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid, an organic acid such as acetic acid), an alkali [an inorganic base such as sodium hydroxide or ammonia, or an amine (for example, an alkyl). Bases such as organic bases such as tertiary amines such as amines and alkanolamines].

還元反応の終了後、反応混合液を濃縮し、慣用の方法(例えば、遠心分離、メンブレンフィルタ、限外ろ過などのろ過処理など)で精製することにより、溶媒に対して分散性を有する金属コロイド粒子を調製することができる。なお、本発明では、前記特定の組み合わせにより保護コロイドを構成するので、前記のように、比較的少ない量の保護コロイドであっても、粗大粒子の少ない金属ナノ粒子とすることができ、精製しなくても金属コロイド粒子を調製できる。また、得られた金属コロイド粒子および溶媒を含む分散液をそのまま前記分散液としてもよく、得られた金属コロイド粒子および溶媒を含む分散液から反応に使用した溶媒を除去し、新たな異種の溶媒(必要により他の添加剤)を加えて新たに分散液を調製してもよい。また、分散液に、さらに新たな同種又は異種の溶媒や添加剤を加えてもよい。   After completion of the reduction reaction, the reaction mixture is concentrated and purified by conventional methods (for example, centrifugation, membrane filter, ultrafiltration, etc.), so that the metal colloid has dispersibility in the solvent. Particles can be prepared. In the present invention, since the protective colloid is constituted by the specific combination, as described above, even with a relatively small amount of protective colloid, it is possible to obtain a metal nanoparticle with few coarse particles. Without it, metal colloid particles can be prepared. The obtained dispersion containing the metal colloid particles and the solvent may be used as the dispersion as it is, and the solvent used in the reaction is removed from the obtained dispersion containing the metal colloid particles and the solvent to obtain a new different solvent. (If necessary, other additives) may be added to prepare a new dispersion. Further, a new same or different solvent or additive may be added to the dispersion.

本発明の金属コロイド粒子(および分散液)は、金属ナノ粒子濃度が高いにもかかわらず、粗大粒子が少ない。また、金属ナノ粒子又は金属コロイド粒子が安定して分散しており、長期保存性においても優れている。   The metal colloidal particles (and dispersion) of the present invention have few coarse particles despite the high metal nanoparticle concentration. In addition, metal nanoparticles or metal colloid particles are stably dispersed, and are excellent in long-term storage.

特に、このような本発明の金属コロイド粒子は、粗大粒子が少なく金属ナノ粒子濃度が高いため、低温焼結性に優れている。そのため、本発明の金属コロイド粒子は、加熱や光処理することなく金属光沢に優れた文字や画像を印字又は印刷するのに有用である。従って本発明の金属コロイド粒子および分散液は、各種の印字又は印刷器具や装置のインキとして利用可能である。そのような器具又は装置としては、例えば、インクジェットプロッター、インクジェットプリンター、インクジェットディスペンサー、ペンプロッターなどの描画装置、ボールペンやフェルトペン、万年筆などの筆記具(ペン)などが挙げられる。なかでも、水性インキとしても使用できるため、水性ボールペンやフェルトペンのインキとして有用である。   In particular, such metal colloidal particles of the present invention are excellent in low-temperature sinterability because there are few coarse particles and the concentration of metal nanoparticles is high. Therefore, the metal colloidal particles of the present invention are useful for printing or printing characters and images having excellent metallic luster without heating or light treatment. Therefore, the metal colloid particles and the dispersion liquid of the present invention can be used as inks for various printing or printing instruments and apparatuses. Examples of such instruments or devices include drawing devices such as inkjet plotters, inkjet printers, inkjet dispensers, and pen plotters, and writing tools (pens) such as ballpoint pens, felt pens, and fountain pens. Especially, since it can also be used as a water-based ink, it is useful as a water-based ballpoint pen or felt pen ink.

また、金属に導電性金属を用いた場合には、金属光沢などの光沢という装飾性だけでなく、得られた印刷像や膜が導電性を有するため、導電性インキ(又は導電性ペースト)としても利用可能である。そのため、各種の導電体、例えば、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)、有機及び無機エレクトロルミネッセンスディスプレイ(ELD)などの表示装置、シリコン半導体系やグレッツェル式などの太陽電池、タッチパネル式表示装置などの電極、RFIDタグ、電磁波シールド、家庭又は学習用配線キットなどに使用される導電膜や導電印刷のための塗布液として利用することもできる。特に、紙類で構成された基材の上にも、加熱や光処理することなく、微細で強固にパターニングできるため、RFIDタグや電子ぺーパーに好適である。   In addition, when a conductive metal is used for the metal, not only a decorative property such as a metallic luster but also a printed image or film obtained is conductive, so as a conductive ink (or conductive paste) Is also available. Therefore, various conductors, for example, display devices such as plasma display panels (PDP), fluorescent display tubes (VFD), liquid crystal displays (LCD), organic and inorganic electroluminescent displays (ELD), silicon semiconductor systems, Gretzels, etc. It can also be used as a coating liquid for conductive printing or conductive printing used in electrodes such as solar cells, touch panel display devices, RFID tags, electromagnetic wave shields, home or learning wiring kits, and the like. In particular, it is suitable for RFID tags and electronic paper because it can be finely and strongly patterned on a base material made of paper without heating or light treatment.

本発明の金属コロイド粒子および分散液は、各種の基板(被印刷板)に対して、光沢を発現できるとともに、基板上に強固に固定される。基板としては、例えば、紙類(クラフト紙、シリカやアルミナなどの無機粒子を含むコーティング剤で被覆された光沢紙など)、布(織布や不織布など)、化学繊維紙、合成紙、プラスチックフィルム(又はOHPシート)(ポリプロピレンフィルムなどのオレフィン系フィルム、ポリエチレンテレフタレート(PET)フィルムなどのポリエステルフィルムなど)などが利用可能である。   The metal colloid particles and the dispersion liquid of the present invention can exhibit gloss on various substrates (printed plates) and are firmly fixed on the substrates. Examples of substrates include paper (craft paper, glossy paper coated with a coating agent containing inorganic particles such as silica and alumina), cloth (woven fabric and non-woven fabric), chemical fiber paper, synthetic paper, and plastic film. (Or OHP sheet) (olefin film such as polypropylene film, polyester film such as polyethylene terephthalate (PET) film) and the like can be used.

また、本発明の金属コロイド粒子および分散液は、無機素材に対する密着性に優れているため、ガラス基板などの無機基板(易接着層が形成されていない無機基板)に対して、直接的に金属膜を形成することもできる。   In addition, since the metal colloid particles and the dispersion of the present invention are excellent in adhesion to inorganic materials, the metal colloid particles and the dispersion are directly applied to an inorganic substrate such as a glass substrate (an inorganic substrate on which an easy adhesion layer is not formed). A film can also be formed.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

参考例1)
硝酸銀66.8g、カルボキシル基を有する高分子分散剤(ビッグケミー製、「ディスパービック190」、親水性ユニットであるポリエチレンオキサイド鎖と疎水性ユニットであるアルキル基とを有する両親媒性分散剤、溶媒:水、不揮発成分40%、酸価10mgKOH/g、アミン価0)7.2g、およびコール酸(和光純薬製)1.8gを、イオン交換水100gに投入し、激しく撹拌し、懸濁液を得た。この懸濁液に対して、ジメチルアミノエタノール(和光純薬製)100gを徐々に加えたのち、水温50℃のウォーターバス中で4時間加熱撹拌した。得られた反応液(分散液)を、ガラスフィルタ(ADVANTEC製GC−90、ポアサイズ0.8マイクロメートル)でろ過し、銀を15質量%含む銀ナノ粒子分散液を得た。
( Reference Example 1)
66.8 g of silver nitrate, polymer dispersant having a carboxyl group (manufactured by Big Chemie, “Dispervic 190”, amphiphilic dispersant having a polyethylene oxide chain as a hydrophilic unit and an alkyl group as a hydrophobic unit, solvent: Water, non-volatile component 40%, acid value 10 mgKOH / g, amine value 0) 7.2 g, and cholic acid (manufactured by Wako Pure Chemical Industries) 1.8 g were put into 100 g of ion-exchanged water, vigorously stirred, suspension Got. To this suspension, 100 g of dimethylaminoethanol (manufactured by Wako Pure Chemical Industries) was gradually added and then heated and stirred for 4 hours in a water bath at a water temperature of 50 ° C. The obtained reaction liquid (dispersion) was filtered through a glass filter (GC-90 manufactured by ADVANTEC, pore size 0.8 micrometer) to obtain a silver nanoparticle dispersion containing 15% by mass of silver.

(比較例1)
参考例1において、コール酸を使用しなかったこと以外は、参考例1と同様にして分散液および銀ナノ粒子を得た。銀ナノ粒子は生成したものの、一次粒子径100nm以上の粗大粒子が多く生成した。
(Comparative Example 1)
In Reference Example 1, a dispersion and silver nanoparticles were obtained in the same manner as Reference Example 1 except that cholic acid was not used. Although silver nanoparticles were produced, many coarse particles having a primary particle diameter of 100 nm or more were produced.

(比較例2)
参考例1において、ディスパービック190を使用しなかったこと以外は、参考例1と同様に分散液を得た。分散液には、一次粒子径100nm以上の粗大粒子が多く生成し、粒子の沈降が見られた。
(Comparative Example 2)
In Reference Example 1, a dispersion was obtained in the same manner as in Reference Example 1 except that Dispersic 190 was not used. In the dispersion, a lot of coarse particles having a primary particle diameter of 100 nm or more were generated, and sedimentation of the particles was observed.

(実施例2) (I)銀コロイド粒子の作製
硝酸銀66.8g、カルボキシル基を有する有機化合物(B1)として酢酸(和光純薬製、沸点118℃、炭素数2)10g、および高分子分散剤(B2)としてポリアクリル酸(和光純薬製、重合度5000、酸価780mgKOH/g)3.0gを、イオン交換水1000gに投入し、激しく撹拌した。これに2−ジメチルアミノエタノール(和光純薬製)100gを加えたのち、70℃で2時間加熱撹拌した。この反応物を高速遠心分離器(Kokusan製、H−200 SERIES)を用い、7000rpm、1時間遠心分離し、銀ナノ粒子が保護コロイドにより保護された銀コロイド粒子(一次粒子径1〜100nm、個数平均粒子径20nm)が凝集した沈殿物を回収した。なお、銀ナノ粒子の粒径は、透過型電子顕微鏡(TEM)により測定した。
(Example 2) (I) Production of silver colloidal particles 66.8 g of silver nitrate, 10 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd., boiling point 118 ° C., carbon number 2) as an organic compound (B1) having a carboxyl group, and a polymer dispersant As (B2), 3.0 g of polyacrylic acid (manufactured by Wako Pure Chemical Industries, degree of polymerization 5000, acid value 780 mgKOH / g) was added to 1000 g of ion-exchanged water and vigorously stirred. To this was added 100 g of 2-dimethylaminoethanol (manufactured by Wako Pure Chemical Industries), and the mixture was heated and stirred at 70 ° C. for 2 hours. This reaction product was centrifuged at 7000 rpm for 1 hour using a high-speed centrifuge (manufactured by Kokusan, H-200 SERIES), and silver colloidal particles in which silver nanoparticles were protected by a protective colloid (primary particle diameter of 1 to 100 nm, number The precipitate in which the average particle diameter was 20 nm) was collected. In addition, the particle size of the silver nanoparticles was measured with a transmission electron microscope (TEM).

(II)銀コロイド粒子の評価
(II−1)分散剤量測定
銀コロイド粒子に含まれる保護コロイド(分散剤)(B)の量をTG−DTAで測定(一分間に10℃の速さで30℃から550℃まで昇温した時の質量減少から算出)した。また、(B1)量を30℃から200℃までの質量減少から算出し、(B2)を(B)−(B1)から算出し、これらの質量比(B1)/(B2)を求めた。結果を表1に示した。
(II) Evaluation of silver colloid particles (II-1) Dispersant amount measurement The amount of the protective colloid (dispersant) (B) contained in the silver colloid particles is measured by TG-DTA (at a rate of 10 ° C. per minute). (Calculated from mass reduction when the temperature was raised from 30 ° C. to 550 ° C.). Moreover, (B1) amount was computed from the mass reduction | decrease from 30 degreeC to 200 degreeC, (B2) was computed from (B)-(B1), and these mass ratio (B1) / (B2) was calculated | required. The results are shown in Table 1.

(II−2)比抵抗、保存安定性評価
銀コロイド粒子に、エチレングリコール(極性パラメータ6.9)を加えて作製した銀濃度80%のペーストを、アプリケータを用いガラス基板に塗布し150℃、あるいは250℃で30分間焼成し、比抵抗を測定した。また、このペーストを室温で6ヶ月放置した後、同様に比抵抗測定し、銀コロイド粒子ペーストの保存安定性を評価した。なお、形成された銀膜の厚みは5μmであった。結果は表1に示した。
(II-2) Specific Resistance and Storage Stability Evaluation A silver concentration 80% paste prepared by adding ethylene glycol (polarity parameter 6.9) to silver colloid particles was applied to a glass substrate using an applicator and 150 ° C. Alternatively, baking was performed at 250 ° C. for 30 minutes, and the specific resistance was measured. The paste was allowed to stand at room temperature for 6 months and then the specific resistance was measured in the same manner to evaluate the storage stability of the silver colloidal particle paste. The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例3)
(B1)をプロピオン酸(和光純薬製、沸点141℃、炭素数3)とした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 3)
The same procedure as in Example 2 was performed except that (B1) was propionic acid (manufactured by Wako Pure Chemical Industries, boiling point 141 ° C., carbon number 3). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例4)
(B1)をギ酸(和光純薬製、沸点100.7℃、炭素数1)とした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
Example 4
The same procedure as in Example 2 was conducted except that (B1) was formic acid (manufactured by Wako Pure Chemical Industries, boiling point 100.7 ° C., carbon number 1). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

参考例2
(B1)をコール酸(和光純薬製、分解温度198℃)とした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
( Reference Example 2 )
The same procedure as in Example 2 was conducted except that (B1) was cholic acid (manufactured by Wako Pure Chemicals, decomposition temperature 198 ° C.). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例6)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)7.2gとした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 6)
(B2) was performed in the same manner as in Example 2 except that 7.2 g was used for Dispersic 190 (BIC Chemie, acid value 10 mgKOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例7)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)7.2gとした以外は、実施例3と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 7)
(B2) was carried out in the same manner as in Example 3 except that 7.2 g was used for Disperbic 190 (produced by Big Chemie, acid value 10 mgKOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例8)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)7.2gとした以外は、実施例4と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 8)
(B2) was carried out in the same manner as in Example 4 except that 7.2 g was used for Disperbic 190 (produced by Big Chemie, acid value 10 mgKOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

参考例3
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)7.2gとした以外は、参考例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
( Reference Example 3 )
(B2) was performed in the same manner as Reference Example 2 except that 7.2 g was used for Disperbic 190 (Bic Chemie, acid value: 10 mgKOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例10)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)0.12gとした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 10)
The same procedure as in Example 2 was performed except that (B2) was changed to 0.12 g of Dispersic 190 (manufactured by Big Chemie, acid value of 10 mg KOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例11)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)0.72gとした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 11)
(B2) was carried out in the same manner as in Example 2 except that 0.72 g of Dispersic 190 (manufactured by Big Chemie, acid value 10 mg KOH / g, containing 60% water) was used. The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例12)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)2.12gとした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 12)
The same procedure as in Example 2 was performed except that 2.12 g of (B2) was changed to Disperbic 190 (manufactured by Big Chemie, acid value 10 mgKOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例13)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)5.04gとした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 13)
(B2) was carried out in the same manner as in Example 2 except that Dispersic 190 (produced by Big Chemie, acid value 10 mgKOH / g, containing 60% water) was 5.04 g. The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

(実施例14)
(B2)をディスパービック190(ビックケミー社製、酸価10mgKOH/g、水60%含有)14.4gとした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。
(Example 14)
The same procedure as in Example 2 was performed except that (B2) was changed to 14.4 g of Dispersic 190 (manufactured by Big Chemie, acid value of 10 mgKOH / g, containing 60% water). The formed silver film had a thickness of 5 μm. The results are shown in Table 1.

参考例4
(B1)をステアリン酸(和光純薬製、沸点376℃、炭素数18)とした以外は、実施例2と同様に行った。なお、形成された銀膜の厚みは5μmであった。結果を表1に示した。なお、ステアリン酸(B1)の沸点が200℃以上であり、また(B2)の分解による質量減少とステアリン酸(B1)の沸点とが重なるため、(B1)/(B2)の割合を求めることはできなかった。
( Reference Example 4 )
The same procedure as in Example 2 was performed except that (B1) was stearic acid (manufactured by Wako Pure Chemical Industries, boiling point 376 ° C., carbon number 18). The formed silver film had a thickness of 5 μm. The results are shown in Table 1. In addition, since the boiling point of stearic acid (B1) is 200 ° C. or more, and the mass reduction due to decomposition of (B2) and the boiling point of stearic acid (B1) overlap, the ratio of (B1) / (B2) is obtained. I couldn't.

Figure 0004865772
Figure 0004865772

Claims (8)

金属ナノ粒子(A)と、この金属ナノ粒子(A)を被覆する保護コロイド(B)とで構成された金属コロイド粒子であって、前記保護コロイド(B)が、ギ酸、酢酸、およびプロピオン酸から選択された少なくとも1種のカルボキシル基を有する有機化合物(B1)と、高分子分散剤(B2)とで構成されている金属コロイド粒子。 A metal colloidal particle comprising a metal nanoparticle (A) and a protective colloid (B) covering the metal nanoparticle (A), wherein the protective colloid (B) is formic acid, acetic acid, and propionic acid. Metal colloidal particles composed of an organic compound (B1) having at least one carboxyl group selected from the above and a polymer dispersant (B2). 金属ナノ粒子(A)を構成する金属が、少なくとも貴金属を含む金属である請求項1記載の金属コロイド粒子。   The metal colloidal particle according to claim 1, wherein the metal constituting the metal nanoparticle (A) is a metal containing at least a noble metal. 高分子分散剤(B2)が、カルボキシル基を有する請求項1又は2記載の金属コロイド粒子。 The metal colloidal particle according to claim 1 or 2 , wherein the polymer dispersant (B2) has a carboxyl group. 有機化合物(B1)と高分子分散剤(B2)との割合が、前者/後者(質量比)=86/14〜4/96である請求項1〜のいずれかに記載の金属コロイド粒子。 The metal colloid particles according to any one of claims 1 to 3 , wherein the ratio of the organic compound (B1) to the polymer dispersant (B2) is the former / the latter (mass ratio) = 86/14 to 4/96. 保護コロイド(B)の割合が、金属ナノ粒子(A)100質量部に対して1.0〜60質量部であり、有機化合物(B1)と高分子分散剤(B2)との割合が、前者/後者(質量比)=86/14〜4/96である請求項1〜のいずれかに記載の金属コロイド粒子。 The ratio of the protective colloid (B) is 1.0 to 60 parts by mass with respect to 100 parts by mass of the metal nanoparticles (A), and the ratio of the organic compound (B1) and the polymer dispersant (B2) is the former. / The latter (mass ratio) = 86/14 to 4/96. The metal colloidal particles according to any one of claims 1 to 4 . 請求項1〜のいずれかに記載の金属コロイド粒子および溶媒を含む分散液。 A dispersion containing the metal colloid particles according to any one of claims 1 to 5 and a solvent. 金属ナノ粒子(A)に対応する金属化合物を、請求項1記載の保護コロイド(B)および還元剤の存在下、溶媒中で還元し、請求項1記載の金属コロイド粒子を製造する方法。   The method for producing metal colloidal particles according to claim 1, wherein a metal compound corresponding to the metal nanoparticles (A) is reduced in a solvent in the presence of the protective colloid (B) according to claim 1 and a reducing agent. 溶媒中の金属化合物の濃度が、金属の質量換算で、5〜30質量%である請求項記載の製造方法。 The method according to claim 7 , wherein the concentration of the metal compound in the solvent is 5 to 30% by mass in terms of metal mass.
JP2008219930A 2007-08-30 2008-08-28 Metal colloidal particles and dispersions thereof Active JP4865772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219930A JP4865772B2 (en) 2007-08-30 2008-08-28 Metal colloidal particles and dispersions thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007223515 2007-08-30
JP2007223515 2007-08-30
JP2008219930A JP4865772B2 (en) 2007-08-30 2008-08-28 Metal colloidal particles and dispersions thereof

Publications (3)

Publication Number Publication Date
JP2009074171A JP2009074171A (en) 2009-04-09
JP2009074171A5 JP2009074171A5 (en) 2009-05-21
JP4865772B2 true JP4865772B2 (en) 2012-02-01

Family

ID=40609422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219930A Active JP4865772B2 (en) 2007-08-30 2008-08-28 Metal colloidal particles and dispersions thereof

Country Status (1)

Country Link
JP (1) JP4865772B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140035B2 (en) * 2009-05-25 2013-02-06 田中貴金属工業株式会社 Colloidal solution containing metal nanoparticles
JP5632176B2 (en) * 2009-09-30 2014-11-26 三ツ星ベルト株式会社 Laminated body, conductive substrate using the laminated body, and method for producing the same
JP5723283B2 (en) * 2009-09-30 2015-05-27 大日本印刷株式会社 Metal fine particle dispersion, method for producing conductive substrate, and conductive substrate
JP5456651B2 (en) * 2010-01-07 2014-04-02 八千代工業株式会社 Metal colloid, its production method and its application
EP2608217B1 (en) * 2011-12-21 2014-07-16 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a sintering additive
EP2608218B1 (en) * 2011-12-21 2014-07-30 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a thermally cleavable agent
KR102091094B1 (en) * 2012-07-24 2020-03-19 디아이씨 가부시끼가이샤 Metal nanoparticle composite body, metal colloidal solution, and method for producing metal colloidal solution
JP6008424B2 (en) * 2012-08-23 2016-10-19 株式会社大阪ソーダ Aqueous dispersion of metal nanoparticles and method for producing the same
JP5827203B2 (en) 2012-09-27 2015-12-02 三ツ星ベルト株式会社 Conductive composition
JP5859949B2 (en) 2012-09-27 2016-02-16 三ツ星ベルト株式会社 Conductive composition
JP5843821B2 (en) * 2013-08-13 2016-01-13 Jx日鉱日石金属株式会社 Metal powder paste and method for producing the same
JP5664739B2 (en) * 2013-10-21 2015-02-04 トヨタ自動車株式会社 Metal nanoparticle paste
CN105764995B (en) 2013-11-22 2018-04-06 东洋制罐集团控股株式会社 Hardening resin composition with antibiotic property
JP5994811B2 (en) * 2014-04-28 2016-09-21 大日本印刷株式会社 Copper nanoparticle dispersion and method for producing conductive substrate
WO2016067599A1 (en) * 2014-10-31 2016-05-06 バンドー化学株式会社 Bonding composition
JP6526190B2 (en) * 2015-05-28 2019-06-05 富士フイルム株式会社 Polymerizable composition, wavelength conversion member, backlight unit, and liquid crystal display device
JP7157597B2 (en) 2018-08-31 2022-10-20 花王株式会社 Water-based fine metal particle dispersion
KR102302205B1 (en) 2018-10-04 2021-09-16 대주전자재료 주식회사 Silver powder manufacturing method
KR20200038742A (en) 2018-10-04 2020-04-14 대주전자재료 주식회사 Silver powder manufacturing method
US20210198508A1 (en) * 2019-12-26 2021-07-01 Canon Kabushiki Kaisha Aqueous ink, ink cartridge and ink jet recording method
JP6952101B2 (en) 2019-12-27 2021-10-20 花王株式会社 Ink containing fine metal particles
JP7129117B2 (en) * 2020-12-28 2022-09-01 花王株式会社 Ink containing fine metal particles
WO2024070350A1 (en) * 2022-09-30 2024-04-04 株式会社大阪ソーダ Silver particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207161B2 (en) * 2005-04-20 2009-01-14 セイコーエプソン株式会社 Microencapsulated metal particles and method for producing the same, aqueous dispersion, and ink jet ink
US8083972B2 (en) * 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
JP2007095526A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste

Also Published As

Publication number Publication date
JP2009074171A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP4865772B2 (en) Metal colloidal particles and dispersions thereof
JP5661273B2 (en) Colloidal metal particles, paste thereof and method for producing the same
JP5430922B2 (en) Method for producing conductive substrate
JP5399100B2 (en) Metal colloidal particle aggregate and method for producing the same
JP5502434B2 (en) Bonding agent for inorganic material and bonded body of inorganic material
JP2009227736A (en) Ink composition for inkjet printing
JP2009076455A (en) Conductive substrate and its manufacturing method
JP5558069B2 (en) Laminated body, conductive substrate using the laminated body, and method for producing the same
JP5632176B2 (en) Laminated body, conductive substrate using the laminated body, and method for producing the same
JP2010177084A (en) Metal nanoparticle paste and conductive base material
JP5431071B2 (en) Conductive substrate, precursor thereof, and production method thereof
JP5002478B2 (en) Metal nanoparticle paste and pattern forming method
JP6176809B2 (en) Metal nanoparticle dispersion
JP2009097074A (en) Metal nanoparticle paste, and pattern forming method
JP2009238625A (en) Metal nanoparticle paste and pattern forming method
JP6273301B2 (en) Method for preparing metal nanoparticle dispersions
JP4780320B2 (en) Method for producing silver colloid solution, silver fine particles obtained by the production method and dispersion thereof
JP2008300046A (en) Coating composition, and conductive film
JP2008297323A (en) Inorganic glossy ink composition and writing tool
JP2010153184A (en) Electrode forming composition, method of manufacturing conductive base material, and the conductive base material
JP5461134B2 (en) Bonding agent for inorganic material and bonded body of inorganic material
JP5431073B2 (en) Method for producing a conductive substrate
JP2007297665A (en) Dispersion of metallic microparticle and production method therefor
JP2009001883A (en) Dispersion liquid containing fine metal particle, and thin metal film
JP2017149942A (en) Ink composition and image formation method therewith

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250