JP4862370B2 - Primary recrystallization annealing equipment for grain-oriented electrical steel sheet - Google Patents

Primary recrystallization annealing equipment for grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4862370B2
JP4862370B2 JP2005343168A JP2005343168A JP4862370B2 JP 4862370 B2 JP4862370 B2 JP 4862370B2 JP 2005343168 A JP2005343168 A JP 2005343168A JP 2005343168 A JP2005343168 A JP 2005343168A JP 4862370 B2 JP4862370 B2 JP 4862370B2
Authority
JP
Japan
Prior art keywords
steel sheet
width direction
grain size
sensor
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343168A
Other languages
Japanese (ja)
Other versions
JP2007146244A (en
Inventor
高島  稔
宏晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005343168A priority Critical patent/JP4862370B2/en
Publication of JP2007146244A publication Critical patent/JP2007146244A/en
Application granted granted Critical
Publication of JP4862370B2 publication Critical patent/JP4862370B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、連続焼鈍炉で焼鈍された鋼板の結晶粒径をオンラインで測定可能なセンサーを備えた方向性電磁鋼板の一次再結晶焼鈍設備に関する。   The present invention relates to primary recrystallization annealing equipment for a grain-oriented electrical steel sheet equipped with a sensor capable of measuring on-line the crystal grain size of a steel sheet annealed in a continuous annealing furnace.

方向性電磁鋼板は、変圧器など電気機器の鉄心材料として使用される鋼板であって、約3質量%のSiを含有し、Goss方位((100)[011]方位)に集積した集合組織を有する。このような方向性電磁鋼板の磁気特性は、製品集合組織の尖鋭度が高いほど優れる。そのため、方向性電磁鋼板の技術開発の歴史は、製品集合組織の尖鋭化の歴史といっても過言ではない。   A grain-oriented electrical steel sheet is a steel sheet used as a core material for electrical equipment such as transformers, and contains approximately 3% by mass of Si and has a texture that is accumulated in the Goss orientation ((100) [011] orientation). Have. The magnetic properties of such grain-oriented electrical steel sheets are better as the sharpness of the product texture is higher. Therefore, it is no exaggeration to say that the history of technical development of grain-oriented electrical steel sheets is the history of sharpening of the product texture.

方向性電磁鋼板は、約3質量%のSiを含有した鋼スラブを熱間圧延の後、冷間圧延により最終の板厚とした後、一次再結晶焼鈍を施し、さらに二次再結晶焼鈍を施して製造される。必要に応じて、熱延板焼鈍や冷間圧延の間に中間焼鈍が施される場合もある。このように方向性電磁鋼板の製品集合組織は、二次再結晶により形成されるが、その尖鋭度は一次再結晶板の集合組織や結晶粒径に極めて敏感である。   The grain-oriented electrical steel sheet is obtained by subjecting a steel slab containing about 3% by mass of Si to a final sheet thickness by cold rolling, followed by primary recrystallization annealing and further secondary recrystallization annealing. Manufactured. If necessary, intermediate annealing may be performed during hot-rolled sheet annealing or cold rolling. As described above, the product texture of the grain-oriented electrical steel sheet is formed by secondary recrystallization, but the sharpness is extremely sensitive to the texture and grain size of the primary recrystallized sheet.

そのため、一次再結晶焼鈍前の製造条件、すわなち、鋼成分、圧延条件、焼鈍条件等を制御して、一次再結晶板の集合組織や結晶粒径を最適化し、製品集合組織の尖鋭化を図る多くの方法が過去に提案されてきた。   Therefore, the production conditions before primary recrystallization annealing, that is, the steel composition, rolling conditions, annealing conditions, etc. are controlled to optimize the texture and grain size of the primary recrystallized plate and sharpen the product texture. Many methods have been proposed in the past.

例えば、特許文献1(特公平6−84524号公報)には、焼鈍後の鋼板について、1次再結晶粒径をオンライン計測し、1次再結晶粒径が適正範囲になるように、焼鈍条件を制御する方向性電磁鋼板の1次再結晶焼鈍方法について記載されている。ここでは、結晶粒径とよい相関のある鉄損を測定して、その測定結果が適正範囲となるように、炉温調整や通板速度を調整することで1次再結晶粒径の制御を行う方法が記載されている。これにより、2次再結晶不良の発生防止や磁束密度の高位安定化に効果を奏する旨が記載されている。
特公平6−84524号公報
For example, in Patent Document 1 (Japanese Patent Publication No. 6-84524), the annealing conditions are such that the primary recrystallized grain size is measured online and the primary recrystallized grain size falls within an appropriate range for the steel sheet after annealing. The primary recrystallization annealing method for grain-oriented electrical steel sheets for controlling the above is described. Here, the iron loss having a good correlation with the crystal grain size is measured, and the primary recrystallized grain size is controlled by adjusting the furnace temperature and adjusting the plate passing speed so that the measurement result falls within an appropriate range. The method of doing is described. It is described that this is effective in preventing the occurrence of secondary recrystallization failure and stabilizing the magnetic flux density at a high level.
Japanese Patent Publication No. 6-84524

一方、近年、鉄鋼業においては、以前にもまして、製造コストの低減が大きな課題となり、方向性電磁鋼板の製造においても、歩留まりの向上による製造コストの低減が重要となってきた。特に、方向性電磁鋼板においては、その製品磁気特性が鋼板の幅方向の一部で劣化し、その部分を切り捨てることにより発生する歩留まり低下に対する改善が望まれていた。   On the other hand, in recent years, in the steel industry, reduction of manufacturing cost has become a bigger issue than before, and in manufacturing of grain-oriented electrical steel sheets, it has become important to reduce manufacturing cost by improving yield. In particular, in the grain-oriented electrical steel sheet, the product magnetic properties deteriorate in part of the width direction of the steel sheet, and an improvement has been desired for the yield reduction that occurs when the part is cut off.

このような課題に対して、上記特許文献1に記載されている方法は、鋼板の全幅に平均化された鉄損値に基づく結晶粒径しか測定することができず、幅方向の結晶粒径の変動を測定することはできない。そのため、方向性電磁鋼板の製品磁気特性が鋼板の幅方向の一部で劣化し、結果的にその部分を切り捨てることにより発生する歩留まり低下という問題に対しては全く効果を有さないものである。   For such a problem, the method described in Patent Document 1 can measure only the crystal grain size based on the iron loss value averaged over the entire width of the steel sheet, and the crystal grain size in the width direction. It is not possible to measure fluctuations. Therefore, the product magnetic properties of grain-oriented electrical steel sheets deteriorate in part in the width direction of the steel sheet, and as a result, it has no effect at all on the problem of yield reduction caused by truncating that part. .

そこで、本発明は、方向性電磁鋼板の製造において、鋼板幅方向の結晶粒径の変動を低く抑えることで歩留まりの低下を防止するために、鋼板幅方向の結晶粒径の変動を測定可能な方向性電磁鋼板の一次再結晶焼鈍設備を提供することを目的とする。 Therefore, in the production of grain-oriented electrical steel sheets, the present invention can measure the fluctuations in the crystal grain size in the steel sheet width direction in order to prevent a decrease in yield by suppressing the fluctuations in the crystal grain size in the steel sheet width direction. It aims at providing the primary recrystallization annealing equipment of a grain-oriented electrical steel sheet.

本発明者らは、製品磁気特性が鋼板幅方向の一部で劣化する原因について調査を行った。その結果、鋼板幅方向の一次再結晶粒径の変動が、最終的な製品の磁気特性劣化の原因であることを見出した。   The present inventors have investigated the cause of the product magnetic properties being deteriorated in part in the width direction of the steel sheet. As a result, it was found that fluctuations in the primary recrystallized grain size in the width direction of the steel sheet were the cause of the deterioration of the magnetic properties of the final product.

しかし、一次再結晶焼鈍以前のすべての工程における鋼板製造条件の幅方向不均一が、幅方向の一次再結晶粒径変動の原因となりうる。そこで、本発明者らは、多くの一次再結晶焼鈍板について、オフラインで、幅方向の一次再結晶粒径を調査し、一次再結晶粒径の幅方向変動のパターンとその原因との関係を長期間にわたって調査した。具体的には、一次再結晶焼鈍後の鋼板のエッジから50mm間隔で金属組織の光学顕微鏡観察を行い、結晶粒径を円相当径として測定を行った。   However, the non-uniformity in the width direction of the steel sheet production conditions in all the steps before the primary recrystallization annealing can cause the primary recrystallization grain size variation in the width direction. Therefore, the present inventors investigated the primary recrystallized grain size in the width direction for many primary recrystallized annealing plates offline, and found the relationship between the pattern of the fluctuation in the width direction of the primary recrystallized grain size and the cause. It was investigated over a long period of time. Specifically, the metallographic structure was observed at an interval of 50 mm from the edge of the steel sheet after the primary recrystallization annealing, and the crystal grain size was measured as the equivalent circle diameter.

測定結果の一例を図1〜図3に示す。ここで、図1は、連続鋳造時における電磁攪拌の電流低下によりスラブ等軸晶率が低下した場合の一次再結晶粒径の幅方向測定結果である。図1に示されるように、鋼板の幅方向両端部から1/4程度の部分において一次再結晶粒径がやや粗大化する傾向が認められた。   An example of a measurement result is shown in FIGS. Here, FIG. 1 is a measurement result in the width direction of the primary recrystallized grain size when the equiaxed crystal ratio of the slab is lowered due to a decrease in current of electromagnetic stirring during continuous casting. As shown in FIG. 1, it was recognized that the primary recrystallized grain size tends to be slightly coarser at about ¼ from both ends in the width direction of the steel sheet.

図2は、粗圧延時にシートバー幅エッジ部の温度が下がった場合の一次再結晶粒径の幅方向測定結果である。図2に示されるように、鋼板の両エッジ部に向かい、穏やかに結晶粒径が粗大化する傾向が認められた。   FIG. 2 is a measurement result in the width direction of the primary recrystallized grain size when the temperature of the sheet bar width edge portion is lowered during rough rolling. As shown in FIG. 2, it was observed that the crystal grain size gradually increased toward both edge portions of the steel plate.

図3は、熱延板焼鈍の加熱帯において、鋼板のエッジ部が過加熱となった場合の一次再結晶粒径の測定結果である。図3に示されるように、鋼板の両エッジ部に向かい、急激に結晶粒径が粗大化する傾向が認められた。   FIG. 3 is a measurement result of the primary recrystallization grain size when the edge portion of the steel sheet is overheated in the heating zone of hot-rolled sheet annealing. As shown in FIG. 3, a tendency was observed in which the crystal grain size suddenly increased toward both edge portions of the steel sheet.

上記図1〜図3に示されるように、原因に固有の一次再結晶粒径の幅方向変動パターンがあるということが明らかとなり、原因の特定と問題の解決には、鋼板の幅方向における一次再結晶粒径の測定が極めて有効であることを見出した。そこで、本発明者らは、鋼板の幅方向における一次再結晶粒径の分布をオンライン測定することにより、迅速な原因の特定と上記課題の解決が可能となり、歩留まりの著しい向上に寄与できるとの知見を得た。   As shown in FIGS. 1 to 3, it becomes clear that there is a variation pattern in the width direction of the primary recrystallized grain size inherent in the cause. For the identification of the cause and the solution of the problem, the primary in the width direction of the steel sheet It has been found that the measurement of the recrystallized grain size is extremely effective. Therefore, the inventors have made it possible to quickly identify the cause and solve the above problems by measuring the distribution of the primary recrystallization grain size in the width direction of the steel sheet, and contribute to a significant improvement in yield. Obtained knowledge.

しかし、上記特許文献1に記載されている鉄損値に基づく結晶粒径の測定では鋼板の全幅に平均化された結晶粒径しか測定することができず、鋼板の幅方向における結晶粒径の分布をオンライン測定することは不可能である。そこで、本発明者らは、さらに、鋼板の幅方向における結晶粒径の分布をオンライン測定することが可能な手段について検討を行った。その結果、後述する図4に示すようなコの字形コア(鉄心)401に、励磁一次コイル402と出力二次電圧コイル403とを巻装した構成のセンサーを用いることで鋼板の幅方向における結晶粒径の分布をオンライン測定することが可能であることを見出した。   However, in the measurement of the crystal grain size based on the iron loss value described in Patent Document 1, only the crystal grain size averaged over the entire width of the steel sheet can be measured, and the crystal grain size in the width direction of the steel sheet can be measured. It is impossible to measure the distribution online. Therefore, the present inventors further examined a means capable of online measurement of the crystal grain size distribution in the width direction of the steel sheet. As a result, a crystal in the width direction of the steel sheet can be obtained by using a sensor having a configuration in which an excitation primary coil 402 and an output secondary voltage coil 403 are wound around a U-shaped core (iron core) 401 as shown in FIG. It has been found that the particle size distribution can be measured online.

ここで、本発明者らは、前記検討において、前記センサーを用いて種々の一次再結晶焼鈍後の鋼板について励磁一次コイル402に交流電流を入力し、出力二次電圧コイル403に誘導された出力電圧を検出する実験を行いながら、光学顕微鏡から測定された結晶粒径と前記出力電圧との関係を検討した。その結果、光学顕微鏡組織から測定された結晶粒径と入力電圧と出力電圧の位相差との間にはよい相関関係があることが判明した。   Here, in the above examination, the inventors input an alternating current to the excitation primary coil 402 for the various steel sheets after the primary recrystallization annealing using the sensor, and the output induced in the output secondary voltage coil 403. While conducting an experiment for detecting the voltage, the relationship between the crystal grain size measured from the optical microscope and the output voltage was examined. As a result, it was found that there is a good correlation between the crystal grain size measured from the optical microscope texture and the phase difference between the input voltage and the output voltage.

ここで、前記位相差は、市販のロックインアンプにより測定することができる。測定は、まず、入力電圧信号をロックインアンプの参照信号として用い、センサーの出力電圧をロックインアンプの信号入力に接続する。ロックインアンプ自体が位相差Δθを直接表示するものであればそれを用いればよい。直接表示がない場合には、ロックインアンプのX成分出力(cosΔθ)とY成分出力(sinΔθ)からarctan関数を用いて計算により求めることができる。   Here, the phase difference can be measured by a commercially available lock-in amplifier. In the measurement, first, the input voltage signal is used as a reference signal for the lock-in amplifier, and the output voltage of the sensor is connected to the signal input of the lock-in amplifier. If the lock-in amplifier itself directly displays the phase difference Δθ, it may be used. When there is no direct display, it can be obtained by calculation using the arctan function from the X component output (cos Δθ) and the Y component output (sin Δθ) of the lock-in amplifier.

つまり、前記センサーを用いて鋼板の幅方向における複数箇所で結晶粒径を測定することにより鋼板の幅方向における結晶粒径の分布がオンラインで測定可能であることを見出した。   That is, it has been found that the crystal grain size distribution in the width direction of the steel sheet can be measured online by measuring the crystal grain size at a plurality of locations in the width direction of the steel sheet using the sensor.

本発明は上記知見に基づきなされたもので、以下のような特徴を有する。
[1]連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを、鋼板幅方向の2ヶ所以上に備えたことを特徴とする方向性電磁鋼板の一次再結晶焼鈍設備。
[2]連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを、鋼板幅方向に移動可能に1つ以上備えたことを特徴とする方向性電磁鋼板の一次再結晶焼鈍設備。
[3]上記[1]または[2]において、鋼板の結晶粒径をオンラインで測定可能なセンサーが、コの字形コアに、励磁一次コイルと出力二次電圧コイルとを巻装した構成のものであることを特徴とする方向性電磁鋼板の一次再結晶焼鈍設備。
[4]上記[1]乃至[3]のいずれかにおいて、それぞれのセンサーの測定領域が鋼板全幅の1/3以下であることを特徴とする方向性電磁鋼板の一次再結晶焼鈍設備。
The present invention has been made based on the above findings and has the following characteristics.
[1] A primary recrystallization annealing facility for grain-oriented electrical steel sheets characterized in that on the outlet side of the continuous annealing furnace, sensors capable of measuring the crystal grain size of the steel sheets online are provided at two or more locations in the steel sheet width direction.
[2] Primary recrystallization annealing of a grain-oriented electrical steel sheet provided with one or more sensors on the outlet side of the continuous annealing furnace that can measure the grain size of the steel sheet online so as to be movable in the width direction of the steel sheet. Facility.
[3] In the above [1] or [2], the sensor capable of measuring the crystal grain size of the steel sheet on-line has a U-shaped core wound with an exciting primary coil and an output secondary voltage coil. Primary recrystallization annealing equipment for grain-oriented electrical steel sheets, characterized by
[4] The primary recrystallization annealing facility for grain-oriented electrical steel sheets according to any one of the above [1] to [3], wherein the measurement area of each sensor is 1/3 or less of the full width of the steel sheet.

本発明に係る方向性電磁鋼板の一次再結晶焼鈍設備により、焼鈍炉出側において、鋼板の一次再結晶粒径の幅方向における変動測定が可能となった。これにより、一次再結晶粒径の幅方向変動による磁気特性劣化に関し、一次再結晶粒径の幅方向変動パターンよりその原因の特定を迅速、かつ容易に行うことができるようになり、その結果、鋼板幅方向の結晶粒径の変動を低く抑えることが可能となり、歩留まりを向上させることが可能となった。   With the primary recrystallization annealing facility of the grain-oriented electrical steel sheet according to the present invention, it is possible to measure fluctuations in the width direction of the primary recrystallization grain size of the steel sheet on the exit side of the annealing furnace. As a result, regarding the magnetic property deterioration due to the fluctuation in the width direction of the primary recrystallized grain size, the cause can be quickly and easily identified from the pattern of fluctuation in the width direction of the primary recrystallized grain size. It became possible to keep the fluctuation of the crystal grain size in the width direction of the steel sheet low, and to improve the yield.

本発明に係る方向性電磁鋼板の一次再結晶焼鈍設備は、連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを、鋼板幅方向の2ヶ所以上に備えたことを特徴とするものである。   The primary recrystallization annealing facility of the grain-oriented electrical steel sheet according to the present invention is characterized in that on the outlet side of the continuous annealing furnace, sensors capable of measuring the crystal grain size of the steel sheet online are provided at two or more locations in the width direction of the steel sheet. It is what.

前記連続焼鈍炉は、方向性電磁鋼板の冷間圧延板を連続焼鈍により一次再結晶させる設備である。   The continuous annealing furnace is equipment for primary recrystallization of cold-rolled sheets of grain-oriented electrical steel sheets by continuous annealing.

前記連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを鋼板幅方向の2ヶ所以上に設け、これにより鋼板幅方向における結晶粒径を少なくとも2ヶ所以上で測定することで一次再結晶粒径の鋼板幅方向における変動の測定が可能となる。ここで、例えば前記センサーを鋼板幅方向に2ヶ所設ける場合には、それぞれのセンサーにより結晶粒径を測定する領域を好ましくは鋼板全幅の1/3以下として、それぞれのセンサーを鋼板幅方向中央付近及び鋼板幅方向片側端部周辺付近に固定して設置することで一次再結晶粒径の鋼板幅方向における変動測定が可能となる。なお、前記センサーを3ヶ所以上に設置する場合でも同様に、例えば3ヶ所に設ける場合には、それぞれのセンサーにより結晶粒径を測定する領域を好ましくは鋼板全幅の1/3以下として、それぞれのセンサーを鋼板幅方向中央付近及び鋼板幅方向両端部周辺付近に固定して設置し、また、4ヶ所に設ける場合は、それぞれのセンサーにより結晶粒径を測定する領域を好ましくは鋼板全幅の1/4以下として、それぞれのセンサーを鋼板幅方向に略等間隔に固定して配置することにより一次再結晶粒径の鋼板幅方向における変動測定が可能となる。   On the outlet side of the continuous annealing furnace, sensors capable of measuring the crystal grain size of the steel sheet online are provided at two or more locations in the steel plate width direction, thereby measuring the crystal grain size in the steel plate width direction at at least two locations. It is possible to measure fluctuations in the primary recrystallized grain size in the width direction of the steel sheet. Here, for example, when two sensors are provided in the width direction of the steel plate, the area in which the crystal grain size is measured by each sensor is preferably 1/3 or less of the full width of the steel plate, and each sensor is located near the center in the width direction of the steel plate. And, by fixing and installing in the vicinity of one side end portion in the steel plate width direction, it becomes possible to measure the fluctuation of the primary recrystallized grain size in the steel plate width direction. Similarly, even when the sensors are installed at three or more locations, for example, when the sensors are provided at three locations, the area in which the crystal grain size is measured by each sensor is preferably set to 1/3 or less of the full width of the steel sheet. When the sensor is fixedly installed near the center in the width direction of the steel sheet and near the ends of both ends in the width direction of the steel sheet, and when provided at four locations, the area in which the crystal grain size is measured by each sensor is preferably 1 / th of the full width of the steel sheet. By setting each sensor to 4 or less and fixing them at substantially equal intervals in the steel plate width direction, it is possible to measure fluctuations in the primary recrystallized grain size in the steel plate width direction.

また、本発明においては、前記連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを1つ以上、鋼板幅方向に移動可能に備えるようにしてもよい。前記センサーを移動させながら、少なくとも鋼板幅方向の2ヶ所以上で結晶粒径の測定を行うことで一次再結晶粒径の鋼板幅方向における変動測定が可能となる。ここで、前記センサーにより結晶粒径を測定する領域は、前記固定式のセンサーを用いる場合と同様に鋼板全幅の1/3以下とすることが好ましい。   Moreover, in this invention, you may make it equip the said continuous annealing furnace exit side with one or more sensors which can measure the crystal grain size of a steel plate on-line so that a movement in a steel plate width direction is possible. By measuring the crystal grain size at least at two or more locations in the steel plate width direction while moving the sensor, it is possible to measure fluctuations in the primary recrystallized grain size in the steel plate width direction. Here, it is preferable that the region in which the crystal grain size is measured by the sensor is 1/3 or less of the full width of the steel plate, as in the case of using the fixed sensor.

ここで、前記センサーによる測定領域の板幅方向における大きさは、鋼板の幅方向で測定する測定点の数により決定すればよく、その測定領域の板幅、長手両方向の大きさの調整は、後述するセンサーのコア幅及びコア長さを調節することで行われる。なお、コアの長さは大きいほど測定の精度は向上するがセンサーの価格が高くなるので1000mm以下とすることが好ましく、コアの長さが小さいと測定の精度が悪くなるので30mm以上とすることが好ましい。   Here, the size in the plate width direction of the measurement region by the sensor may be determined by the number of measurement points to be measured in the width direction of the steel plate. This is done by adjusting the core width and core length of the sensor described later. The measurement accuracy improves as the core length increases, but the price of the sensor increases. Therefore, it is preferably 1000 mm or less. If the core length is small, the measurement accuracy deteriorates. Is preferred.

以下、センサーの構成についてさらに説明する。   Hereinafter, the configuration of the sensor will be further described.

図4に、前記鋼板の結晶粒径をオンラインで測定可能なセンサーの構成の一例を示す。図4(a)は、前記センサーを鋼板幅方向から見た正面図、図4(b)は、前記センサーを鋼板長手方向から見た側面図である。図4に示すように、前記センサーは、コの字形コア(鉄心)401に、励磁一次コイル402と出力二次電圧コイル403とを巻装した構成のものを用いることができる。   FIG. 4 shows an example of the configuration of a sensor that can measure the crystal grain size of the steel sheet online. FIG. 4A is a front view of the sensor as viewed from the width direction of the steel sheet, and FIG. 4B is a side view of the sensor as viewed from the longitudinal direction of the steel sheet. As shown in FIG. 4, a sensor having a U-shaped core (iron core) 401 wound with an exciting primary coil 402 and an output secondary voltage coil 403 can be used as the sensor.

ここで、図4に示す構成のセンサーを用いた場合には、前記センサーが、鋼板404幅方向で結晶粒径を測定する領域は、コの字形コア401の幅(図4(b)のw)に相当する領域となり、鋼板404長手方向で結晶粒径を測定する領域は、コの字形コア401の長さ(図4(a)のl)に相当する領域となる。この領域での平均の結晶粒径が前記鋼板404の結晶粒径の大きさとして測定される。前記コア401の幅wは、鋼板全幅の1/3以下とすることが好ましい。前記コア401の幅wが、鋼板全幅の1/3以下とした場合、幅方向の粒径分布をより精度よく測定することができ、幅方向変動原因の特定を容易にすることができる。   Here, when the sensor having the configuration shown in FIG. 4 is used, the region in which the sensor measures the crystal grain size in the width direction of the steel plate 404 is the width of the U-shaped core 401 (w in FIG. 4B). ) And the region in which the crystal grain size is measured in the longitudinal direction of the steel plate 404 is a region corresponding to the length of the U-shaped core 401 (l in FIG. 4A). The average crystal grain size in this region is measured as the crystal grain size of the steel plate 404. The width w of the core 401 is preferably 1/3 or less of the full width of the steel plate. When the width w of the core 401 is 1/3 or less of the full width of the steel plate, the particle size distribution in the width direction can be measured with higher accuracy, and the cause of the width direction fluctuation can be easily identified.

なお、前記コア401の幅wを小さくすれば小さくするほど鋼板幅方向の結晶粒径の分布を精度よく測定することができるが、小さすぎると測定値そのものの精度が悪くなるので、幅wは5mm以上とすることが好ましい。   As the width w of the core 401 is reduced, the distribution of the crystal grain size in the width direction of the steel sheet can be measured with higher accuracy. However, if the width is too small, the accuracy of the measurement value itself is deteriorated. It is preferable to be 5 mm or more.

前記センサーは、前記連続焼鈍炉の出側に設けられる。ここで、前記連続焼鈍炉の出側には、一次再結晶焼鈍につづく二次再結晶焼鈍において鋼板同士がくっつかないように、焼鈍分離剤塗布装置及び焼鈍分離剤乾燥装置が付帯することが多い。前記センサーの設置位置としては、前記連続焼鈍炉出側であれば特に制限されないが、前記焼鈍分離剤塗布装置若しくは前記焼鈍分離剤乾燥装置の前後、或いは、前記焼鈍分離剤塗布装置と焼鈍分離剤乾燥装置の間に設置してもよい。   The sensor is provided on the exit side of the continuous annealing furnace. Here, the outlet side of the continuous annealing furnace is often accompanied by an annealing separator coating apparatus and an annealing separator drying apparatus so that the steel sheets do not stick to each other in the secondary recrystallization annealing following the primary recrystallization annealing. . The installation position of the sensor is not particularly limited as long as it is on the exit side of the continuous annealing furnace, but before or after the annealing separator coating apparatus or the annealing separator drying apparatus, or the annealing separator coating apparatus and the annealing separator. You may install between drying apparatuses.

前記センサーによる結晶粒径の測定方法の一例を以下に記載する。まず、図4に示すように、前記センサーのコの字形コア401の両端面を、一次再結晶焼鈍を行った鋼板404の表面からh=10mm程度離した位置に固定する。次に、励磁一次コイル402に図示しない電流供給装置から50Hzの交流電流を入力し、出力二次電圧コイル403に誘導された出力電圧波形を図示しない電圧測定装置により検出した。次に、入力電圧と出力電圧の位相差を図示しない演算装置により算出し、さらに予め求めておいた前記位相差と結晶粒径との関係から結晶粒径の算出を行う。   An example of a method for measuring the crystal grain size using the sensor is described below. First, as shown in FIG. 4, both end surfaces of the U-shaped core 401 of the sensor are fixed at positions h = 10 mm away from the surface of the steel plate 404 subjected to primary recrystallization annealing. Next, an AC current of 50 Hz was input to the excitation primary coil 402 from a current supply device (not shown), and an output voltage waveform induced in the output secondary voltage coil 403 was detected by a voltage measurement device (not shown). Next, the phase difference between the input voltage and the output voltage is calculated by an arithmetic unit (not shown), and the crystal grain size is calculated from the relationship between the phase difference obtained in advance and the crystal grain size.

ここで、前記鋼板404表面からの距離hは10mmに限定されるものではないが、精度よく結晶粒径をオンライン測定するという観点からは小さいほどよい。しかしながら、小さすぎると鋼板表面とセンサーが接触する可能性があることから、0.1mm以上とすることが好ましい。   Here, the distance h from the surface of the steel plate 404 is not limited to 10 mm, but it is better as it is smaller from the viewpoint of accurately measuring the crystal grain size on-line. However, if it is too small, the steel plate surface and the sensor may come into contact with each other.

また、前記励磁一次コイル402に入力される交流電流は50Hzに限定されるものではないが、精度よく結晶粒径をオンライン測定するという観点からは10Hzから1000Hzの範囲とすることが好ましい。   The alternating current input to the excitation primary coil 402 is not limited to 50 Hz, but is preferably in the range of 10 Hz to 1000 Hz from the viewpoint of measuring the crystal grain size with high accuracy.

ここで、前記出力二次電圧コイル403の出力電圧波形は、鋼板の一次再結晶粒径により変化する。特に、入力電圧と出力電圧の位相差は、前述したように鋼板の一次再結晶粒径とよい相関が得られ、粒径測定に適する。しかし、前記入力電圧と出力電圧の位相差だけではなく、前記出力二次コイルの電圧波形から測定される値であって、鋼板の結晶粒径と相関が得られる値であれば本発明に適用することができ、位相差だけに限定されるものではない。   Here, the output voltage waveform of the output secondary voltage coil 403 varies depending on the primary recrystallization grain size of the steel sheet. In particular, the phase difference between the input voltage and the output voltage has a good correlation with the primary recrystallization grain size of the steel sheet as described above, and is suitable for grain size measurement. However, not only the phase difference between the input voltage and the output voltage but also a value measured from the voltage waveform of the output secondary coil, which is a value that can be correlated with the crystal grain size of the steel sheet, is applied to the present invention. However, the present invention is not limited to the phase difference.

本発明においては、上記構成のセンサーを鋼板幅方向の2ヶ所以上に備えることにより、或いは、例えばレールなどにより鋼板幅方向に移動可能に備えることにより幅方向の結晶粒径の変動を精度よく測定することが可能となる。   In the present invention, it is possible to accurately measure fluctuations in the crystal grain size in the width direction by providing the sensor having the above-described configuration at two or more locations in the width direction of the steel sheet, or by being movably provided in the width direction of the steel sheet by, for example, a rail. It becomes possible to do.

図5及び図6に上記構成のセンサーを鋼板幅方向に配置する場合の一例を示す。図5は、鋼板501の幅方向にコの字形コア502の幅がwであるセンサーを20ヶ所に固定して設けた場合を示す。また、図6は、鋼板601の幅方向にレール603を設け、このレール603にコの字形コア602の幅がwであるセンサーを移動可能に取り付けた場合を示す。   FIG. 5 and FIG. 6 show an example in which the sensor having the above configuration is arranged in the steel plate width direction. FIG. 5 shows a case where sensors with a U-shaped core 502 having a width w are fixed in 20 positions in the width direction of the steel plate 501. FIG. 6 shows a case where a rail 603 is provided in the width direction of the steel plate 601, and a sensor whose width of the U-shaped core 602 is w is attached to the rail 603 so as to be movable.

以上においては、鋼板の結晶粒径をオンラインで測定可能なセンサーとして、コの字形コア(鉄心)に、励磁一次コイルと出力二次電圧コイルとを巻装した構成のものを用いる場合について説明したが、例えば、前記センサーとして超音波減衰を利用する方法を用いたセンサー、X線回折線の半価幅を利用する方法を用いたセンサーなどの公知のセンサーを用いることもできる。しかし、方向性電磁鋼板の一次再結晶粒径がおよそ5〜30μm程度であり、この粒径範囲で最も精度よく、オンライン結晶粒径測定に適していたのは、上述の励磁一次コイルと出力二次電圧コイルを巻装したコの字形コアにより構成されるセンサーを用いた場合であった。   In the above, a case where a sensor having a U-shaped core (iron core) wound with an excitation primary coil and an output secondary voltage coil is used as a sensor capable of measuring the crystal grain size of a steel sheet online. However, for example, a known sensor such as a sensor using a method using ultrasonic attenuation as a sensor or a sensor using a method using a half-value width of an X-ray diffraction line may be used. However, the primary recrystallized grain size of grain-oriented electrical steel sheet is about 5 to 30 μm, and the most accurate and suitable for on-line crystal grain size measurement in this grain size range is the above-described excitation primary coil and output 2 This was the case where a sensor composed of a U-shaped core wound with a secondary voltage coil was used.

以下、上述の図4に示す構成のセンサーを用いて、一次再結晶焼鈍後の鋼板における幅方向の結晶粒径の測定を行った結果を示す。   Hereinafter, the result of having measured the crystal grain size of the width direction in the steel plate after primary recrystallization annealing using the sensor of the composition shown in Drawing 4 mentioned above is shown.

本発明例として、前記センサーを上述の図5に示すように配置した場合(本発明例1)、上述の図6に示すように配置した場合(本発明例2)、図7に示すように配置した場合(本発明例3)及び、図8に示すように配置した場合(本発明例4)について測定を行った。ここで、図5に示す場合は、一つのセンサーのコの字形コア502の幅を40mmとし、それを鋼板幅方向に均等に20個配置した場合を示す。また、図6に示す場合は、一つのセンサーのコの字形コア602の幅を40mmとし、このセンサーをレール603により鋼板幅方向に移動させながら、鋼板の幅方向を20等分した個所においてそれぞれ測定を行った。図7に示す場合は、一つのセンサーのコの字形コア702の幅を300mmとし、それを鋼板幅方向に2個配置した場合を示す。図8に示す場合は、一つのセンサーのコの字型コア802の幅を500mmとし、それを鋼板幅方向に2個配置した場合を示す。   As an example of the present invention, when the sensor is arranged as shown in FIG. 5 (Invention Example 1), when arranged as shown in FIG. 6 (Invention Example 2), as shown in FIG. Measurements were made for the case of arrangement (Invention Example 3) and the case of arrangement as shown in FIG. 8 (Invention Example 4). Here, the case shown in FIG. 5 shows the case where the width of the U-shaped core 502 of one sensor is 40 mm and 20 pieces are equally arranged in the steel plate width direction. In the case shown in FIG. 6, the width of the U-shaped core 602 of one sensor is set to 40 mm, and this sensor is moved in the steel plate width direction by the rail 603, while the width direction of the steel plate is divided into 20 parts. Measurements were made. In the case shown in FIG. 7, the width of the U-shaped core 702 of one sensor is set to 300 mm, and two of them are arranged in the steel plate width direction. In the case shown in FIG. 8, the width of the U-shaped core 802 of one sensor is 500 mm, and two of them are arranged in the steel plate width direction.

また、比較例として、図9に示すように、一つのセンサーのコの字形コアの幅902を900mmとし、それを1個配置した場合(比較例1)について測定を行った。   Further, as a comparative example, as shown in FIG. 9, the measurement was performed when the width 902 of the U-shaped core of one sensor was set to 900 mm and one was arranged (Comparative Example 1).

図10に、本測定に用いた一次再結晶焼鈍設備のレイアウトを示す。ここで、1001は一次再結晶焼鈍前の鋼板コイル、1002は連続焼鈍炉の加熱帯、1003は連続焼鈍炉の均熱帯、1004は連続焼鈍炉の冷却帯、1005はセンサー、1006は焼鈍分離剤(MgOを主成分とするスラリー)塗布装置、1007は焼鈍分離剤乾燥炉、1008は一次再結晶焼鈍後の鋼板コイル、1009は鋼板である。なお、上記本発明例1〜3、比較例1のように配置したセンサーを前記1005の位置に配置した。   FIG. 10 shows the layout of the primary recrystallization annealing equipment used for this measurement. Here, 1001 is a steel plate coil before primary recrystallization annealing, 1002 is a heating zone of a continuous annealing furnace, 1003 is a soaking zone of the continuous annealing furnace, 1004 is a cooling zone of the continuous annealing furnace, 1005 is a sensor, and 1006 is an annealing separator. (Slurry mainly composed of MgO) Coating device, 1007 is an annealing separator drying furnace, 1008 is a steel plate coil after primary recrystallization annealing, and 1009 is a steel plate. In addition, the sensor arrange | positioned like the said invention examples 1-3 and the comparative example 1 was arrange | positioned in the said 1005 position.

測定に用いた鋼板1009は、質量%でC:0.06%、Si:3.3%、Mn:0.07%、Sol.Al:100ppm未満、S:20ppm、残部Fe及び不可避的不純物の組成よりなる鋼スラブを、1200℃×20minスラブ加熱し、熱間圧延の後、1000℃×30secの熱延板焼鈍を施し、冷間圧延により、板厚0.30mm、板幅1000mmの最終冷延板とした物を用いた。これを、図9に示した一次再結晶焼鈍設備の連続焼鈍炉にて、露点55℃、質量%で50%H2-50%N2雰囲気で850℃×100sの一次再結晶焼鈍を施し、その後、連続焼鈍炉出側において鋼板幅方向の結晶粒径を測定した。   The steel plate 1009 used for the measurement is a steel slab composed of C: 0.06%, Si: 3.3%, Mn: 0.07%, Sol. Al: less than 100ppm, S: 20ppm, the balance Fe and unavoidable impurities. Slab heated at 1200 ° C for 20 min, hot rolled, then subjected to hot rolled sheet annealing at 1000 ° C for 30 sec, and used as a final cold rolled sheet with a thickness of 0.30 mm and a width of 1000 mm by cold rolling It was. This was subjected to primary recrystallization annealing at 850 ° C. × 100 s in a 50% H 2-50% N 2 atmosphere with a dew point of 55 ° C. and mass% in the continuous annealing furnace of the primary recrystallization annealing equipment shown in FIG. The crystal grain size in the width direction of the steel sheet was measured on the outlet side of the continuous annealing furnace.

前記本発明例1による測定結果を図11に、前記本発明例2による測定結果を図12に、前記本発明例3による測定結果を図13に、前記本発明例4による測定結果を図14に、前記比較例1による測定結果を図15にそれぞれ示す。   FIG. 11 shows the measurement results of Example 1 of the invention, FIG. 12 shows the measurement results of Example 2 of the invention, FIG. 13 shows the measurement results of Example 3 of the invention, and FIG. 14 shows the measurement results of Example 4 of the invention. FIG. 15 shows the measurement results of Comparative Example 1.

図11〜図14に示すように、本発明例1〜4により鋼板幅方向の一次再結晶粒径を精度よく測定することができることが確認できた。なお、本発明例3、本発明例4の場合においても、鋼板のエッジ部で一次粒径が粗大化していることがわかるが、コア幅が板幅の1/3より大きい本発明例4より、コア幅が板幅の1/3より小さい本発明例3の方が、エッジ部での一次粒径粗大化を精度よく検出できている一方、比較例1の場合では、鋼板のエッジ部での結晶粒径の粗大化を検出することはできなかった。   As shown in FIGS. 11 to 14, it was confirmed that the primary recrystallized grain size in the steel sheet width direction can be measured with high accuracy by Examples 1-4 of the present invention. In the case of Invention Example 3 and Invention Example 4, it can be seen that the primary particle size is coarsened at the edge portion of the steel sheet, but from the Invention Example 4 where the core width is larger than 1/3 of the plate width. In the case of the present invention example 3 in which the core width is smaller than 1/3 of the plate width, the coarsening of the primary particle size at the edge portion can be detected more accurately, while in the case of the comparative example 1, the edge portion of the steel plate No coarsening of the crystal grain size could be detected.

ついで、1200℃×5hrの二次再結晶焼鈍を施した後、絶縁被膜を施して製品とした。その結果、鋼板の両エッジ部120mmで磁気特性が劣化し、その部分を切り捨てた結果、歩留まりが低下した。しかし、本発明例1〜4によれば、鋼板幅方向の一次再結晶粒径は、エッジ部で急激に増加していることから、熱延板焼鈍の加熱帯において過加熱が発生していることが判明し、熱延板焼鈍の加熱帯の温度を下げることにより、以後の製品における、磁気特性の劣化を防ぐことができ、歩留まりの低下を防止することが可能となった。   Subsequently, after subjecting to secondary recrystallization annealing at 1200 ° C. for 5 hours, an insulating coating was applied to obtain a product. As a result, the magnetic properties deteriorated at both edge portions 120 mm of the steel plate, and the yield was lowered as a result of cutting off the portions. However, according to Examples 1-4 of the present invention, the primary recrystallized grain size in the steel plate width direction increases sharply at the edge, and thus overheating occurs in the heating zone of hot-rolled sheet annealing. As a result, by lowering the temperature of the heating zone for hot-rolled sheet annealing, it was possible to prevent the deterioration of the magnetic properties in the subsequent products and to prevent the yield from being lowered.

連続鋳造時における電磁攪拌の電流低下によりスラブ等軸晶率が低下した場合の、光学顕微鏡観察による一次再結晶粒径の幅方向測定結果を示す図である。It is a figure which shows the width direction measurement result of the primary recrystallized grain size by optical microscope observation when the slab equiaxed crystal ratio falls by the current fall of electromagnetic stirring at the time of continuous casting. 粗圧延時にシートバー幅エッジ部の温度が下がった場合の、光学顕微鏡観察による一次再結晶粒径の幅方向測定結果を示す図である。It is a figure which shows the width direction measurement result of the primary recrystallized grain size by optical microscope observation when the temperature of a sheet bar width edge part falls at the time of rough rolling. 熱延板焼鈍の加熱帯において、鋼板のエッジ部が過加熱となった場合の、光学顕微鏡観察による一次再結晶粒径の幅方向測定結果を示す図である。It is a figure which shows the width direction measurement result of the primary recrystallized grain size by optical microscope observation when the edge part of a steel plate becomes overheating in the heating zone of hot-rolled sheet annealing. 本発明に係る鋼板の結晶粒径をオンラインで測定可能なセンサーの構成の一例を示す図である。It is a figure which shows an example of a structure of the sensor which can measure the crystal grain diameter of the steel plate which concerns on this invention online. 本発明に係る鋼板の幅方向にコの字形コアの幅がwであるセンサーを20ヶ所に固定して設けた場合を示す図である。It is a figure which shows the case where the sensor whose width | variety of a U-shaped core is w is provided in 20 places fixed in the width direction of the steel plate which concerns on this invention. 本発明に係る鋼板の幅方向にレールを設け、このレールにコの字形コアの幅がwであるセンサーを移動可能に取り付けた場合を示す図である。It is a figure which shows the case where a rail is provided in the width direction of the steel plate which concerns on this invention, and the sensor whose width | variety of a U-shaped core is w is attached to this rail so that a movement is possible. 本発明に係る一つのセンサーのコの字形コアの幅を300mmとし、それを鋼板幅方向に2個配置した場合を示す図である。It is a figure which shows the case where the width | variety of the U-shaped core of one sensor which concerns on this invention shall be 300 mm, and it arrange | positions two in the steel plate width direction. 本発明に係る一つのセンサーのコの字形コアの幅を500mmとし、それを鋼板幅方向に2個配置した場合を示す図である。It is a figure which shows the case where the width | variety of the U-shaped core of one sensor which concerns on this invention is 500 mm, and it arrange | positions two pieces in the steel plate width direction. 比較例に係る一つのセンサーのコの字形コアの幅を900mmとし、それを鋼板幅方向に1個配置した場合を示す図である。It is a figure which shows the case where the width | variety of the U-shaped core of one sensor which concerns on a comparative example shall be 900 mm, and it arrange | positions one in the steel plate width direction. 本発明の実施例の測定に用いた一次再結晶焼鈍設備のレイアウトを示す図である。It is a figure which shows the layout of the primary recrystallization annealing equipment used for the measurement of the Example of this invention. 本発明例1に係る鋼板幅方向の結晶粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the crystal grain size of the steel plate width direction which concerns on Example 1 of this invention. 本発明例2に係る鋼板幅方向の結晶粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the crystal grain size of the steel plate width direction which concerns on Example 2 of this invention. 本発明例3に係る鋼板幅方向の結晶粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the crystal grain size of the steel plate width direction which concerns on Example 3 of this invention. 本発明例4に係る鋼板幅方向の結晶粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the crystal grain size of the steel plate width direction which concerns on Example 4 of this invention. 比較例1に係る鋼板幅方向の結晶粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the crystal grain size of the steel plate width direction which concerns on the comparative example 1. FIG.

符号の説明Explanation of symbols

401,502,602,702,802 コの字形コア(鉄心)
402 励磁一次コイル
403 出力二次電圧コイル
404,501,601,701,801,909 鋼板
603 レール
1001 一次再結晶焼鈍前の鋼板コイル
1002 連続焼鈍炉の加熱帯
1003 連続焼鈍炉の均熱帯
1004 連続焼鈍炉の冷却帯
1005 センサー
1006 焼鈍分離剤塗布装置
1007 焼鈍分離剤乾燥炉
1008 一次再結晶焼鈍後の鋼板コイル
401, 502, 602, 702, 802 U-shaped core (iron core)
402 Excitation primary coil 403 Output secondary voltage coil 404, 501, 601, 701, 801, 909 Steel plate 603 Rail 1001 Steel plate coil before primary recrystallization annealing 1002 Heating zone of continuous annealing furnace 1003 Soaking zone of continuous annealing furnace 1004 Continuous annealing Furnace cooling zone 1005 Sensor 1006 Annealing separator coating device 1007 Annealing separator drying furnace 1008 Steel plate coil after primary recrystallization annealing

Claims (3)

連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能な、コの字形コアに、励磁一次コイルと出力二次電圧コイルとを巻装した構成になるセンサーを、鋼板幅方向の2ヶ所以上に備え
前記センサーを鋼板幅方向に2ヶ所設ける場合には、それぞれのセンサーを鋼板幅方向中央付近及び鋼板幅方向片側端部周辺付近に固定して設置し、
前記センサーを鋼板幅方向に3ヶ所設ける場合には、それぞれのセンサーを鋼板幅方向中央付近及び鋼板幅方向両端部周辺付近に固定して設置し、
前記センサーを4ヶ所以上に設ける場合は、それぞれのセンサーを鋼板幅方向に略等間隔に固定して配置する
ことを特徴とする方向性電磁鋼板の一次再結晶焼鈍設備。
On the outlet side of the continuous annealing furnace , a sensor that has a U-shaped core with an excitation primary coil and an output secondary voltage coil that can measure the crystal grain size of the steel sheet on-line is installed. In more than one place ,
When two sensors are provided in the steel sheet width direction, the sensors are fixedly installed near the center of the steel sheet width direction and near one end of the steel sheet width direction.
When three sensors are provided in the width direction of the steel sheet, each sensor is fixedly installed near the center of the width direction of the steel sheet and near both ends of the width direction of the steel sheet.
The primary recrystallization annealing equipment for grain-oriented electrical steel sheets, wherein when the sensors are provided at four or more locations, the sensors are fixedly arranged in the steel sheet width direction at substantially equal intervals .
連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能な、コの字形コアに、励磁一次コイルと出力二次電圧コイルとを巻装した構成になるセンサーを、鋼板幅方向に移動可能に1つ以上備えたことを特徴とする方向性電磁鋼板の一次再結晶焼鈍設備。 On the outlet side of the continuous annealing furnace , a sensor consisting of a U-shaped core with an excitation primary coil and an output secondary voltage coil that can measure the grain size of the steel sheet online is moved in the width direction of the steel sheet. Primary recrystallization annealing equipment for grain-oriented electrical steel sheets, characterized in that one or more are provided. それぞれのセンサーの測定領域が鋼板全幅の1/3以下であることを特徴とする請求項1または2に記載の方向性電磁鋼板の一次再結晶焼鈍設備。 The primary recrystallization annealing facility for grain-oriented electrical steel sheets according to claim 1 or 2 , wherein the measurement area of each sensor is 1/3 or less of the full width of the steel sheet.
JP2005343168A 2005-11-29 2005-11-29 Primary recrystallization annealing equipment for grain-oriented electrical steel sheet Expired - Fee Related JP4862370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343168A JP4862370B2 (en) 2005-11-29 2005-11-29 Primary recrystallization annealing equipment for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343168A JP4862370B2 (en) 2005-11-29 2005-11-29 Primary recrystallization annealing equipment for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2007146244A JP2007146244A (en) 2007-06-14
JP4862370B2 true JP4862370B2 (en) 2012-01-25

Family

ID=38208002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343168A Expired - Fee Related JP4862370B2 (en) 2005-11-29 2005-11-29 Primary recrystallization annealing equipment for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4862370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102162984B1 (en) * 2018-12-19 2020-10-07 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051019A (en) * 1973-09-06 1975-05-07
JPH0717960B2 (en) * 1989-03-31 1995-03-01 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06213872A (en) * 1993-01-18 1994-08-05 Kobe Steel Ltd Method for measuring crystal grain diameter of steel plate
JPH07128295A (en) * 1993-10-20 1995-05-19 Kobe Steel Ltd Method for measuring crystal grain size of steel plate

Also Published As

Publication number Publication date
JP2007146244A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
CN106574346B (en) Non-oriented electromagnetic steel sheet and its manufacturing method
WO2020027218A1 (en) Grain-oriented electromagnetic steel sheet
WO2020027215A1 (en) Grain-oriented electromagnetic steel sheet
JP7006772B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
CN103429767B (en) Method for producing a grain-oriented flat steel product
KR102140646B1 (en) Method of producing grain-oriented electrical steel sheet and production line therefor
JP5217543B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP2519615B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP5811051B2 (en) Method for cold rolling metal plate and method for producing metal plate
JP4862370B2 (en) Primary recrystallization annealing equipment for grain-oriented electrical steel sheet
JP7311764B2 (en) Cold tandem rolling equipment and cold tandem rolling method
EP1308721B1 (en) Device and method for detecting magnetic properties of a metal object
JPH11153581A (en) Method and apparatus for measuring on line progress of recovery-recrystallization of steel plate being annealed and method for continuous annealing of steel plate
JP5217542B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP6524716B2 (en) Method of manufacturing hot rolled steel sheet excellent in workability
JP7280506B2 (en) Cold tandem rolling equipment and cold tandem rolling method
JP3260605B2 (en) Method of manufacturing cold rolled steel sheet with good uniformity of coil material
WO2024009783A1 (en) Hot-rolled steel strip annealing method, and electromagnetic steel sheet production method using said annealing method
WO2023190645A1 (en) Method for annealing hot-rolled steel strip
JP7558476B2 (en) Annealing method for hot rolled steel strip
JP6683166B2 (en) Cold rolling strip thickness control method
JP2002241913A (en) Plating system
JP2006274404A (en) Annealing method for cold-rolled steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees