JP4863918B2 - OF cable abnormality detection device and oil leakage detection method of OF cable - Google Patents

OF cable abnormality detection device and oil leakage detection method of OF cable Download PDF

Info

Publication number
JP4863918B2
JP4863918B2 JP2007098926A JP2007098926A JP4863918B2 JP 4863918 B2 JP4863918 B2 JP 4863918B2 JP 2007098926 A JP2007098926 A JP 2007098926A JP 2007098926 A JP2007098926 A JP 2007098926A JP 4863918 B2 JP4863918 B2 JP 4863918B2
Authority
JP
Japan
Prior art keywords
temperature
cable
target variable
calculating
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007098926A
Other languages
Japanese (ja)
Other versions
JP2008259313A (en
Inventor
昭人 鋳鍋
雅樹 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007098926A priority Critical patent/JP4863918B2/en
Publication of JP2008259313A publication Critical patent/JP2008259313A/en
Application granted granted Critical
Publication of JP4863918B2 publication Critical patent/JP4863918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Description

本発明は、OF(Oil Filled)ケーブルの油量、ガス圧、油圧を監視する技術に係り、特に事故に至る前に早期に異常の兆候を検出することのできるOFケーブル異常検出装置およびOFケーブルの異常検出方法に関する。   The present invention relates to a technique for monitoring the oil amount, gas pressure, and oil pressure of an OF (Oil Filled) cable, and more particularly, an OF cable abnormality detection device and an OF cable that can detect signs of abnormality at an early stage before an accident occurs. The present invention relates to an abnormality detection method.

一般的にOFケーブルの外傷発生や金属疲労による金属シースの微少な亀裂などによる漏油異常の検出は、定期的な巡視点検により油量・油圧・ガス圧・外気温度などを測定して、そのトレンドを過去の記録と比較したり、給油槽に油圧低下の監視手段を設けてその警報を受信したりして行われていた。   In general, detection of abnormal oil leakage due to the occurrence of damage to the OF cable or slight cracks in the metal sheath due to metal fatigue, etc. is performed by measuring the oil amount, hydraulic pressure, gas pressure, outside air temperature, etc. through periodic inspections. The trend has been done by comparing the trend with past records, or by providing a monitoring means for oil pressure drop in the oil tank and receiving an alarm.

たとえば、特許文献1には、布設されているOFケーブルからの漏油を判定するOFケーブルの漏油判定方法において、漏油していない状態でのOFケーブルの油槽の油量、油圧の変化状態を適宜間隔で測定して記憶すると共に、OFケーブルの電流、併設されている他のケーブルの電流を測定して記憶し、この油量,油圧,電流を使用して油量又は油圧の近似統計関数を求め、現時点の油槽の油量又は油圧値と、漏油していない時点での近似統計関数から得られる油量又は油圧値との差を求め、得られた差の値の増加が発生したとき漏油と判定する方法が記載されている。   For example, in Patent Document 1, in an oil leakage determination method for an OF cable that determines oil leakage from a laid OF cable, the amount of oil in the oil tank of the OF cable and the change in oil pressure in a state where no oil has leaked Is measured and stored at appropriate intervals, and the current of the OF cable and the current of other cables installed are measured and stored, and this oil amount, oil pressure and current are used to approximate the oil amount or oil pressure. A function is obtained, and the difference between the oil quantity or hydraulic pressure value of the current oil tank and the oil quantity or hydraulic pressure value obtained from the approximate statistical function at the time of no oil leakage is obtained, and the increase of the obtained difference occurs. A method for determining oil leakage is described.

また、特許文献2には、さらに、外気温度と、土中温度とを使用して油量又は油圧の近似統計関数を求め、漏油を判定する定方法が記載されている。
ところで、漏油事故は一般に電気的事故に伴う油圧低下と部品劣化等で発生する漏油に分類される。前者は多量に漏油し、後者の漏油は微少なのが特徴である。また, 給油設定計算緒元上, 気中温度と地中温度が存在するが, 従来の方法はこれら温度と測定値を管理して、その相関演算によって漏油を判定しているため, 同じ温度においても測定値にバラツキが発生する。近年, 油入設備の漏油に対する考え方も電線路優先から環境優先へと変化していく中、従来方法では多漏油に対しては異常の判定も可能であるが微少漏油は判定できず発見が遅れるおそれがあった。
特開平6−105444号公報 特開平6−335148号公報
Patent Document 2 further describes a fixed method for determining an oil leak by obtaining an approximate statistical function of the oil amount or hydraulic pressure using the outside air temperature and the soil temperature.
By the way, oil leakage accidents are generally classified into oil leakages that occur due to a decrease in hydraulic pressure and parts deterioration associated with electrical accidents. The former is characterized by a large amount of oil leakage, and the latter oil is small. In addition, air temperature and underground temperature exist in the specification of the refueling setting calculation, but the conventional method manages these temperatures and measured values, and determines the oil leakage by the correlation calculation. Even in the case, the measurement value varies. In recent years, as the concept of oil leakage in oil-filled facilities has changed from priority to electric lines to priority in the environment, it is possible to determine abnormalities for multi-leakage oil with the conventional method, but it is not possible to determine minute oil leaks. There was a risk of discovery being delayed.
JP-A-6-105444 JP-A-6-335148

本発明は、上述のかかる事情に鑑みてなされたものであり、多量漏油のみならず微少漏油をより正確に検出して、設計上の警報点である警報発生に至る前の段階で油量または油圧・ガス圧の変化状況から早期に異常を検出することのできるOFケーブル異常検出装置およびOFケーブルの異常検出方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and more accurately detects not only a large amount of oil leakage but also a minute amount of oil leakage, and the oil before the occurrence of an alarm, which is a design alarm point. An object of the present invention is to provide an OF cable abnormality detecting device and an OF cable abnormality detecting method capable of detecting an abnormality at an early stage from the change state of the amount or the hydraulic pressure / gas pressure.

上記目的を達成するため本発明に係るOFケーブル異常検出装置は、油量、油圧、またはガス圧を目的変量、一または二以上の温度種別を説明変量として多重回帰分析によって予測式を算出し、この予測式を用いてOFケーブルの異常を監視するOFケーブル異常検出装置であって、前記目的変量および前記説明変量の測定値を入力する手段と、前記温度種別ごとに順次時間をずらした測定値を用いて目的変量を算出し、当該目的変量の測定値との相関を演算して当該演算結果から最適な時間を演算する相関演算手段と、温度種別ごとに前記相関演算手段によって求めた時間前の測定データを用いて前記予測式に基づいて算出した目的変量の予測値と、当該目的変量の測定値との差に基づいて異常の兆候を判定する判定手段と、を備えたことを特徴とする。   In order to achieve the above object, the OF cable abnormality detection device according to the present invention calculates a prediction equation by multiple regression analysis using an oil amount, oil pressure, or gas pressure as a target variable, and one or more temperature types as explanatory variables, An OF cable abnormality detection device that monitors an abnormality of an OF cable by using this prediction formula, the means for inputting the measured values of the target variable and the explanatory variable, and the measured values sequentially shifted in time for each temperature type A correlation variable calculating means for calculating a target variable using the calculation result, calculating a correlation with the measured value of the target variable and calculating an optimum time from the calculation result, and a time before the time calculated by the correlation calculation means for each temperature type A determination means for determining a sign of abnormality based on a difference between a predicted value of a target variable calculated based on the prediction formula using the measurement data of the measurement data and a measured value of the target variable. And features.

本発明では、相関演算手段によって、時間をずらした測定値を用いて目的変量を順次計算し、実測値との相関の最も大きい時間をその温度種別のシフト時間として設定する。そして、このシフト時間前の測定データを用いて予測演算を行って異常の兆候を検出する。   In the present invention, the objective variable is sequentially calculated by using the measured values shifted in time by the correlation calculation means, and the time having the largest correlation with the actually measured value is set as the shift time of the temperature type. Then, a prediction calculation is performed using the measurement data before the shift time to detect an abnormality sign.

ここで、「時間」は、時分秒のみならず、日、月も含む趣旨である。また、季節によってシフト時間を変えるようにしてもよい。   Here, “time” is intended to include not only hours, minutes and seconds but also days and months. Further, the shift time may be changed depending on the season.

また、本発明に係るOFケーブルの異常検出方法は、油量、油圧、またはガス圧を目的変量、一または二以上の温度種別を説明変量として多重回帰分析によって予測式を算出し、この予測式を用いてOFケーブルの異常を検出する方法であって、前記目的変量および前記説明変量の測定値を入力するステップと、前記温度種別ごとに順次時間をずらした測定値を用いて目的変量を算出し、当該目的変量の測定値との相関を演算して当該演算結果から最適な時間を演算する相関演算ステップと、温度種別ごとに前記相関演算ステップによって求めた時間前の測定データを用いて前記予測式に基づいて算出した目的変量の予測値と、当該目的変量の測定値との差に基づいて異常の兆候を判定するステップと、を含むことを特徴とする。   Further, the OF cable abnormality detection method according to the present invention calculates a prediction formula by multiple regression analysis using the oil amount, hydraulic pressure, or gas pressure as a target variable, and one or more temperature types as explanatory variables, and this prediction formula A method for detecting an abnormality in an OF cable using a step of inputting a measured value of the target variable and the explanatory variable, and calculating a target variable using the measured values sequentially shifted in time for each temperature type A correlation calculation step of calculating a correlation with the measurement value of the target variable and calculating an optimum time from the calculation result, and using the measurement data before the time obtained by the correlation calculation step for each temperature type And determining a sign of abnormality based on a difference between a predicted value of the target variable calculated based on the prediction formula and a measured value of the target variable.

より具体的には、前記目標変量が油量のときは、前記温度種別は、終端接続箱または給油管等の屋内気中温度、ケーブル・中間接続箱等の陸上部地中温度、および、海底部地中温度を含み、前記屋内気中温度は、現在温度を用い、前記陸上部地中温度は、前日の平均気温を用い、前記海底部地中温度は、前日の海水温度を用いる。   More specifically, when the target variable is an oil amount, the temperature type is an indoor air temperature such as a terminal junction box or an oil supply pipe, an on-ground ground temperature such as a cable / intermediate junction box, and the seabed. Including the underground temperature, the indoor air temperature uses the current temperature, the land underground temperature uses the average temperature of the previous day, and the seabed underground temperature uses the sea water temperature of the previous day.

また、前記目標変量がガス圧または油圧のときは、前記温度種別は、終端接続箱または給油管等の屋内気中温度、ケーブル・中間接続箱等の陸上部地中温度、および、海底部地中温度を含み、前記屋内気中温度は、現在温度を用い、前記陸上部地中温度は、前日の平均気温を用い、前記海底部地中温度は、現在の海水温度を用いる。
これにより現在温度を用いて測定する方法に比べて、精度の高い監視が可能となる。
Further, when the target variable is gas pressure or hydraulic pressure, the temperature type is the indoor air temperature such as the terminal junction box or the oil supply pipe, the ground temperature of the land such as the cable / intermediate junction box, and the seabed The indoor air temperature includes the current temperature, the land underground temperature uses the average temperature of the previous day, and the sea floor underground temperature uses the current sea water temperature.
As a result, it becomes possible to monitor with higher accuracy than the method of measuring using the current temperature.

本発明によれば、異常判定基準を設定すると共に、まず現在時点の異常判定を行うのに過去から現在にかけてどの時点の測定温度を用いるのが最適かを多重回帰分析によって求め、温度種別ごとに最適な時点の測定値を用いて異常を判定するため、精度の高い微少漏油の判定が可能となり、これによって早期の対応、処置が可能となる。   According to the present invention, an abnormality determination criterion is set, and first, by using multiple regression analysis, it is determined by using multiple regression analysis which measurement temperature is optimally used from the past to the present to determine abnormality at the current time point. Since the abnormality is determined using the measurement value at the optimum time, it is possible to determine the minute oil leakage with high accuracy, and thus it is possible to take an early response and treatment.

以下、本発明の実施の形態を説明する。図1は、本実施の形態によるOFケーブル異常検出装置1の機能ブロック図である。ここで、OFケーブル異常検出装置1は、種々の演算パラメータや監視データなどを入力する入力部2、入力したデータを記憶する記憶部30、異常検出のための演算を実行する演算部10、および、異常検出時に注意メッセージ等の警報出力を行う出力部3を備えている。入力部2は、汎用コンピュータのキーボードやマウス等であってオペレータによって入力してもよいし、通信ネットワークと接続して遠隔のデータを自動収集する装置であっても良い。   Embodiments of the present invention will be described below. FIG. 1 is a functional block diagram of an OF cable abnormality detection device 1 according to the present embodiment. Here, the OF cable abnormality detection device 1 includes an input unit 2 for inputting various calculation parameters, monitoring data, and the like, a storage unit 30 for storing the input data, a calculation unit 10 for performing calculation for abnormality detection, and An output unit 3 is provided for outputting a warning message or the like when an abnormality is detected. The input unit 2 may be a keyboard or mouse of a general-purpose computer and may be input by an operator, or may be a device that automatically collects remote data by connecting to a communication network.

また、演算部10は、入力したデータを記憶部30へ保存する入力処理手段11、入力した温度データの時間(日、月も含む)をシフトして多重回帰分析を行って、最も相関の大きなシフト時間を演算する相関演算手段12、相関演算手段12によって求めたシフト時間分だけ過去の測定値を用いて目標変量の予測値を演算する予測値演算手段13と、求めた予測値と測定値とを比較して異常の兆候の有無を判定する異常判定手段14と、この判定の結果、異常の兆候ありと判定されたときはアラーム出力を行うアラーム出力手段15とを有する。   In addition, the calculation unit 10 performs the multiple regression analysis by shifting the time (including day and month) of the input temperature data by storing the input data in the storage unit 30, the input processing means 11, and has the largest correlation. Correlation calculating means 12 for calculating the shift time, predicted value calculating means 13 for calculating the predicted value of the target variable using the past measured value for the shift time calculated by the correlation calculating means 12, and the calculated predicted value and measured value And an abnormality determining means 14 for determining the presence or absence of an abnormality sign, and an alarm output means 15 for outputting an alarm when it is determined that there is an abnormality sign as a result of this determination.

演算部10の各手段11〜15は、コンピュータシステムの機能として、プログラムによって実現可能な機能である。   Each means 11-15 of the calculating part 10 is a function realizable by a program as a function of a computer system.

また、記憶部30は、入力データを保存する入力データファイル31と、温度種別ごとに相関演算手段12で求められたシフト時間を格納するシフト時間ファイル32、および、予測値の演算結果を保存する演算結果ファイル33を有する。   The storage unit 30 also stores an input data file 31 for storing input data, a shift time file 32 for storing the shift time obtained by the correlation calculation means 12 for each temperature type, and a calculation result of the predicted value. An operation result file 33 is included.

<1.データ入力処理>
OFケーブル異常検出装置1は、入力部2を介して監視対象のデータを入力する。入力されたデータは、演算部10の入力処理手段11によって、記憶部30の入力データファイル31に保存される。
<1. Data input processing>
The OF cable abnormality detection device 1 inputs data to be monitored via the input unit 2. The input data is stored in the input data file 31 of the storage unit 30 by the input processing means 11 of the calculation unit 10.

図2は、入力データファイル31のデータ構成例である。ここで、入力データファイル31は、現地温度計、気象庁データ、海水温度データなど、温度種別ごとに時刻情報が付されて測定値が保存されている。なお、入力データは図2に示したデータ以外のデータが含まれていても良い。   FIG. 2 is a data configuration example of the input data file 31. Here, the input data file 31 includes time information for each temperature type, such as a local thermometer, JMA data, and seawater temperature data, and stores measurement values. Note that the input data may include data other than the data shown in FIG.

<2.予測式演算処理>
(シフト時間演算処理)
相関演算手段12は、入力データファイル31の各温度種別を説明変量として、その説明変量の所定時間前のデータを用いて目標変量の近似式を計算する。なお、この所定時間は、オペレータが予め時間(日、月であっても良い)候補を設定しておき、この設定された時間前のデータを用いて順に計算するようにしても良いし、入力データファイル31に保存されているデータをもとに自動的に現在または過去のデータを抽出して計算するようにしても良い。
<2. Prediction formula processing>
(Shift time calculation processing)
The correlation calculation means 12 uses each temperature type of the input data file 31 as an explanatory variable, and calculates an approximate expression of the target variable using data of a predetermined time before the explanatory variable. The predetermined time may be calculated by the operator in advance by setting time (may be day or month) candidates and using the data before the set time. Based on the data stored in the data file 31, current or past data may be automatically extracted and calculated.

この計算は、たとえば、図3に示すように、温度種別ごと、シフト時間ごとに相関を計算して、温度種別ごとに最も相関の大きなシフト時間を判定して、図4に例示するシフト時間ファイルに保存する。   For example, as shown in FIG. 3, the calculation calculates the correlation for each temperature type and for each shift time, determines the shift time having the largest correlation for each temperature type, and shift time file illustrated in FIG. Save to.

次に、相関演算手段12は、図5に示す処理手順に従って予測式を設定する。まず、油量・油圧、外気温度(現地気温、気象観測所発表値)、潮流値、気象観測所発表の平均気温、海水温度等のデータを取り込む(S101)。このとき、図4のシフト時間ファイル32を参照して、説明変数ごとに一定時間前のデータを抽出する(S102)。そして、多重回帰分析によって近似統計関数(予測式)を設定する(S103)。   Next, the correlation calculation means 12 sets a prediction formula according to the processing procedure shown in FIG. First, data such as oil amount / hydraulic pressure, outside air temperature (local temperature, weather station announcement value), tidal current value, weather station announcement average temperature, seawater temperature, and the like are captured (S101). At this time, referring to the shift time file 32 of FIG. 4, data for a predetermined time is extracted for each explanatory variable (S102). Then, an approximate statistical function (prediction formula) is set by multiple regression analysis (S103).

(実施例)
OFケーブルの給油設定の計算緒元においては、一般に終端接続箱・給油管等の気中温度(外気温)、ケーブル・中間接続箱等の地中温度と2種類の気温が存在する。
(Example)
In the specification of the OF cable refueling setting, there are generally two types of air temperatures: the air temperature (outside air temperature) of the terminal connection box and the oil supply pipe and the like, and the underground temperature of the cable and the intermediate connection box.

しかしながら、本実施例では図6に示す線路概要図の構成のように海底部と陸上管路部を通るOFケーブルへの適用を考慮して、単に現地測定温度と潮流値だけで基準値(回帰分析)を算定するのではなく、図7に示す温度種別を説明変量とした。   However, in this embodiment, considering the application to the OF cable passing through the seabed and the land conduit as in the configuration of the track outline diagram shown in FIG. The temperature type shown in FIG. 7 was used as the explanatory variable.

なお、OFケーブルの敷設環境によっては、地中温度・人孔(マンホール;MH)内温度等を説明変量として用いるようにしても良い。   Depending on the installation environment of the OF cable, the underground temperature and the temperature in the manhole (MH) may be used as explanatory variables.

また、ケーブル・中間接続箱等(陸上部)については、気象庁の日平均気温を用いるが、測定日,前日,2日前,3日前,4日前,5日前,6日前,1週間(7日)前,1ヶ月前,2ヵ月前のデータの中で最も相関の高いデータを用いるようにした。   Also, for cables, intermediate junction boxes, etc. (landside), the daily average temperature of the Japan Meteorological Agency is used, but the measurement date, the previous day, 2 days ago, 3 days ago, 4 days ago, 5 days ago, 6 days ago, 1 week (7 days) The data with the highest correlation among the data of the previous month, one month ago, and two months ago was used.

一方、ケーブル・中間接続箱等(海底部)についても同様に、測定日,前日,2日前,3日前,4日前,5日前,6日前,1週間(7日)前,1ヶ月前,2ヵ月前のデータの中で最も相関の高い海水温度データを用いるようにした。   On the other hand, the measurement date, the previous day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week (7 days), 1 month ago, 2 The most correlated sea water temperature data was used among the data from the previous month.

次に、上記のシフト時間ごとに相関を演算して、もっとも相関の高いシフト時間を判定して、その温度データを用いて、多重回帰解析によって以下の予測式の係数b1、b2、b3、b0を計算する。   Next, the correlation is calculated for each shift time described above, the shift time with the highest correlation is determined, and the coefficient b1, b2, b3, b0 of the following prediction formula is obtained by multiple regression analysis using the temperature data. Calculate

y’=b1・x1+b2・x2+b3・x3+b0 ・・・(1)
ここで、y’は目的変量で、x1,x2,x3は説明変量である。
y ′ = b1 · x1 + b2 · x2 + b3 · x3 + b0 (1)
Here, y ′ is an objective variable, and x1, x2, and x3 are explanatory variables.

また、y’は油量、ガス圧、または油圧の基準値となり、x1は、現地温度計によって計測する気温、x2は、上記の相関演算段階で最も相関の高い時間差における気象庁データである。また、x3は、上記の相関演算段階で最も相関の高い時間差における海水温度である。   Further, y ′ is a reference value of the oil amount, gas pressure, or hydraulic pressure, x1 is the temperature measured by the local thermometer, and x2 is the JMA data at the time difference having the highest correlation in the correlation calculation stage. Further, x3 is the seawater temperature at the time difference having the highest correlation in the correlation calculation stage.

一般的に、目的変量ごとに、時間差は異なる。目的変量(y')と目標変量(x1,x2,x3)との関係は、図4に示した如くである。   In general, the time difference is different for each objective variable. The relationship between the objective variable (y ′) and the target variables (x1, x2, x3) is as shown in FIG.

なお、この近時統計関数を算出する段階は、本OFケーブル異常検出装置1で行ってもよいが、汎用コンピュータによって処理して、これによって求めた近似統計関数のパラメータを本OFケーブル異常検出装置に取り込むようにしても良い。   The step of calculating the recent statistical function may be performed by the OF cable abnormality detecting device 1, but the parameters of the approximate statistical function obtained by processing by a general-purpose computer are obtained. You may make it take in.

(異常判定処理)
次に、図8を用いて漏油・漏ガスの兆候判定処理について説明する。まず、予測値演算手段32は、上記の事前準備段階で求めた予測式とシフト時間だけ過去のデータを用いて、現時点の目標変量の予測値を計算する(S201、S202)。そして、異常判定手段14によって、目標変量である油量・油圧の測定データと予測値とを比較して(S203)、所定値以上の差が所定回数以上発生し(S204で「YES」)、その差が拡大しておれば(S205で「YES」)、漏油・漏ガスの兆候があるとしてアラーム出力手段15を介してアラーム出力を行う(S206)。また、ステップS202の処理の後、目標変量の実測値と予測値との差を出力部3にグラフ表示して(S207)、外部からの異常判定入力によって(S208)、アラーム出力(S206)を行うようにしても良い。
(Abnormality judgment processing)
Next, an oil leakage / gas leakage sign determination process will be described with reference to FIG. First, the predicted value calculation means 32 calculates the predicted value of the current target variable using the prediction formula obtained in the advance preparation stage and the past data for the shift time (S201, S202). Then, the abnormality determination means 14 compares the measured data of the oil amount / hydraulic pressure, which is the target variable, with the predicted value (S203), and a difference of a predetermined value or more occurs a predetermined number of times (“YES” in S204). If the difference is widened (“YES” in S205), an alarm is output through the alarm output means 15 because there is an indication of oil leakage / gas leakage (S206). Further, after the processing of step S202, the difference between the actual value and the predicted value of the target variable is displayed in a graph on the output unit 3 (S207), and an alarm output (S206) is output by an external abnormality determination input (S208). You may make it do.

なお、ステップS204、S205の異常判定条件としては、このほか、連続して同一方向へ変化した場合に異常と判定するのみでなく、マイナス方向かプラス方向かを判定するようにしても良い。たとえば、漏油の場合は、マイナス方向へ連続3回変化した場合に異常と判定する等である。   In addition to the above, the abnormality determination conditions in steps S204 and S205 may be determined not only as abnormal when continuously changing in the same direction, but also as negative or positive. For example, in the case of oil leakage, it is determined that there is an abnormality when it continuously changes three times in the negative direction.

また、測定誤差等を加味して許容値を持たせるようにすると良い。たとえば、油量=基準値に対し10リットル以上、即ち油面計1メモリ程度以上とする。油圧、ガス圧=基準値に対し、0.1kg/cm2以上、連成計0.5メモリ程度以上とする、等である。
(パラメータ更新処理)
Further, it is preferable to give an allowable value in consideration of a measurement error or the like. For example, the oil amount = 10 liters or more relative to the reference value, that is, the oil level gauge is about 1 memory or more. Oil pressure, gas pressure = 0.1 kg / cm 2 or more with respect to the reference value, 0.5 meter or more for the combined meter, etc.
(Parameter update process)

データ登録の都度、相関演算手12によって、近似式を計算し表示する。このとき、前後の時間区分についても実行し、相関の高い時間区分のデータを用いて近似式を再計算する。   Each time data is registered, an approximate expression is calculated and displayed by the correlation operator 12. At this time, it is also executed for the preceding and succeeding time segments, and the approximate expression is recalculated using data of the time segments having a high correlation.

(ユーザインタフェース)
図9に示すユーザインタフェース画面を通して、各説明変量、目的変量、シフト時間の設定を行うようにすると入力作業の効率化を図ることができる。
(User interface)
If each explanatory variable, objective variable, and shift time are set through the user interface screen shown in FIG. 9, the efficiency of input work can be improved.

この図に示す入力画面により、現地測定データ等を入力し、「データ登録」ボタンを押すことによって、上記グラフへ反映する。また、気象庁、水産海洋技術センターホームページなどの外部のデータベースへリンクさせて、必要なデータを容易に収集する。   On the input screen shown in this figure, field measurement data and the like are input, and the data is reflected in the graph by pressing the “Data registration” button. In addition, the necessary data can be easily collected by linking to external databases such as the Japan Meteorological Agency and the Fisheries and Marine Technology Center website.

この入力画面を通してOFケーブル異常検出装置1へ現地測定データ等を入力し、「データ登録」ボタンを押すのみでグラフへ反映することによって作業の効率化、処理の正確性が向上する。   Through this input screen, field measurement data and the like are input to the OF cable abnormality detection device 1 and reflected on the graph by simply pressing the “data registration” button, thereby improving work efficiency and processing accuracy.

以上、本実施の形態によれば、現在時点の異常判定を行うのに過去から現在にかけてどの時点の測定温度を用いるのが最適かを多重回帰分析によって求め、温度種別ごとに最適な時点の測定値を用いて異常を判定するため、精度の高い微少漏油・漏ガスの判定が可能となり、これによって早期の対応、処置が可能となる。   As described above, according to the present embodiment, it is obtained by multiple regression analysis which time point is optimally used from the past to the present time to determine the abnormality at the current time point, and the optimum time point measurement is performed for each temperature type. Since the abnormality is determined using the value, it is possible to determine the minute oil leakage / gas leakage with high accuracy, thereby enabling early response and treatment.

本発明の実施の形態によるOFケーブル異常検出装置の機能ブロック図である。It is a functional block diagram of an OF cable abnormality detection device according to an embodiment of the present invention. 図1の入力データファイル31のデータ構成図である。It is a data block diagram of the input data file 31 of FIG. 本発明の実施の形態による温度種別ごと、シフト時間ごとの相関の計算例の説明図である。It is explanatory drawing of the example of calculation of the correlation for every temperature classification and shift time by embodiment of this invention. 図1のシフト時間ファイル32のデータ構成図である。It is a data block diagram of the shift time file 32 of FIG. 図1の相関演算手段12による予測式算出の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the prediction formula calculation by the correlation calculating means 12 of FIG. 本発明の実施例による路線概要図である。It is a route schematic diagram by the Example of this invention. 本発明の実施例による説明変量設定の説明図である。It is explanatory drawing of the explanatory variable setting by the Example of this invention. 本発明の実施の形態による漏油・漏ガスの兆候判定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the sign determination process of the oil leak / gas leak by embodiment of this invention. 本発明の実施の形態によるユーザインタフェース画面の説明図である。It is explanatory drawing of the user interface screen by embodiment of this invention.

符号の説明Explanation of symbols

1 OFケーブル異常検出装置
2 入力部
3 出力部
10 演算部
11 入力処理手段
12 相関演算手段
13 予測値演算手段
14 異常判定手段
15 アラーム出力手段
30 記憶部
31 入力データファイル
32 シフト時間ファイル
33 演算結果保存ファイル
DESCRIPTION OF SYMBOLS 1 OF cable abnormality detection apparatus 2 Input part 3 Output part 10 Calculation part 11 Input processing means 12 Correlation calculation means 13 Predicted value calculation means 14 Abnormality determination means 15 Alarm output means 30 Storage part 31 Input data file 32 Shift time file 33 Calculation result Save file

Claims (4)

油量、油圧、またはガス圧を目的変量、一または二以上の温度種別を説明変量として多重回帰分析によって予測式を算出し、この予測式を用いてOFケーブルの異常を監視するOFケーブル異常検出装置であって、
前記目的変量および前記説明変量の測定値を入力する手段と、
前記温度種別ごとに順次時間をずらした測定値を用いて目的変量を算出し、当該目的変量の測定値との相関を演算して当該演算結果から最適な時間を演算する相関演算手段と、
温度種別ごとに前記相関演算手段によって求めた時間前の測定データを用いて前記予測式に基づいて算出した目的変量の予測値と、当該目的変量の測定値との差に基づいて異常の兆候を判定する判定手段と、
を備えたことを特徴とするOFケーブル異常検出装置。
OF cable anomaly detection that calculates the prediction formula by multiple regression analysis with the oil quantity, oil pressure, or gas pressure as the target variable and one or more temperature types as explanatory variables, and monitors the abnormalities of the OF cable using this prediction formula A device,
Means for inputting measured values of the objective variable and the explanatory variable;
Correlation calculating means for calculating a target variable using measured values sequentially shifted in time for each temperature type, calculating a correlation with the measured value of the target variable, and calculating an optimal time from the calculation result;
An indication of abnormality based on the difference between the predicted value of the target variable calculated based on the prediction formula using the measurement data before the time obtained by the correlation calculation means for each temperature type and the measured value of the target variable. Determination means for determining;
An OF cable abnormality detection device comprising:
油量、油圧、またはガス圧を目的変量、一または二以上の温度種別を説明変量として多重回帰分析によって予測式を算出し、この予測式を用いてOFケーブルの異常を検出する方法であって、
前記目的変量および前記説明変量の測定値を入力するステップと、
前記温度種別ごとに順次時間をずらした測定値を用いて目的変量を算出し、当該目的変量の測定値との相関を演算して当該演算結果から最適な時間を演算する相関演算ステップと、
温度種別ごとに前記相関演算ステップによって求めた時間前の測定データを用いて前記予測式に基づいて算出した目的変量の予測値と、当該目的変量の測定値との差に基づいて異常の兆候を判定するステップと、
を含むことを特徴とするOFケーブルの異常検出方法。
A method of calculating a prediction formula by multiple regression analysis using an oil amount, oil pressure, or gas pressure as a target variable and one or more temperature types as explanatory variables, and detecting an abnormality in the OF cable using the prediction formula. ,
Inputting measured values of the objective variable and the explanatory variable;
A correlation calculation step of calculating a target variable using measurement values sequentially shifted in time for each temperature type, calculating a correlation with the measurement value of the target variable, and calculating an optimal time from the calculation result;
An indication of abnormality based on the difference between the predicted value of the target variable calculated based on the prediction formula using the measurement data obtained before the correlation calculation step for each temperature type and the measured value of the target variable. A determining step;
An OF cable abnormality detection method characterized by comprising:
前記目標変量は、油量であって、
前記温度種別は、終端接続箱または給油管等の屋内気中温度、ケーブル・中間接続箱等の陸上部地中温度、および、海底部地中温度を含み、
前記屋内気中温度は、現在温度を用い、前記陸上部地中温度は、前日の平均気温を用い、前記海底部地中温度は、前日の海水温度を用いることを特徴とする請求項2記載のOFケーブルの異常検出方法。
The target variable is an oil amount,
The temperature type includes indoor air temperature such as terminal junction box or oil supply pipe, ground temperature in land such as cable / intermediate connection box, and sea floor underground temperature,
The said indoor air temperature uses the present temperature, the said land part underground temperature uses the average temperature of the previous day, and the said sea floor underground temperature uses the sea water temperature of the previous day, It is characterized by the above-mentioned. OF cable abnormality detection method.
前記目標変量は、ガス圧または油圧であって、
前記温度種別は、終端接続箱または給油管等の屋内気中温度、ケーブル・中間接続箱等の陸上部地中温度、および、海底部地中温度を含み、
前記屋内気中温度は、現在温度を用い、前記陸上部地中温度は、前日の平均気温を用い、前記海底部地中温度は、現在の海水温度を用いることを特徴とする請求項2記載のOFケーブルの異常検出方法。
The target variable is gas pressure or hydraulic pressure,
The temperature type includes indoor air temperature such as terminal junction box or oil supply pipe, ground temperature in land such as cable / intermediate connection box, and sea floor underground temperature,
3. The indoor air temperature uses a current temperature, the land part underground temperature uses an average temperature of the previous day, and the sea floor underground temperature uses a current sea water temperature. OF cable abnormality detection method.
JP2007098926A 2007-04-04 2007-04-04 OF cable abnormality detection device and oil leakage detection method of OF cable Expired - Fee Related JP4863918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098926A JP4863918B2 (en) 2007-04-04 2007-04-04 OF cable abnormality detection device and oil leakage detection method of OF cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098926A JP4863918B2 (en) 2007-04-04 2007-04-04 OF cable abnormality detection device and oil leakage detection method of OF cable

Publications (2)

Publication Number Publication Date
JP2008259313A JP2008259313A (en) 2008-10-23
JP4863918B2 true JP4863918B2 (en) 2012-01-25

Family

ID=39982336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098926A Expired - Fee Related JP4863918B2 (en) 2007-04-04 2007-04-04 OF cable abnormality detection device and oil leakage detection method of OF cable

Country Status (1)

Country Link
JP (1) JP4863918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203574A (en) * 2019-05-15 2019-09-06 中国石油天然气集团有限公司 A kind of tank bottom oil leak monitoring device
CN110228071B (en) * 2019-06-06 2022-04-29 南京信息工程大学 Method for classifying various fused toxic gases suitable for chemical plant and inspection robot

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228529A (en) * 1988-07-19 1990-01-30 Furukawa Electric Co Ltd:The Detecting method for oil leak of cable line
JP2876142B2 (en) * 1990-03-16 1999-03-31 東北電力株式会社 Oil leakage monitoring method for OF cable line
JP2961831B2 (en) * 1990-08-08 1999-10-12 住友電気工業株式会社 Oil leak detection method for OF cable line
JP3187552B2 (en) * 1992-09-24 2001-07-11 古河電気工業株式会社 OF Cable Oil Leak Determination Method
JP3257718B2 (en) * 1993-05-20 2002-02-18 古河電気工業株式会社 OF Cable Oil Leak Determination Method
JP2001078349A (en) * 1999-09-03 2001-03-23 Sumitomo Electric Ind Ltd Method for detecting oil leakage in of-cable line

Also Published As

Publication number Publication date
JP2008259313A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
TWI391803B (en) System and method for monitoring resources in a water utility network
US10242414B2 (en) Method for locating a leak in a fluid network
KR100973662B1 (en) Water leakage position estimating system
WO2020052146A1 (en) Method and apparatus for determining gas leak, and electronic device
CN104636817A (en) Water leakage survey plan making device, system and water leakage survey plan making method
JP2013178207A (en) Water leakage detection apparatus
KR100893424B1 (en) Performance evaluation and rehabilitation of water networks and its method
Beheshti et al. Detection of extraneous water ingress into the sewer system using tandem methods–a case study in Trondheim city
CN112966374A (en) Intelligent power grid power line safety real-time online prediction early warning management system
JP6181301B2 (en) Water leakage countermeasure support device and method
JPH0896039A (en) Water pipeline information management device
JP2017002554A (en) Conduit failure detection device and method
JP4863918B2 (en) OF cable abnormality detection device and oil leakage detection method of OF cable
US20210356350A1 (en) Method and device for identifying the occurrence of a defect in a pipeline by means of estimation
JP5377174B2 (en) Leakage investigation target route extraction system
JP2006183274A (en) Method and equipment for predicting damage to sewer pipe of sewer pipe network
KR102493362B1 (en) Real-time accident detection system for waterworks using AI and method thereof
JP2022082294A (en) Pipe channel abnormality detection system, estimation device, learning model generation device, pipe channel abnormality detector, method for detecting abnormality in pipe channel, method for estimation, and method for generating learning model
JP2008281355A (en) Corrosion risk evaluation method, maintenance plan creation method, corrosion risk evaluation program, maintenance plan creation program, corrosion risk evaluation device, and maintenance plan creation device
JP2006183457A (en) Method for predicting damage to sewer pipe
JP5925585B2 (en) Main line manhole emergency simulation system, method and program
AU2021107355A4 (en) Systems and methods for managing drainage assets
JP2013231313A5 (en)
KR20030067305A (en) Method of risk assessment for buried gas pipelines
JP5503361B2 (en) Failure cause prediction system for conduit network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees