JP4862049B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP4862049B2
JP4862049B2 JP2008548158A JP2008548158A JP4862049B2 JP 4862049 B2 JP4862049 B2 JP 4862049B2 JP 2008548158 A JP2008548158 A JP 2008548158A JP 2008548158 A JP2008548158 A JP 2008548158A JP 4862049 B2 JP4862049 B2 JP 4862049B2
Authority
JP
Japan
Prior art keywords
sio
permanent magnet
rotor
stator
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008548158A
Other languages
Japanese (ja)
Other versions
JPWO2008068876A1 (en
Inventor
豊 松延
隆 安原
徳昭 日野
又洋 小室
祐一 佐通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2008068876A1 publication Critical patent/JPWO2008068876A1/en
Application granted granted Critical
Publication of JP4862049B2 publication Critical patent/JP4862049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は永久磁石を使用する回転電機の技術に関する。   The present invention relates to a rotating electrical machine technology that uses a permanent magnet.

磁気特性の優れた永久磁石として、希土類の磁石材料を焼結して製造した焼結磁石である。この焼結磁石は磁気特性が優れているが、磁石内の電気抵抗が小さく渦電流が流れる問題がある。
磁石材料をエポキシ樹脂で固めるいわゆるボンド磁石は樹脂により磁石内の電気抵抗が大きくなるが、磁気特性が著しく低下する問題がある。このボンド磁石は熱硬化性エポキシ樹脂と磁石材料とを混合し、この混合物を成型して製造した磁石で、エポキシ樹脂で磁石材料が接着されている。磁石材料を接着するためのエポキシ樹脂の磁石材料に対する割合を多くすることが必要であり、単位体積当りの磁石材料の量が低下し、磁気特性が低下する問題がある。
エポキシ樹脂を使用した磁石は次の特許文献1乃至3に開示されており、これらの特許文献では、磁気特性の改善等に関する技術が開示されている。
エポキシ樹脂ではなく、SiOを使用する磁石が次の特許文献4乃至5に開示されている。特許文献4はフェライト磁石材をSiOにより結着する技術を開示している。また特許文献5は希土類磁石の電気抵抗を増大させるために粒子状のSiOを使用する技術を開示している。
特開平11−238640号公報 特開平11−067514号公報 特開平10−208919号公報 特開平08−115809号公報 特開平10−321427号公報
A sintered magnet produced by sintering a rare earth magnet material as a permanent magnet having excellent magnetic properties. Although this sintered magnet has excellent magnetic properties, there is a problem that the electric resistance in the magnet is small and eddy current flows.
A so-called bonded magnet in which a magnet material is hardened with an epoxy resin increases the electric resistance in the magnet due to the resin, but has a problem that the magnetic characteristics are remarkably deteriorated. This bonded magnet is a magnet manufactured by mixing a thermosetting epoxy resin and a magnet material, and molding the mixture, and the magnet material is bonded with the epoxy resin. It is necessary to increase the ratio of the epoxy resin for adhering the magnet material to the magnet material, and there is a problem that the amount of the magnet material per unit volume is lowered and the magnetic properties are lowered.
Magnets using an epoxy resin are disclosed in the following Patent Documents 1 to 3. In these Patent Documents, techniques relating to improvement of magnetic characteristics and the like are disclosed.
Magnets using SiO 2 instead of epoxy resin are disclosed in the following Patent Documents 4 to 5. Patent Document 4 discloses a technique for binding a ferrite magnet material with SiO 2 . Patent Document 5 discloses a technique using particulate SiO 2 in order to increase the electric resistance of a rare earth magnet.
Japanese Patent Laid-Open No. 11-238640 Japanese Patent Laid-Open No. 11-067514 Japanese Patent Laid-Open No. 10-208919 Japanese Patent Laid-Open No. 08-115809 Japanese Patent Laid-Open No. 10-32427

希土類永久磁石は内部抵抗が低く渦電流が流れ、磁石内部で発熱する問題がある。もちろん回転電機の効率向上には回転電機の渦電流損を低く抑えることが必要であり、発熱に加え効率の点からも、希土類永久磁石の内部抵抗を高くすることが望ましい。上記エポキシ樹脂を使用した磁石は電気抵抗を大きくすることが可能であるが、磁石の磁気特性が低下する問題がある。磁気特性の低下を少なくして磁石の発熱を押さえることができる回転電機が望ましい。
特に自動車に搭載される回転電機は、工場内などの温度環境の良い場所に設置された回転電機に比べ、温度の関係でより厳しい環境で使用される場合が多い。希土類永久磁石の内部発熱および周囲温度の上昇により、希土類永久磁石の温度が高くなると、磁石の磁気特性が劣化する問題がある。磁石内の電気抵抗を高めることは磁石内の発熱を少なくする効果があり、自動車に搭載される回転電機では、信頼性の点からも発熱を少なくすることが望ましい。
本発明の目的は、永久磁石を使用する回転電機において、信頼性の高い回転電機を提供することである。
本発明の特徴は、その前駆体が希土類磁石材料と濡れ性が良好な結着剤を使用して、磁石材料を結着した永久磁石を、永久磁石回転電機に使用したことである。本発明においては磁石材料と濡れ性が良好な結着剤を使用することで、希土類磁石材料の間にアモルファス状態の薄いSiO結着膜を形成することができる。この結着膜により、希土類磁石材料を結着するとともに薄い膜により希土類磁石材料間の電気抵抗を高くでき、渦電流を押さえることができる。
前駆体が希土類磁石材料と濡れ性が良好な結着剤としてSiO系の前駆体、例えばSiOの前駆体を使用することができる。このようにSiO系の結着剤で希土類磁石材を結着することで、エポキシ樹脂を結着剤として使用したときに生じる永久磁石の磁気特性の低下を抑えることが可能となる。この磁石を使用することで特性の良好な回転電機を得ることができる。
また希土類磁石材料を焼結により固めた焼結磁石は電気抵抗が低く、磁石内部に渦電流が流れ、磁石内部で発熱する。
本発明を使用することにより、永久磁石あるいは永久磁石を使用した回転電機において、信頼性が向上する。すなわち自動車に搭載される状況など、厳しい温度環境で使用される回転電機において、内部での発熱を抑えることができる。この結果、本発明を使用することにより高い信頼性を維持するのに適した回転電機を提供できる。
Rare earth permanent magnets have a problem that the internal resistance is low and eddy current flows and heat is generated inside the magnet. Of course, to improve the efficiency of the rotating electrical machine, it is necessary to keep the eddy current loss of the rotating electrical machine low, and from the viewpoint of efficiency in addition to heat generation, it is desirable to increase the internal resistance of the rare earth permanent magnet. Although the magnet using the epoxy resin can increase the electric resistance, there is a problem that the magnetic properties of the magnet are deteriorated. A rotating electrical machine that can suppress the heat generation of the magnet while reducing the decrease in magnetic properties is desirable.
In particular, a rotating electrical machine mounted on an automobile is often used in a severer environment due to temperature compared to a rotating electrical machine installed in a place with a good temperature environment such as in a factory. When the temperature of the rare earth permanent magnet increases due to the internal heat generation of the rare earth permanent magnet and the increase in ambient temperature, there is a problem that the magnetic properties of the magnet deteriorate. Increasing the electrical resistance in the magnet has the effect of reducing the heat generation in the magnet, and it is desirable to reduce the heat generation from the viewpoint of reliability in a rotating electrical machine mounted on an automobile.
An object of the present invention is to provide a highly reliable rotating electrical machine that uses a permanent magnet.
A feature of the present invention is that a permanent magnet using a binder having good wettability with a rare earth magnet material as a precursor is used in a permanent magnet rotating electric machine. In the present invention, a thin SiO binder film in an amorphous state can be formed between rare earth magnet materials by using a binder having good wettability with the magnet material. With this binding film, the rare earth magnet material can be bound, and the thin film can increase the electrical resistance between the rare earth magnet materials and suppress eddy currents.
A SiO-based precursor, for example, a precursor of SiO 2 can be used as a binder whose precursor has good wettability with the rare earth magnet material. By binding the rare earth magnet material with the SiO-based binder in this way, it is possible to suppress a decrease in the magnetic properties of the permanent magnet that occurs when an epoxy resin is used as the binder. By using this magnet, a rotating electrical machine with good characteristics can be obtained.
A sintered magnet obtained by sintering rare earth magnet material has low electric resistance, eddy current flows inside the magnet, and heat is generated inside the magnet.
By using the present invention, the reliability is improved in a permanent magnet or a rotating electrical machine using a permanent magnet. That is, internal heat generation can be suppressed in a rotating electrical machine used in a severe temperature environment such as a situation where it is mounted on an automobile. As a result, it is possible to provide a rotating electrical machine suitable for maintaining high reliability by using the present invention.

第1図は本発明が適用された回転電機を備えた電気自動車の構成を示す構成図。
第2図は電力変換装置の電気回路図。
第3図は回転電機の回転軸に沿った断面図。
第4図は回転電機の回転軸に垂直な面での固定子および回転子の断面図。
第5図は第4図に示す回転子の磁極部の拡大図。
第6図は第4図に示す固定子および回転子におけるd軸の磁束を示す図。
第7図は第4図に示す固定子および回転子におけるq軸の磁束を示す図。
第8図は磁石組体の製造工程を示す図。
第9図は磁石組体の製造工程の他の実施の形態を示す図。
第10図は磁石組体の製造工程のさらに他の実施の形態を示す図。
第11図は製造された磁石の断面図。
第12図は製造された磁石の実験結果を示す図。
第13図は第4図に示す回転子の他の実施の形態を示す部分断面図。
第14図は第13図に示す部分の磁束強度を示す図。
第15図は本発明を適用した回転電機のさらに他の実施の形態を示す断面図。
第16図は磁石組体を製造する工程を示す図。
第17図は磁石組体を製造する工程の他の実施の形態を示す図。
第18図は圧縮成形された磁性体に結着剤の前駆体を含浸させる工程を説明する図。
第19図は磁石組体の他の構造を説明する断面図。
第20図は磁石組体のさらに他の実施の形態を説明する斜視図。
第21図は磁石組体のさらに他の実施の形態を説明する斜視図。
第22図は本発明を適用した回転電機のさらに他の実施の形態を示す断面図。
第23図は本発明を適用した回転子のさらに他の実施の形態を示す断面図。
第24図は本発明を適用した回転子のさらに他の実施の形態を示す断面の部分拡大図。
第25図は本発明を適用した回転子のさらに他の実施の形態を示す断面の部分拡大図。
第26図は本発明を適用した回転電機のさらに他の実施の形態を示す断面図。
第27図は本発明を適用した回転子のさらに他の実施の形態を示す断面図。
第28図は本発明を適用した回転子のさらに他の製造方法を説明する図。
FIG. 1 is a configuration diagram showing a configuration of an electric vehicle including a rotating electrical machine to which the present invention is applied.
FIG. 2 is an electric circuit diagram of the power converter.
FIG. 3 is a cross-sectional view along the rotation axis of the rotating electrical machine.
FIG. 4 is a cross-sectional view of the stator and the rotor on a plane perpendicular to the rotation axis of the rotating electrical machine.
FIG. 5 is an enlarged view of a magnetic pole portion of the rotor shown in FIG.
FIG. 6 is a diagram showing a d-axis magnetic flux in the stator and the rotor shown in FIG.
FIG. 7 is a diagram showing a q-axis magnetic flux in the stator and the rotor shown in FIG.
FIG. 8 is a diagram showing a manufacturing process of a magnet assembly.
FIG. 9 is a diagram showing another embodiment of the manufacturing process of the magnet assembly.
FIG. 10 is a view showing still another embodiment of the manufacturing process of the magnet assembly.
FIG. 11 is a cross-sectional view of the manufactured magnet.
FIG. 12 shows the experimental results of the manufactured magnet.
FIG. 13 is a partial cross-sectional view showing another embodiment of the rotor shown in FIG.
FIG. 14 is a view showing the magnetic flux intensity of the portion shown in FIG.
FIG. 15 is a sectional view showing still another embodiment of the rotating electrical machine to which the present invention is applied.
FIG. 16 is a diagram showing a process of manufacturing a magnet assembly.
FIG. 17 is a view showing another embodiment of a process for producing a magnet assembly.
FIG. 18 is a diagram for explaining a process of impregnating a compression-molded magnetic body with a binder precursor.
FIG. 19 is a cross-sectional view illustrating another structure of the magnet assembly.
FIG. 20 is a perspective view for explaining still another embodiment of the magnet assembly.
FIG. 21 is a perspective view for explaining still another embodiment of the magnet assembly.
FIG. 22 is a sectional view showing still another embodiment of the rotating electrical machine to which the present invention is applied.
FIG. 23 is a cross-sectional view showing still another embodiment of a rotor to which the present invention is applied.
FIG. 24 is a partial enlarged view of a cross section showing still another embodiment of a rotor to which the present invention is applied.
FIG. 25 is a partial enlarged view of a cross section showing still another embodiment of a rotor to which the present invention is applied.
FIG. 26 is a sectional view showing still another embodiment of the rotating electrical machine to which the present invention is applied.
FIG. 27 is a cross-sectional view showing still another embodiment of a rotor to which the present invention is applied.
FIG. 28 is a view for explaining still another method of manufacturing a rotor to which the present invention is applied.

以下に説明する実施の形態では、鉄粉を固めて固定子鉄心または回転子鉄心の一部あるいは全部を形成しており、あるいは固定子鉄心と回転子鉄心の両方を形成している。このため上述の永久磁石における渦電流損の低減に加え、固定子鉄心または回転子鉄心の内部の渦電流損を抑えることができ、内部の発熱を抑えることができる。さらに発熱低減に加え、回転電機の効率を向上することができる。例えば従来の焼結タイプの永久磁石に比べ電気抵抗が5倍から10倍、さらに場合によってはそれ以上高くなり、渦電流による発熱を低減できる。
以下に説明する実施の形態では、板状の希土類磁石材料間に薄いアモルファス上の膜が形成され、この膜により板状の希土類磁石材料同士が結着される。結着剤が薄い膜の形状となることができ、結果として磁石の単位体積当りの希土類磁石材料の割合が多くなり、良好な磁気特性が得られる。その一方で、希土類磁石材料間の電気抵抗が結着剤の薄い膜により大きくなり、磁石の内部抵抗が高くなる。
回転電機に設けられている永久磁石は例えば次のようにして製造される。まず磁性材料を圧縮成型し、この圧縮成型した磁性材料にこの材料と濡れ性が優れた結着剤の前駆体を含浸し、結着剤にて磁性材料を結着した磁石を得る。
以下の実施の形態では、さらに次のような優れた効果がある。希土類焼結磁石では、焼結するために希土類磁石材を高温に熱する必要があり、焼結温度に熱する工程を必要とするため、設備費用を含め磁石あるいは回転電機の生産コストが高くなる。
また、磁石材を終結温度に熱する焼結工程により、焼結工程前の形状・寸法に対し焼結工程後の形状・寸法が変化してしまう。従って焼結工程の後の成形工程で、寸法精度を得るために大幅な切削を含む成形作業が必要となる。以下に説明する本発明の実施の形態では、磁石を比較的低い温度で製造できるため、磁石材のプレス成型による形状・寸法を高い精度で維持した状態で磁石材の結着を行うことができる。結果として高い精度で磁石を生産することが容易となる。このため結着剤により固められた後の磁石は成形処理が焼結磁石に比べ非常に簡単になり、場合によっては切削加工が不要となる。
曲線を有する形状に磁石を切削加工することは簡単ではない。円などの単純な曲線に切削加工することは容易であるが、複雑な曲線の切削加工は簡単ではない。磁石を曲線形状に加工する場合は切削加工よりプレス加工の方が容易である。しかし焼結磁石では上述のごとく焼結のために高温に熱することが必要で、焼結工程の後に必ず切削加工が必要となる。以下に説明する本発明の実施例では、プレス加工の後焼結温度に熱する必要がないので、磁石材の結着工程後においてもプレス加工の形状や寸法関係が高い精度で維持されている。このため、磁石の最終形状がわずかな切削加工で得られることが多く、場合によっては切削作業無しで磁石を完成することが可能となる。
本発明によれば、従来製造が困難であった曲線形状の磁石を容易に生産することが可能となる。このことにより、回転電機の特性を向上することが可能となる。
また以下に説明する実施例では、磁石材のプレス加工後に加工された磁石材をモータの部品に取付け、例えば回転子の磁石挿入孔に挿入し、その後に結着剤を浸透させる結着作業を行うことが可能である。この方法によれば、磁石材の結着工程で磁石材のみならず磁石材と磁石近傍の回転電機の部品との結着を合わせて行うことが可能となる。例えは磁石挿入孔内面と挿入された磁石の接着も同時に行える。これにより作業性が向上する。また磁石あるいは磁石を備えた回転電気の部品の耐久性も向上する。強いては回転電機の耐久性あるいは信頼性が向上する。
〈電気自動車100〉
第1図は、本発明による回転電機が搭載されたハイブリッド型の電気自動車の一実施の形態を示す構成図である。なお本発明による回転電機は、純粋な電気自動車にもハイブリッド型の電気自動車にも適用できるが、以下代表してハイブリッド型の電気自動車の実施例を説明する。
ハイブリッド型の電気自動車100には、エンジン120と第1の回転電機200と第2の回転電機202と、前記第1の回転電機200と第2の回転電機202に高電圧の直流電力を供給するあるいは前記第1の回転電機200と第2の回転電機202から高電圧の直流電力を受けるバッテリ180が搭載されている。さらに14ボルト系電力である低電圧電力を供給するバッテリがこの車両に搭載されており、以下に説明する制御回路に低電圧の直流電力を供給するが、この低電圧電力を供給するバッテリの図示を省略する。
エンジン120および第1の回転電機200と第2の回転電機202に基づく回転トルクは、変速機130とデファレンシャルギア132に伝達され、前輪110に伝達される。
前記変速機130を制御する変速機制御装置134とエンジン120を制御するエンジン制御装置124と電力変換装置600とリチュームイオン電池などのバッテリ180を制御するバッテリ制御装置184と統合制御装置170とが、それぞれ通信回線174によって接続されている。
前記統合制御装置170は、前記統合制御装置170より下位の制御装置である変速機制御装置134やエンジン制御装置124や電力変換装置600やバッテリ制御装置184から、それぞれの状態を表す情報を通信回線174を介して受け取る。これらの情報に基づき、前記統合制御装置170によって各制御装置の制御指令が演算され、前記統合制御170から各制御装置への制御指令が上記通信回線174を介してそれぞれの制御装置へ送信される。例えば上記バッテリ制御装置184はリチュームイオン電池であるバッテリ180の放電状況やリチュームイオン電池を構成する各単位セル電池の状態をバッテリ180の状態として統合制御装置170に通信回線174を介して報告する。
前記統合制御装置170は上記報告から上記バッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。統合制御装置170はまたエンジン120と第1や第2の回転電気200,202の出力トルクを管理し、エンジンと前記第1や第2の回転電機200,202の出力トルクの総合トルクあるいはトルク分配比を演算処理し、処理結果に基づく制御指令を変速機制御装置134やエンジン制御装置124や電力変換装置600へ送信する。トルク指令に基づき電力変換装置600は第1の回転電機200と第2の回転電機202を制御し、どちらか一方の回転電機であるいは両方の回転電機で指令のトルク出力を、あるいは発電電力を発生するようにこれらの回転電機を制御する。
前記電力変換装置600は統合制御装置170からの指令に基づき第1の回転電機200と第2の回転電機202を運転するためにインバータを構成するパワー半導体のスイッチング動作を制御する。これらパワー半導体のスイッチング動作により、第1の回転電機200と第2の回転電機202が電動機としてあるいは発電機として運転される。
電動機として運転する場合は高電圧のバッテリ180からの直流電力が前記電力変換装置600のインバータの直流端子に供給される。インバータを構成するパワー半導体のスイッチング動作を制御することにより上記供給された直流電力が3相交流電力に変換され、前記回転電機200あるいは202に供給される。一方第1の回転電機200あるいは第2の回転電機202が発電機として運転される場合、回転電機200あるいは202の回転子が外部から加えられる回転トルクで回転し、この回転トルクに基づき前記回転電機の固定子巻線に3相交流電力を発生する。発生した3相交流電力は前記電力変換装置600で直流電力に変換され、直流電力が前記高電圧のバッテリ180に供給され、前記バッテリ180が直流電力により充電される。
第1図に示すとおり、電力変換装置600は、直流電源の電圧変動を押さえる複数の平滑用コンデンサを内蔵するコンデンサモジュールと、複数のパワー半導体を内蔵するパワーモジュールと、このパワーモジュールのスイッチング動作を制御するスイッチング駆動回路および前記スイッチング動作の時間幅を決める信号すなわちパルスワイドモデュレーションの制御を行うPWM信号を発生する回路を備えた回転電機制御回路から構成されている。
前記高電圧のバッテリ180はリチュームイオン電池あるいはニッケル水素電池などの2次電池であり、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力が前記2次電池に充電され、あるいは前記2次電池から出力される。
〈電気回路の説明〉
第2図は第1図に示す電力変換装置600の回路図である。電力変換装置200には、第1の回転電機200へ供給する3相交流電力を発生するためのあるいは第1の回転電機200からの3相交流電力を直流電力に変換するための第1のインバータ装置と、第2の回転電機第2の回転電機202へ供給する3相交流電力を発生するためのあるいは第2の回転電機第2の回転電機202からの3相交流電力を直流電力に変換するための第2のインバータ装置とが設けられている。第1のインバータ装置は、第1のパワーモジュール610と、第1のパワーモジュール610に内蔵されたインバータの各アームを構成する各パワー半導体21のスイッチング動作を制御する第1の駆動回路652と、回転電機200の電流を検知する電流センサ660と以下に説明する第2のインバータ装置と共通に使用される制御回路648と、コネクタ基板642に実装された送受信回路644と、コンデンサモジュール630とを備えている。なお、駆動回路652は駆動回路基板650に設けられており、制御回路648は制御回路基板646に設けられている。
第2のインバータ装置は、第2のパワーモジュール620と、第2のパワーモジュール620に内蔵されたインバータの各アームを構成する各パワー半導体21のスイッチング動作を制御する第2の駆動回路656と、回転電機202の電流を検知する電流センサ662と、上記第1のインバータと共通に使用される制御回路648と、送受信回路644と、コンデンサモジュール630とを備えている。上記第2の駆動回路656は第2の駆動回路基板654に実装されており、また上記制御回路648は制御回路基板646に実装されており、上記送受信回路644はコネクタ基板642に実装されている。
第1のパワーモジュール610と第2のパワーモジュール620は、それぞれ対応する第1および第2の駆動回路652と656とから出力された駆動信号によって動作し、高電圧バッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する回転電機200や202の電機子巻線に供給する。また上記回転電機200や202の電機子巻線である固定子巻線に誘起された交流電力を直流に変換して高電圧バッテリに供給する。
〈パワーモジュール610および620の説明〉
上記第1および第2のパワーモジュール610や620は、第2図に記載のごとく3相ブリッジ回路を備えており、3相の各相に対応した直列回路がそれぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体と下アームを構成するパワー半導体とを備え、上アームのパワー半導体21と下アームを構成するパワー半導体21とは直列に接続されている。
第1のパワーモジュール610と第2のパワーモジュール620とは第2図に示す如く、回路構成がほぼ同じであり、第1のパワーモジュール610で代表して説明する。本回路では、スイッチング用パワー半導体21としてIGBT(絶縁ゲート型バイポーラトランジスタ)を用いている。IGBTは、コレクタ電極,エミッタ電極及びゲート電極の3つの電極を備えている。IGBTのコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBTのエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBTのコレクタ電極に、アノード電極がIGBTのエミッタ電極にそれぞれ電気的に接続されている。
スイッチング用パワー半導体素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極,ソース電極及びゲート電極の3つの電極を備えている。尚、MOSFETは、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、第2図のダイオード38を設ける必要がない。
各相の直列回路は、上アームであるIGBTのエミッタ電極と下アームであるIGBTのコレクタ電極とが電気的に直列に接続されて構成されている。尚、本実施例では、各相の各上下アームのIGBTを1個ずつ図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下説明を簡単にするため、インバータの各アームは1個のパワー半導体21からなるとして説明する。
第2図に示す実施例では、各相の各上下アームはそれぞれ3個のパワー半導体21によって構成している。各相の各上アームのパワー半導体21のコレクタ電極はバッテリ180の正極側に、各相の各下アームのパワー半導体21のエミッタ電極はバッテリ180の負極側それぞれ電気的に接続されている。
各相の各アームすなわち直列回路の中点すなわち上アーム側IGBTのエミッタ電極と下アーム側のIGBTのコレクタ電極との接続部分は三相交流電力の各相となり、対応する回転電機200や202の対応する相の電機子巻線に電気的に接続されている。
第1と第2の駆動回路652と656は、対応する第1や第2のパワーモジュール610や620の各インバータ装置を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、パワー半導体21を制御するための信号を発生する。それぞれの駆動回路652や656で発生した信号は、対応する第1のパワーモジュール610や第2のパワーモジュール620の各パワー半導体のゲートにそれぞれ出力される。各相の各上下アームのゲートに供給するそれぞれの信号を発生する2組の回路を、この実施の形態では1つの集積回路に内蔵している。第1のパワーモジュール610や第2のパワーモジュール620は合せて12個の上または下アームを有するので、駆動回路652や656は6個の上記集積回路を有しており、これら6個の集積回路を収めて1ブロック内に収納している。すなわち上記一部ロックの集積回路で駆動回路652や656を構成している。
制御回路648は、第1および第2のパワーモジュール610や620の制御部を構成しており、インバータ回路を構成する複数のパワー半導体21を動作(オンまたはオフ)させるための制御値すなわち動作タイミングを演算するマイクロコンピュータを備えて構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値),電流センサ660や662及び回転電機200や202に搭載された回転センサが検知した信号(センサ出力)が入力されている。制御回路648はそれらの入力信号に基づいて制御値を演算し、駆動回路652や656にパワー半導体21のスイッチングタイミングを制御するための制御信号を出力する。
コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、第1図の通信回線174を介して他の装置と情報の送受信を行う。
コンデンサモジュール630は、パワー半導体21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するためのものであり、第1のパワーモジュール610や第2のパワーモジュール620の直流側の端子に、絶縁シートを挟んで対向して配置される板状の導体の積層構造からなる直流バスバーにより、電気的に並列に接続されている。
〈回転電機200あるいは202の説明〉
第3図は、第1図と第2図に記載の回転電機200あるいは202の断面図である。回転電機200と202とは略同じ構造であり、回転電機200の構造をこれらの代表例として第3図から第6図を用いて説明する。第4図は第3図に示す固定子230および回転子250のA−A断面であり、ハウジング212およびシャフト218の記載を省略した。
ハウジング212の内部に固定子230が保持されており、固定子230は固定子鉄心232と固定子巻線238とを備えている。固定子鉄心232の内側面に対して空隙222を介して回転子250が配置されている。回転子250は回転子鉄心252と永久磁石254とを備えており、回転子鉄心252はシャフト218に固定されている。ハウジング212はシャフト218の回転軸方向の両側にエンドブラケット214をそれぞれ有しており、前記回転子鉄心252を有するシャフト218はエンドブラケット214のそれぞれに軸受216により回転自在に保持されている。
上記固定子鉄心232および回転子鉄心252は、表面に電気絶縁膜を付ける処理を行った鉄粉を圧縮して成形している。上記固定子鉄心232が、鉄粉を圧縮して成形した構造をなしている。このような構造をとることにより、先に固定子巻線を成形しておき、次に固定子巻線を仮固定し、仮固定した固定子巻線を内蔵するようにして鉄粉を詰め、次に鉄粉全体を圧縮成形して固定子全体を作ることにより、生産性が向上すると共に固定子巻線の占積率が向上する。さらに渦電流を低減でき、回転電機の効率が向上する。
上記回転子鉄心252を、表面に電気絶縁膜を付ける処理を行った鉄粉を圧縮して成形することにより回転子鉄心250の渦電流を低減できる。また以下で説明する永久磁石254と256は渦電流を低減する構造をしており、回転子250の内部発熱を総合的に低減できる。希土類永久磁石は温度が上昇すると磁気特性が劣化、すなわち減磁する欠点を有している。車載用回転電機は周囲の温度が高い状況で使用される場合が多々あり、内部発熱を低減することは信頼性を高く維持する上で、たいへん好ましい。
シャフト218には回転子の極の位置を検出する回転子位置センサ224と回転子の回転速度を検出する回転速度センサ226とが設けられている。これらのセンサ224と226からの出力は第2図に示す制御回路648に取込まれ、これらセンサの出力に基づいて第1および第2のパワーモジュール610や620が制御される。
第4図を用いて第3図に示す固定子230および回転子250の具体的な構造を説明する。固定子230は固定子鉄心232を有しており、固定子鉄心232は周方向に均等に多数のスロット234とティース236とを有しており、スロット234は固定子巻線238を有している。固定子巻線の巻回方式には分布巻と集中巻の方式がある。本実施の形態ではどちらの巻回方式も適用できる。第4図で、固定子の回転子側には全周に渡ってティース236とスロット234が設けられている。これら全てに符号を付すと煩雑になるので代表して一部のティースとスロットにのみ符号を付した。
回転子鉄心252には永久磁石254や256を挿入する永久磁石挿入孔が設けられており、上記永久磁石挿入孔に永久磁石254や256が挿入されている。永久磁石254や256の磁化方向は、磁石の固定子側面がN極またはS極となる方向で、回転子の極毎に磁化方向が反転している。
永久磁石254や256は磁化され、永久磁石となった状態で永久磁石挿入孔に挿入しても良いし、あるいは永久磁石254や256が磁化されていない状態(以下磁石体と記す)で上記磁石挿入孔に挿入され、上記磁石挿入孔に挿入された後に強力な磁界を与えて磁化されることにより永久磁石となるようにしてもよい。磁化されない状態の磁石体を磁石挿入孔に挿入し、挿入後磁化する方が、回転電機の生産性が向上する。すなわちこれら永久磁石はたいへん強力な希土類材料からなる磁石であり、磁石挿入孔に挿入する前に磁化すると、挿入時に回転子鉄心252との間に強力な吸引力が生じ、この求心力が挿入作業の妨げとなる。また強力な吸引力により、永久磁石に鉄粉などのごみが付着する恐れがある。
第4図に示す実施の形態では、永久磁石254と256とで回転子250の1つの極として作用する。永久磁石254と256とを備えた回転子250の極は回転子250の周方向に等間隔に配置されており、この実施形態では8極である。しかし本発明が適用される適用対象は8極に固定されるものではなく、10極以上30極まで、場合によってはそれ以上であっても良い。但しモータとしての要求出力などにより極数が定まる。また極数を多くすると磁石数が増大し、作業性が低下する。場合によっては8極以下でもよい。回転子250の各極として作用する永久磁石254と256の固定子側に存在する回転子鉄心の部分は磁極片280として作用し、永久磁石254と256に出入りする磁力線はこの磁極片280を通して固定子鉄心232に出入りする。
上述したとおり、回転子250の極として作用する永久磁石254と256は極毎に逆方向に磁化されており、ある極の磁石254と256が固定子側がN極でシャフト側がS極となるように磁化されているとすると、その両隣の極として作用する永久磁石254と256は固定子側がS極でシャフト側がN極となるように磁化されている。回転子250の極と極との間にはそれぞれ補助磁極290として作用する部分が存在し、これら補助磁極290を通るq軸磁束と磁石を通るd軸磁束の磁気回路の磁気抵抗の差でリラクタンストルクを発生する。各補助磁極290と各磁極片280との間にはそれぞれブリッジ部282と284とが存在し、このブリッジ部282と284では磁気的な空隙262と264とにより磁気回路の断面積が狭められている。このため各ブリッジ部282と284では磁気飽和現象が起こり、磁極片280と補助磁極290との間を通るすなわちブリッジ部282と284を通る磁束量が所定量以下に押さえられる。
〈永久磁石254と256の説明〉
ここで永久磁石254と256は磁石材料である希土類材料のネオジウム(Nd)の粉体をこのネオジウム(Nd)と前駆体が親和性の良い性質を備えているバインダーで結着した構造をしている。ここで親和性の優れた前駆体はSiO系のバインダーの前駆体、例えばSiOの前駆体であるアルコキシシロキサンまたはアルコキシシランである。ネオジウム(Nd)の粉体は板状の形状を為しており、高さ方向であるZ軸方向の値に対しX軸やY軸方向の大きさが数倍以上である、厚みが薄い形状をしている。ネオジウム(Nd)粉体のX軸やY軸方向の大きさは大きい方が良く、例えば粉体のX軸またはY軸方向の大きさが45μメータ以上の大きさの粉体を使用する方が残留特性が良くなる。成形中にネオジウム(Nd)の粉体が割れるなどで細かくなり、小さい形状の粉体が混ざることはしかたないが、粉体の半分以上が45μメータ以上の大きさ粉体であることが望ましく、さらには7割以上が45μメータ以上の大きさの粉体であるとより好ましい結果が得られる。9割以上が45μメータ以上の大きさの粉体であるとさらにより好ましい結果が得られる。なおネオジウム(Nd)にさらにディスプロシウム(Dy)を若干含んでいると特性が改善され、車両用回転電機としてより好ましい特性をえることができる。このディスプロシウム(Dy)を含むことにより、回転電機の温度が上昇しても良好な磁気特性が維持される。ディスプロシウム(Dy)の含有割合は数%程度で、多くても10%以下である。バインダーで希土類磁石材料の粉体を結着した構造の磁石は後で詳述する。
第3図および第4図で、回転子の上記回転速度センサ226と上記回転子位置センサ224との出力に基づき第2図に示す第1の駆動回路652が第1のパワーモジュール610を制御する制御信号を発生して第1のパワーモジュール610に送信する。第1のパワーモジュールは前記制御信号に基づきスイッチング動作を行い、バッテリ180から供給される直流電力を3相交流電力に変換する。この3相交流電力は第3図や第4図に示す固定子巻線238に供給され、上記回転速度センサ226の検出値に基づいて3相交流電流の周波数が制御され、上記回転子位置センサ224の検出値に基づいて上記3相交流電流の回転子に対する位相が制御される。
上記位相と周波数の回転磁界が上記3相交流電流により固定子230に発生する。固定子230の回転磁界が回転子250の永久磁石254や256に作用して回転子250に永久磁石254と256に基づく磁石トルクが生じる。また上記回転磁界が回転子250の補助磁極290に作用し、上記回転磁界の磁石254や256を通り磁気回路と補助磁極290を通る磁気回路との磁気抵抗の差に基づき回転子250にリラクタンストルクを発生する。回転子250の回転トルクは上記永久磁石に基づく磁石トルクと上記補助磁極に基づくリラクタンストルクの両トルクに基づいて定まる値となる。
上記リラクタンストルクは、固定子巻線が発生する回転磁界が磁石を通る磁気抵抗と上記補助磁極290を通る磁気抵抗との差によって発生するので、第2図に示す制御回路648は、固定子巻線238による電機子起磁力の合成ベクトルを補助磁極の中心位置より回転方向の進み側になるように制御し、回転子の補助磁極290に対する回転磁束の進み側位相によりリラクタンストルクを発生する。
このリラクタンストルクは回転電機の始動状態や低速運転状態において、永久磁石254と256による磁石トルクに加算される方向の回転トルクを回転子250に発生するので、磁石トルクとリラクタンストルクの加算トルクで回転電機が発生しなければならない必要トルクを作り出すことができる。従って、リラクタンストルクに相当するトルク分、磁石トルクの発生を小さくでき、永久磁石の起磁力を下げることができる。永久磁石の起磁力を下げることにより、回転電機の高速運転時の永久磁石による誘起電圧を抑えることができ、高速回転時の回転電機への電力供給が容易となる。さらにリラクタンストルクを大きくすることで磁石量を少なくできる効果がある。希土類永久磁石は価格が高いので使用磁石量を少なくできることは経済的な観点でも望ましい。
〈回転子250のトルク出力の説明〉
第5図と第6図と第7図を用いて磁石トルクおよびリラクタンストルクを説明する、なお第5図乃至第7図は、第4図に示す回転子の極部分の拡大図であり、第4図の回転子250の極を構成する磁石254と256の内の1組を代表的に磁石254−1と256−1とし又その隣の極の組磁石を磁石254−2と256−2として示す。第5図と第6図に記載の磁束は磁石254−1と256−1が発生するd軸の磁束を示し、第7図は固定子230が発生するq軸の磁束を示す。回転電機200のd軸の磁束には第5図や第6図に記載の磁束に加え、さらに固定子巻線が発生する磁束が存在するが第5図と第6図には記載していない。第4図に示す回転電機が運転状態にある場合、上記回転電機には上記d軸とq軸の両磁束が存在している。
第5図と第6図において、回転子250の各極を構成する永久磁石254と256の周方向両側端部には、磁気的な空隙部262と264からなる非磁性部が形成されている。磁気的な空隙262と264によりその固定子側の回転子鉄心232にブリッジ部282と284とが形成される。ブリッジ部282と284は磁気的に飽和状態となっており、磁極片部280からブリッジ部282と284を通して補助磁極290に漏れる磁束を制限する作用をする。上記ブリッジ部282と284を形成することにより回転子の各極における永久磁石254と256の周方向両端部と補助磁極部290との間の永久磁石254と256の磁束密度分布の変化、すなわち磁気的な空隙262と264の固定子側から固定子に向かう磁束密度分布の変化を緩やかにすることができ、回転電機250のトルク脈動を低減する作用をする。
本実施の形態では、磁気的な空隙262と264は電磁鋼板に空隙を形成することで作られ、この空隙は永久磁石を挿入するための永久磁石挿入孔と一体に形成される。この一体形成では磁気的な空隙262と264は、永久磁石挿入孔に永久磁石254と256とが挿入されたときに、永久磁石22の周方向端部に隣接するように形成される。磁気的な空隙262と264には後述する磁石を形成するための非磁性体であるSiO系のバインダーを充填しても良いし、非磁性体であるワニスなどの充填材を充填しても良い。もちろん何も充填しない、すなわち空気が存在する空隙のままでもよい。
本実施形態では、磁気的な空隙262や164を設けたことにより、上述の如くコギングトルクやその他トルク脈動を低減でき、さらに磁極片部280−1と補助磁極部290との間に形成されたブリッジ部282と284の径方向の寸法を、永久磁石254や256の径方向の幅よりも小さくでき、永久磁石の発生する磁束の漏洩を低減できる。この実施の形態では、ブリッジ部282や284の径方向寸法は、永久磁石254や256の径方向幅の半分以下である。
磁気的な空隙262や164はその固定子側の辺よりも回転子の中心軸側の辺が短い形状、この実施の形態では台形状をしている。また、磁気的な空隙262や164の固定子側の辺と回転子の中心軸側の辺とを結ぶ補助磁極部側の斜辺部と、固定子側の辺との間の形状を所定の曲線形状としている。このようにすることにより、回転子250の回転による遠心力によって発生する応力が局部に集中するのを防止している。また回転子鉄心252を加工するプレスなどの加工機の金型が鋭角となるのを防止できる。加工手段が鋭角形状となると切削加工における磨耗が激しくなる問題を生じる。
回転子鉄心252を積層鋼板ではなく、鉄粉を圧着して製造することができこの場合には、鉄粉を圧縮するプレス機械の金型が鋭角形状となるのを避けることが望ましい。金型が鋭角形状となる場合、鉄粉を圧縮するプレス加工機の金型の磨耗が激しくなる。このため磁気的な空隙262や164の形状は角を円形として、鋭角を避けることが望ましい。
また磁気的な空隙262や164は、物理的な空隙であっても良いが、非磁性材料であるアルミ材またはステンレス材の如く磁気特性をほとんど有していない材料を詰めても良い。例えば磁性材である鉄粉を圧縮して回転子鉄心252を作る工程で、アルミ材またはステンレス材からなる予め作られていた磁気的な空隙262や164の形状の部材を入れ、これら磁気的な空隙262や164の部材を内蔵するようにして、回転子鉄心252を圧縮成形することができる。この圧縮成形工程では、上述のSiO系バインダー使用の磁石と上述の磁気的な空隙262や164の形状の部材とを磁性材である鉄粉に内蔵した状態で圧縮成形して回転子鉄心252を製造する。
第5図は、固定子巻線238に通電していない状態で、上記の如く磁性材である鉄粉を圧縮して成形した回転子250の永久磁石254−1と256−1とが作る磁束の流れを示す。第6図は磁石の作る磁束を模式的に記載した図である。磁石254−1と256−1は一つの回転子極を構成し、これら磁石の固定子側がN極となる方向に磁化されている。磁石254−1と256−1が発生する磁束は磁極片280−1を通して固定子230に入り込んでいる。一方磁石254−2と256−2は隣の回転子の極を構成し、これら磁石の固定子側がS極となる方向に磁化されている。固定子230から磁極片280−2を通り磁石254−2と256−2に磁束が入り込む。
第6図に示す磁束は磁石が作るd軸の磁束であり、それぞれ補助磁極290を周回している。固定子巻線238に3相交流電流が供給されるとこの3相交流電流により発生した磁束と上記d軸の磁束との作用により磁石トルクが発生する。
第7図は3相交流電流を固定子巻線238に供給したときに発生する磁束の内q軸磁束を示す。このq軸磁束は補助磁極290をとおり、極を構成する永久磁石を周回する。固定子巻線238により発生する磁束の内q軸の磁束は補助磁極290を通り永久磁石を周回する磁気回路を通るので、磁気抵抗が小さく、磁束量が多い。一方固定子巻線238により発生する磁束の内d軸磁束は永久磁石を横切る磁気回路を通るので、磁気抵抗が大きく、磁束量が少ない。これらd軸とq軸の磁束差によりリラクタンストルクが発生する。
第4図から第7図はリラクタンストルクを発生する補助磁極290を有する磁石モータを記載した。リラクタンストルクを利用することで回転電機に要求されるトルク特性を満足するのに必要な磁石量を減らすことが可能となる。磁石量を減らすことで磁石の内部発熱が低減される効果に加え、高速回転での回転機内部の誘起電圧を低減でき、高速回転での回転電機への供給電圧を低く抑えられる効果がある。しかし、回転電機として使用する場合上記効果は得られないが、補助磁極290を設けなくても回転電機として電動機運転や発電機運転が可能である。この場合第4図から第7図に示す構造で補助磁極290を有さないかあるいは補助磁極290の割合が少ない構造となり、逆に磁石の占める割合が多くなる。
〈永久磁石254と256の製造方法〉
本実施の形態に係る永久磁石254や256の製造プロセスの一例を第8図に示す。工程10では、粉体状の磁石材料を生成する。例えば希土類の磁石用磁粉は、組成を調整した母合金を急冷することにより製造できる。
工程10で作られる希土類の磁石用磁粉は板状の形状を成していて、以下の工程17で説明する圧縮成形により、希土類の板状の磁粉が層を成して積層される。以下に説明するバインダーの前駆体を含浸することで、上記積層された各層の狭い隙間にバインダーの前駆体が膜状に入り込み、アモルファス状態の膜状の結着剤となり、上記積層された各層の板状の磁粉強く結着する。このため良好な磁気特性が得られる。
本実施の形態では非酸化物磁粉を用い、特に希土類磁石、例えばNdFeB等の磁粉を使用する。本発明では、以下に詳述する方法を用いることにより、比較的低温の工程で永久磁石を製造することができる。これにより、非酸化物の磁粉を用いる場合であっても、磁粉の酸化を抑制し、磁気特性の高い磁石を得ることができる。
工程15では、前記粉体状の磁石材料を圧縮成形する。例えば回転電機に使用する永久磁石を製造する場合は、この工程15では、回転電機に使用する永久磁石の最終磁石形状の型を用い、型に粉体状の磁石材料を供給し、圧縮成形する。圧縮成形された磁石材料は型により形状が決められた多孔質の状態であり、機械的強度は弱く、強い衝撃を受けると壊れる状態である。また磁化されていないので、永久磁石としての特性は有していない。この圧縮成形の状態のままで磁化しても回転電機の構成部品として使用することは機械強度的に困難である。
圧縮成形された磁石は、以下に詳述する製造方法を用いることで、磁石形状の寸法関係がその後の工程であまり変化しない。すなわち工程15で圧縮成形された形状が高い精度で維持できる。例えば以下の製造工程を使用した場合、磁石材料を結着するバインダーのバリなどの一部分を切削成形することが必要かもしれないが、形状の多くの部分は高い精度が維持されており、回転電機において要求される磁石の精度を達成できる可能性が高い。
焼結磁石では、圧縮成形された磁石材料を製造工程で高温に熱することが必要で、高温に熱した後冷却されることで磁石の形状は圧縮成形の形状から変形してしまう問題がある。このため従来の焼結磁石では最終形状の精度を維持するために切削加工が必須であった。このことにより生産性が悪くなる問題があった。また切削加工では曲線形状の加工が困難であり、曲線形状を備えた磁石を簡単に生産することができない。曲線形状の磁石を製造するには切削加工するためのローラ内を何度も通して成形するなどの方法が取られており、加工に多くの時間と特別な加工設備が必要となる。
工程20では、圧縮成形された磁石成形体にSiO系の前駆体、例えばSiOの前駆体の溶液を含浸する。圧縮成形された磁石成形体は多孔質の状態であり、粘性が低く、磁石材料に対して濡れ性の良い性質を持つ結着剤の前駆体を含浸する。圧縮成形された磁石成形体に対し前記前駆体は濡れ性が良好で粘性も低いので、多孔質の圧縮成形体に前記前駆体が吸い込まれるように含浸される。具体的な前駆体は以下で詳述する。
磁石成形体に対する濡れ性の良好な結着剤の前駆体溶液を含浸することで、磁石成形体を構成するそれぞれの磁石粉体の表面を前記結着剤が被い、結果として多数の粉体を良好につなぎ合わせる作用を為す。また良好な濡れ性の作用で結着剤の前駆体溶液が磁石成形体の細部に入り込むので、量的に少ない結着剤で良好な結着効果が得られる。また良好な濡れ性を利用しているので、エポキシ樹脂の使用に比べ設備が比較的シンプルで安価になる。さらに以下に詳述する前駆体は比較的低い温度で硬化するので、圧縮成形体の寸法・形状が高い精度で維持したまま最終的な磁石が得られる。もちろん前駆体の含浸の工程で結着剤のバリなどができるが、粉末磁石の圧縮成形体の寸法や形状が変化するわけでは無いので、結着剤の切削処理を行うことで磁石が製造される。
さらに以下に詳述する前駆体は比較的低い温度で硬化するので、工程20は120度以上200度以下の温度範囲、特に150度程度の温度条件で行うことができる。これにより、圧縮成形体の寸法・形状が高い精度で維持したまま最終的な磁石が得られる。また、NdFeB等の磁石用磁粉が酸化することを抑制し、磁気特性の低下を防止することができる。
工程25は、含浸された圧縮成形体を熱処理することにより結着剤で磁石材料を結着する工程である。以下に詳述する如くSiOを結着剤として磁石材料を結着することで良好な磁石体を得ることができる。以下に詳述するように、工程25での処理温度は比較的低い温度であり、この熱処理で前記磁石成形体の形状や寸法が変化することがほとんど無く、製造された磁石体の形状や寸法関係は圧縮成形された形状や寸法に対し高い精度が維持されている。なおこの後磁気的に良好な特性を得るために磁石体を高温に熱しても良い。この場合の温度は従来の焼結磁石の焼結温度より低くてよく、焼結磁石の場合に比べて上述の如く形状や寸法が高い精度で維持される。
〈永久磁石254と256の結着剤〉
上記工程20で使用される結着剤の前駆体の溶液は、SiOの前駆体であるアルコキシシロキサン,アルコキシシランを有しており、化学式2や化学式3に示すような末端基及び側鎖にアルコキシ基を有する化合物を有している。
また、溶媒のアルコールにはアルコキシシロキサン,アルコキシシラン中のアルコキシ基と同じ骨格の化合物が好ましいがこれらに限られるものではない。具体的にはメタノール,エタノール,プロパノール,イソプロパノール等が挙げられる。また、加水分解及び脱水縮合用触媒としては酸触媒,塩基触媒,中性触媒のいずれでも良いが中性触媒が金属の腐食を最小限に抑えられるので最も好ましい。中性触媒としては、オルガノスズ触媒が効果的で、具体的にはビス(2−エチルヘキサノエート)スズ,n−ブチルトリス(2−エチルヘキサノエート)スズ,ジ−n−ブチルビス(2−エチルヘキサノエート)スズ,ジ−n−ブチルビス(2,4−ペンタンジオネート)スズ,ジ−n−ブチルジラウリルスズ,ジメチルジネオデカノエートスズ,ジオクチルジラリル酸スズ,ジオクチルジネオデカノエートスズ等が挙げられるがこれらに限られるものではない。また、酸触媒としては希塩酸,希硫酸,希硝酸,蟻酸,酢酸等が、塩基触媒としては水酸化ナトリウム,水酸化カリウム,アンモニア水等が挙げられるがこれらに限られるものではない。
結着剤の溶液中のSiOの前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量は体積分率として5vol%以上かつ96vol%以下が好ましい。アルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量が5vol%未満になると、磁石中の結着剤の含有率が低いため、硬化後の結着剤の材料としての強度がやや小さくなる。一方、アルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量が96vol%以上になると、SiOの前駆体であるアルコキシシロキサン,アルコキシシランの高分子量化の反応が速いため、結着剤溶液の増粘速度も速くなる。これは結着剤溶液の適正粘度の制御がより困難であることを意味しており、この結着剤溶液を含浸法に用いることが先に説明した材料に比べ難しくなる。
結着剤溶液中のSiOの前駆体であるアルコキシシロキサン又はアルコキシシランと水とは、以下の化学式4,化学式5に示した加水分解反応が生じる。ここで化学反応式は加水分解が部分的に生じた時の反応式である。
この際、水の添加量がアルコキシシロキサン又はアルコキシシランの加水分解反応の進行度を支配する因子の一つとなる。この加水分解反応は硬化後の結着剤の機械的強度を大きくするためには重要である。アルコキシシロキサン又はアルコキシシランの加水分解反応が発生していないと、その次に起こるアルコキシシロキサン又はアルコキシシランの加水分解反応物同士の脱水縮合反応が進行しないからである。この脱水縮合反応生成物がSiOであり、このSiOが磁粉との接着性が高く、結着剤の機械的強度を大きくする重要な材料となるからである。更に、シラノールのOH基が磁粉表面のO原子又はOH基と相互作用が強く高接着化に寄与するからである。しかしながら、加水分解反応が進みシラノール基の濃度が高くなるとシラノール基を含む有機ケイ素化合物(アルコキシシロキサン又はアルコキシシランの加水分解生成物)同士の脱水縮合反応が進行し、有機ケイ素化合物の分子量が大きくなり、結着剤の溶液の粘度は高くなる。これは含浸法に用いる結着剤の溶液としては適正な状態が遠ざかる特性である。従って、結着剤溶液中のSiOの前駆体であるアルコキシシロキサン又はアルコキシシランに対する適正な水の添加量が必要となる。ここで、絶縁層形成処理液中の水の添加量として、化学反応式1,2に示した加水分解反応における反応当量の1/10〜1が好ましい。水の添加量が化学反応式1,2に示した加水分解反応における反応当量の1/10以下では、有機ケイ素化合物のシラノール基の濃度が低いため、シラノール基を含む有機ケイ素化合物と磁粉表面との相互作用が低く、また、脱水縮合反応が生じにくいため生成物中にアルコキシ基が多量に残存したSiOが生成するため、SiO中に欠陥部が多数発生し、SiOの強度が低くなる。一方、水の添加量が化学反応式1,2に示した加水分解反応における反応当量の1より大きくなると、シラノール基を含む有機ケイ素化合物は脱水縮合が発生し易くなり、結着剤溶液が増粘するため、磁粉と磁粉の隙間に結着剤溶液は浸透できなくなり含浸法に用いる結着剤溶液としては適正な状態から遠ざかる特性である。結着剤溶液中の溶媒には通常アルコールを用いる。それは結着剤溶液に用いる溶媒にはアルコキシシロキサン中のアルコキシ基は解離反応が速く、溶媒のアルコールと置換し平衡状態にあるからである。そのため溶媒のアルコールには沸点が水より低く粘度の低いメタノール,エタノール,n−プロパノール,iso−プロパノールが好ましい。しかし、化学的には溶液の安定性が若干低下するものの、結着剤の溶液の粘度が数時間で増加してしまうことが無く、かつ、沸点が水より低い溶媒であれば本発明の結着剤として用いることが可能で、アセトン等のケトン類などの水溶性溶媒であれば適用できる。
以上説明した本発明の結着剤の一態様について、以下の事項を確認できる。
まず、SiOの前駆体は、水溶液を溶媒とする溶液ではなく、アルコールを溶媒とする溶液で構成される。水は加水分解反応を調整するために添加されるにすぎない。水溶液ではなく、アルコールをベースとした溶液を使って含浸処理することにより、熱硬化後に水がほとんど残存しないこととなる。永久磁石内の水の残存を抑えているため、酸化等により経時的に磁気特性が劣化することもなくなる。一方、SiOの前駆体として、アルコキシシロキサン,アルコキシシラン等を用いて加水分解を行っているため、メトキシが残存することが考えられる。従って、製造された永久磁石には磁粉、磁粉を結着するバインダーの他にメトキシが含有される構成が考えられる。
次に、上記工程により生成した磁石は、NdFeB等の希土類の磁石用磁粉を、SiO系のバインダーで結着した構造となる。このバインダーはアモルファス状(非結晶状態)の連続膜構造をとる。上記のように、バインダーはSiOで構成されることを基本とするが、アモルファス状であるため、部分的にSiO等の組成が存在することも考えられる。主としてSiとOとからなる連続膜、即ちSiO系の連続膜からなるバインダーが形成されていれば、本実施形態に係る磁石を構成するものと考えられる。
次に、バインダーとして、SiO系以外の酸化物ガラス質を用いる構成について検討する。上述のように、本発明の製造工程を踏むためには、含浸溶液としての前駆体には様々な要件が課せられる。低粘度であること、浸透性が高いこと、安定性が高いこと、比較的低温で硬化すること、等である。これらの要件を満たすものとして、SiO系のバインダーが最良であることを確認しているが、本製造工程に適した要件を満たせば、他の酸化物ガラス質をバインダーとして用いた場合であっても、ある程度の効果は期待できる。
〈永久磁石254と256の製造方法の他の実施形態〉
本発明に係る磁石製造プロセスの他の実施形態を第9図および第10図に示す。第9図の実施形態では、粉体状の磁石材料を生成後で圧縮成形前に絶縁皮膜を作る処理を施す工程が加わる点が、上記で説明した第8図のプロセスと異なる。また第10図では、圧縮成形した磁石を回転子に装着し、その後に結着剤を含浸する処理を行っている点がことなる。これら第9図および第10図に示す方法においても、希土類の磁粉をSiO系のバインダーで結着した後、磁気特性を安定的に持続するために熱処理しても良い。この熱処理の温度は上述のとおり、焼結温度より低い温度である。
第9図で第8図と同じ工程の番号はほぼ同様の処理内容であることを示す。工程10で粉体状の磁石材料を生成し、工程12で生成された磁石材料の各粉体の表面に電気的な絶縁膜を作る処理を行う。磁粉表面のできるだけ全面にさらにできるだけ均一に電気的な絶縁層を作ることが望ましく、具体的な処理方法は後述する。製造された磁石が回転電機に使用される場合、上述の通り交流磁場で使用される。磁石を通る磁束が周期的に変化し、磁束の変化により、磁石内に渦電流が発生する。この渦電流は回転電機の効率を低下させる問題があり、また渦電流により磁石内の発熱を増大する恐れがある。SiO系のバインダーは絶縁体であり、本実施の形態では板状の磁粉表面に薄いアモルファス状の膜が形成されて磁粉同士が結着されるので、希土類磁粉は導電性材料であるにもかかわらず出来上がった磁石体は高い電気抵抗を有している。このため渦電流が押さえられ、効率の向上や発熱の低減の効果がある。
このように本実施の形態によれば磁石体の内部抵抗が増大するが、これに加えさらに磁石材料のそれぞれの粉体の表面を絶縁層で被うことにより、磁石内部の渦電流を更に低く抑え、回転機の効率低下を抑えることができる。また磁石の発熱をさらに抑えることができ、回転電機全体の発熱を抑制できる。特に回転子に内蔵される磁石では回転子は回転電機のハウジングと軸受けを介して機械的につながっており、熱伝導性が良くない。このため磁石の発熱を抑えることは大きな効果がある。
希土類の磁石粉体の表面に無機絶縁膜を形成するには、無機絶縁膜としてリン酸塩化成処理膜を適用するのが良い。リン酸塩化成処理液にリン酸,マグネシウム,ほう酸を用いた場合、以下のような組成が良い。リン酸量は1〜163g/dmが望ましく、163g/dmより大きいと磁束密度の低下を招き、1g/dmより小さいと絶縁性が悪くなる。また、ほう酸量はリン酸1gに対して0.05〜0.4gが望ましくこの範囲を超えると絶縁層の安定性が悪くなる。磁粉表面の全面に絶縁層をできるだけ均一に形成するためには、絶縁層の形成処理液の磁粉に対する濡れ性を向上させることが有効である。これには界面活性剤の添加が望ましい。こうした界面活性剤としては、例えば、パーフルオロアルキル系,アルキルベンゼンスルホン酸系,両性イオン系、またはポリエーテル系の界面活性剤が挙げられ、その添加量は、絶縁層形成処理液中に0.01〜1重量%含有させることが望ましく、0.01重量%未満では表面張力を下げて磁粉表面を濡れさせる効果が不十分であり、1重量%を超えてもそれ以上の効果は望めず不経済である。
さらに防錆剤を入れることが磁石の特性劣化を防止するなどの観点から望ましい。防錆剤の量は0.01〜0.5mol/dmが望ましく、0.01mol/dm未満では磁粉表面の錆の抑制が難しく、0.5mol/dmより多くしても以上の効果は望めず経済的でない。
リン酸塩化成処理液の添加量は、希土類磁石用磁粉の平均粒径に依存する。希土類磁石用磁粉の平均粒径が0.1〜500μmの場合、希土類磁石用磁粉1kgに対して300〜25mlが望ましい。300mlより多いと磁粉表面の絶縁膜が厚くなりすぎ、また、錆が発生し易くなるために磁石作製時の磁束密度の低下を招き、25mlより少ないと絶縁性が悪く、処理液の濡れない部分で錆の発生量が多くなり、磁石の特性劣化を引起す恐れがある。
コート膜形成処理液中の希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤させるのは、希土類フッ化物又はアルカリ土類金属フッ化物ゲルがゼラチン状の柔軟な構造を有することと、アルコールが希土類磁石用磁粉に対して優れた濡れ性を有するからである。また、ゲル状態の該希土類フッ化物又はアルカリ土類金属フッ化物の平均粒径が10μm以下のレベルまで粉砕する必要があるのは、希土類磁石用磁粉表面に形成されたコート膜が均一厚になり易いからである。更に、アルコールを主成分とした溶媒にすることにより、非常に酸化され易い希土類磁石用磁粉の酸化の抑制が可能となる。
更に、磁粉の絶縁性並びに磁気特性の向上を図ることを目的とした無機絶縁膜としてはフッ化物コート膜が望ましい。このような理由で希土類磁石粉体表面にフッ化物コート膜を形成する場合、フッ化物コート膜形成処理液中の希土類フッ化物又はアルカリ土類金属フッ化物の濃度に関しては希土類磁石用磁粉表面に形成する膜厚に依存するが、希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤されており、ゲル状態の該希土類フッ化物又はアルカリ土類金属フッ化物の平均粒径が10μm以下のレベルまで粉砕され、かつアルコールを主成分とした溶媒に分散された状態を保つことが重要で、希土類フッ化物又はアルカリ土類金属フッ化物の濃度として200g/dmから1g/dmとなる。
希土類フッ化物コート膜形成処理液の添加量は、希土類磁石用磁粉の平均粒径に依存する。希土類磁石用磁粉の平均粒径が0.1〜500μmの場合、希土類磁石用磁粉1kgに対して300〜10mlが望ましい。これは処理液量が多いと溶媒の除去に時間を要するだけでなく、希土類磁石用磁粉が腐食し易くなるためである。一方、処理液量が少ないと希土類磁石用磁粉表面に処理液の濡れない部分が生じるためである。以上の事項に関し、第1表には希土類フッ化物,アルカリ土類金属フッ化物コート膜について、処理液として有効な濃度等を纏めている。
第9図のプロセスでは工程12で希土類の磁石材料の各粉体の表面に絶縁膜を形成し、その後工程15で磁石材料を圧縮成形して多孔質の磁石を成形する。その後第8図と同様工程20で結着剤の前駆体を含浸し、工程25で前駆体を硬化して磁石材料を結着剤で結着する。
以上、第8図と第9図を用いて本発明に係る磁石製造プロセスの例を述べた。第10図は結着剤の含浸工程の前に圧縮成形された多孔質の磁石を回転子の磁石挿入孔に挿入し、その後結着剤の前駆体を磁石挿入孔に流し込み含浸する方法である。工程15までは既に説明したプロセスと同じである。工程17で回転子鉄心に設けられた磁石挿入孔に多孔質の圧縮磁石を挿入し、工程磁石22でSiOの前駆体の溶液を回転子の磁石挿入孔に流し込む。
次に工程27で回転子自身の温度を上げると前記前駆体が硬化し、圧縮成形された磁石の強度が強くなると共に磁石が前記回転子鉄心の磁石挿入孔に固定される。
In the embodiment described below, the iron powder is hardened to form part or all of the stator core or the rotor core, or both the stator core and the rotor core are formed. For this reason, in addition to the reduction of eddy current loss in the above-described permanent magnet, eddy current loss inside the stator core or rotor core can be suppressed, and internal heat generation can be suppressed. Furthermore, in addition to heat generation reduction, the efficiency of the rotating electrical machine can be improved. For example, the electrical resistance is 5 to 10 times that of a conventional sintered type permanent magnet, and even higher in some cases, and heat generation due to eddy current can be reduced.
In the embodiment described below, a thin amorphous film is formed between plate-like rare earth magnet materials, and the plate-like rare earth magnet materials are bound to each other by this film. The binder can be in the form of a thin film. As a result, the ratio of the rare earth magnet material per unit volume of the magnet is increased, and good magnetic properties are obtained. On the other hand, the electric resistance between the rare earth magnet materials is increased by the thin film of the binder, and the internal resistance of the magnet is increased.
For example, the permanent magnet provided in the rotating electrical machine is manufactured as follows. First, the magnetic material is compression-molded, and the compression-molded magnetic material is impregnated with this material and a binder precursor having excellent wettability to obtain a magnet in which the magnetic material is bound with the binder.
In the following embodiments, the following excellent effects are further obtained. In the rare earth sintered magnet, it is necessary to heat the rare earth magnet material to a high temperature in order to sinter, and a process to heat to the sintering temperature is required, which increases the production cost of the magnet or rotating electric machine including the equipment cost. .
Moreover, the shape and dimension after a sintering process will change with respect to the shape and dimension before a sintering process by the sintering process which heats a magnet material to final temperature. Therefore, in the molding process after the sintering process, a molding operation including significant cutting is required to obtain dimensional accuracy. In the embodiment of the present invention described below, since the magnet can be manufactured at a relatively low temperature, the magnet material can be bound while maintaining the shape and dimensions of the magnet material by press molding with high accuracy. . As a result, it becomes easy to produce magnets with high accuracy. For this reason, the magnet after being hardened by the binder is much easier to form than the sintered magnet, and in some cases, cutting is not required.
It is not easy to cut a magnet into a shape having a curve. Cutting a simple curve such as a circle is easy, but cutting a complicated curve is not easy. When machining a magnet into a curved shape, press working is easier than cutting. However, sintered magnets need to be heated to a high temperature for sintering as described above, and cutting is always required after the sintering process. In the embodiment of the present invention described below, since it is not necessary to heat to the sintering temperature after the press working, the shape and dimensional relationship of the press working are maintained with high accuracy even after the binding process of the magnet material. . For this reason, the final shape of the magnet is often obtained by a slight cutting process, and in some cases, the magnet can be completed without a cutting operation.
According to the present invention, it is possible to easily produce a curved magnet that has been difficult to manufacture. As a result, the characteristics of the rotating electrical machine can be improved.
In the embodiment described below, the magnet material processed after pressing the magnet material is attached to the motor part, for example, inserted into the magnet insertion hole of the rotor, and then the binding work for infiltrating the binder is performed. Is possible. According to this method, in the magnet material binding step, not only the magnet material but also the magnet material and the rotating electrical machine component in the vicinity of the magnet can be bound together. For example, the inner surface of the magnet insertion hole and the inserted magnet can be bonded simultaneously. This improves workability. In addition, the durability of the magnet or the rotary electric component including the magnet is improved. If it is strong, durability or reliability of a rotary electric machine will improve.
<Electric vehicle 100>
FIG. 1 is a block diagram showing an embodiment of a hybrid electric vehicle equipped with a rotating electrical machine according to the present invention. The rotating electrical machine according to the present invention can be applied to a pure electric vehicle and a hybrid electric vehicle. Examples of the hybrid electric vehicle will be described below.
The hybrid electric vehicle 100 supplies high-voltage DC power to the engine 120, the first rotating electrical machine 200, the second rotating electrical machine 202, and the first rotating electrical machine 200 and the second rotating electrical machine 202. Alternatively, a battery 180 that receives high-voltage DC power from the first rotating electrical machine 200 and the second rotating electrical machine 202 is mounted. Further, a battery for supplying low voltage power of 14 volt system power is mounted on the vehicle, and low voltage direct current power is supplied to a control circuit described below. Is omitted.
Rotational torque based on the engine 120, the first rotating electric machine 200, and the second rotating electric machine 202 is transmitted to the transmission 130 and the differential gear 132, and is transmitted to the front wheels 110.
A transmission control device 134 for controlling the transmission 130, an engine control device 124 for controlling the engine 120, a power conversion device 600, a battery control device 184 for controlling a battery 180 such as a lithium ion battery, and an integrated control device 170, Each is connected by a communication line 174.
The integrated control device 170 transmits information representing the respective states from the transmission control device 134, the engine control device 124, the power conversion device 600, and the battery control device 184, which are lower control devices than the integrated control device 170, to the communication line. Receive via 174. Based on these pieces of information, the integrated control device 170 calculates a control command for each control device, and a control command from the integrated control 170 to each control device is transmitted to each control device via the communication line 174. . For example, the battery control device 184 reports the discharge status of the battery 180 which is a lithium ion battery and the status of each unit cell battery constituting the lithium ion battery to the integrated control device 170 via the communication line 174 as the status of the battery 180.
When the integrated control device 170 determines from the report that the battery 180 needs to be charged, the integrated control device 170 instructs the power conversion device 600 to perform a power generation operation. The integrated controller 170 also manages the output torque of the engine 120 and the first and second rotary electric machines 200 and 202, and the total torque or torque distribution of the output torque of the engine and the first and second rotary electric machines 200 and 202. The ratio is calculated and a control command based on the processing result is transmitted to the transmission control device 134, the engine control device 124, and the power conversion device 600. Based on the torque command, the power conversion device 600 controls the first rotating electric machine 200 and the second rotating electric machine 202, and generates a command torque output or generated electric power with one or both of the rotating electric machines. These rotating electric machines are controlled as follows.
The power conversion device 600 controls the switching operation of power semiconductors constituting an inverter in order to operate the first rotating electrical machine 200 and the second rotating electrical machine 202 based on a command from the integrated control device 170. By the switching operation of these power semiconductors, the first rotating electric machine 200 and the second rotating electric machine 202 are operated as an electric motor or a generator.
When operating as an electric motor, DC power from the high-voltage battery 180 is supplied to the DC terminal of the inverter of the power converter 600. By controlling the switching operation of the power semiconductor constituting the inverter, the supplied DC power is converted into three-phase AC power and supplied to the rotating electrical machine 200 or 202. On the other hand, when the first rotating electrical machine 200 or the second rotating electrical machine 202 is operated as a generator, the rotor of the rotating electrical machine 200 or 202 rotates with a rotational torque applied from the outside, and the rotating electrical machine is based on this rotational torque. Three-phase AC power is generated in the stator winding. The generated three-phase AC power is converted to DC power by the power converter 600, DC power is supplied to the high-voltage battery 180, and the battery 180 is charged with DC power.
As shown in FIG. 1, the power conversion device 600 includes a capacitor module containing a plurality of smoothing capacitors that suppresses voltage fluctuations of the DC power supply, a power module containing a plurality of power semiconductors, and a switching operation of the power module. The rotating electric machine control circuit includes a switching drive circuit to be controlled and a circuit for generating a signal for determining a time width of the switching operation, that is, a PWM signal for controlling pulse-wide modulation.
The high-voltage battery 180 is a secondary battery such as a lithium ion battery or a nickel-metal hydride battery, and a high-voltage DC power of 250 to 600 volts or more is charged to the secondary battery, or the secondary battery. Output from the battery.
<Description of electrical circuit>
FIG. 2 is a circuit diagram of power converter 600 shown in FIG. The power converter 200 includes a first inverter for generating three-phase AC power to be supplied to the first rotating electric machine 200 or for converting three-phase AC power from the first rotating electric machine 200 into DC power. The apparatus and the second rotary electric machine for generating three-phase AC power to be supplied to the second rotary electric machine 202 or converting the three-phase AC power from the second rotary electric machine second rotary electric machine 202 into DC power A second inverter device is provided. The first inverter device includes a first power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 that constitutes each arm of the inverter built in the first power module 610, A current sensor 660 for detecting the current of the rotating electrical machine 200, a control circuit 648 used in common with a second inverter device described below, a transmission / reception circuit 644 mounted on the connector board 642, and a capacitor module 630 are provided. ing. Note that the drive circuit 652 is provided on the drive circuit board 650, and the control circuit 648 is provided on the control circuit board 646.
The second inverter device includes a second power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 that constitutes each arm of the inverter built in the second power module 620, A current sensor 662 for detecting the current of the rotating electrical machine 202, a control circuit 648 used in common with the first inverter, a transmission / reception circuit 644, and a capacitor module 630 are provided. The second drive circuit 656 is mounted on the second drive circuit board 654, the control circuit 648 is mounted on the control circuit board 646, and the transmission / reception circuit 644 is mounted on the connector board 642. .
The first power module 610 and the second power module 620 operate according to the drive signals output from the corresponding first and second drive circuits 652 and 656, respectively, and are supplied with DC power supplied from the high voltage battery 180. Is converted into three-phase AC power, and the power is supplied to the corresponding armature windings of the rotating electric machines 200 and 202. The AC power induced in the stator windings that are the armature windings of the rotating electric machines 200 and 202 is converted into DC and supplied to the high voltage battery.
<Description of Power Modules 610 and 620>
The first and second power modules 610 and 620 are each provided with a three-phase bridge circuit as shown in FIG. 2, and series circuits corresponding to the three phases are respectively connected to the positive side and the negative side of the battery 180. Are electrically connected in parallel. Each series circuit includes a power semiconductor constituting the upper arm and a power semiconductor constituting the lower arm, and the power semiconductor 21 constituting the upper arm and the power semiconductor 21 constituting the lower arm are connected in series.
As shown in FIG. 2, the first power module 610 and the second power module 620 have substantially the same circuit configuration, and the first power module 610 will be described as a representative. In this circuit, an IGBT (insulated gate bipolar transistor) is used as the switching power semiconductor 21. The IGBT includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode. A diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT. The diode 38 has two electrodes, a cathode electrode and an anode electrode. The cathode electrode is the collector electrode of the IGBT and the anode electrode is the IGBT so that the direction from the emitter electrode to the collector electrode of the IGBT is the forward direction. Each is electrically connected to the emitter electrode.
A MOSFET (metal oxide semiconductor field effect transistor) may be used as the power semiconductor element for switching. The MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode. Since the MOSFET includes a parasitic diode between the source electrode and the drain electrode in which the direction from the drain electrode to the source electrode is the forward direction, there is no need to provide the diode 38 in FIG.
The series circuit of each phase is configured by electrically connecting an emitter electrode of the IGBT as the upper arm and a collector electrode of the IGBT as the lower arm in series. In this embodiment, one IGBT for each upper and lower arm of each phase is not shown, but since the current capacity to be controlled is large, a plurality of IGBTs are actually electrically connected in parallel. ing. In order to simplify the explanation below, each arm of the inverter will be described as being composed of one power semiconductor 21.
In the embodiment shown in FIG. 2, each upper and lower arm of each phase is constituted by three power semiconductors 21. The collector electrode of the power semiconductor 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 180, and the emitter electrode of the power semiconductor 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 180.
Each phase of each arm, that is, the middle point of the series circuit, that is, the connection portion between the emitter electrode of the upper arm side IGBT and the collector electrode of the IGBT on the lower arm side becomes each phase of the three-phase AC power. It is electrically connected to the corresponding phase armature winding.
The first and second drive circuits 652 and 656 constitute a drive unit for controlling each inverter device of the corresponding first and second power modules 610 and 620, and are output from the control circuit 648. Based on the control signal, a signal for controlling the power semiconductor 21 is generated. Signals generated by the drive circuits 652 and 656 are output to the gates of the power semiconductors of the corresponding first power module 610 and second power module 620, respectively. In this embodiment, two integrated circuits for generating respective signals to be supplied to the gates of the upper and lower arms of each phase are incorporated in one integrated circuit. Since the first power module 610 and the second power module 620 have twelve upper or lower arms in total, the drive circuits 652 and 656 have the six integrated circuits, and these six integrated circuits. A circuit is housed in one block. In other words, the drive circuits 652 and 656 are constituted by the partially locked integrated circuit.
The control circuit 648 constitutes a control unit of the first and second power modules 610 and 620, and a control value, that is, an operation timing for operating (turning on or off) the plurality of power semiconductors 21 constituting the inverter circuit. It comprises a microcomputer that computes. The control circuit 648 receives a torque command signal (torque command value) from the host controller, and signals (sensor output) detected by the current sensors 660 and 662 and the rotation sensors mounted on the rotating electrical machines 200 and 202. . The control circuit 648 calculates a control value based on these input signals and outputs a control signal for controlling the switching timing of the power semiconductor 21 to the drive circuits 652 and 656.
The transmission / reception circuit 644 mounted on the connector board 642 is for electrically connecting the power conversion apparatus 600 and an external control apparatus, and communicates with other apparatuses via the communication line 174 in FIG. Send and receive.
The capacitor module 630 is for constituting a smoothing circuit for suppressing fluctuations in the DC voltage generated by the switching operation of the power semiconductor 21, and is provided on the DC side of the first power module 610 and the second power module 620. The terminals are electrically connected in parallel by a DC bus bar having a laminated structure of plate-like conductors arranged to face each other with an insulating sheet interposed therebetween.
<Description of Rotating Electric Machine 200 or 202>
FIG. 3 is a cross-sectional view of the rotating electrical machine 200 or 202 shown in FIGS. The rotating electric machines 200 and 202 have substantially the same structure, and the structure of the rotating electric machine 200 will be described with reference to FIGS. 3 to 6 as representative examples thereof. FIG. 4 is an AA cross section of the stator 230 and the rotor 250 shown in FIG. 3, and illustration of the housing 212 and the shaft 218 is omitted.
A stator 230 is held inside the housing 212, and the stator 230 includes a stator core 232 and a stator winding 238. A rotor 250 is arranged on the inner side surface of the stator core 232 via a gap 222. The rotor 250 includes a rotor core 252 and a permanent magnet 254, and the rotor core 252 is fixed to the shaft 218. The housing 212 has end brackets 214 on both sides in the rotation axis direction of the shaft 218, and the shafts 218 having the rotor core 252 are rotatably held by bearings 216 on the end brackets 214.
The stator core 232 and the rotor core 252 are formed by compressing iron powder that has been subjected to a process of attaching an electrical insulating film to the surface. The stator core 232 has a structure formed by compressing iron powder. By taking such a structure, the stator winding is first molded, then the stator winding is temporarily fixed, and the temporarily fixed stator winding is built in and filled with iron powder. Next, the entire iron powder is compression-molded to produce the entire stator, thereby improving productivity and improving the space factor of the stator winding. Furthermore, eddy current can be reduced and the efficiency of the rotating electrical machine is improved.
The rotor core 252 can be reduced in eddy current of the rotor core 250 by compressing and molding the iron powder that has been subjected to the process of attaching an electrical insulating film to the surface. Further, the permanent magnets 254 and 256 described below have a structure for reducing eddy current, and the internal heat generation of the rotor 250 can be reduced comprehensively. Rare earth permanent magnets have the disadvantage that their magnetic properties deteriorate, that is, demagnetize when the temperature rises. In-vehicle rotating electrical machines are often used in situations where the ambient temperature is high, and reducing internal heat generation is very preferable for maintaining high reliability.
The shaft 218 is provided with a rotor position sensor 224 that detects the position of the rotor pole and a rotation speed sensor 226 that detects the rotation speed of the rotor. Outputs from these sensors 224 and 226 are taken into a control circuit 648 shown in FIG. 2, and the first and second power modules 610 and 620 are controlled based on the outputs of these sensors.
A specific structure of the stator 230 and the rotor 250 shown in FIG. 3 will be described with reference to FIG. The stator 230 has a stator core 232, the stator core 232 has a large number of slots 234 and teeth 236 evenly in the circumferential direction, and the slot 234 has a stator winding 238. Yes. There are two methods for winding the stator winding: distributed winding and concentrated winding. In this embodiment, both winding methods can be applied. In FIG. 4, teeth 236 and slots 234 are provided on the entire rotor side of the stator. Since all these symbols are complicated, only some teeth and slots are represented by symbols.
The rotor core 252 is provided with permanent magnet insertion holes for inserting permanent magnets 254 and 256, and the permanent magnets 254 and 256 are inserted into the permanent magnet insertion holes. The magnetization direction of the permanent magnets 254 and 256 is a direction in which the side surface of the stator of the magnet is an N pole or an S pole, and the magnetization direction is reversed for each pole of the rotor.
The permanent magnets 254 and 256 may be magnetized and inserted into the permanent magnet insertion hole in a state of becoming a permanent magnet, or the magnets may be inserted in a state where the permanent magnets 254 and 256 are not magnetized (hereinafter referred to as a magnet body). The magnet may be inserted into the insertion hole and magnetized by applying a strong magnetic field after being inserted into the magnet insertion hole, so that a permanent magnet may be obtained. Inserting a magnet body that is not magnetized into the magnet insertion hole and magnetizing the magnet body after insertion improves the productivity of the rotating electrical machine. That is, these permanent magnets are magnets made of a very strong rare earth material. When magnetized before being inserted into the magnet insertion hole, a strong attractive force is generated between the rotor core 252 and the centripetal force is used for insertion work. Hinder. Moreover, there is a possibility that dust such as iron powder adheres to the permanent magnet due to the strong attractive force.
In the embodiment shown in FIG. 4, the permanent magnets 254 and 256 act as one pole of the rotor 250. The poles of the rotor 250 including the permanent magnets 254 and 256 are arranged at equal intervals in the circumferential direction of the rotor 250, and in this embodiment, there are eight poles. However, the application object to which the present invention is applied is not fixed to 8 poles, but may be 10 poles or more and 30 poles or more in some cases. However, the number of poles is determined by the required output as a motor. Further, when the number of poles is increased, the number of magnets increases and workability decreases. In some cases, it may be 8 or less. The portion of the rotor core existing on the stator side of the permanent magnets 254 and 256 acting as each pole of the rotor 250 acts as a magnetic pole piece 280, and the magnetic lines of force entering and exiting the permanent magnets 254 and 256 are fixed through this magnetic pole piece 280. Enter and exit the child core 232.
As described above, the permanent magnets 254 and 256 acting as the poles of the rotor 250 are magnetized in the opposite directions for each pole so that the magnets 254 and 256 of a certain pole are the N pole on the stator side and the S pole on the shaft side. Are magnetized such that the permanent magnets 254 and 256 acting as poles on both sides thereof are S-pole on the stator side and N-pole on the shaft side. A portion acting as an auxiliary magnetic pole 290 exists between the poles of the rotor 250, and the reluctance is determined by the difference in magnetic resistance between the q-axis magnetic flux passing through the auxiliary magnetic pole 290 and the d-axis magnetic flux passing through the magnet. Generate torque. Between the auxiliary magnetic poles 290 and the magnetic pole pieces 280, there are bridge portions 282 and 284, respectively. In the bridge portions 282 and 284, the magnetic circuit 262 and 264 narrow the cross-sectional area of the magnetic circuit. Yes. For this reason, a magnetic saturation phenomenon occurs in each of the bridge portions 282 and 284, and the amount of magnetic flux passing between the magnetic pole piece 280 and the auxiliary magnetic pole 290, that is, passing through the bridge portions 282 and 284 is suppressed to a predetermined amount or less.
<Description of Permanent Magnets 254 and 256>
Here, the permanent magnets 254 and 256 have a structure in which a neodymium (Nd) powder of a rare earth material, which is a magnet material, is bound with a binder that has a good affinity between the neodymium (Nd) and a precursor. Yes. Here affinity excellent precursor precursor of the binder in the SiO-based, is alkoxysiloxane or alkoxysilane such as SiO 2 precursors. The neodymium (Nd) powder has a plate-like shape, and the thickness in the X-axis and Y-axis directions is several times larger than the value in the Z-axis direction, which is the height direction. I am doing. The size of neodymium (Nd) powder in the X-axis or Y-axis direction should be large. For example, it is better to use powder whose size in the X-axis or Y-axis direction is 45 μm or more. Residual properties are improved. It becomes fine because the powder of neodymium (Nd) breaks during molding, and it is difficult to mix small-sized powder, but it is desirable that more than half of the powder is a powder having a size of 45 μm or more, Furthermore, more preferable results can be obtained when 70% or more is a powder having a size of 45 μm or more. Even more preferable results can be obtained when 90% or more is a powder having a size of 45 μm or more. When neodymium (Nd) further contains dysprosium (Dy), the characteristics are improved, and more preferable characteristics can be obtained as a vehicular rotating electrical machine. By including this dysprosium (Dy), good magnetic properties are maintained even if the temperature of the rotating electrical machine rises. The content of dysprosium (Dy) is about several percent, and at most 10%. A magnet having a structure in which a rare earth magnet material powder is bound with a binder will be described in detail later.
3 and 4, the first drive circuit 652 shown in FIG. 2 controls the first power module 610 based on the outputs of the rotational speed sensor 226 and the rotor position sensor 224 of the rotor. A control signal is generated and transmitted to the first power module 610. The first power module performs a switching operation based on the control signal, and converts DC power supplied from the battery 180 into three-phase AC power. The three-phase alternating current power is supplied to the stator winding 238 shown in FIGS. 3 and 4, and the frequency of the three-phase alternating current is controlled based on the detection value of the rotational speed sensor 226, so that the rotor position sensor Based on the detected value of 224, the phase of the three-phase alternating current with respect to the rotor is controlled.
A rotating magnetic field having the phase and frequency is generated in the stator 230 by the three-phase alternating current. The rotating magnetic field of the stator 230 acts on the permanent magnets 254 and 256 of the rotor 250, and magnet torque based on the permanent magnets 254 and 256 is generated in the rotor 250. The rotating magnetic field acts on the auxiliary magnetic pole 290 of the rotor 250, and the reluctance torque is applied to the rotor 250 based on the difference in magnetic resistance between the magnetic circuit passing through the magnets 254 and 256 of the rotating magnetic field and the magnetic circuit passing through the auxiliary magnetic pole 290. Is generated. The rotational torque of the rotor 250 is a value determined based on both the torque of the magnet based on the permanent magnet and the reluctance torque based on the auxiliary magnetic pole.
Since the reluctance torque is generated by the difference between the magnetic resistance generated by the stator winding and the magnetic resistance passing through the magnet and the magnetic resistance passing through the auxiliary magnetic pole 290, the control circuit 648 shown in FIG. The resultant vector of the armature magnetomotive force by the line 238 is controlled so as to be on the advance side in the rotation direction from the center position of the auxiliary magnetic pole, and reluctance torque is generated by the advance side phase of the rotating magnetic flux with respect to the auxiliary magnetic pole 290 of the rotor.
Since the reluctance torque is generated in the rotor 250 in the direction added to the magnet torque by the permanent magnets 254 and 256 in the start-up state and the low-speed operation state of the rotating electrical machine, the reluctance torque rotates with the addition torque of the magnet torque and the reluctance torque The required torque that the electric machine must generate can be created. Therefore, the generation of magnet torque can be reduced by the amount corresponding to the reluctance torque, and the magnetomotive force of the permanent magnet can be lowered. By lowering the magnetomotive force of the permanent magnet, it is possible to suppress the induced voltage caused by the permanent magnet during high-speed operation of the rotating electrical machine, and it becomes easy to supply power to the rotating electrical machine during high-speed rotation. Furthermore, the amount of magnets can be reduced by increasing the reluctance torque. Since rare earth permanent magnets are expensive, it is desirable from an economical viewpoint that the amount of magnets used can be reduced.
<Description of Torque Output of Rotor 250>
Magnet torque and reluctance torque will be described with reference to FIGS. 5, 6 and 7. FIGS. 5 to 7 are enlarged views of the pole portion of the rotor shown in FIG. One set of the magnets 254 and 256 constituting the poles of the rotor 250 in FIG. 4 is typically the magnets 254-1 and 256-1, and the adjacent pole set magnets are the magnets 254-2 and 256-2. As shown. 5 and 6 show the d-axis magnetic flux generated by the magnets 254-1 and 256-1, and FIG. 7 shows the q-axis magnetic flux generated by the stator 230. In addition to the magnetic fluxes shown in FIGS. 5 and 6, the d-axis magnetic flux of the rotating electric machine 200 includes a magnetic flux generated by the stator winding, which is not shown in FIGS. 5 and 6. . When the rotating electrical machine shown in FIG. 4 is in operation, both the d-axis and q-axis magnetic fluxes exist in the rotating electrical machine.
5 and 6, non-magnetic portions including magnetic gap portions 262 and 264 are formed at both ends in the circumferential direction of the permanent magnets 254 and 256 constituting each pole of the rotor 250. . Bridge portions 282 and 284 are formed in the rotor core 232 on the stator side by the magnetic gaps 262 and 264. The bridge portions 282 and 284 are magnetically saturated, and act to limit the magnetic flux leaking from the magnetic pole piece portion 280 to the auxiliary magnetic pole 290 through the bridge portions 282 and 284. By forming the bridge portions 282 and 284, changes in the magnetic flux density distribution of the permanent magnets 254 and 256 between the circumferential ends of the permanent magnets 254 and 256 and the auxiliary magnetic pole portion 290 in each pole of the rotor, that is, magnetic The change in the magnetic flux density distribution from the stator side to the stator in the gaps 262 and 264 can be moderated, and the torque pulsation of the rotating electrical machine 250 is reduced.
In the present embodiment, the magnetic gaps 262 and 264 are formed by forming a gap in the electromagnetic steel sheet, and the gap is formed integrally with a permanent magnet insertion hole for inserting a permanent magnet. In this integral formation, the magnetic gaps 262 and 264 are formed adjacent to the circumferential end of the permanent magnet 22 when the permanent magnets 254 and 256 are inserted into the permanent magnet insertion holes. The magnetic gaps 262 and 264 may be filled with a SiO-based binder that is a non-magnetic material for forming a magnet described later, or may be filled with a filler such as a varnish that is a non-magnetic material. . Of course, nothing may be filled, that is, the air gap may exist.
In this embodiment, by providing the magnetic air gaps 262 and 164, the cogging torque and other torque pulsations can be reduced as described above, and further, the magnetic air gaps 262 and 164 are formed between the magnetic pole piece portion 280-1 and the auxiliary magnetic pole portion 290. The radial dimension of the bridge portions 282 and 284 can be made smaller than the radial width of the permanent magnets 254 and 256, and leakage of magnetic flux generated by the permanent magnet can be reduced. In this embodiment, the radial dimension of the bridge portions 282 and 284 is less than half the radial width of the permanent magnets 254 and 256.
The magnetic gaps 262 and 164 have a shape in which the side on the central axis side of the rotor is shorter than the side on the stator side, in this embodiment, a trapezoidal shape. In addition, the shape between the hypotenuse side on the auxiliary magnetic pole side connecting the side on the stator side of the magnetic gap 262 or 164 and the side on the central axis side of the rotor and the side on the stator side is a predetermined curve. It has a shape. By doing so, the stress generated by the centrifugal force due to the rotation of the rotor 250 is prevented from concentrating locally. Further, it is possible to prevent the mold of a processing machine such as a press for processing the rotor core 252 from becoming an acute angle. When the processing means has an acute shape, there is a problem that the wear in the cutting process becomes severe.
The rotor core 252 can be manufactured by press-bonding iron powder instead of laminated steel sheets, and in this case, it is desirable to prevent the die of the press machine that compresses the iron powder from having an acute angle shape. When the mold has an acute angle shape, the mold of the press machine that compresses the iron powder is heavily worn. For this reason, it is desirable that the magnetic air gaps 262 and 164 have rounded corners to avoid acute angles.
The magnetic air gaps 262 and 164 may be physical air gaps, but may be filled with a material having almost no magnetic properties, such as a nonmagnetic material such as aluminum or stainless steel. For example, in the process of making the rotor core 252 by compressing iron powder, which is a magnetic material, members made in the form of magnetic gaps 262 and 164 made of aluminum or stainless steel are inserted, and these magnetic The rotor core 252 can be compression-molded by incorporating the members of the gaps 262 and 164. In this compression molding process, the rotor core 252 is compression-molded by compressing and molding the above-described magnet using the SiO-based binder and the above-described magnetic gap 262 or 164-shaped member in iron powder as a magnetic material. To manufacture.
FIG. 5 shows the magnetic flux generated by the permanent magnets 254-1 and 256-1 of the rotor 250 formed by compressing the iron powder, which is a magnetic material, as described above in a state where the stator winding 238 is not energized. Shows the flow. FIG. 6 is a diagram schematically showing the magnetic flux generated by the magnet. Magnets 254-1 and 256-1 constitute one rotor pole, and are magnetized in a direction in which the stator side of these magnets becomes an N pole. Magnetic flux generated by the magnets 254-1 and 256-1 enters the stator 230 through the pole piece 280-1. On the other hand, magnets 254-2 and 256-2 constitute the poles of the adjacent rotor, and are magnetized in the direction in which the stator side of these magnets becomes the south pole. Magnetic flux enters the magnets 254-2 and 256-2 from the stator 230 through the magnetic pole piece 280-2.
The magnetic flux shown in FIG. 6 is a d-axis magnetic flux produced by the magnet, and each circulates around the auxiliary magnetic pole 290. When a three-phase alternating current is supplied to the stator winding 238, a magnet torque is generated by the action of the magnetic flux generated by the three-phase alternating current and the d-axis magnetic flux.
FIG. 7 shows the q-axis magnetic flux among the magnetic flux generated when a three-phase alternating current is supplied to the stator winding 238. The q-axis magnetic flux passes through the auxiliary magnetic pole 290 and circulates around the permanent magnet constituting the pole. Of the magnetic fluxes generated by the stator winding 238, the q-axis magnetic flux passes through the auxiliary magnetic pole 290 and passes through a magnetic circuit that circulates the permanent magnet, so that the magnetic resistance is small and the amount of magnetic flux is large. On the other hand, among the magnetic fluxes generated by the stator winding 238, the d-axis magnetic flux passes through a magnetic circuit crossing the permanent magnet, so that the magnetic resistance is large and the amount of magnetic flux is small. A reluctance torque is generated by the magnetic flux difference between the d-axis and the q-axis.
4 to 7 show a magnet motor having an auxiliary magnetic pole 290 that generates reluctance torque. By using the reluctance torque, it is possible to reduce the amount of magnets required to satisfy the torque characteristics required for the rotating electrical machine. In addition to the effect that the internal heat generation of the magnet is reduced by reducing the amount of magnets, the induced voltage inside the rotating machine at high speed rotation can be reduced, and the supply voltage to the rotating electrical machine at high speed rotation can be kept low. However, when used as a rotating electrical machine, the above-described effect cannot be obtained. However, even if the auxiliary magnetic pole 290 is not provided, the motor operation and the generator operation can be performed as the rotating electrical machine. In this case, the structure shown in FIGS. 4 to 7 does not have the auxiliary magnetic pole 290 or has a small proportion of the auxiliary magnetic pole 290, and conversely, the proportion of the magnet increases.
<Method for Manufacturing Permanent Magnets 254 and 256>
An example of the manufacturing process of the permanent magnets 254 and 256 according to the present embodiment is shown in FIG. In step 10, a powdered magnet material is generated. For example, rare earth magnet magnetic powders can be produced by quenching a mother alloy with an adjusted composition.
The rare earth magnet magnetic powder produced in step 10 has a plate-like shape, and the rare earth plate-like magnetic powder is laminated in layers by compression molding described in step 17 below. By impregnating the binder precursor described below, the binder precursor enters the narrow gaps between the laminated layers, forming a film-like binder in an amorphous state. Plate-like magnetic powder binds strongly. Therefore, good magnetic properties can be obtained.
In the present embodiment, non-oxide magnetic powder is used, and in particular, rare earth magnet, for example, magnetic powder such as NdFeB is used. In the present invention, a permanent magnet can be manufactured in a relatively low temperature step by using the method described in detail below. Thereby, even if it is a case where a non-oxide magnetic powder is used, the oxidation of a magnetic powder can be suppressed and a magnet with a high magnetic characteristic can be obtained.
In step 15, the powdery magnet material is compression molded. For example, when manufacturing a permanent magnet for use in a rotating electrical machine, in this step 15, a final magnet-shaped mold for the permanent magnet used in the rotating electrical machine is used, and a powdered magnet material is supplied to the mold and compression molded. . The compression-molded magnet material is in a porous state whose shape is determined by a mold, has a low mechanical strength, and is broken when subjected to a strong impact. Moreover, since it is not magnetized, it does not have the characteristics as a permanent magnet. Even if magnetized in this compression-molded state, it is difficult in mechanical strength to be used as a component of a rotating electric machine.
The compression-molded magnet uses the manufacturing method described in detail below, so that the dimensional relationship of the magnet shape does not change much in the subsequent steps. That is, the shape compression-molded in step 15 can be maintained with high accuracy. For example, when the following manufacturing process is used, it may be necessary to cut and mold a part such as a burr of the binder that binds the magnet material, but many parts of the shape are maintained with high accuracy. Is likely to achieve the required magnet accuracy.
In sintered magnets, it is necessary to heat the compression-molded magnet material to a high temperature in the manufacturing process, and there is a problem that the shape of the magnet is deformed from the shape of the compression-molding by being cooled after being heated to a high temperature. . For this reason, in the conventional sintered magnet, in order to maintain the precision of a final shape, cutting was essential. As a result, there is a problem that productivity is deteriorated. Also, it is difficult to process a curved shape by cutting, and a magnet having a curved shape cannot be easily produced. In order to manufacture a magnet having a curved shape, a method such as forming through a roller for cutting many times is used, and a lot of time and special processing equipment are required for processing.
In step 20, the compression-molded magnet molded body is impregnated with a SiO-based precursor, for example, a SiO 2 precursor solution. The compression-molded magnet compact is in a porous state, impregnated with a binder precursor having a low viscosity and good wettability with respect to the magnet material. Since the precursor has good wettability and low viscosity with respect to the compression-molded magnet molded body, it is impregnated so that the precursor is sucked into the porous compression molded body. Specific precursors are described in detail below.
By impregnating a precursor solution of a binder having good wettability with respect to the magnet compact, the surface of each magnetic powder constituting the magnet compact is covered with the binder, resulting in a large number of powders. It works to join together. Further, since the precursor solution of the binder enters into the details of the magnet molded body due to the action of good wettability, a good binding effect can be obtained with a small amount of binder. In addition, the use of good wettability makes the equipment relatively simple and inexpensive compared to the use of epoxy resin. Further, since the precursor described in detail below is cured at a relatively low temperature, the final magnet can be obtained while maintaining the size and shape of the compression molded body with high accuracy. Of course, burr of the binder can be made in the step of impregnating the precursor, but since the size and shape of the compacted compact of the powder magnet do not change, the magnet is manufactured by cutting the binder. The
Further, since the precursor described in detail below is cured at a relatively low temperature, the step 20 can be performed in a temperature range of 120 degrees to 200 degrees, particularly about 150 degrees. Thereby, the final magnet can be obtained while maintaining the size and shape of the compression molded body with high accuracy. Moreover, it can suppress that the magnetic powder for magnets, such as NdFeB, oxidizes, and can prevent the fall of a magnetic characteristic.
Step 25 is a step of binding the magnet material with the binder by heat-treating the impregnated compression molded body. As described in detail below, a good magnet body can be obtained by binding a magnet material using SiO 2 as a binder. As will be described in detail below, the processing temperature in step 25 is a relatively low temperature, and the shape and dimensions of the magnet compact are hardly changed by this heat treatment, and the shape and dimensions of the manufactured magnet body. The relationship maintains high accuracy with respect to the compression-molded shape and dimensions. Thereafter, the magnet body may be heated to a high temperature in order to obtain magnetically good characteristics. The temperature in this case may be lower than the sintering temperature of the conventional sintered magnet, and the shape and dimensions are maintained with higher accuracy as described above than in the case of the sintered magnet.
<Binder of permanent magnets 254 and 256>
The solution of the binder precursor used in the step 20 has an alkoxysiloxane and an alkoxysilane that are precursors of SiO 2 , and has terminal groups and side chains as shown in Chemical Formula 2 and Chemical Formula 3. It has a compound having an alkoxy group.
Further, the alcohol of the solvent is preferably a compound having the same skeleton as the alkoxy group in alkoxysiloxane or alkoxysilane, but is not limited thereto. Specific examples include methanol, ethanol, propanol, isopropanol and the like. The catalyst for hydrolysis and dehydration condensation may be any of an acid catalyst, a base catalyst, and a neutral catalyst, but the neutral catalyst is most preferable because corrosion of the metal can be minimized. As the neutral catalyst, an organotin catalyst is effective. Specifically, bis (2-ethylhexanoate) tin, n-butyltris (2-ethylhexanoate) tin, di-n-butylbis (2-ethyl) Hexanoate) tin, di-n-butylbis (2,4-pentanedionate) tin, di-n-butyl dilauryl tin, dimethyl dineodecanoate tin, dioctyl dilarylate tin, dioctyl dineodecano Examples include, but are not limited to, ate tin. Examples of the acid catalyst include dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid, formic acid, acetic acid, and the like, and examples of the base catalyst include sodium hydroxide, potassium hydroxide, and aqueous ammonia, but are not limited thereto.
The total content of alkoxysiloxane, alkoxysilane, its hydrolysis product, and its dehydration condensate, which is a precursor of SiO 2 in the binder solution, is preferably 5 vol% or more and 96 vol% or less. When the total content of alkoxysiloxane, alkoxysilane, its hydrolysis product, and its dehydration condensate is less than 5 vol%, the binder content in the magnet is low. The strength of is slightly reduced. On the other hand, alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and when the content of dehydrated condensates total is more than 96 vol%, alkoxysiloxane that is a precursor of SiO 2, the fast reaction of the molecular weight of the alkoxysilane Therefore, the thickening speed of the binder solution is also increased. This means that it is more difficult to control the proper viscosity of the binder solution, and it becomes more difficult to use this binder solution for the impregnation method than the materials described above.
Hydroxylation shown in the following chemical formula 4 and chemical formula 5 occurs with alkoxysiloxane or alkoxysilane, which is a precursor of SiO 2 in the binder solution, and water. Here, the chemical reaction formula is a reaction formula when hydrolysis partially occurs.
At this time, the amount of water added is one of the factors governing the progress of the hydrolysis reaction of alkoxysiloxane or alkoxysilane. This hydrolysis reaction is important for increasing the mechanical strength of the binder after curing. This is because if the hydrolysis reaction of alkoxysiloxane or alkoxysilane does not occur, the dehydration condensation reaction between the alkoxysiloxane or alkoxysilane hydrolysis reaction products that occurs next does not proceed. This is because the dehydration condensation reaction product is SiO 2 , and this SiO 2 has high adhesiveness with the magnetic powder and becomes an important material for increasing the mechanical strength of the binder. Furthermore, the OH group of silanol has a strong interaction with the O atom or OH group on the surface of the magnetic powder and contributes to high adhesion. However, when the hydrolysis reaction proceeds and the concentration of silanol groups increases, dehydration condensation reaction between organosilicon compounds containing silanol groups (alkoxysiloxane or alkoxysilane hydrolysis products) proceeds, and the molecular weight of the organosilicon compounds increases. The viscosity of the binder solution increases. This is a characteristic that an appropriate state of the binder solution used in the impregnation method is not suitable. Accordingly, it is necessary to add an appropriate amount of water to the alkoxysiloxane or alkoxysilane that is the precursor of SiO 2 in the binder solution. Here, the addition amount of water in the insulating layer forming treatment liquid is preferably 1/10 to 1 of the reaction equivalent in the hydrolysis reaction shown in the chemical reaction formulas 1 and 2. When the amount of water added is 1/10 or less of the reaction equivalent in the hydrolysis reaction shown in Chemical Reaction Formulas 1 and 2, since the concentration of silanol groups in the organosilicon compound is low, the organosilicon compound containing silanol groups and the magnetic powder surface low interaction, but also because the alkoxy group in the product for dehydration condensation reaction is hard to occur to produce SiO 2 is that a large amount of remaining defect is generated number in SiO 2, the strength of the SiO 2 is low Become. On the other hand, if the amount of water added is greater than 1 of the reaction equivalent in the hydrolysis reaction shown in Chemical Reaction Formulas 1 and 2, the organosilicon compound containing silanol groups is likely to undergo dehydration condensation and the binder solution increases. Since it is viscous, the binder solution cannot penetrate into the gap between the magnetic powder and the magnetic powder, and the binder solution used in the impregnation method has a characteristic of moving away from an appropriate state. Alcohol is usually used as the solvent in the binder solution. This is because the alkoxy group in the alkoxysiloxane has a fast dissociation reaction in the solvent used for the binder solution, and is in equilibrium with the solvent alcohol. Therefore, methanol, ethanol, n-propanol, and iso-propanol having a boiling point lower than that of water and low viscosity are preferable as the solvent alcohol. However, although the stability of the solution is slightly decreased chemically, the viscosity of the binder solution does not increase in a few hours and the solvent of the present invention has a lower boiling point than water. Any water-soluble solvent such as ketones such as acetone can be used.
The following matters can be confirmed about the one aspect | mode of the binder of this invention demonstrated above.
First, the precursor of SiO 2 is not a solution using an aqueous solution as a solvent but a solution using an alcohol as a solvent. Water is only added to adjust the hydrolysis reaction. By impregnating with an alcohol-based solution instead of an aqueous solution, almost no water remains after thermosetting. Since the remaining water in the permanent magnet is suppressed, the magnetic characteristics are not deteriorated over time due to oxidation or the like. On the other hand, it is considered that methoxy remains because hydrolysis is performed using alkoxysiloxane, alkoxysilane, or the like as a precursor of SiO 2 . Therefore, it is conceivable that the manufactured permanent magnet contains magnetic powder and methoxy in addition to the binder for binding the magnetic powder.
Next, the magnet produced | generated by the said process becomes a structure which bound the rare earth magnet magnetic powders, such as NdFeB, with the SiO-type binder. This binder takes an amorphous (non-crystalline) continuous film structure. As described above, the binder is basically composed of SiO 2 , but since it is amorphous, a composition such as SiO may partially exist. If a continuous film mainly composed of Si and O, that is, a binder composed of a SiO-based continuous film is formed, it is considered that the magnet according to the present embodiment is configured.
Next, a configuration using an oxide glass material other than SiO-based as a binder will be examined. As described above, various requirements are imposed on the precursor as the impregnation solution in order to perform the manufacturing process of the present invention. It has a low viscosity, high permeability, high stability, and curing at a relatively low temperature. It has been confirmed that the SiO-based binder is the best for satisfying these requirements, but other oxide glassy materials can be used as binders if the requirements suitable for this production process are satisfied. However, a certain degree of effect can be expected.
<Other Embodiments of Manufacturing Method of Permanent Magnets 254 and 256>
9 and 10 show another embodiment of the magnet manufacturing process according to the present invention. The embodiment of FIG. 9 is different from the process of FIG. 8 described above in that a step of applying a process of forming an insulating film after generating a powdered magnet material and before compression molding is added. Further, FIG. 10 is different in that a compression-molded magnet is attached to the rotor, and thereafter a treatment of impregnating the binder is performed. Also in the methods shown in FIGS. 9 and 10, after rare earth magnetic powder is bound with a SiO-based binder, heat treatment may be performed in order to stably maintain the magnetic properties. As described above, the heat treatment temperature is lower than the sintering temperature.
In FIG. 9, the same process numbers as those in FIG. 8 indicate substantially the same processing contents. In step 10, a powdered magnet material is generated, and an electrical insulating film is formed on the surface of each powder of the magnet material generated in step 12. It is desirable to make an electrical insulating layer as uniform as possible on the entire surface of the magnetic powder as much as possible, and a specific treatment method will be described later. When the manufactured magnet is used for a rotating electrical machine, it is used in an alternating magnetic field as described above. The magnetic flux passing through the magnet changes periodically, and an eddy current is generated in the magnet due to the change of the magnetic flux. This eddy current has a problem of lowering the efficiency of the rotating electrical machine, and there is a risk of increasing heat generation in the magnet due to the eddy current. Since the SiO-based binder is an insulator, and in this embodiment, a thin amorphous film is formed on the surface of the plate-like magnetic powder and the magnetic powder is bound together, the rare earth magnetic powder is a conductive material. The completed magnet body has a high electrical resistance. For this reason, eddy current is suppressed, and there is an effect of improving efficiency and reducing heat generation.
As described above, according to the present embodiment, the internal resistance of the magnet body increases, but in addition to this, the surface of each powder of the magnet material is covered with an insulating layer, thereby further reducing the eddy current inside the magnet. It is possible to suppress the decrease in efficiency of the rotating machine. Moreover, the heat generation of the magnet can be further suppressed, and the heat generation of the entire rotating electrical machine can be suppressed. In particular, in the magnet built in the rotor, the rotor is mechanically connected to the housing of the rotating electrical machine via a bearing, and the heat conductivity is not good. For this reason, suppressing the heat generation of the magnet has a great effect.
In order to form an inorganic insulating film on the surface of the rare earth magnet powder, a phosphate chemical conversion film is preferably applied as the inorganic insulating film. When phosphoric acid, magnesium, or boric acid is used for the phosphating solution, the following composition is good. Phosphorus acid content is desirably 1~163g / dm 3, cause a decrease in 163 g / dm 3 larger than the magnetic flux density, smaller and insulating 1 g / dm 3 is deteriorated. Further, the amount of boric acid is desirably 0.05 to 0.4 g with respect to 1 g of phosphoric acid, and if it exceeds this range, the stability of the insulating layer is deteriorated. In order to form the insulating layer as uniformly as possible on the entire surface of the magnetic powder, it is effective to improve the wettability of the insulating layer forming treatment liquid to the magnetic powder. For this, addition of a surfactant is desirable. Examples of such surfactants include perfluoroalkyl-based, alkylbenzenesulfonic acid-based, zwitterionic-based, or polyether-based surfactants, and the amount of the surfactant added is 0.01% in the insulating layer forming treatment liquid. If it is less than 0.01% by weight, the effect of lowering the surface tension to wet the surface of the magnetic powder is insufficient, and if it exceeds 1% by weight, no further effect can be expected, which is uneconomical. It is.
Further, it is desirable to add a rust preventive agent from the viewpoint of preventing deterioration of the characteristics of the magnet. The amount of rust inhibitor is desirably 0.01~0.5mol / dm 3, 0.01mol / dm difficult suppression of rust surface of the magnetic powder is less than 3, 0.5 mol / dm more than 3 more than the effect Is not economical because it cannot be expected.
The addition amount of the phosphating solution depends on the average particle size of the rare earth magnet magnetic powder. When the average particle diameter of the rare earth magnet magnetic powder is 0.1 to 500 μm, 300 to 25 ml is desirable for 1 kg of the rare earth magnet magnetic powder. If the amount exceeds 300 ml, the insulating film on the surface of the magnetic powder becomes too thick, and rust is likely to occur, leading to a decrease in magnetic flux density at the time of magnet production. As a result, the amount of rust generated increases, which may cause deterioration of the magnet characteristics.
The rare earth fluoride or alkaline earth metal fluoride in the coating film forming treatment liquid swells in a solvent mainly composed of alcohol. The rare earth fluoride or alkaline earth metal fluoride gel has a gelatinous flexible structure. This is because alcohol has excellent wettability with respect to rare earth magnet magnetic powder. Also, the average particle size of the rare earth fluoride or alkaline earth metal fluoride in the gel state must be pulverized to a level of 10 μm or less because the coating film formed on the surface of the rare earth magnet magnetic powder has a uniform thickness. It is easy. Furthermore, by using a solvent containing alcohol as a main component, it is possible to suppress the oxidation of rare earth magnet magnetic powder that is very easily oxidized.
Furthermore, a fluoride coat film is desirable as the inorganic insulating film for the purpose of improving the insulating properties and magnetic characteristics of the magnetic powder. For this reason, when a fluoride coating film is formed on the surface of rare earth magnet powder, the concentration of rare earth fluoride or alkaline earth metal fluoride in the fluoride coating film forming solution is formed on the surface of the magnetic powder for rare earth magnets. Depending on the film thickness, the rare earth fluoride or alkaline earth metal fluoride is swollen in a solvent mainly composed of alcohol, and the average particle diameter of the rare earth fluoride or alkaline earth metal fluoride in a gel state Is preferably pulverized to a level of 10 μm or less and dispersed in a solvent containing alcohol as a main component. The concentration of rare earth fluoride or alkaline earth metal fluoride is 200 g / dm 3 to 1 g / dm. 3
The addition amount of the rare earth fluoride coating film forming treatment liquid depends on the average particle diameter of the rare earth magnet magnetic powder. When the average particle diameter of the rare earth magnet magnetic powder is 0.1 to 500 μm, 300 to 10 ml is desirable for 1 kg of the rare earth magnet magnetic powder. This is because if the amount of the treatment liquid is large, not only it takes time to remove the solvent, but also the magnetic powder for rare earth magnets is easily corroded. On the other hand, when the amount of the processing liquid is small, a portion where the processing liquid does not get wet occurs on the surface of the rare earth magnet magnetic powder. Regarding the above matters, Table 1 summarizes effective concentrations and the like as processing solutions for rare earth fluoride and alkaline earth metal fluoride coating films.
In the process of FIG. 9, an insulating film is formed on the surface of each powder of the rare earth magnet material in step 12, and then the magnet material is compression molded in step 15 to form a porous magnet. Thereafter, the precursor of the binder is impregnated in step 20 as in FIG. 8, and the precursor is cured in step 25 to bind the magnet material with the binder.
The example of the magnet manufacturing process according to the present invention has been described above with reference to FIGS. FIG. 10 shows a method in which a porous magnet compression-molded before the binder impregnation step is inserted into the magnet insertion hole of the rotor, and then the binder precursor is poured into the magnet insertion hole and impregnated. . The processes up to step 15 are the same as those already described. In step 17, a porous compression magnet is inserted into the magnet insertion hole provided in the rotor core, and the SiO 2 precursor solution is poured into the rotor magnet insertion hole in step magnet 22.
Next, when the temperature of the rotor itself is raised in step 27, the precursor is cured, the strength of the compression-molded magnet is increased, and the magnet is fixed in the magnet insertion hole of the rotor core.

本実施例において、希土類磁石用磁粉には、組成を調整した母合金を急冷することにより作製したNdFeB系の薄帯を粉砕した磁性粉を用いた。NdFeB系母合金は鉄,Fe−B合金(フェロボロン)にNdを混合して真空あるいは不活性ガス中または還元ガス雰囲気中で溶解し組成を均一化されている。必要に応じて切断した母合金を単ロールや双ロール法などのロールを用いた手法で、回転するロールの表面に溶解させた母合金をアルゴンガスなどの不活性ガスあるいは還元ガス雰囲気で噴射急冷し薄帯とした後、不活性ガス中あるいは還元性ガス雰囲気中で熱処理する。熱処理温度は200℃以上700℃以下でありこの熱処理によりNdFe14Bの微結晶が成長する。薄帯は10〜100μmの厚さでありNdFe14Bの微結晶の大きさは10から100nmである。
NdFe14Bの微結晶が平均30nmの大きさの場合、粒界層はNd70Fe30に近い組成であり、単磁区臨界粒径よりも薄いためにNdFe14Bの微結晶内に磁壁が形成されにくい。NdFe14B微結晶の磁化はそれぞれの微結晶で磁気的に結合しており磁化の反転は磁壁の伝搬によって起こっていると推定されている。磁化反転を抑制するためのひとつの手法として薄帯を粉砕した磁粉同士の磁気的結合をしやすくすることが挙げられる。そのために、磁粉間の非磁性部をできるだけ薄くすることが有効となり、粉砕粉はCoを添加したWC製超硬金型内に挿入後上下パンチでプレス圧力5t−20t/cmで圧縮成形しプレス方向に垂直な方向で磁粉間の非磁性部が少ない。これは磁粉が薄帯を粉砕した扁平粉であるために、圧縮成形した成形体で扁平粉の配列に異方性が生じ、プレス方向と垂直方向に扁平粉の長軸(薄帯の厚さ方向と垂直な方向に平行)方向がそろうことになる。扁平粉の長軸方向がプレス方向の垂直方向に向きやすくなる結果、成形体においてプレス方向の垂直方向は、プレス方向よりも磁化が連続しておりそれぞれの粉においてパーミアンスが大きくなるため、磁化反転し難くなる。このため成形体のプレス方向とプレス方向に垂直な方向では減磁曲線に差が生じてくる。10×10×10mmの成形体において、プレス方向と垂直方向に20kOeで着磁し減磁曲線を測定すると残留磁束密度(Br)は0.64T、保磁力(iHc)は12.1kOeであるのに対し、プレス方向に平行方向で20kOeの磁界で着磁後、着磁方向で減磁曲線を測定するとBr0.60T,iHc11.8kOeであった。このような減磁曲線の差は成形体に使用している磁粉に扁平粉を用いており、その扁平粉の向きが成形体内で異方性を有しているために生じているものと考えられる。
このような減磁曲線の差は成形体に使用している磁粉に扁平粉を用いており、その扁平粉の向きが成形体内で異方性を有しているために生じているものと考えられる。個々の扁平粉の結晶粒は10−100nmと小さく、その結晶方位の異方性は少ないが、扁平粉の形状が異方性をもつため、扁平粉の配列方向に異方性がある場合には磁気的にも異方性が生じることになる。このような成形体の試験片に下記1)〜3)のSiO前駆体溶液を含浸し熱処理した。実施した工程を以下に説明する。
結着剤であるSiO前駆体には以下の3つの溶液を用いた。
1)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を5ml,水0.96ml,脱水メチルアルコール95ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
2)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
3)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を100ml,水3.84ml,ジラウリン酸ジブチル錫0.05mlを混合し、4時間25℃の温度で放置した。
1)〜3)のSiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
第11図に前記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片の断面部のSEM観察結果の一例を示す。第11図(a)が二次電子像、(b)が酸素面分析像、(c)は珪素面分析像である。(a)に示すように扁平粉が異方性をもって堆積しており部分的にクラックが発生している。また、扁平粉の表面及び扁平粉内部のクラックに沿って酸素及び珪素が検出されている。このクラックは圧縮成形時に発生したものであり、含浸処理前は空洞になっている。このことから、SiO前駆体溶液は磁粉中のクラック内部まで含浸されていることが分かった。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に200℃で1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し、エポキシ系ボンド磁石(比較例1)場合3%近い値であった。これは含浸処理によりクラックを含む粉末表面がSiOにより保護されるため酸化等の腐食が抑制され、不可逆熱減磁率が低減されたからである。即ち、SiO前駆体による含浸処理によりクラックを含む粉末表面が保護されるため酸化等の腐食が抑制され、不可逆熱減磁率が低減される。不可逆熱減磁の抑制だけでなく、PCT試験や塩水噴霧試験でも含浸処理磁石の方が減磁の少ない結果が得られている。
更に(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片について大気中で225℃に1時間保持し冷却後20℃で減磁曲線を測定した。磁界印加方向は10mm方向であり、最初に+20kOeの磁界で着磁後±1kOeから±10kOeの磁界でプラスマイナス交互に磁界を印加して減磁曲線を測定した。
その結果を第12図に示す。ここでは、上記2)の条件で含浸処理した磁石と、後述する、エポキシ樹脂をバインダーとして15vol%含有した圧縮成形ボンド磁石と、の減磁曲線を比較している。第12図の横軸は印加した磁界、縦軸は残留磁束密度を示す。含浸処理した磁石は磁界が−8kOeよりも負側に大きな磁界が印加されると磁束が急激に低下する。圧縮成形ボンド磁石は含浸処理した磁石よりもさらに磁界の絶対値が小さい値で磁束が急激に低下し、−5kOeよりも負側の磁界で磁束の低下が著しい。−10kOeの磁界印加後の残留磁束密度は、含浸処理磁石の場合0.44、圧縮成形ボンド磁石では0.11Tであり含浸処理磁石の残留磁束密度は圧縮成形ボンド磁石の値の4倍となっている。これは圧縮成形ボンド磁石が225℃で加熱中に各NdFeB粉の表面やNdFeB粉のクラック表面が酸化することで各NdFeB粉を構成しているNdFeB結晶の磁気異方性が低下し、その結果保磁力が減少し負の磁界印加により磁化が反転し易くなったためと考えられる。これに対し、含浸処理磁石ではNdFeB粉及びクラック表面がSiO膜で被覆されているため大気中加熱時の酸化が防止された結果、保磁力の減少が少ないものと考えられる。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は30MPa以上、本実施例中の2),3)のSiO前駆体溶液を用いたときは100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。しかし、回転電機として使用する場合、渦電流損の発生は小さく、問題ない。特に磁石内蔵型の回転電機においては、高調波の磁束は回転子の磁極片280から内部に深く入り込まないので、磁石内の渦電流は少なく、それほど大きな問題では無い。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%向上し、曲げ強度は同等〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
尚、本実施例と後述の(実施例2)〜(実施例5)について、結着剤1)〜3)を用いた場合の磁石特性を、第2表にまとめている。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon produced by rapidly cooling a mother alloy having an adjusted composition was used as the rare earth magnet magnetic powder. The NdFeB-based master alloy is made uniform by mixing Nd with iron or an Fe-B alloy (ferroboron) and dissolving it in a vacuum, an inert gas or a reducing gas atmosphere. If necessary, the master alloy cut by a single roll or twin roll method is used, and the master alloy dissolved on the surface of the rotating roll is injected and quenched in an inert or reducing gas atmosphere such as argon gas. After forming the ribbon, heat treatment is performed in an inert gas or a reducing gas atmosphere. The heat treatment temperature is 200 ° C. or higher and 700 ° C. or lower, and Nd 2 Fe 14 B crystallites grow by this heat treatment. The ribbon is 10 to 100 μm thick, and the crystallite size of Nd 2 Fe 14 B is 10 to 100 nm.
When the crystallites of Nd 2 Fe 14 B have an average size of 30 nm, the grain boundary layer has a composition close to that of Nd 70 Fe 30 and is thinner than the single domain critical grain size, so that the inside of the crystallites of Nd 2 Fe 14 B It is difficult to form a domain wall. The magnetizations of Nd 2 Fe 14 B microcrystals are magnetically coupled in the respective microcrystals, and it is presumed that the magnetization reversal occurs due to propagation of the domain wall. One technique for suppressing magnetization reversal is to facilitate magnetic coupling between magnetic powders obtained by pulverizing a ribbon. For this purpose, it is effective to make the nonmagnetic part between magnetic powders as thin as possible, and the pulverized powder is inserted into a WC carbide die to which Co has been added and then compression molded with an upper and lower punch at a press pressure of 5 t-20 t / cm 2. There are few nonmagnetic parts between magnetic particles in the direction perpendicular to the pressing direction. This is because the magnetic powder is a flat powder obtained by pulverizing a ribbon, and anisotropy occurs in the arrangement of the flat powder in a compression molded product, and the long axis of the flat powder (thickness of the ribbon) is perpendicular to the press direction. Direction parallel to the direction perpendicular to the direction). As a result of the long axis direction of the flat powder being easily oriented in the direction perpendicular to the press direction, the magnetization direction is reversed in the vertical direction of the formed body because the magnetization is continuous in the vertical direction and the permeance is greater in each powder. It becomes difficult to do. For this reason, a difference occurs in the demagnetization curve between the pressing direction of the compact and the direction perpendicular to the pressing direction. When a 10 × 10 × 10 mm compact is magnetized at 20 kOe in the direction perpendicular to the press direction and the demagnetization curve is measured, the residual magnetic flux density (Br) is 0.64 T and the coercive force (iHc) is 12.1 kOe. On the other hand, when magnetized with a magnetic field of 20 kOe in the direction parallel to the press direction, the demagnetization curve was measured in the magnetization direction to be Br 0.60 T, iHc 11.8 kOe. This difference in demagnetization curve is considered to be caused by the fact that flat powder is used for the magnetic powder used in the molded body, and the orientation of the flat powder has anisotropy in the molded body. It is done.
This difference in demagnetization curve is considered to be caused by the fact that flat powder is used for the magnetic powder used in the molded body, and the orientation of the flat powder has anisotropy in the molded body. It is done. The crystal grains of each flat powder are as small as 10-100 nm and the crystal orientation is small, but the shape of the flat powder has anisotropy. Is magnetically anisotropic. The test piece of such a molded body was impregnated with the following SiO 2 precursor solutions 1) to 3) and heat-treated. The implemented process is demonstrated below.
The following three solutions were used for the SiO 2 precursor as a binder.
1) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 5 ml, water 0.96 ml, dehydrated methanol 95 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
2) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 25 ml, water 4.8 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
3) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 100 ml, water 3.84 ml, dibutyltin dilaurate 0.05ml were mixed It was left at a temperature of 25 ° C. for 4 hours.
The viscosity of the SiO 2 precursor solutions 1) to 3) was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) The above Nd 2 Fe 14 B magnetic powder is filled into a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2 . A compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared.
(2) The compression molded test piece prepared in (1) is placed in the bat so that the pressing direction is horizontal, and the SiO 2 precursor solution of 1) to 3) as the binder is placed in the bat. Injection was performed so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression-molded test piece used in (2) was placed, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in (4) is set in a vacuum drying furnace, and is vacuumed against the compression molding test piece under the conditions of 1 to 3 Pa and 150 ° C. Heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece of 10 mm length, 10 mm width, and 5 mm thickness produced in (5).
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was carried out using the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
FIG. 11 shows an example of the SEM observation result of the cross section of the compression molded test piece having a length of 10 mm, a width of 10 mm and a thickness of 5 mm produced in (5). FIG. 11 (a) is a secondary electron image, (b) is an oxygen surface analysis image, and (c) is a silicon surface analysis image. As shown to (a), the flat powder has accumulated with anisotropy and the crack has generate | occur | produced partially. Further, oxygen and silicon are detected along the surface of the flat powder and the cracks inside the flat powder. This crack is generated at the time of compression molding and is a cavity before the impregnation treatment. From this, it was found that the SiO 2 precursor solution was impregnated into the cracks in the magnetic powder.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). , and the demagnetization curve was measured at 20 ° C., the values of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is less than 1% when the impregnation treatment is performed, whereas it is close to 3% in the case of the epoxy-based bond magnet (Comparative Example 1). Value. This is because the surface of the powder containing cracks is protected by SiO 2 by the impregnation treatment, so that corrosion such as oxidation is suppressed and the irreversible thermal demagnetization rate is reduced. That is, since the surface of the powder containing cracks is protected by the impregnation treatment with the SiO 2 precursor, corrosion such as oxidation is suppressed, and the irreversible thermal demagnetization rate is reduced. In addition to suppressing irreversible thermal demagnetization, the impregnated magnet has obtained less demagnetization results in the PCT test and the salt spray test.
Further, the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) was held at 225 ° C. for 1 hour in the atmosphere, and after cooling, a demagnetization curve was measured at 20 ° C. The magnetic field application direction was 10 mm. First, after magnetization with a magnetic field of +20 kOe, a magnetic field was applied alternately between ± 1 kOe and ± 10 kOe, and a demagnetization curve was measured.
The results are shown in FIG. Here, the demagnetization curves of the magnet impregnated under the above condition 2) and the compression molded bond magnet containing 15 vol% of an epoxy resin as a binder, which will be described later, are compared. In FIG. 12, the horizontal axis represents the applied magnetic field, and the vertical axis represents the residual magnetic flux density. In the magnet subjected to the impregnation treatment, when a magnetic field larger than −8 kOe is applied to the negative side, the magnetic flux rapidly decreases. The compression-molded bonded magnet has a magnetic field whose value is smaller than that of the impregnated magnet, and the magnetic flux rapidly decreases. The magnetic field on the negative side of −5 kOe is significantly decreased. The residual magnetic flux density after applying a magnetic field of −10 kOe is 0.44 for the impregnated magnet and 0.11 T for the compression-molded bonded magnet, and the residual magnetic flux density of the impregnated magnet is four times the value of the compression-molded bonded magnet. ing. This is because the magnetic anisotropy of the NdFeB crystals constituting each NdFeB powder is reduced by oxidizing the surface of each NdFeB powder and the crack surface of the NdFeB powder while the compression-molded bond magnet is heated at 225 ° C. This is considered to be because the coercive force decreased and the magnetization was easily reversed by applying a negative magnetic field. On the other hand, in the impregnated magnet, the NdFeB powder and the crack surface are covered with the SiO 2 film, so that the oxidation during heating in the atmosphere is prevented, and as a result, the coercive force is less likely to decrease.
The bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in (7) is 2 MPa or less before the SiO 2 impregnation, but is 30 MPa or more after the SiO 2 impregnation heat treatment. ), 3) When the SiO 2 precursor solution was used, it was possible to produce a magnet compact having a bending strength of 100 MPa or more.
The specific resistance of the magnet was about 10 times that of the sintered rare earth magnet, but about 1/10 that of the compressed rare earth bonded magnet. became. However, when used as a rotating electrical machine, the occurrence of eddy current loss is small and there is no problem. In particular, in a rotating electric machine with a built-in magnet, harmonic magnetic flux does not penetrate deeply from the magnetic pole piece 280 of the rotor, so there is little eddy current in the magnet and this is not a big problem.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. Thus, it was found that the magnetic characteristics were improved by 20 to 30%, the bending strength was equivalent to 3 times, the irreversible thermal demagnetization rate was reduced to half or less, and the magnet was highly reliable.
Table 2 summarizes the magnetic properties of the present example and (Example 2) to (Example 5) described later when the binders 1) to 3) are used.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。また、結着剤であるSiOの前駆体として以下の3つの溶液を用いた。
1)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水0.96ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
2)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
3)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を100ml,水9.6ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
1)〜3)のSiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は70MPa以上、本実施例中の2),3)のSiO前駆体溶液を用いたときは100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。渦電流損がやや増加する恐れがあるが、使用を妨げるほどの障害とはならない。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は2〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. Also, with the following three solutions as SiO 2 of the precursor, which is binding agent.
1) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 25 ml, water 0.96 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
2) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 25 ml, water 4.8 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
3) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 100 ml, water 9.6 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
The viscosity of the SiO 2 precursor solutions 1) to 3) was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) The above Nd 2 Fe 14 B magnetic powder is filled into a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2 . A compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared.
(2) The compression molded test piece prepared in (1) is placed in the bat so that the pressing direction is horizontal, and the SiO 2 precursor solution of 1) to 3) as the binder is placed in the bat. Injection was performed so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression-molded test piece used in (2) was placed, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in (4) is set in a vacuum drying furnace, and is vacuumed against the compression molding test piece under the conditions of 1 to 3 Pa and 150 ° C. Heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece of 10 mm length, 10 mm width, and 5 mm thickness produced in (5).
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was carried out using the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). , and the demagnetization curve was measured at 20 ° C., the values of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) is 2 MPa or less before SiO 2 impregnation, but 70 MPa or more after the SiO 2 impregnation heat treatment, 2 in this example. ), 3) When the SiO 2 precursor solution was used, it was possible to produce a magnet compact having a bending strength of 100 MPa or more.
The specific resistance of the magnet was about 10 times that of the sintered rare earth magnet, but about 1/10 that of the compressed rare earth bonded magnet. became. Although eddy current loss may increase slightly, it does not interfere with use.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. As a result, it was found that the magnetic properties are 20-30%, the bending strength is 2-3 times, the irreversible thermal demagnetization rate is reduced to less than half, and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。結着剤であるSiO前駆体には以下の3つの溶液を用いた。
1)CHO−(Si(CHO)−O)−CHを25ml,水5.9ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
2)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
3)CHO−(Si(CHO)−O)−CH(mは6〜8、平均は7)を25ml,水4.6ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
1)〜3)のSiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、摂氏20度で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、摂氏200度で大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。しかし、この抵抗値の減少はそれほど大きな問題ではない。例えば回転電機として使用する場合、渦電流損はやや増加するが使用を妨げるほどの問題とはならない。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は2〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The following three solutions were used for the SiO 2 precursor as a binder.
1) CH 3 O— (Si (CH 3 O) 2 —O) —CH 3 was mixed with 25 ml, water 5.9 ml, dehydrated methyl alcohol 75 ml, and dibutyltin dilaurate 0.05 ml. Left alone.
2) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 25 ml, water 4.8 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
3) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 6-8, average 7) a 25 ml, water 4.6 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
The viscosity of the SiO 2 precursor solutions 1) to 3) was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) The above Nd 2 Fe 14 B magnetic powder is filled into a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2 . A compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared.
(2) The compression molded test piece prepared in (1) is placed in the bat so that the pressing direction is horizontal, and the SiO 2 precursor solution of 1) to 3) as the binder is placed in the bat. Injection was performed so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression-molded test piece used in (2) was placed, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in (4) is set in a vacuum drying furnace, and is vacuumed against the compression molding test piece under the conditions of 1 to 3 Pa and 150 ° C. Heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece of 10 mm length, 10 mm width, and 5 mm thickness produced in (5).
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was carried out using the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). , and the demagnetization curve measured at 20 ° C, the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding in the atmosphere at 200 degrees Celsius is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) without SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 100 MPa or more after the SiO 2 impregnation heat treatment. It was possible to make a body.
The specific resistance of the magnet was about 10 times that of the sintered rare earth magnet, but about 1/10 that of the compressed rare earth bonded magnet. became. However, this decrease in resistance is not a big problem. For example, when used as a rotating electrical machine, the eddy current loss slightly increases, but does not become a problem that hinders use.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. As a result, it was found that the magnetic properties are 20-30%, the bending strength is 2-3 times, the irreversible thermal demagnetization rate is reduced to less than half, and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。結着剤であるSiO前駆体には以下の3つの溶液を用いた。
1)CHO−(Si(CHO)−O)−CHを25ml,水5.9ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
2)CO−(Si(CO)−O)−CHを25ml,水4.3ml,脱水エチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、3昼夜25℃の温度で放置した。
3)n−CO−(Si(CO)−O)−n−Cを25ml,水3.4ml,脱水iso−プロピルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、6昼夜25℃の温度で放置した。
1)〜3)のSiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、摂氏20度で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、摂氏200度の大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃の大気中に1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は80MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。渦電流損の発生がやや増加するが、この程度の抵抗値の減少は問題ではない。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約2倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The following three solutions were used for the SiO 2 precursor as a binder.
1) CH 3 O— (Si (CH 3 O) 2 —O) —CH 3 was mixed with 25 ml, water 5.9 ml, dehydrated methyl alcohol 75 ml, and dibutyltin dilaurate 0.05 ml. Left alone.
2) a C 2 H 5 O- (Si ( C 2 H 5 O) 2 -O) -CH 3 25ml, water 4.3 ml, dehydrated ethyl alcohol 75 ml, and dibutyltin dilaurate 0.05 ml, 3 days and nights It was left at a temperature of 25 ° C.
3) n-C 3 H 7 O- (Si (C 2 H 5 O) 2 -O) -n-C 3 a H 7 25 ml, water 3.4 ml, dried iso- propyl alcohol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 6 days and nights.
The viscosity of the SiO 2 precursor solutions 1) to 3) was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) The above Nd 2 Fe 14 B magnetic powder is filled into a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2 . A compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared.
(2) The compression molded test piece prepared in (1) is placed in the bat so that the pressing direction is horizontal, and the SiO 2 precursor solution of 1) to 3) as the binder is placed in the bat. Injection was performed so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression-molded test piece used in (2) was placed, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in (4) is set in a vacuum drying furnace, and is vacuumed against the compression molding test piece under the conditions of 1 to 3 Pa and 150 ° C. Heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece of 10 mm length, 10 mm width, and 5 mm thickness produced in (5).
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was carried out using the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). , and the demagnetization curve measured at 20 ° C, the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. In addition, the thermal demagnetization factor after 1 hour of holding in the atmosphere at 200 degrees Celsius is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) without SiO 2 impregnation. Furthermore, the irreversible thermal demagnetization rate is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 80 MPa or more after the SiO 2 impregnation heat treatment. It was possible to make a body.
The specific resistance of the magnet was about 10 times that of the sintered rare earth magnet, but about 1/10 that of the compressed rare earth bonded magnet. became. Although the generation of eddy current loss is slightly increased, such a decrease in resistance value is not a problem.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. Thus, it has been found that the magnetic properties are 20-30%, the bending strength is about twice, the irreversible thermal demagnetization rate can be reduced to less than half, and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。結着剤であるSiO前駆体には以下の3つの溶液を用いた。
1)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水9.6ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、1昼夜25℃の温度で放置した。
2)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水9.6ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
3)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を100ml,水9.6ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、4昼夜25℃の温度で放置した。
1)〜3)のSiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は130MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。渦電流損の発生がやや増加するが、この程度の抵抗値の減少は問題ではない。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は3〜4倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The following three solutions were used for the SiO 2 precursor as a binder.
1) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 25 ml, water 9.6 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. overnight.
2) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 25 ml, water 9.6 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 2 days and nights.
3) CH 3 O- (Si ( CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 100 ml, water 9.6 ml, dehydrated methanol 75 ml, dibutyltin dilaurate 0 .05 ml was mixed and left at a temperature of 25 ° C. for 4 days and nights.
The viscosity of the SiO 2 precursor solutions 1) to 3) was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) The above Nd 2 Fe 14 B magnetic powder is filled into a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2 . A compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared.
(2) The compression molded test piece prepared in (1) is placed in the bat so that the pressing direction is horizontal, and the SiO 2 precursor solution of 1) to 3) as the binder is placed in the bat. Injection was performed so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression-molded test piece used in (2) was placed, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in (4) is set in a vacuum drying furnace, and is vacuumed against the compression molding test piece under the conditions of 1 to 3 Pa and 150 ° C. Heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece of 10 mm length, 10 mm width, and 5 mm thickness produced in (5).
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was carried out using the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). are possible, the demagnetization curve was measured at 20 ° C., the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 130 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body.
The specific resistance of the magnet was about 10 times that of the sintered rare earth magnet, but about 1/10 that of the compressed rare earth bonded magnet. became. Although the generation of eddy current loss is slightly increased, such a decrease in resistance value is not a problem.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. As a result, it was found that the magnetic properties are 20-30%, the bending strength is 3-4 times, the irreversible thermal demagnetization rate can be reduced to less than half and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成する処理液は以下のようにして作製した。
(1)水に溶解度の高い塩、例えばLaの場合は酢酸La、または硝酸La4gを100mlの水に導入し、振とう器または超音波攪拌器を用いて完全に溶解した。
(2)10%に希釈したフッ化水素酸をLaFが生成する化学反応の当量分を徐々に加えた。
(3)ゲル状沈殿のLaFが生成した溶液に対して超音波攪拌器を用いて1時間以上攪拌した。
(4)4000〜6000r.p.mの回転数で遠心分離した後、上澄み液を取り除きほぼ同量のメタノールを加えた。
(5)ゲル状のLaFを含むメタノール溶液を攪拌して完全に懸濁液にした後、超音波攪拌器を用いて1時間以上攪拌した。
(6)(4)と(5)の操作を酢酸イオン、又は硝酸イオン等の陰イオンが検出されなくなるまで、3〜10回繰り返した。
(7)最終的にLaFの場合、ほぼ透明なゾル状のLaFとなった。処理液としてはLaFが1g/5mlのメタノール溶液を用いた。
その他の使用した希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成処理液について、第3表に纏めた。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
NdFコート膜形成プロセスの場合:NdF濃度1g/10ml半透明ゾル状溶液
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して15mlのNdFコート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のNdFコート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10−5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10−5torrの減圧下で、700℃,30分の熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記希土類フッ化物又はアルカリ土類金属フッ化物コート膜を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
本実施例の希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成した希土類磁粉を用いた磁石は後述する絶縁膜として機能するだけでなく、TbFとDyFを、又効果は小さいがPrFをコート膜形成に用いた場合、磁石の保磁力向上に寄与可能であることが分かった。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は50MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は約20%、曲げ強度は同等〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能、その上TbFとDyFとをコート膜形成に用いた時は磁気特性大幅向上が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The treatment liquid for forming the rare earth fluoride or alkaline earth metal fluoride coating film was prepared as follows.
(1) A salt having high solubility in water, for example, in the case of La, acetic acid La or nitric acid La 4 g was introduced into 100 ml of water, and completely dissolved using a shaker or an ultrasonic stirrer.
(2) The equivalent of the chemical reaction in which LaF 3 produces hydrofluoric acid diluted to 10% was gradually added.
(3) The solution in which the gel-like LaF 3 was formed was stirred for 1 hour or more using an ultrasonic stirrer.
(4) 4000-6000 r. p. After centrifugation at a rotational speed of m, the supernatant was removed and approximately the same amount of methanol was added.
(5) A methanol solution containing gel-like LaF 3 was stirred to form a complete suspension, and then stirred for 1 hour or more using an ultrasonic stirrer.
(6) The operations of (4) and (5) were repeated 3 to 10 times until no anion such as acetate ion or nitrate ion was detected.
(7) When finally LaF 3, was the LaF 3 almost transparent sol-like. As the treatment liquid, a methanol solution containing 1 g / 5 ml of LaF 3 was used.
The other rare earth fluoride or alkaline earth metal fluoride coating film forming treatment liquids used are summarized in Table 3.
The process of forming a rare earth fluoride or alkaline earth metal fluoride coat film on the magnetic powder of Nd 2 Fe 14 B was carried out by the following method.
In the case of NdF 3 coat film forming process: NdF 3 concentration 1 g / 10 ml translucent sol solution (1) To 100 g of magnetic powder obtained by pulverizing NdFeB-based ribbon, 15 ml of NdF 3 coat film forming treatment solution is added, The mixing was performed until it was confirmed that the entire magnetic powder for rare earth magnet was wet.
(2) The methanol of the solvent was removed from the magnetic powder for rare-earth magnet subjected to the NdF 3 coat film forming process of (1) under a reduced pressure of 2 to 5 torr.
(3) The rare earth magnet magnetic powder from which the solvent of (2) was removed was transferred to a quartz boat and heat-treated at 200 ° C. for 30 minutes and at 400 ° C. for 30 minutes under a reduced pressure of 1 × 10 −5 torr. .
(4) After the magnetic powder heat-treated in (3) is transferred to a lid made by Macor (manufactured by Riken Denshi Co., Ltd.), it is heat-treated at 700 ° C. for 30 minutes under a reduced pressure of 1 × 10 −5 torr. It was.
The SiO 2 precursor as a binder includes 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydration. A solution in which 75 ml of methyl alcohol and 0.05 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. for 2 days was used.
(1) A magnetic powder of Nd 2 Fe 14 B coated with the rare earth fluoride or alkaline earth metal fluoride coating film is filled in a mold, and is 10 mm in length and 10 mm in width for measuring magnetic properties at a pressure of 16 t / cm 2. A test piece having a thickness of 10 mm and a thickness of 5 mm was prepared, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The SiO 2 precursor solution, which is a binder, placed in the bat so that the pressing direction is in the horizontal direction and left at a temperature of 25 ° C. for two days and nights. Was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression molding test piece used in the above (2) was arranged, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in the above (4) is set in a vacuum drying furnace, and the compression molding test piece is subjected to a pressure of 1 to 3 Pa at 150 ° C. Vacuum heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). are possible, the demagnetization curve was measured at 20 ° C., the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
A magnet using a rare earth magnetic powder formed with a rare earth fluoride or alkaline earth metal fluoride coating film of this example not only functions as an insulating film described later, but also uses TbF 3 and DyF 3 and PrF, although less effective. When 3 was used for coating film formation, it was found that it can contribute to the improvement of the coercive force of the magnet.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 50 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body.
Further, the specific resistance of the magnet is about 100 times or more the value of the magnet of the present invention compared to the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. . Therefore, the eddy current loss is small, and it has good characteristics.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. The magnetic properties are about 20%, the bending strength is equivalent to 3 times, the irreversible thermal demagnetization rate can be reduced to less than half, and the magnet can be made highly reliable. In addition, TbF 3 and DyF 3 can be coated. It was found that the magnetic properties can be greatly improved when used for formation.

本実施例において、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
PrFコート膜形成プロセスの場合:PrF濃度0.1g/10ml半透明ゾル状溶液を用いた。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して1〜30mlのPrFコート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のPrFコート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)上記(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10−5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)上記(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10−5torrの減圧下で、700℃,30分の熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記PrFコート膜を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
本実施例のPrFコート膜を形成した希土類磁粉を用いた磁石は後述する絶縁膜として機能するだけでなく、効果は小さいが磁石の保磁力向上に寄与可能であることが分かった。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って渦電流損の発生は小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は約20%、曲げ強度は2〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能、その上PrFをコート膜形成に用いた時は磁気特性向上が可能であることが分かった。PrFをコート膜形成した希土類磁粉を用いた磁石は磁気特性,曲げ強度,信頼性が全体的に向上しておりバランスの取れた磁石であることが分かった。
In this example, a magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used. The process of forming a rare earth fluoride or alkaline earth metal fluoride coat film on the magnetic powder of Nd 2 Fe 14 B was carried out by the following method.
In the case of the PrF 3 coat film formation process: A PrF 3 concentration of 0.1 g / 10 ml translucent sol solution was used.
(1) 1 to 30 ml of PrF 3 coat film forming treatment liquid was added to 100 g of magnetic powder obtained by pulverizing NdFeB-based ribbon, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wet.
(2) The methanol of the solvent was removed from the magnetic powder for a rare earth magnet subjected to the PrF 3 coat film formation treatment of (1) above under a reduced pressure of 2 to 5 torr.
(3) The rare earth magnet magnetic powder from which the solvent of (2) has been removed is transferred to a quartz boat and heat-treated at 200 ° C. for 30 minutes and at 400 ° C. for 30 minutes under a reduced pressure of 1 × 10 −5 torr. It was.
(4) The magnetic powder heat-treated in (3) above is transferred to a lid made by Macor (manufactured by Riken Denshi Co., Ltd.), and then subjected to heat treatment at 700 ° C. for 30 minutes under a reduced pressure of 1 × 10 −5 torr. went.
The SiO 2 precursor as a binder includes 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydration. A solution in which 75 ml of methyl alcohol and 0.05 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. for 2 days was used.
(1) Nd 2 Fe 14 B magnetic powder coated with the PrF 3 coating film is filled in a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2. Further, a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The SiO 2 precursor solution, which is a binder, placed in the bat so that the pressing direction is in the horizontal direction and left at a temperature of 25 ° C. for two days and nights. Was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression molding test piece used in the above (2) was arranged, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in the above (4) is set in a vacuum drying furnace, and the compression molding test piece is subjected to a pressure of 1 to 3 Pa at 150 ° C. Vacuum heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). are possible, the demagnetization curve was measured at 20 ° C., the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
It was found that the magnet using the rare earth magnetic powder formed with the PrF 3 coat film of this example not only functions as an insulating film to be described later, but can contribute to the improvement of the coercive force of the magnet, although the effect is small.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 100 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body.
Further, the specific resistance of the magnet is about 100 times or more the value of the magnet of the present invention compared to the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. . Therefore, the occurrence of eddy current loss is small and it has good characteristics.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. The magnetic properties are about 20%, the bending strength is 2 to 3 times, the irreversible thermal demagnetization rate can be reduced to less than half and the magnet can be made highly reliable, and PrF 3 is used for forming the coat film. It was found that magnetic characteristics can be improved at times. It was found that a magnet using rare earth magnetic powder formed with a coating film of PrF 3 is a well-balanced magnet with improved magnetic properties, bending strength and reliability as a whole.

本実施例において、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
DyFコート膜形成プロセスの場合:DyF濃度2〜0.01g/10ml半透明ゾル状溶液を用いた。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して10mlのDyFコート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のDyFコート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)上記(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10−5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)上記(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10−5torrの減圧下で、700℃,30分の熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記DyFコート膜を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
本実施例のDyFコート膜を形成した希土類磁粉を用いた磁石は後述する絶縁膜として機能するだけでなく、磁石の保磁力向上に寄与可能であることが分かった。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は40MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は約20%、曲げ強度は同等〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能、その上TbFとDyFとをコート膜形成に用いた時は磁気特性大幅向上が可能であることが分かった。
In this example, a magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used. The process of forming a rare earth fluoride or alkaline earth metal fluoride coat film on the magnetic powder of Nd 2 Fe 14 B was carried out by the following method.
In the case of the DyF 3 coat film formation process: A DyF 3 concentration of 2 to 0.01 g / 10 ml translucent sol solution was used.
(1) 10 ml of DyF 3 coat film forming treatment liquid was added to 100 g of magnetic powder obtained by pulverizing NdFeB-based ribbons, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wet.
(2) The methanol of the solvent was removed from the rare earth magnet magnetic powder subjected to the DyF 3 coat film forming process of (1) above under a reduced pressure of 2 to 5 torr.
(3) The rare earth magnet magnetic powder from which the solvent of (2) has been removed is transferred to a quartz boat and heat-treated at 200 ° C. for 30 minutes and at 400 ° C. for 30 minutes under a reduced pressure of 1 × 10 −5 torr. It was.
(4) The magnetic powder heat-treated in (3) above is transferred to a lid made by Macor (manufactured by Riken Denshi Co., Ltd.), and then subjected to heat treatment at 700 ° C. for 30 minutes under a reduced pressure of 1 × 10 −5 torr. went.
The SiO 2 precursor as a binder includes 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydration. A solution in which 75 ml of methyl alcohol and 0.05 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. for 2 days was used.
(1) Nd 2 Fe 14 B magnetic powder coated with the above DyF 3 coating film is filled in a mold, and a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm is used for measuring magnetic properties at a pressure of 16 t / cm 2 Further, a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The SiO 2 precursor solution, which is a binder, placed in the bat so that the pressing direction is in the horizontal direction and left at a temperature of 25 ° C. for two days and nights. Was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression molding test piece used in the above (2) was arranged, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in the above (4) is set in a vacuum drying furnace, and the compression molding test piece is subjected to a pressure of 1 to 3 Pa at 150 ° C. Vacuum heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). are possible, the demagnetization curve was measured at 20 ° C., the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
It was found that the magnet using the rare earth magnetic powder formed with the DyF 3 coat film of this example not only functions as an insulating film described later, but can contribute to improvement of the coercive force of the magnet.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 40 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body.
Further, the specific resistance of the magnet is about 100 times or more that of the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. Therefore, the eddy current loss is small, and it has good characteristics.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. The magnetic properties are about 20%, the bending strength is equivalent to 3 times, the irreversible thermal demagnetization rate can be reduced to less than half, and the magnet can be made highly reliable. In addition, TbF 3 and DyF 3 can be coated. It was found that the magnetic properties can be greatly improved when used for formation.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1lにリン酸20g,ほう酸4g,金属酸化物としてMgO,ZnO,CdO,CaOまたはBaOの4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製),EF−122(トーケムプロダクツ製),EF−132(トーケムプロダクツ製)を0.1wt%になるように加えた。防錆剤としてはベンゾトリアゾール(BT),イミダゾール(IZ),ベンゾイミダゾール(BI),チオ尿素(TU),2−メルカプトベンゾイミダゾール(MI),オクチルアミン(OA),トリエタノールアミン(TA),o−トルイジン(TL),インドール(ID),2−メチルピロール(MP)を0.04mol/lになるように加えた。
リン酸塩化成処理膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。使用したリン酸塩化成処理液の組成を第4表に示す。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して5mlのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分、2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The treatment liquid for forming the phosphate chemical conversion film was prepared as follows.
20 g of phosphoric acid, 4 g of boric acid and 4 g of MgO, ZnO, CdO, CaO or BaO are dissolved in 1 l of water, and EF-104 (manufactured by Tochem Products), EF-122 (Tochem Products) are dissolved as surfactants. EF-132 (manufactured by Tochem Products) was added to a concentration of 0.1 wt%. As rust preventives, benzotriazole (BT), imidazole (IZ), benzimidazole (BI), thiourea (TU), 2-mercaptobenzimidazole (MI), octylamine (OA), triethanolamine (TA), o-Toluidine (TL), indole (ID), and 2-methylpyrrole (MP) were added at 0.04 mol / l.
The process of forming the phosphate chemical conversion film on the Nd 2 Fe 14 B magnetic powder was carried out by the following method. Table 4 shows the composition of the phosphating solution used.
(1) 5 ml of a phosphating solution was added to 100 g of magnetic powder obtained by pulverizing a NdFeB-based ribbon, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wetted.
(2) The magnetic powder for a rare earth magnet subjected to the phosphatization film forming treatment of (1) was heat-treated at 180 ° C. for 30 minutes under a reduced pressure of 2 to 5 torr.
The SiO 2 precursor as a binder includes 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydration. A solution in which 75 ml of methyl alcohol and 0.05 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. for 2 days was used.
(1) Nd 2 Fe 14 B magnetic powder subjected to the above phosphatization film formation treatment is filled in a mold, and is 10 mm long, 10 mm wide and 5 mm thick for measuring magnetic properties at a pressure of 16 t / cm 2. Further, a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The SiO 2 precursor solution, which is a binder, placed in the bat so that the pressing direction is in the horizontal direction and left at a temperature of 25 ° C. for two days and nights. Was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression molding test piece used in the above (2) was arranged, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in the above (4) is set in a vacuum drying furnace, and the compression molding test piece is subjected to a pressure of 1 to 3 Pa at 150 ° C. Vacuum heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). , and the demagnetization curve was measured at 20 ° C., the values of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 100 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body.
Further, the specific resistance of the magnet is about 100 times or more the value of the magnet of the present invention compared to the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. . Therefore, the eddy current loss is small, and it has good characteristics.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. Thus, it has been found that the magnetic properties are 20-30%, the bending strength is about 3 times, the irreversible thermal demagnetization rate is reduced to less than half, and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。水1lにリン酸20g,ほう酸4g,金属酸化物としてMgO4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製)を0.1wt%になるように加えた。防錆剤としてはベンゾトリアゾール(BT)を用い、その濃度として0.01〜0.5mol/lになるように加えた。リン酸塩化成処理膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して5mlのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The treatment liquid for forming the phosphate chemical conversion film was prepared as follows. 20 g of phosphoric acid, 4 g of boric acid and 4 g of MgO as a metal oxide were dissolved in 1 liter of water, and EF-104 (manufactured by Tochem Products) was added as a surfactant to a concentration of 0.1 wt%. Benzotriazole (BT) was used as a rust preventive agent, and the concentration was added to be 0.01 to 0.5 mol / l. The process of forming the phosphate chemical conversion film on the Nd 2 Fe 14 B magnetic powder was carried out by the following method.
(1) 5 ml of a phosphating solution was added to 100 g of magnetic powder obtained by pulverizing a NdFeB-based ribbon, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wetted.
(2) The rare earth magnet magnetic powder subjected to the phosphatization film forming process of (1) was heat-treated at 180 ° C. for 30 minutes under a reduced pressure of 2 to 5 torr.
The SiO 2 precursor as a binder includes 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydration. A solution in which 75 ml of methyl alcohol and 0.05 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. for 2 days was used.
(1) Nd 2 Fe 14 B magnetic powder subjected to the above phosphatization film formation treatment is filled in a mold, and is 10 mm long, 10 mm wide and 5 mm thick for measuring magnetic properties at a pressure of 16 t / cm 2. Further, a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The SiO 2 precursor solution, which is a binder, placed in the bat so that the pressing direction is in the horizontal direction and left at a temperature of 25 ° C. for two days and nights. Was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression molding test piece used in the above (2) was arranged, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molded test piece was placed, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution was set was gradually returned to atmospheric pressure, and the compression molded test piece was taken out from the SiO 2 precursor solution. .
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in the above (4) is set in a vacuum drying furnace, and the compression molding test piece is subjected to a pressure of 1 to 3 Pa at 150 ° C. Vacuum heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). are possible, the demagnetization curve was measured at 20 ° C., the value of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder. The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 100 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body. Further, the specific resistance of the magnet is about 100 times or more the value of the magnet of the present invention compared to the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. . Therefore, the eddy current loss is small, and it has good characteristics.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. Thus, it has been found that the magnetic properties are 20-30%, the bending strength is about 3 times, the irreversible thermal demagnetization rate is reduced to less than half, and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。水1lにリン酸20g,ほう酸4g,金属酸化物としてMgO4gを溶解し、防錆剤としてベンゾトリアゾール(BT)を0.04mol/lになるように加えた。界面活性剤としてEF−104(トーケムプロダクツ製)を用い、その濃度として0.01〜1wt%になるように加えた。リン酸塩化成処理膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対してリン酸塩化成処理液5mlを添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)上記圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は90MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. The treatment liquid for forming the phosphate chemical conversion film was prepared as follows. 20 g of phosphoric acid, 4 g of boric acid and 4 g of MgO as a metal oxide were dissolved in 1 l of water, and benzotriazole (BT) was added as a rust preventive to 0.04 mol / l. EF-104 (manufactured by Tochem Products) was used as a surfactant, and the concentration was 0.01 to 1 wt%. The process of forming the phosphate chemical conversion film on the Nd 2 Fe 14 B magnetic powder was carried out by the following method.
(1) 5 ml of a phosphating solution was added to 100 g of magnetic powder obtained by pulverizing a NdFeB-based ribbon, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wet.
(2) The magnetic powder for a rare earth magnet subjected to the phosphating film forming process of (1) was heat-treated at 180 ° C. for 30 minutes under a reduced pressure of 2 to 5 torr.
The SiO 2 precursor as a binder includes 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydration. A solution in which 75 ml of methyl alcohol and 0.05 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. for 2 days was used.
(1) Nd 2 Fe 14 B magnetic powder subjected to the above phosphatization film formation treatment is filled in a mold, and is 10 mm long, 10 mm wide and 5 mm thick for measuring magnetic properties at a pressure of 16 t / cm 2. Further, a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The SiO 2 precursor solution, which is a binder, placed in the bat so that the pressing direction is in the horizontal direction and left at a temperature of 25 ° C. for two days and nights. Was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. The SiO 2 precursor solution was poured into the vat until it was finally 5 mm above the upper surface of the compression molded specimen.
(3) The compression molding test piece used in the above (2) was arranged, and a bat filled with the SiO 2 precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) The compression molding test piece is arranged, and the internal pressure of the vacuum vessel in which the bat filled with the SiO 2 precursor solution is set is gradually returned to the atmospheric pressure, and the compression molding test piece is taken out from the SiO 2 precursor solution. did.
(5) The compression molding test piece impregnated with the SiO 2 precursor solution prepared in the above (4) is set in a vacuum drying furnace, and the compression molding test piece is subjected to a pressure of 1 to 3 Pa at 150 ° C. Vacuum heat treatment was applied.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). , and the demagnetization curve was measured at 20 ° C., the values of residual magnetic flux density and coercivity and SiO 2 before impregnated with the molded body after SiO 2 infiltration and heating were almost the same. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.0% for the SiO 2 impregnated bonded magnet, which is smaller than the thermal demagnetization factor (5%) in the case of no SiO 2 impregnation. Further, the irreversible thermal demagnetization factor is 1% or less after the SiO 2 impregnation heat treatment after being kept in the atmosphere at 200 ° C. for 1 hour, and is smaller than the value close to 3% in the case of no SiO 2 impregnation. This is because SiO 2 suppresses deterioration due to oxidation of the magnetic powder.
The bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7) above is 2 MPa or less before SiO 2 impregnation, but has a bending strength of 90 MPa or more after SiO 2 impregnation heat treatment. It was possible to produce a molded body.
Further, the specific resistance of the magnet is about 100 times or more the value of the magnet of the present invention compared to the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. . Therefore, the eddy current loss is small, and it has good characteristics.
From the results of this Example, the rare earth bonded magnet impregnated into the rare earth magnet molded body produced by the cold forming method without using the low-viscosity SiO 2 precursor of the present invention is compared with a normal resin-containing rare earth bonded magnet. Thus, it has been found that the magnetic properties are 20-30%, the bending strength is about 3 times, the irreversible thermal demagnetization rate is reduced to less than half, and the magnet can be highly reliable.

本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。水1lにリン酸20g,ほう酸4g、金属酸化物としてMgO4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製)を0.1wt%、防錆剤としてベンゾトリアゾール(BT)を0.04mol/lになるように加えた。リン酸塩化成処理膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して2.5〜30mlのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水4.8ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO含浸熱処理後で1%以下でありSiO含浸無しの場合の3%近い値よりも小さい。これはSiOが磁粉の酸化による劣化を抑制しているためである。 上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
(比較例1)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
(1)上記希土類磁石用磁粉と100μm以下のサイズの固形エポキシ樹脂(ソマール社製EPX6136)を体積で0から20%になるようにVミキサーを用いて混合した。
(2)前記(1)で作製した希土類磁石用磁粉と樹脂とのコンパウンドを金型中に装填し、不活性ガス雰囲気中で、成形圧16t/cmの条件で80℃の加熱圧縮成形した。作製した磁石は磁気特性測定用として縦10mm,横10mm,厚さ5mmのサイズを、また、強度測定用として縦15mm,横10mm,厚さ2mmのサイズである。
(3)前記(2)で作製したボンド磁石の樹脂硬化を窒素ガス中で170℃,1時間の条件で行った。
(4)前記(3)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(5)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(6)前記(3)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
前記(4)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性を調べた。その結果、磁石中のエポキシ樹脂含有率が高くなるに従い、磁石の残留磁束密度は減少していった。SiO結着剤を含浸して作製したボンド磁石(実施例1〜5)と比較して、磁石の曲げ強度が50MPa以上の磁石で比較すると、エポキシ樹脂含有ボンド磁石は磁束密度が20〜30%低下していた。また、200℃大気中保持1時間後の熱減磁率はエポキシ樹脂含有ボンド磁石が5%とSiO含浸ボンド磁石の3.0%と比較して大きい。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し(実施例1〜5)、エポキシ樹脂を含有したボンド磁石(比較例1)の場合は3%近い値と大きかった。不可逆熱減磁の抑制だけでなく、PCT試験や塩水噴霧試験でもエポキシ樹脂含有ボンド磁石はSiO含浸ボンド磁石と比較して低いレベルであった。
更に前記(4)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片について大気中で225℃に1時間保持し冷却後20℃で減磁曲線を測定した。磁界印加方向は10mm方向であり、最初に+20kOeの磁界で着磁後±1kOeから±10kOeの磁界でプラスマイナス交互に磁界を印加して減磁曲線を測定した。その結果を第4図に示す。第4図では、(実施例1)の2)の条件でSiOの含浸処理した磁石と、本比較例に示すようにエポキシ樹脂をバインダーとして15vol%含有した圧縮成形ボンド磁石との、減磁曲線を比較している。第4図の横軸は印加した磁界、縦軸は磁束密度を示す。SiO結着剤を含浸処理した磁石は磁界が−8kOeよりも負側に大きな磁界が印加されると磁束が急激に低下する。圧縮成形ボンド磁石は含浸処理した磁石よりもさらに磁界の絶対値が小さい値で磁束が急激に低下し、−5kOeよりも負側の磁界で磁束の低下が著しい。−10kOeの磁界印加後の残留磁束密度は、含浸処理磁石の場合0.44、圧縮成形ボンド磁石では0.11Tであり含浸処理磁石の残留磁束密度は圧縮成形ボンド磁石の値の4倍となっている。これは圧縮成形ボンド磁石が225℃で加熱中に各NdFeB粉の表面やNdFeB粉のクラック表面が酸化することで各NdFeB粉を構成しているNdFeB結晶の磁気異方性が低下し、その結果保磁力が減少し負の磁界印加により磁化が反転し易くなったためと考えられる。これに対し、含浸処理磁石ではNdFeB粉及びクラック表面がSiO膜で被覆されているため大気中加熱時の酸化が防止された結果、保磁力の減少が少ないものと考えられる。
前記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度は結着剤のエポキシ樹脂含有率を増加させると、曲げ強度は増加し、体積含有率として20vol%で磁石の曲げ強度は48MPaとなり、ボンド磁石として必要な曲げ強度を有する。エポキシ樹脂含有ボンド磁石はSiO含浸ボンド磁石と比較して、比抵抗は同等のレベルであった。
本比較例の結果から、エポキシ樹脂含有希土類ボンド磁石は本発明の低粘度のSiO前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石と比較して、磁気特性において20〜30%低く、不可逆熱減磁率並びに磁石の信頼性が低いことが判明した。
尚、本比較例において、樹脂の体積分率(樹脂と希土類磁石用磁粉における樹脂の体積分率を示す。)を変化させたエポキシ樹脂含有ボンド磁石の評価結果を第5表に纏める。
(比較例2)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO前駆体には、CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を1ml,水0.19ml,脱水メチルアルコール99ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した溶液を用いた。
上記SiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である上記SiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃の大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に200℃で1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し、エポキシ系ボンド磁石の場合3%近い値であった(比較例1)。
しかしながら、上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度は低いレベルの値となり、本比較例のSiO含浸ボンド磁石はエポキシ樹脂含有ボンド磁石と比較して、1/10程度の値しかえられなかった。これは本比較例における結着剤中のSiO前駆体の含有量が1vol%と実施例における結着剤中のSiO前駆体の含有量と比べて、1〜2桁少ないため、硬化後のSiO単体の曲げ強度が大きくても、磁石中の含有量が少なすぎることが影響している。
結論として、本比較例の磁石は磁石強度が低い短所があり、使用対象によっては上記曲げ強度を考慮することが必要。
尚、本比較例、及び後述する(比較例3)の1),2),(比較例4)の各種特性については、第6表に纏めている。
(比較例3)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO前駆体には以下の2つの溶液を用いた。
1)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水0.19ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
2)CHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水24ml,脱水エチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、2昼夜25℃の温度で放置した。
1),2)のSiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1),2)のSiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(比較例3)の1)について、上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃の大気中保持1時間後の熱減磁率はSiO含浸ボンド磁石で3.0%でありSiO含浸無しの場合の熱減磁率(5%)よりも小さい。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し、エポキシ系ボンド磁石(比較例1)の場合は3%近い値であった。
しかしながら、上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度は低いレベルの値となり、本比較例のSiO含浸ボンド磁石はエポキシ樹脂含有ボンド磁石と比較して、1/6程度の値しかえられなかった。これは本比較例における結着剤中の水の添加量が少ないため、化学反応式1に示したSiO前駆体材料中のメトキシ基の加水分解が進行しないためシラノール基が生成せず、SiO前駆体の熱硬化反応におけるシラノール基間の脱水縮合反応が生じないため、熱硬化後のSiOの生成量が少なくSiO含浸ボンド磁石の曲げ強度が低かったのが原因である。
結論として、(比較例3)の1)の磁石は磁石強度が低いため、使用対象における磁石強度の関係を十分に考慮して使用することが望ましい。
(比較例3)の2)について、(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は170MPaの曲げ強度を有する磁石成形体を作製することが可能であった。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。しかしながら、200℃大気中保持1時間後の熱減磁率は本比較例では4.0%と実施例でのSiO含浸ボンド磁石で3.0%と比較して大きい値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO含浸処理を施した場合1%未満であるのに対し、本比較例では2%近い値であった。これはSiO前駆体溶液が磁石表面から1mm強程度までしか磁石中に浸透しなかったことが影響していることが分かった。そのため、磁石の中央の部分の磁粉が大気中加熱時の酸化劣化を引き起こし、本比較例の磁石が実施例の磁石より不可逆熱減磁率が大きくなった原因である。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、遜色はないものの、長期信頼性に関しては従来のエポキシ系ボンド磁石より低くなる可能性がある。使用対象における酸化劣化を十分に考慮して使用することが望ましい。
(比較例4)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。結着剤であるSiO前駆体にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml,水9.6ml,脱水メチルアルコール75ml,ジラウリン酸ジブチル錫0.05mlを混合し、6昼夜25℃の温度で放置した溶液を用いた。
上記SiO前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記NdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である上記SiO前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO前駆体溶液内から取出した。
(5)上記(4)で作製したSiO前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO含浸前で2MPa以下であるが、SiO含浸熱処理後は190MPaの曲げ強度を有する磁石成形体を作製することが可能であった。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。しかしながら、200℃大気中保持1時間後の熱減磁率は本比較例では3.6%と実施例でのSiO含浸ボンド磁石で3.0%と比較して大きい値となった。更に200℃で1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO含浸処理を施した場合1%未満であるのに対し、本比較例では1.6%の値となった。これはSiO前駆体溶液が磁石表面から2mm弱程度までしか磁石中に浸透しなかったことが影響していることが分かった。そのため、磁石の中央の部分の磁粉が大気中加熱時の酸化劣化を引き起こし、本比較例の磁石が実施例の磁石より不可逆熱減磁率が大きくなった原因である。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、遜色はないものの、長期信頼性に関しては従来のエポキシ系ボンド磁石より低くなる可能性がある。この点を十分考慮して使用することが望ましい。
(比較例5)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。また希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成する処理液は以下のようにして作製した。
(1)水に溶解度の高い塩、例えばNdの場合は酢酸Nd、または硝酸Nd4gを100mlの水に導入し、振とう器または超音波攪拌器を用いて完全に溶解した。
(2)10%に希釈したフッ化水素酸をNdFが生成する化学反応の当量分を徐々に加えた。
(3)ゲル状沈殿のNdFが生成した溶液に対して超音波攪拌器を用いて1時間以上攪拌した。
(4)4000〜6000r.p.mの回転数で遠心分離した後、上澄み液を取り除きほぼ同量のメタノールを加えた。
(5)ゲル状のNdFを含むメタノール溶液を攪拌して完全に懸濁液にした後、超音波攪拌器を用いて1時間以上攪拌した。
(6)上記(4)と(5)の操作を酢酸イオン、又は硝酸イオン等の陰イオンが検出されなくなるまで、3〜10回繰り返した。
(7)最終的にNdFの場合、ほぼ透明なゾル状のNdFとなった。処理液としてはNdFが1g/5mlのメタノール溶液を用いた。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。
NdFコート膜形成プロセスの場合:NdF濃度1g/10ml半透明ゾル状溶液
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して15mlのNdFコート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のNdFコート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)上記(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10−5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)上記(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10−5torrの減圧下で、700℃,30分の熱処理を行った。
(5)上記希土類フッ化物又はアルカリ土類金属フッ化物コート膜を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、約20%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率は本比較例では3.0%と実施例でのSiO含浸ボンド磁石で3.0%と同等の値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO含浸処理を施した場合1%未満であるのに対し、本比較例では1%未満の値となった。この結果を第7表に示す。
しかしながら、(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度に関しては本比較例ではSiO含浸を実施していないため、2.9MPaという値となり、エポキシ系ボンド磁石と比較して1/15程度の値となった。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、機械的強度に乏しく、使用に当たってはこの点に注意が必要である。
(比較例6)
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。またリン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1lにリン酸20g,ほう酸4g,金属酸化物としてMgOの4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製)を0.1wt%になるように加えた。防錆剤としてはベンゾトリアゾール(BT)を0.04mol/lになるように加えた。
リン酸塩化成処理膜を上記NdFe14Bの磁粉に形成するプロセスは以下の方法で実施した。使用したリン酸塩化成処理液の組成を第4表に示す。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して5mlのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
(3)上記リン酸塩化成膜形成処理を施したNdFe14Bの磁粉を成形型に充填し、16t/cmの圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(4)上記(3)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(5)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(6)上記(3)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(3)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、約25%向上可能であり、20℃で測定した減磁曲線は、SiO含浸前とSiO含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率は本比較例では3.1%と実施例でのSiO含浸ボンド磁石で3.0%とほぼ同等の値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO含浸処理を施した場合1%未満であるのに対し、本比較例では1.2%の値となりやや増加したものの大きな差はなかった(第7表)。しかしながら、上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度に関しては本比較例ではSiO含浸を実施していないため、2.9MPaという値となり、エポキシ系ボンド磁石と比較して1/20程度の値となった。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、機械的強度に乏しく、使用に当たってはこの点を十分考慮して使用することが必要である。
上述の実施例により本発明を説明したが、本発明の磁石は次の効果を備えている。
1)磁石としての性能が従来の樹脂による磁石に比べ優れている。
2)さらに優れた特性に加え、磁石としての強度も強い。樹脂磁石では得られなかった特性に優れ、強度においても優れている磁石が得られる。
上述1)と2)の効果は、上述のとおり、例えば次のようにして達成される。
樹脂のない状態で磁粉を圧縮成形した際に生じる、1μm以下の磁粉と磁粉の隙間に結着剤溶液を浸透させる必要がある。そのためには結着剤溶液の粘度が100mPa・s以下であることと、磁粉と結着剤溶液の濡れ性が高いことが必要である。更には、硬化後の結着剤と磁粉との接着性が高く、結着剤の機械的強度が大きく、結着剤が連続的に形成されていることが重要である。
結着剤溶液の粘度に関しては磁石のサイズに依存するが圧縮成形体の厚さが5mm以下且つ磁粉と磁粉の隙間が1μm程度の場合は結着剤溶液の粘度が100mPa・s程度で磁粉と磁粉の隙間に結着剤溶液を圧縮成形体の中心部まで導入することが可能である。圧縮成形体の厚さが5mm以上且つ磁粉と磁粉の隙間が1μm程度になると、例えば30mm程度の厚さを有する圧縮成形体では、圧縮成形体の中心部まで結着剤溶液を導入するには、結着剤溶液の粘度が100mPa・s程度では高く、結着剤溶液の粘度が20mPa・s以下、望ましくは10mPa・s以下が必要となる。これは通常の樹脂と比較して1桁以上低い粘度である。そのためにはSiOの前駆体であるアルコキシシロキサンにおけるアルコキシ基の加水分解量の制御とアルコキシシロキサン分子量の抑制とが必要となる。即ち、アルコキシ基が加水分解するとシラノール基が生成されるが、そのシラノール基は脱水縮合反応を起こし易く、脱水縮合反応はアルコキシシロキサンの高分子量化を意味するからである。また、更にシラノール基同士は水素結合を生じるため、SiOの前駆体であるアルコキシシロキサン溶液の粘度は増大する。具体的にはアルコキシシロキサンの加水分解反応当量に対する水の添加量と加水分解反応条件を制御することである。結着剤溶液に用いる溶媒にはアルコキシシロキサン中のアルコキシ基は解離反応が速いことからアルコールを用いることが望ましい。溶媒のアルコールには沸点が水より低く粘度の低いメタノール,エタノール,n−プロパノール,iso−プロパノールが好ましいが、結着剤溶液の粘度が数時間で増加しなく、かつ、沸点が水より低い溶媒であれば本発明に係る磁石の製造に用いることができる。
硬化後の結着剤と磁粉との接着性に関しては、本発明に用いている結着剤であるSiO前駆体は熱処理後の生成物がSiOであるため、磁粉表面が自然酸化膜で覆われていれば、磁粉表面とSiOとの接着性は大きく、SiOを結着剤とした希土類磁石は磁石を破断した際の表面は磁粉またはSiOの凝集破壊面が殆どである。一方、結着剤に樹脂を用いた場合は樹脂と磁粉との接着性は磁粉表面とSiOと比較すると一般的に小さい。そのため、樹脂を用いたボンド磁石では、磁石を破断した際の表面は樹脂と磁粉の界面または樹脂の凝集破壊面の両方が存在する。従って、磁石強度を向上させるにはSiOを結着剤として用いる方が樹脂を結着剤として用いるより有利である。
磁石中の希土類磁粉の含有率が75vol%以上になる時は、圧縮成形するタイプの希土類磁石を用いることになるが、結着剤硬化後の希土類磁石の強度は、硬化後の結着剤の連続体が生成するかどうかが大きく影響する。それは接着界面の破断強度より同じ面積の結着剤単独の破断強度の方が大きいからである。エポキシ樹脂等の樹脂を用いた場合、全固形分中の樹脂体積分率が15vol%以下になると樹脂と希土類磁粉との濡れ性が良好とはいえないため、磁石内部での樹脂硬化後の樹脂は連続体とはならず、島状に分布する。それに対して、前述したようにSiO前駆体は希土類磁粉との濡れ性が良好であるため、磁粉表面にSiO前駆体が連続的に拡がり、その連続的に拡がった状態で熱処理により硬化しSiOになる。一方、硬化後の結着剤の材料としての強度は曲げ強さで表すとSiOは樹脂系と比較して1〜3桁大きい。そのため、結着剤硬化後の希土類磁石の強度は結着剤にSiO前駆体を用いた方が、樹脂を用いるより桁違いに高い。
次に本発明に係る磁石により適した磁石の材料について説明する。希土類磁石粉は、強磁性の主相および他成分からなる。希土類磁石がNd−Fe−B系磁石である場合には、主相はNdFe14B相である。磁石特性の向上を考慮すると、希土類磁石粉は、HDDR法や熱間塑性加工を用いて調製された磁石粉であることが好ましい。希土類磁石粉は、Nd−Fe−B系磁石の他に、Sm−Co系磁石などが挙げられる。得られる希土類磁石の磁石特性や、製造コストなどを考慮すると、Nd−Fe−B系磁石が好ましい。ただし、本発明の希土類磁石がNd−Fe−B系磁石に限定されるものではない。場合によっては、希土類磁石中には2種以上の希土類磁石粉が混在していてもよい。即ち、異なる組成比を有するNd−Fe−B系磁石が2種以上含まれてもよく、Nd−Fe−B系磁石とSm−Co系磁石とが混在していてもよい。
なお、本明細書で「Nd−Fe−B系磁石」とは、NdやFeの一部が他の元素で置換されている形態も包含する概念である。Ndは、Dy,Tb等の他の希土類元素で置換されていてもよい。置換にはこれらの一方のみを用いてもよく、双方を用いてもよい。置換は、原料合金の配合量を調整することによって行うことができる。このような置換によって、Nd−Fe−B系磁石の保磁力向上を図れる。置換されるNdの量は、Ndに対して、0.01atom%以上,50atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。50atom%を越えると、残留磁束密度を高レベルで維持できなくなる恐れがあり、磁石を使用する用途に対応して注意することが望ましい。
一方、Feは、Co等の他の遷移金属で置換されていてもよい。このような置換によって、Nd−Fe−B系磁石のキュリー温度(Tc)を上昇させ、使用温度範囲を拡大させることができる。置換されるFeの量は、Feに対して、0.01atom%以上,30atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。30atom%を越えると、保磁力の低下が大きくなる恐れがあり、磁石を使用する用途に対応して注意することが望ましい。
希土類磁石における希土類磁石粉の平均粒径は、1〜500μmが好ましい。希土類磁石粉の平均粒径が1μm未満であると、磁粉の比表面積が大きく酸化劣化による影響が大きく、それを用いた希土類磁石の磁石特性の低下が懸念される。したがってこの場合磁石の使用状態を考え、注意することが望ましい。
一方、希土類磁石粉の平均粒径が500μmより大きいと、製造時の圧力によって磁石粉が砕け、十分な電気抵抗を得ることが難しくなる。加えて、異方性希土類磁石粉を原料として異方性磁石を製造する場合には、500μmを越えるサイズにわたり、希土類磁石粉における主相(Nd−Fe−B系磁石においては、NdFe14B相)の配向方向を揃えることは難しい。希土類磁石粉の粒径は、磁石の原料である希土類磁石粉の粒径を調節することによって、制御される。なお、希土類磁石粉の平均粒径はSEM像から算出することができる。
本発明は等方性磁石粉から製造される等方性磁石,異方性磁石粉をランダム配向させた等方性磁石、および異方性磁石粉を一定方向に配向させた異方性磁石のいずれにも適用可能である。高エネルギー積を有する磁石が必要であれば、異方性磁石粉を原料とし、これを磁場中配向させた異方性磁石が好適である。
希土類磁石粉は、製造する希土類磁石の組成に応じて、原料を配合して製造する。主相がNdFe14B相であるNd−Fe−B系磁石を製造する場合には、Nd,Fe、およびBを所定量配合する。希土類磁石粉は、公知の手法を用いて製造したものを用いてもよいし、市販品を用いても良い。このような希土類磁石粉は、多数の結晶粒の集合体となっている。希土類磁石粉を構成する結晶粒は、その平均粒径が単磁区臨界粒子径以下であると、保磁力を向上させる上で好適である。具体的には、結晶粒の平均粒径は、500nm以下であるとよい。なお、HDDR法とは、Nd−Fe−B系合金を水素化させることにより、主相であるNdFe14B化合物をNdH,α−Fe、およびFeBの三相に分解させ、その後、強制的な脱水素処理によって再びNdFe14Bを生成させる手法である。UPSET法とは、超急冷法により作製したNd−Fe−B系合金を、粉砕,仮成型後、熱間で塑性加工する手法である。
磁石の使用用途として高調波を含む高周波磁界が磁石に対して印加される条件下では、希土類磁石粉体表面に無機絶縁膜を形成されていることが好ましい。これにより磁石内部の電気抵抗を大きくでき、渦電流を低減でき、磁石中の渦電流損を低減化できる。このような無機絶縁膜としては、燐酸,硼酸,マグネシウムイオンを含有した燐酸塩化成処理液を用いて形成された膜が良く、膜厚の均一性と磁粉の磁気特性を確保するには界面活性剤と防錆剤が併用することが望ましい。特に界面活性剤としてはパーフルオロアルキル系界面活性剤、また、防錆剤としてはベンゾトリアゾール系防錆剤であることが望ましい。
更に、磁粉の絶縁性並びに磁気特性の向上を図ることを目的とした無機絶縁膜としてはフッ化物コート膜が望ましい。該フッ化物コート膜を形成する処理液としては、希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤されており、且つ、該希土類フッ化物又はアルカリ土類金属フッ化物は平均粒径が10μm以下まで粉砕されアルコールを主成分とした溶媒に分散されたゾル状態である溶液が望ましい。磁気特性の向上には該フッ化物コート膜が表面に形成された磁粉を1×10−4Pa以下の雰囲気、且つ、600〜700℃温度で熱処理することが望ましい。
〈上記構造の回転電機の効果〉
第1図に記載の第1および第2の回転電機200,202に使用される磁石が上記説明の構造を為すこと、すなわち粉体の磁石材料と濡れ性の良い結着剤の前駆体を磁石に含浸させて磁石を製造することで、次の効果の少なくとも1つまたは複数の効果を有している。なお上記説明のとおり、粉体の磁石材料と濡れ性の良い前駆体の結着剤としてSiOが最適である。
効果1、上述の磁石の製造工程では、高温に熱する焼結工程が存在しないので磁石の製造が容易である。
効果2、また俗にボンド磁石と称せられるエポキシ樹脂を使用した磁石ではないので、磁石の磁気特性がボンド磁石より優れており、安価で比較的良好な特性の回転電機を得ることができる。
効果3、上記磁石は磁石材による成形がなされた後、結着剤の硬化を比較的低い温度で行うことが可能であり、成形された磁石材の形状や寸法の変化が少ない。磁石の形状や寸法に関し高い精度で製造できるので、モータや発電機として高い特性が得られる。すなわち磁石材を結着剤で結着した後の切削加工が非常に少なく、又容易である。例えば接着剤のはみ出し部分を切削するなど、実質的な磁石形状の形成加工では無いので、加工が容易である。従来の焼結磁石では焼結のために高温に熱するので、その後の温度が下がる過程で収縮し、磁石材の形状が変化する。従って従来の焼結磁石では、焼結工程の後に磁石の形状や寸法を整えるための切削加工に多くの時間を費やすことが必要であった。上記実施の形態では、極めて少ない切削加工で、場合によっては切削加工なしで必要な磁石形状を得ることができる。
効果4、上述の如く磁石材の成形形状がその後の結着剤の含浸や硬化の工程でほとんど変化しないので、プレス加工等による磁石材の曲線形状を高い精度で維持したままで磁石を製造することが可能である。理論的には好ましい磁石の厚みや形状が分かっていても、量産可能な方法が無いために製品化が困難であった磁石の曲線形状を実現でき、良好な特性の回転電機を得ることが可能である。
効果5、焼結の希土類磁石は電気抵抗が小さく渦電流による損失や発熱が大きい。上記磁石は粉末磁石表面に絶縁皮膜を形成でき、上記渦電流損や磁石の発熱を大幅に低減できる。自動車用の回転電機、特にハイブリッド車両に使用される回転電機は100度を超える環境で使用される可能性があり、磁石内での渦電流による発熱を低く抑えることが必要である。上述の実施の形態では電気抵抗を大きくできるので、磁石の発熱を低減できる。またその分回転電機の損失を低減でき、効率向上となる。
〈回転電機の他の実施形態〉
第13図は、第3図から第6図で説明した回転電機200や202に関する他の実施の形態を示す。これらの回転電機200や202はそれぞれ、固定230あるいは回転子250が鉄粉を圧縮成形して形成されている。固定子230の構造や動作は第3図から第6図で説明した回転電機200や202の固定子230と同じである。
固定子230の固定子鉄心232は上述のように、表面に電気絶縁膜を付けた鉄粉を圧縮して成形されている。先に固定子巻線を成形して固定子巻線を仮固定し、仮固定した固定子巻線を内蔵するようにして鉄粉を詰め、次に鉄粉全体を圧縮成形して固定子全体を作ることが可能となり、生産性が向上する。場合によってはさらに固定子巻線の占積率が向上することが可能となる。鉄粉表面の電気絶縁膜により固定子鉄心内の電気抵抗が増大し、固定子鉄心内の渦電流を低減でき、発熱が減少すると共に回転電機の効率が向上する。
上記回転子鉄心252もまた、表面に電気絶縁膜を付ける処理を行った鉄粉を圧縮して成形することにより回転子鉄心250の渦電流を低減できる。さらに上述の如く永久磁石254と256は渦電流を低減する構造をしており、回転子250の内部発熱を総合的に低減できる。希土類永久磁石は温度が上昇すると磁気特性が劣化する、すなわち減磁する欠点を有している。車載用回転電機は周囲の温度が高い状況で使用される場合が多々あり、内部発熱を低減することは磁石の磁気特性の劣化を防止できるなど、熱に伴う色々な障害を低減でき、信頼性を高く維持する上でたいへん好ましい。
第13図に記載の回転子250に設けられている永久磁石254や256は第3図から第6図で説明した永久磁石254や256と基本的に同じであるが、磁石形状が異なっており、これに伴い作用が少し異なっている。第13図で永久磁石254や256は一体の形状で、少なくとも固定子側が曲線形状である。永久磁石254や256の両端部では磁石の径方向の厚みが中央部に比べ、薄くなっている。この結果、回転子250の磁極の中央部における永久磁石の起磁力が磁極端部の永久磁石の起磁力より大きくなっており、さらに永久磁石254や256の直径方向の厚みがなだらかに変化することで、起磁力の変化が滑らかになっている。以下に記載のごとく回転電機のトルクや起電力が滑らかになる効果がある。
永久磁石254や256の回転子側に位置する磁極片部280の径方向の厚みが第4図で説明したものより薄い。この構造から磁極片部280と補助磁極290との間の磁気回路が時期的な飽和状態となり、磁束量が抑えられている。また第13図の構造でもブリッジ部282や284が設けられており、磁極片部280と補助磁極290との間に存在する磁束量を、このブリッジ部を含む磁気回路を飽和することにより、制限している。ブリッジ部282や284より補助極側磁石の端部では、磁石と固定子側の回転子外周との間の鉄心幅が徐々に増大する形状となっている。永久磁石254や256の両端部周辺で、磁石と固定子側の回転子外周との間の鉄心幅を、補助磁極290に近づくにつれて、徐々に増大する形状としているので、固定子と回転子との空隙における周方向での磁束量の変化が、磁石254や256が存在する部分から補助磁極にかけて、なだらかに変化している。磁束量のなだらかな変化により、トルク脈動が小さくなる。トルク脈動の内コギングについても小さくできる効果がある。
さらに上述のごとくブリッジ部282や284と永久磁石の両端部との間では、永久磁石の径方向の厚みを薄くしているので、磁石の起磁力がなだらかに減量し、固定子230と回転子250との間の磁束量が滑らかに減少している。
第14図は、固定子巻線に電流が流れていない状態での、空隙222の周方向の磁束分布を示す。第14図(A)は第13図で説明の固定子と回転子の構造を示しており、回転子230と固定子250は回転子の回転軸を中心とする円形形状であるが、平面形状で図示している。第14図(B)は空隙222の磁束量すなわち磁束密度の周方向における変化を示す。補助磁極部290と固定子230との間では、永久磁石254や256による磁束量は第14図(B)の領域(d)で示す如く、ほぼゼロである。永久磁石254/256の左端部とブリッジ部282との間では、径方向の磁石幅が徐々に増大しており、気磁力が徐々に増大している。これに伴って第14図(B)の領域(a)で示す如く、回転子250から固定子230への磁束量が徐々に増大している。ブリッジ部282とブリッジ部284との間は、回転子の直径方向の磁石の厚みが緩やかに変化しており、磁石中央部が端部より厚くなっている。回転子から固定子への磁束量は第14図(B)の領域(b)で示す如く、磁石の径方向の厚みに対応して磁極中央部の磁束量が多く、磁石の端部である磁極端部の磁束量が少ない状態で、磁束量が領域(a)や領域(c)より緩やかに変化している。ブリッジ部282と永久磁石254/256の右端部との間では、回転子の径方向の磁石幅が徐々に減少しており、気磁力が徐々に減少している。これに伴って第14図(B)の領域(c)で示す如く、回転子250から固定子230への磁束量が徐々に減少している。領域(a)と領域(c)の磁束量の変化は磁石の径方向の厚みの変化に基づいており、この変化は領域(b)より少し急激であるが、角ばっていない滑らかな変化であり、トルクや発電電圧の脈動を低減できる。
第14図(B)の領域(d)では上述の如く永久磁石による磁束はほぼゼロである。第14図(A)の右端の補助磁極部290のさらに右側は、隣の磁極であり、永久磁石の形状は同じであるが、磁化方向が反転している。すなわち固定子側がS極で回転子の中心側がN極である。磁石の径方向の厚みと磁束の強さの関係は上述のとおりであるが、磁化方向が逆であり、磁力線の方向は固定子から回転子に向かう方向である。
〈第13図と第14図の実施形態の効果〉
第13図と第14図で、上記永久磁石254/256に希土類磁石材料と濡れ性のすぐれた前駆体の結着剤、好ましくはSiOを結着剤とする、上述の磁石を使用しているので、少なくとも次の1乃至複数の効果を備えている。
効果1、曲線形状の磁石を使用しているので、第14図(B)に示すように永久磁石に基づく磁束量を滑らかに変化させることができる。この回転電機をモータとして使用した場合にトルク脈動を低減できる。また発電機として使用した場合には、発電電圧の脈動を低減でき、また負荷として作用する負荷の脈動変化を低減でき、この回転電機を備えているシステムに与える負荷の脈動の影響を低減できる。
効果2、運転時にはスロットなどの形状に伴い高調波磁束が回転子の固定子側に作用する。上述の回転子を積層電磁鋼板の積層構造とすることで高調波磁束による鉄損や発熱を抑制している。さらに永久磁石254/256に上記高調波磁束が作用して磁石内に渦電流が発生し、渦電流損や磁石の発熱が増大するのを抑制するため、磁石材料の粉体表面に絶縁皮膜を形成したのち磁石粉末から成形された磁性体に結着剤を含浸している。これにより永久磁石内部の電気抵抗を増大でき、渦電流損を低減でき、磁石の発熱を低減できる。自動車用回転電機、特にハイブリッド用の回転電機では、周囲温度が100度を超える高温条件で磁石が使用される可能性があり、磁石の内部発熱を低減することが望ましい。希土類材料を使用した磁石は180度以下、好ましくは140度以下で使用するのが良く、内部発熱を低減することが望ましい。
〈第15図から第18図の実施の形態〉
第15図に3相動機回転電機の他の実施の形態を示す。回転電機の固定子230と回転子250の基本的な構造と動作は第4図に示す回転電機と同じである。固定子230には3相固定子巻線が第4図と同様に設けられているが、図示を省略した。
上記固定子鉄心232および回転子鉄心252は、表面に電気絶縁膜を付ける処理を行った鉄粉を圧縮して成形している。上記固定子鉄心232が、鉄粉を圧縮して成形した構造をなしている。このような構造をとることにより、先に固定子巻線を成形して固定子巻線を仮固定し、仮固定した固定子巻線を内蔵するようにして鉄粉を詰め、次に鉄粉全体を圧縮成形して固定子全体を作ることにより、生産性が向上すると共に固定子巻線の占積率が向上する。さらに渦電流を低減でき、回転電機の効率が向上する。
上記回転子鉄心252を、表面に電気絶縁膜を付ける処理を行った鉄粉を圧縮して成形することにより回転子鉄心250の渦電流を低減できる。また以下で説明する永久磁石254と256は渦電流を低減する構造をしており、回転子250の内部発熱を総合的に低減できる。希土類永久磁石は温度が上昇すると磁気特性が劣化、すなわち減磁する欠点を有している。車載用回転電機は周囲の温度が高い状況で使用される場合が多々あり、内部発熱を低減することは信頼性を高く維持する上で、たいへん好ましい。
第15図で、回転子250は表面に電気絶縁処理を施した鉄粉を圧縮成形しており、圧縮成形された回転子250に磁石挿入孔258が設けられている。上記磁石挿入孔には磁石組体270が挿入されている。この構造は第4図の構造と同じであるが、磁石挿入孔258に挿入されている磁石が磁石組体270となっている点が異なっている。この実施例では、回転子250を有し、各磁石挿入孔258は内部に磁石組体270がそれぞれ配置されている。しかし、4個の磁石挿入孔258は一例であって、8個でも10個でも12個でも良い。各磁石挿入孔258に挿入される磁石は回転子の極を作るが、極を作る磁石を第4図の如く分割して挿入するようにしてもよい。磁石組体270は永久磁石254/256および以下で説明する粉状の鉄心を圧縮した鉄心を有していて、主磁極として作用する。この実施例では主磁極の間にはリラクタンストルクを発生する補助磁極290がそれぞれ存在する。磁石組体の製造方法は第16図あるいは第17図を用いて以下説明する。
第16図で工程12乃至25は先の第9図で説明のとおりである。工程12で板状の希土類磁性材の表面に電気的な絶縁皮膜が作られ、工程15でプレス機械により、予め定められた形状に圧縮成形され所定形状の磁性体が作られる。工程20で所定形状の磁性体の結着剤の前駆体が含浸され、工程25で数百度に熱されることで結着剤が硬化して磁性体が作られる。上記工程25において結着剤の硬化のための温度が低いため、工程12で作られた絶縁皮膜は損傷が少なく、高い電気抵抗が維持できる。また工程25での磁性体の形状変化がほとんど無い。第4図や第13図の実施の形態では、工程25で作られた磁性体を磁石挿入孔に挿入されるが、第16図の実施の形態では、工程25で作られた磁性体と粉状の鉄心材とが工程30で圧縮成形されて磁石組体が作られる。工程35で磁石組体が磁石挿入孔258に挿入され、着磁される。工程30では磁性体の片面あるいは両面に粉状磁心が存在するように磁石組体が圧縮成形される。工程30で使用される粉状の鉄心材は表面に電気的な絶縁皮膜が作られており、電気抵抗が大きく渦電流損が非常に少ない。
上記実施の形態では、板状の希土類磁性材の表面に電気的な絶縁皮膜を作る処理を施した。しかし、上記工程20で結着剤の前駆体を含浸すると、前記結着剤の前駆体は層状に重なる希土類磁性材の間に入り込み、層状の希土類磁性材の間に電気的な絶縁膜を形成するので、電気的な絶縁皮膜を作る処理を施さないでも従来の焼結希土類磁石に比べ5倍〜10倍あるいはそれ以上の電気抵抗を有することとなる。従って発熱が5倍〜10倍あるいはそれ以上の減少となる。このことは上記第9図における実施の形態でも同じである。
第17図は第16図の他の実施の形態である。工程12で表面に絶縁皮膜が作られた粉末状の希土類磁性材が、工程15で予め定められた形状に圧縮成形される。工程15の後、工程17で表面に絶縁皮膜を有する粉状の鉄心材と共に予め定められた形状に圧縮成形され、多孔質状の磁石組体が作られる。工程22で多孔質状の磁石組体に結着剤の前駆体が含浸され、工程27で熱処理により結着剤の前記前駆体が硬化して磁石組体が作られる。上記磁石組体が工程37で回転子の磁石挿入孔258に挿入され、着磁される。なお、磁石組体を磁石挿入孔に挿入後、上記結着剤の前駆体を注いでも良い。この場合工程22や工程27の前段の多孔質状の磁石組体を回転子の磁石挿入孔258に挿入し、その後工程22や27を行っても良いし、あるいは工程37の後再び前記前駆体を注いで、熱処理による硬化を行っても良い。
第17図では第16図の説明と同様、工程12で希土類磁性材の板状の粉末に絶縁皮膜を形成している。このようにすることで、電気抵抗を非常に高くでき、磁石内の渦電流を極めて低くできる。しかし工程12での、希土類磁性材の粉末表面への絶縁皮膜の形成を行わなくても、希土類磁性材の粉末表面にSiO系のアモルファス状態の薄い膜が形成されるので磁石内部の電気抵抗は高くなり、渦電流を低減でき、磁石内部の発熱を低く抑えることができる。
上記SiO系のアモルファス状態の薄い膜は結着剤としての作用と共に電気抵抗を高める作用をしている。またアモルファス状態の薄い膜の形状をしているので、磁石の単位体積あたりの磁性材料の割合を高くすることができ、磁気特性も良好である。
第18図は工程22の多孔質の磁石組体270に結着剤の前駆体を含浸させる状態の図である。容器360に結着剤であるSiOの前駆体の溶液362が入っており、多孔質の磁石組体270が溶液に浸される。磁石組体270は多孔質の磁性体である磁石254/256とその外周に設けられた圧粉鉄心312や314からなっている。圧粉鉄心312や314は上述のごとく、表面を絶縁皮膜処理された純鉄の鉄粉を圧縮成形して固めた鉄心である。圧粉鉄心部分は鉄粉が変形しているため、溶液が浸透しにくいが多孔質磁性体の部分は濡れ性の良い前記前駆体が浸透し、多孔質の孔を前駆体の溶液が満たす状態となる。この後工程27で前記前駆体が熱処理されることで硬化し、結着作用をなす。
第15図〜第18図を使用した説明では、回転子250は表面に電気絶縁処理を施した鉄粉を圧縮成形しており、圧縮成形された回転子250に磁石挿入孔258が設けられている。しかし上述のように、回転子250に磁石挿入孔258を予め設け、その磁石挿入孔258に磁石を挿入する製造方法とは異なる製造方法であっても良い。この場合、磁石組体270を仮止めし、上記仮止めした磁石組体270を内蔵するようにして電気絶縁処理を施した鉄粉を供給し、磁石組体270を内蔵した状態で上記鉄粉を圧縮して、回転子250を圧縮成形する。このようにして製造することで磁石組体270と回転子鉄心252とを一体成形できる。
〈第15図から第18図の実施の形態の効果〉
第15図乃至第18図で説明の実施の形態は、次に記載の効果の1つあるいは複数個あるいは全てを備えている。
効果1、第15図の回転子250に設けられた磁石挿入孔258の形状を単純な形状とすることが可能となる。回転子鉄心は電磁鋼板を切削加工し、この切削加工された電磁鋼板を積層して作られる場合、磁石挿入孔を単純な形状とすることで、作業性が向上する。磁石254/256の形状を曲線を有する形状とすることが可能であるが、そのような曲線にあわせてパンチング加工などの切削加工で電磁鋼板に磁石挿入孔を形成することは、簡単にできることではなく、作業性が低下する。このような作業性の低下を防止できる。
上記積層電磁鋼板を使用するのではなく、回転子鉄心252を鉄粉の圧縮成形で製造する場合、製造する圧縮機の形状を簡単な形状とすることが可能となる。このことにより、圧縮機の型が磨耗し難く、破損の可能性も減少する。
効果2、圧縮成形された磁性体は端部が細くなっていたり、あるいは全体が曲がっていたり、機械的衝撃に弱い形状の場合がある。このような衝撃に弱い形状の場合、回転子の磁石挿入孔へ成形された磁性体を挿入時に、破損する恐れがある。本実施の形態では圧粉鉄心により衝撃に弱い形状から衝撃に強い形状に補強されるので、破損しにくくなる。また磁石挿入孔へ挿入しやすい形状とすることが可能である。
回転子の内部発熱を低減できる。すなわち磁石内部の発熱を低減でき、また回転子250の回転子鉄心252を、表面に電気絶縁膜を有する粉状鉄粉を圧縮成形して作ることにより、回転子鉄心252の内部の発熱を低減できる。希土類永久磁石は温度が所定温度を超えて上昇すると減磁する欠点を有するが、発熱を低く抑えることで永久磁石の温度上昇を抑えることが可能である。これにより回転電機の信頼性を高く維持することが容易となる。
〈他の実施の形態〉
第19図は、第15図の磁石組体270の他の実施の形態を示す。第19図に示す磁石組体270が固定される回転子250は先に説明したものと同じである。すなわち、回転子鉄心252を、表面に電気絶縁膜を付ける処理を行った鉄粉を圧縮して成形することにより回転子鉄心250の渦電流を低減できる。以下で説明する磁石組体270は渦電流を低減する構造をしており、回転子250の内部発熱を総合的に低減できる。希土類永久磁石は温度が上昇すると磁気特性が劣化、すなわち減磁する欠点を有している。車載用回転電機は周囲の温度が高い状況で使用される場合が多々あり、内部発熱を低減することは信頼性を高く維持する上で、たいへん好ましい。
第19図(A)に示す磁石組体270は第15図に示す磁石組体と同じ構造である。第19図(B)は、磁石挿入孔258に2個の磁性体を挿入する構造である。回転子鉄心252に複雑形状の磁束挿入孔を形成することは生産性を低下する。また磁石272や274自身も厚みが薄く、機械的な衝撃に弱い。従って複数の磁性体272と274とを更に電気絶縁皮膜された粉末状の鉄心材で一体に圧縮成形し、衝撃に強い形状として取り扱う。複数の磁性体272と274とが圧粉鉄心314や312により一体になっており、この方が回転子鉄心252と一体成形し易く、回転子の製造の作業性が向上する。
第19図(C)は磁石組体の起磁力を変化させる構造で、粉体の鉄心と磁性体とを圧縮成形したものであり、圧縮成形磁石254/256と圧粉鉄心とが一体に圧縮成形されている。上記と同様作業性が向上する。また各主磁極の周方向の磁束量を回転電機の軸方向に沿って高精度に変化させることができ、トルク脈動や誘起電圧の脈動を低減できる。
第19図(D)は粉体状の鉄心圧縮成形した圧粉鉄心314と圧縮成形された磁石254/256とにより磁石組体が構成されており、回転子鉄心の磁石挿入孔を大きく成形し、磁石254/256を高い精度で最適形状として上記大きく成形した磁石挿入孔に磁石組体を270を挿入することができる。これにより、作業性の向上と精度向上による良好な特性の確保とを両立できる。
第19図(A)乃至第19図(D)は、上述のごとく、表面を絶縁皮膜処理した鉄粉を使用することにより、圧粉鉄心314や312での渦電流を低減でき、鉄損を低減できる。また磁性体である磁石254/256,272,274も表面を絶縁皮膜処理した磁粉材を使用しているので、磁石内部での渦電量を低減できる。
第19図(C)と(D)の磁石組体270は、周方向に非対称に磁石が配置されており、回転方向が一方向の回転電機の磁極として用いるのに適している。
第20図は磁石組体270の更に他の実施の形態であり、磁石挿入孔258に挿入される磁石組体270が磁石272および磁石270と圧粉鉄心312とで構成されている。磁石272および磁石270が回転軸に対しスキューした構造となっている。これにより、回転電機のトルク脈動や誘起電圧のトルク脈動を低減できる。磁石組体の構造がスキュー効果を有する構造であり、回転子鉄心の製造が容易であり、全体として生産性が向上する。また製造精度が向上し、特性が向上する。
第21図に開示の磁石組体は、磁性体254/256とアルミなどの非磁性材料とを組み合わせて磁石組体を形成した構造である。第21図(A)は磁性体254/256の周方向の両サイドに非磁性体266を設けたもので、第16図あるいは第17図の製造方法において、圧縮成形された磁石材にアルミなどの非磁性材の粉末を加えて磁石組体を圧縮成形したものである。非磁性体266は第4図の空隙262や264と同様の働きをする。非磁性体266の形状をプレス成形することで、高精度で成形でき、回転電機の特性が向上する。また第21図(B)は更に一方側に圧粉鉄心314を加えて磁石組体を形成した構造である。回転電機を一方向に回転させて使用する場合に適している。
第21図(A)および(B)は回転子鉄心の空隙を非磁性材料で圧縮成形しており、成形精度を高く維持できることで、良好な特性が得られる。また鉄心の空隙が不要となるので機械強度が高くなる。また作業性が向上する。
第22図は、第4図に示した断面と同様に、固定子230や回転子250の断面を示す。構造や動作原理も略同じである。固定子230の固定子鉄心232や回転子250の回転子鉄心252は第4図と同様、表面に電気絶縁膜を施した鉄粉を圧縮して成形されている。第4図と同様、固定子鉄心232内部の渦電流を低減でき、回転電機の効率が向上すると共に、固定子鉄心232の内部の発熱を低減できる。回転子鉄心252も同様に内部の発熱を低減できるとともに、渦電流損を低減できるので回転電機の効率が向上する。
第22図に示す実施の形態と第4図に示す実施の形態との相違点は、第22図に示す永久磁石276の形状がブロック形状である点である。製造方法は第8図から第12図を用いてあるいは第16図から第18図を用いて説明したとおりである。永久磁石276の作用および固定子230や回転子250の作用は第4図で説明の作用と略同様であり、永久磁石276は第4図では永久磁石254や256に対応している。ブロック型の磁石の形状は、回転子の回転軸に垂直な面での断面は長方形で、上記回転軸に沿って伸びている。各永久磁石276は磁極として作用し、磁極と磁極との間にq軸の磁束を通す補助磁極290が存在する。各永久磁石276の固定子側の回転子鉄心252は第4図と同様、磁極片280として作用する。上記磁極片280と補助磁極290との間には上述の如くブリッジ部が存在し、ブリッジ部を通る磁束量は飽和現象により非常に少なく制限されている。磁極を構成する永久磁石276は磁極片280の両側において磁化の方向が異なっており、例えば一方の永久磁石276は固定子側をN極とするように磁化されていると、他方の永久磁石276は固定子側をS極とするように磁化されている。
第22図の永久磁石276は第20図に示す如くスキューしていても良い、この場合トルク脈動が減少する。また第22図の永久磁石276は第21図に示す如くアルミ材やステンレス材のごとき非磁性材料を有していても良い。この場合、磁気的空隙が上記アルミ材やステンレス材によって作られ、第4図で説明した磁気的空隙262や264と同様の作用をなす。さらに磁気的空隙262や264が物理的な空隙と比べ第21図に示す非磁性材料を使用した場合、機械的な強度が強くなる利点があり、第5図で説明したブリッジ部282や284を回転電機の特性の良好な形状とすることができる。例えば機械的強度の関係で半径方向において薄くできなかった場合でも上述のとおり機械的強度を強くできるので、第21図に示す非磁性材料を使用した場合では磁気特性的に望ましい形状とすることが可能となる。
第23図は第22図の永久磁石276の形状を変えたものであり、表面に電気絶縁膜を施した鉄粉を圧縮して形成された回転子鉄心252に永久磁石が設けられた構造である。特に第23図では回転子鉄心252の内部に永久磁石が埋設された構造である。第23図に開示された回転電機の基本動作は第4図や第22図と略同じである。第23図(A)は永久磁石276の形状をアーク型とした例である。また第23図(B)は永久磁石276の形状をU字型とした例である。第23図(C)は永久磁石276の形状をV字型とした例である。第22図に記載のブロック型の磁石を内蔵した回転電機と同様に第23図(A)や第23図(B)や第23図(C)に記載の回転電機も磁極片やブリッジ部が存在し、トルクの発生原理は略同じである。第15図で説明した如く、予め磁石挿入孔を設けた回転子鉄心252を成形して、第8図乃至第11図で説明の磁石体あるいは第16図乃至第21図で説明した磁石組体を挿入して、回転子を製造することができる。また第8図乃至第11図で説明の磁石体あるいは第16図乃至第21図で説明した磁石組体を予め製造しておき、上記磁石体や磁石組体と鉄粉とを圧縮成型して回転子を製造するようにしても良い。
第24図は、第22図や第23図に記載の回転子250のさらに他の実施の形態を示す回転子の部分拡大図である。第24図に記載の回転子250は、第22図や第23図に記載の永久磁石276の形状を異にするものである。第24図に示すいわゆる三日月形状の永久磁石276の如く、複雑形状の永久磁石を使用する場合、積層鋼板に複雑な形状の磁石挿入孔を設けることが困難である。上記積層鋼板の代わりに、上述の如く表面に電気絶縁皮膜を設けた粉状の鉄心を用いることで生産性を向上できる。すなわち上記粉状の鉄心と上記複雑形状の永久磁石とを一体として圧縮成形することで、例えば第24図に示す如く、上記複雑形状の永久磁石を内蔵した回転子250を製造できる。
第25図は、第22図乃至第24図に記載の回転子250のさらに他の実施の形態を示す回転子の部分拡大図である。第25図に記載の回転子250は、第22図乃至第24図に記載の永久磁石276の形状を異にするものである。第25図に示す永久磁石276は回転子の回転方向において磁石の厚さが非対称となっている。回転電機は回転方向の両方向に対し同様の特性が要求される場合と、回転方向に応じて異なる特性が要求される場合がある。この場合特性に合せた永久磁石276の磁石形状を要求特性に合せることが望ましい。これら特性に合せることで永久磁石276を非対称とすることが可能である。
回転電機をモータと発電機の両方の運転モードで使用する場合がある。回転電機の回転子の方向が同じでもモータと発電機の両方の運転モードで使用する場合、永久磁石276を非対称とすることが望ましい場合がある。この場合例えば第25図に記載の如く永久磁石276の径方向の厚みが周方向において非対称となり、発生する磁束密度が周方向において非対称となっている。
磁石体や磁石組体を非対称形状として予め作成し、粉状の鉄心と上記複雑形状の永久磁石とを一体として圧縮成形することで、第25図に示す周方向に非対称な形状の回転子を容易に製造できる。
第26図と第27図はさらに他の実施の形態を示す。なお第27図は固定子が第26図と同じであり、記載を省略した。固定子230はスロット234を備えた固定子鉄心232を有しており、固定子230および固定子鉄心232は第4図で説明の構造と同じである。
回転子250の永久磁石の配置が異なるのみで基本的な構造や動作は第4図および第15図で説明の内容と同じである。回転子250の各極は複数の永久磁石、例えば2個の永久磁石を回転子の半径方向に配置している。第26図や第27図では永久磁石277と永久磁石278とが回転子の径方向に重なって配置されており、これら永久磁石277と278で回転子250の各磁極を構成する。上記永久磁石277と278は第8図乃至第12図で説明した磁石を使用する。これら永久磁石277と278を予め製造し、次にこれら永久磁石277と278を圧縮機の内部に仮固定子し、次に表面に電気絶縁膜を施した鉄粉を圧縮機の内部に充填し、上記永久磁石と充填された鉄粉を上記圧縮機で圧縮成形して回転子を成形する。このようにすることで回転子を簡単に製造できる。
第27図では、特別に磁気的空間を設けたい場所に非磁性粉279を混入して、上記圧縮機で圧縮成形した回転子250を示す。従来は磁気的空間の空気を満たした物理的な空隙を形成することで作っていた。本実施の形態では非磁性粉279を混入して、磁気的空間を形成するので機械的な強度が従来の構造に比べ強くなる。回転子250を第26図や第27図の如く、磁石体や磁石組体と共に鉄粉を圧縮機により圧縮成形することで、回転子250を簡単に製造でき、さらに磁気的空間が必要な部分には非磁性粉279を混入することで、回転電機に要求される特性に合った回転電機を簡単に製造することができる。
第26図や第27図では予め永久磁石277と278を第8図乃至第12図で説明した製法で製造して使用するが、第8図乃至第9図の工程10から工程15を行い、この状態で圧縮機の内部に仮固定子し、次に表面に電気絶縁膜を施した鉄粉を圧縮機の内部に充填し、上記工程10乃至工程15で製造した磁石と充填された鉄粉を上記圧縮機で圧縮成形して回転子を成形するようにしても良い。この場合、磁石には結着剤の前駆体が含浸されていないので、第28図に示す如く結着剤SiOの前駆体に圧縮成形された回転子を浸し、結着剤SiOの前駆体を含浸しても良い。結着剤SiOの前駆体は磁石部分を含浸するだけでなく、鉄粉を圧縮成形した回転子250の表面および表面近傍を結着剤SiOで固定することができ、機械的な強度が増加する効果がある。鉄粉を圧縮成形した回転子250は遠心力などに対する機械的強度が積層鉄心に比べ低下しやすい欠点があり、機械的な強度が増加することはたいへん望ましい効果である。
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder.
The treatment liquid for forming the phosphate chemical conversion film was prepared as follows. Dissolve 20 g of phosphoric acid, 4 g of boric acid and 4 g of MgO as a metal oxide in 1 liter of water, 0.1 wt% of EF-104 (manufactured by Tochem Products) as a surfactant, and 0.1% of benzotriazole (BT) as a rust inhibitor. It added so that it might become 04 mol / l. The phosphate chemical conversion treatment film is made of the above Nd 2 Fe 14 The process for forming B magnetic powder was carried out by the following method.
(1) 2.5 to 30 ml of a phosphatizing solution was added to 100 g of magnetic powder obtained by pulverizing a NdFeB-based ribbon, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wet.
(2) The magnetic powder for a rare earth magnet subjected to the phosphating film forming process of (1) was heat-treated at 180 ° C. for 30 minutes under a reduced pressure of 2 to 5 torr.
SiO as a binder 2 The precursor is CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (M is 3-5, average is 4) 25 ml, water 4.8 ml, dehydrated methyl alcohol 75 ml, dibutyltin dilaurate 0.05 ml were mixed and used at room temperature for 2 days and nights.
(1) Nd subjected to the phosphating film formation process 2 Fe 14 Fill the mold with B magnetic powder, 16t / cm 2 A test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was measured for measuring magnetic characteristics, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) SiO, which is a binder that is placed in a bat so that the compression direction is the horizontal direction and the compression molding test piece prepared in (1) is left at a temperature of 25 ° C. for two days and nights. 2 The precursor solution was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. It is SiO until it finally becomes 5mm above the upper surface of the compression molding test piece. 2 The precursor solution was injected into the vat.
(3) The compression molded test piece used in (2) above is placed and SiO 2 The vat filled with the precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) Compression molding test piece is placed and SiO 2 The internal pressure of the vacuum vessel in which the bat filled with the precursor solution is set is gradually returned to the atmospheric pressure, and the compression molded specimen is made of SiO. 2 Removed from within the precursor solution.
(5) SiO prepared in (4) above 2 The compression molding test piece impregnated with the precursor solution was set in a vacuum drying furnace, and the compression molding test piece was subjected to vacuum heat treatment under the conditions of 1 to 3 Pa and 150 ° C.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). The demagnetization curve measured at 20 ° C. is SiO 2 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. Moreover, the thermal demagnetization factor after 1 hour holding at 200 ° C. in the atmosphere is SiO 2 Impregnated bonded magnet is 3.0% and SiO 2 It is smaller than the thermal demagnetization factor (5%) when there is no impregnation. Furthermore, the irreversible thermal demagnetization rate is also kept at 200 ° C. in the atmosphere for 1 hour, and then SiO 2 2 Less than 1% after impregnation heat treatment and SiO 2 It is smaller than the value close to 3% without impregnation. This is SiO 2 This is because deterioration due to oxidation of magnetic powder is suppressed. The bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm and a thickness of 2 mm produced in the above (7) is SiO. 2 It is 2 MPa or less before impregnation, but SiO 2 After the impregnation heat treatment, it was possible to produce a magnet molded body having a bending strength of 100 MPa or more.
Further, the specific resistance of the magnet is about 100 times or more the value of the magnet of the present invention compared to the sintered type rare earth magnet, and the same value as that of the compression type rare earth bonded magnet. . Therefore, the eddy current loss is small, and it has good characteristics.
From the results of this example, the low-viscosity SiO of the present invention. 2 The rare earth bonded magnet impregnated into the rare earth magnet molded body prepared by cold forming without using the resin as a precursor has a magnetic property of 20 to 30% and a bending strength of about 20% compared to a normal resin-containing rare earth bonded magnet. It was found that the irreversible thermal demagnetization factor can be reduced to three times or less and the reliability of the magnet can be increased.
(Comparative Example 1)
In this comparative example, magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder.
(1) The rare earth magnet magnetic powder and a solid epoxy resin having a size of 100 μm or less (EPX6136 manufactured by Somaru) were mixed using a V mixer so that the volume might be 0 to 20%.
(2) The compound of rare earth magnet magnetic powder and resin prepared in (1) above is loaded into a mold, and the molding pressure is 16 t / cm in an inert gas atmosphere. 2 Under the conditions of 80 ° C., heat compression molding was performed. The produced magnet is 10 mm long, 10 mm wide and 5 mm thick for measuring magnetic properties, and 15 mm long, 10 mm wide and 2 mm thick for measuring strength.
(3) Resin curing of the bonded magnet produced in (2) was performed in a nitrogen gas at 170 ° C. for 1 hour.
(4) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (3).
(5) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(6) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (3). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
The magnetic characteristics of the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in the above (4) were examined. As a result, the residual magnetic flux density of the magnet decreased as the epoxy resin content in the magnet increased. SiO 2 Compared with bonded magnets (Examples 1 to 5) produced by impregnating the binder, the epoxy resin-containing bonded magnet has a magnetic flux density reduced by 20 to 30% when compared with a magnet having a bending strength of 50 MPa or more. Was. In addition, the thermal demagnetization rate after 1 hour of holding at 200 ° C. in the atmosphere is 5% for the epoxy resin-containing bond magnet and SiO 2 2 Large compared to 3.0% of impregnated bonded magnets. Furthermore, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is less than 1% when impregnated (Examples 1 to 5), whereas the bonded magnet containing an epoxy resin In the case of (Comparative Example 1), the value was close to 3%. In addition to the suppression of irreversible thermal demagnetization, bonded resin magnets containing epoxy resin are also used in PCT tests and salt spray tests. 2 The level was lower than that of the impregnated bonded magnet.
Further, the compression molded test piece having a length of 10 mm, a width of 10 mm and a thickness of 5 mm produced in the above (4) was kept at 225 ° C. for 1 hour in the atmosphere, and after cooling, a demagnetization curve was measured at 20 ° C. The magnetic field application direction was 10 mm. First, after magnetization with a magnetic field of +20 kOe, a magnetic field was applied alternately between ± 1 kOe and ± 10 kOe, and a demagnetization curve was measured. The results are shown in FIG. In FIG. 4, SiO under the conditions of 2) of (Example 1). 2 A demagnetization curve is compared between the magnet impregnated with the above and a compression-bonded magnet containing 15 vol% of an epoxy resin as a binder as shown in this comparative example. In FIG. 4, the horizontal axis represents the applied magnetic field, and the vertical axis represents the magnetic flux density. SiO 2 In a magnet impregnated with a binder, the magnetic flux rapidly decreases when a magnetic field greater than -8 kOe is applied to the negative side. The compression-molded bonded magnet has a magnetic field whose value is smaller than that of the impregnated magnet, and the magnetic flux rapidly decreases. The magnetic field on the negative side of −5 kOe is significantly decreased. The residual magnetic flux density after applying a magnetic field of −10 kOe is 0.44 for the impregnated magnet and 0.11 T for the compression-molded bonded magnet, and the residual magnetic flux density of the impregnated magnet is four times the value of the compression-molded bonded magnet. ing. This is because the magnetic anisotropy of the NdFeB crystals constituting each NdFeB powder is reduced by oxidizing the surface of each NdFeB powder and the crack surface of the NdFeB powder while the compression-molded bond magnet is heated at 225 ° C. This is considered to be because the coercive force decreased and the magnetization was easily reversed by applying a negative magnetic field. In contrast, in the impregnated magnet, the NdFeB powder and the crack surface are SiO. 2 It is considered that the decrease in coercive force is small as a result of preventing oxidation during heating in the air because it is covered with a film.
The bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm and a thickness of 2 mm produced in the above (7) increases the bending strength when the epoxy resin content of the binder is increased, and the volume content is 20 vol%. The bending strength of the magnet is 48 MPa, which is necessary for a bonded magnet. Epoxy resin-containing bonded magnet is made of SiO. 2 Compared with the impregnated bonded magnet, the specific resistance was on the same level.
From the result of this comparative example, the epoxy resin-containing rare earth bonded magnet is the low-viscosity SiO of the present invention. 2 Compared with rare earth bonded magnets impregnated into a rare earth magnet molded body prepared by cold forming without using a resin, the magnetic properties are 20-30% lower, the irreversible thermal demagnetization rate and the reliability of the magnet are low. It has been found.
In addition, in this comparative example, the evaluation result of the epoxy resin containing bonded magnet which changed the volume fraction of resin (the resin volume fraction in the magnetic powder for resin and rare earth magnets) is summarized in Table 5.
(Comparative Example 2)
In this comparative example, magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder.
SiO as a binder 2 The precursor includes CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (M is 3 to 5, average is 4) 1 ml, water 0.19 ml, dehydrated methyl alcohol 99 ml, and dibutyltin dilaurate 0.05 ml were mixed, and a solution that was allowed to stand at 25 ° C. for 2 days and nights was used.
SiO 2 The viscosity of the precursor solution was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) Nd 2 Fe 14 Fill the mold with B magnetic powder, 16t / cm 2 A test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was measured for measuring magnetic characteristics, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The compression molded test piece prepared in (1) above is placed in the bat so that the pressing direction is horizontal, and the SiO as a binder is added. 2 The precursor solution was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. It is SiO until it finally becomes 5mm above the upper surface of the compression molding test piece. 2 The precursor solution was injected into the vat.
(3) The compression molded test piece used in (2) above is placed and SiO 2 The vat filled with the precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) Compression molding test piece is placed and SiO 2 The internal pressure of the vacuum vessel in which the bat filled with the precursor solution is set is gradually returned to the atmospheric pressure, and the compression molded specimen is made of SiO. 2 Removed from within the precursor solution.
(5) SiO prepared in (4) above 2 The compression molding test piece impregnated with the precursor solution was set in a vacuum drying furnace, and the compression molding test piece was subjected to vacuum heat treatment under the conditions of 1 to 3 Pa and 150 ° C.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density is improved by 20-30% compared to the resin-containing bond magnet (Comparative Example 1). The demagnetization curve measured at 20 ° C. is SiO 2 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. Moreover, the thermal demagnetization factor after 1 hour holding in the atmosphere at 200 ° C. is SiO 2 Impregnated bonded magnet is 3.0% and SiO 2 It is smaller than the thermal demagnetization factor (5%) when there is no impregnation. Further, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization was less than 1% when the impregnation treatment was performed, whereas it was close to 3% in the case of the epoxy-based bond magnet. (Comparative Example 1).
However, the bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (7) is a low level value, and the SiO 2 of this comparative example is low. 2 The impregnated bonded magnet was only about 1/10 of the epoxy resin-containing bonded magnet. This is the SiO in the binder in this comparative example. 2 The content of the precursor is 1 vol% and SiO in the binder in the examples. 2 Compared to the precursor content, it is 1 to 2 orders of magnitude less, so the cured SiO 2 Even if the bending strength of a single substance is large, the fact that the content in the magnet is too small has an influence.
In conclusion, the magnet of this comparative example has a disadvantage that the magnet strength is low, and it is necessary to consider the bending strength depending on the object of use.
The various characteristics of this comparative example and 1), 2), and (Comparative Example 4) of (Comparative Example 3) described later are summarized in Table 6.
(Comparative Example 3)
In this comparative example, magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder.
SiO as a binder 2 The following two solutions were used as precursors.
1) CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (M is 3-5, average is 4) 25 ml, water 0.19 ml, dehydrated methyl alcohol 75 ml, and dibutyltin dilaurate 0.05 ml were mixed and allowed to stand at a temperature of 25 ° C. for 2 days.
2) CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (M is 3-5, average is 4) 25 ml, water 24 ml, dehydrated ethyl alcohol 75 ml, dibutyltin dilaurate 0.05 ml were mixed and left at a temperature of 25 ° C. for 2 days and nights.
SiO of 1) and 2) 2 The viscosity of the precursor solution was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) Nd 2 Fe 14 Fill the mold with B magnetic powder, 16t / cm 2 A test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was measured for measuring magnetic characteristics, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The compression molded test piece prepared in (1) above is placed in the bat so that the pressing direction is horizontal, and the SiO 1) and 2) which are binders 2 The precursor solution was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. It is SiO until it finally becomes 5mm above the upper surface of the compression molding test piece. 2 The precursor solution was injected into the vat.
(3) The compression molded test piece used in (2) above is placed and SiO 2 The vat filled with the precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) Compression molding test piece is placed and SiO 2 The internal pressure of the vacuum vessel in which the bat filled with the precursor solution is set is gradually returned to the atmospheric pressure, and the compression molded specimen is made of SiO. 2 Removed from within the precursor solution.
(5) SiO prepared in (4) above 2 The compression molding test piece impregnated with the precursor solution was set in a vacuum drying furnace, and the compression molding test piece was subjected to vacuum heat treatment under the conditions of 1 to 3 Pa and 150 ° C.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding (1) of (Comparative Example 3), the residual magnetic flux density is a resin-containing bond magnet (Comparative Example 1) with respect to the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above. 20-30% improvement, and the demagnetization curve measured at 20 ° C. is SiO 2 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. Moreover, the thermal demagnetization factor after 1 hour holding in the atmosphere at 200 ° C. is SiO 2 Impregnated bonded magnet is 3.0% and SiO 2 It is smaller than the thermal demagnetization factor (5%) when there is no impregnation. Furthermore, the irreversible demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is less than 1% when the impregnation treatment is performed, whereas it is 3% in the case of an epoxy bond magnet (Comparative Example 1). It was close.
However, the bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (7) is a low level value, and the SiO 2 of this comparative example is low. 2 The impregnated bonded magnet was only about 1/6 of the value compared to the epoxy resin-containing bonded magnet. This is because the addition amount of water in the binder in this comparative example is small, and SiO shown in Chemical Reaction Formula 1 2 Silanol groups are not generated because hydrolysis of methoxy groups in the precursor material does not proceed, and SiO 2 Since there is no dehydration condensation reaction between silanol groups in the thermosetting reaction of the precursor, SiO after heat curing 2 The production amount of SiO is small 2 This is because the bending strength of the impregnated bonded magnet was low.
In conclusion, since the magnet of 1) of (Comparative Example 3) has a low magnet strength, it is desirable to use it in consideration of the relationship of the magnet strength in the object of use.
Regarding (2) of (Comparative Example 3), the bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm and a thickness of 2 mm prepared in (7) is SiO. 2 It is 2 MPa or less before impregnation, but SiO 2 After the impregnation heat treatment, it was possible to produce a magnet compact having a bending strength of 170 MPa.
Regarding the magnetic properties for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5), the residual magnetic flux density can be improved by 20% compared to the resin-containing bond magnet (Comparative Example 1). The demagnetization curve measured at 20 ° C. is SiO 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. However, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 4.0% in this comparative example, which is SiO in the example. 2 It was a large value compared with 3.0% for the impregnated bonded magnet. Furthermore, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is the SiO 2 in the example. 2 In the case of the impregnation treatment, the value was less than 1%, whereas in this comparative example, the value was close to 2%. This is SiO 2 It was found that the effect was that the precursor solution penetrated into the magnet only up to about 1 mm from the magnet surface. Therefore, the magnetic powder in the central part of the magnet causes oxidative deterioration during heating in the atmosphere, which is the reason why the magnet of this comparative example has a larger irreversible heat demagnetization rate than the magnet of the example.
From this result, although the bonded magnet of this comparative example is not inferior to the conventional epoxy-based bonded magnet, the long-term reliability may be lower than that of the conventional epoxy-based bonded magnet. It is desirable to use it in consideration of oxidative deterioration in the object of use.
(Comparative Example 4)
In this comparative example, magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. SiO as a binder 2 The precursor is CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (M is 3-5, average is 4) 25 ml, water 9.6 ml, dehydrated methyl alcohol 75 ml, dibutyltin dilaurate 0.05 ml were mixed and used for 6 days and nights at a temperature of 25 ° C.
SiO 2 The viscosity of the precursor solution was measured at a temperature of 30 ° C. using an Ostwald viscometer.
(1) Nd 2 Fe 14 Fill the mold with B magnetic powder, 16t / cm 2 A test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was measured for measuring magnetic characteristics, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(2) The compression molded test piece prepared in (1) above is placed in the bat so that the pressing direction is horizontal, and the SiO as a binder is added. 2 The precursor solution was injected into the vat so that the liquid level was 1 mm / min in the vertical direction. It is SiO until it finally becomes 5mm above the upper surface of the compression molding test piece. 2 The precursor solution was injected into the vat.
(3) The compression molded test piece used in (2) above is placed and SiO 2 The vat filled with the precursor solution was set in a vacuum vessel and gradually exhausted to about 80 Pa. The sample was left until the generation of bubbles from the surface of the compression molded test piece was reduced.
(4) Compression molding test piece is placed and SiO 2 The internal pressure of the vacuum vessel in which the bat filled with the precursor solution is set is gradually returned to the atmospheric pressure, and the compression molded specimen is made of SiO. 2 Removed from within the precursor solution.
(5) SiO prepared in (4) above 2 The compression molding test piece impregnated with the precursor solution was set in a vacuum drying furnace, and the compression molding test piece was subjected to vacuum heat treatment under the conditions of 1 to 3 Pa and 150 ° C.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
The bending strength of the compression molded test piece having a length of 15 mm, a width of 10 mm and a thickness of 2 mm produced in the above (7) is SiO. 2 It is 2 MPa or less before impregnation, but SiO 2 After the impregnation heat treatment, it was possible to produce a magnet compact having a bending strength of 190 MPa.
Regarding the magnetic characteristics for the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density can be improved by 20% compared to the resin-containing bond magnet (Comparative Example 1). Yes, the demagnetization curve measured at 20 ° C is SiO 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. However, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.6% in this comparative example, which is SiO in the example. 2 It was a large value compared with 3.0% for the impregnated bonded magnet. Furthermore, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is the SiO 2 in the example. 2 Whereas the impregnation treatment was less than 1%, the value was 1.6% in this comparative example. This is SiO 2 It was found that the effect was that the precursor solution penetrated into the magnet only up to about 2 mm from the magnet surface. Therefore, the magnetic powder in the central part of the magnet causes oxidative deterioration during heating in the atmosphere, which is the reason why the magnet of this comparative example has a larger irreversible heat demagnetization rate than the magnet of the example.
From this result, although the bonded magnet of this comparative example is not inferior to the conventional epoxy-based bonded magnet, the long-term reliability may be lower than that of the conventional epoxy-based bonded magnet. It is desirable to use it in consideration of this point.
(Comparative Example 5)
In this comparative example, magnetic powder obtained by pulverizing an NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. A treatment liquid for forming a rare earth fluoride or alkaline earth metal fluoride coat film was prepared as follows.
(1) A salt having high solubility in water, for example, in the case of Nd, 4 g of Nd acetate or Nd nitrate was introduced into 100 ml of water, and completely dissolved using a shaker or an ultrasonic stirrer.
(2) Hydrofluoric acid diluted to 10% is NdF 3 The equivalent amount of the chemical reaction that produces was gradually added.
(3) NdF of gel-like precipitate 3 The resulting solution was stirred for 1 hour or more using an ultrasonic stirrer.
(4) 4000-6000 r. p. After centrifugation at a rotational speed of m, the supernatant was removed and approximately the same amount of methanol was added.
(5) Gel NdF 3 The methanol solution containing was stirred to make a complete suspension, and then stirred for 1 hour or more using an ultrasonic stirrer.
(6) The above operations (4) and (5) were repeated 3 to 10 times until no anion such as acetate ion or nitrate ion was detected.
(7) Finally NdF 3 In the case of almost transparent sol-like NdF 3 It became. NdF as processing solution 3 Used a 1 g / 5 ml methanol solution.
A rare earth fluoride or alkaline earth metal fluoride coating film is formed on the Nd 2 Fe 14 The process for forming B magnetic powder was carried out by the following method.
NdF 3 For coating film formation process: NdF 3 Concentration 1g / 10ml translucent sol solution
(1) 15 ml of NdF with respect to 100 g of magnetic powder obtained by grinding NdFeB-based ribbons 3 The coating film forming treatment liquid was added and mixed until it was confirmed that the entire magnetic powder for rare earth magnet was wet.
(2) NdF of (1) above 3 The methanol powder of the rare earth magnet subjected to the coating film formation treatment was removed with methanol under a reduced pressure of 2 to 5 torr.
(3) The rare earth magnet magnetic powder from which the solvent of (2) has been removed is transferred to a quartz boat, and 1 × 10 -5 Heat treatment was performed at 200 ° C. for 30 minutes and 400 ° C. for 30 minutes under reduced pressure of torr.
(4) After the magnetic powder heat-treated in (3) above is transferred to a lid made by Macor (made by Riken Denshi Co.), 1 × 10 -5 Heat treatment was performed at 700 ° C. for 30 minutes under a reduced pressure of torr.
(5) Nd coated with the rare earth fluoride or alkaline earth metal fluoride coating film 2 Fe 14 Fill the mold with B magnetic powder, 16t / cm 2 A test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was measured for measuring magnetic characteristics, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(6) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (5) above.
(7) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(8) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm produced in the above (5). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (5) above, the residual magnetic flux density can be improved by about 20% compared to the resin-containing bond magnet (Comparative Example 1). The demagnetization curve measured at 20 ° C. is SiO 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. In addition, the thermal demagnetization factor after 1 hour of holding in the atmosphere at 200 ° C. is 3.0% in this comparative example, which is SiO in the example. 2 With the impregnated bonded magnet, the value was equivalent to 3.0%. Furthermore, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is the SiO 2 in the example. 2 In the case of the impregnation treatment, the value was less than 1%, whereas in this comparative example, the value was less than 1%. The results are shown in Table 7.
However, regarding the bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in (7), in this comparative example, SiO 2 2 Since impregnation was not performed, the value was 2.9 MPa, which was about 1/15 compared to the epoxy-based bonded magnet.
From this result, the bonded magnet of this comparative example has poor mechanical strength compared to the conventional epoxy-based bonded magnet, and attention should be paid to this point in use.
(Comparative Example 6)
In this example, magnetic powder obtained by pulverizing a NdFeB-based ribbon similar to [Example 1] was used for the rare earth magnet magnetic powder. Moreover, the process liquid which forms a phosphate chemical conversion treatment film was produced as follows.
20 g of phosphoric acid, 4 g of boric acid and 4 g of MgO as a metal oxide were dissolved in 1 liter of water, and EF-104 (manufactured by Tochem Products) was added as a surfactant to a concentration of 0.1 wt%. As a rust inhibitor, benzotriazole (BT) was added so as to be 0.04 mol / l.
The phosphate chemical conversion treatment film is made of the above Nd 2 Fe 14 The process for forming B magnetic powder was carried out by the following method. Table 4 shows the composition of the phosphating solution used.
(1) 5 ml of a phosphating solution was added to 100 g of magnetic powder obtained by pulverizing a NdFeB-based ribbon, and mixed until it was confirmed that the entire magnetic powder for rare earth magnets was wetted.
(2) The rare earth magnet magnetic powder subjected to the phosphatization film forming process of (1) was heat-treated at 180 ° C. for 30 minutes under a reduced pressure of 2 to 5 torr.
(3) Nd subjected to the phosphating film formation process 2 Fe 14 Fill the mold with B magnetic powder, 16t / cm 2 A test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was measured for measuring magnetic characteristics, and a compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm was prepared for strength measurement.
(4) The specific resistance was measured by the four-probe method for the compression molded test piece having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm produced in (3) above.
(5) Further, a pulse magnetic field of 30 kOe or more was applied to the compression molded test piece whose specific resistance was examined. The compression molded specimen was examined for magnetic properties.
(6) A mechanical bending test was performed using the compression molded test piece having a length of 15 mm, a width of 10 mm, and a thickness of 2 mm prepared in the above (3). For the bending test, a compression molded body having a sample shape of 15 mm × 10 mm × 2 mm was used, and the bending strength was evaluated by a three-point bending test with a distance between supporting points of 12 mm.
Regarding the magnetic properties of the compression molded test piece of 10 mm length, 10 mm width and 5 mm thickness produced in (3), the residual magnetic flux density can be improved by about 25% compared to the resin-containing bond magnet (Comparative Example 1). Yes, the demagnetization curve measured at 20 ° C is SiO 2 Before impregnation and SiO 2 The values of residual magnetic flux density and coercive force almost coincided with the molded body after the impregnation heat treatment. Further, the thermal demagnetization factor after 1 hour of holding at 200 ° C. in the atmosphere is 3.1% in this comparative example, and SiO in the example. 2 The value was almost equivalent to 3.0% for the impregnated bonded magnet. Furthermore, the irreversible thermal demagnetization rate after returning to room temperature after 1 hour at 200 ° C. and re-magnetization is the SiO 2 in the example. 2 In the case of the impregnation treatment, the value was less than 1%, but in this comparative example, the value was 1.2%, which was slightly increased (Table 7). However, regarding the bending strength of the compression molded test piece of 15 mm length, 10 mm width and 2 mm thickness produced in the above (5), in this comparative example, SiO 2 2 Since impregnation was not performed, the value was 2.9 MPa, which was about 1/20 of that of an epoxy bond magnet.
From this result, the bonded magnet of this comparative example has poor mechanical strength compared to the conventional epoxy-based bonded magnet, and it is necessary to use this point with sufficient consideration in use.
Although the present invention has been described with reference to the above-described embodiments, the magnet of the present invention has the following effects.
1) Performance as a magnet is superior to conventional resin magnets.
2) In addition to superior properties, it also has a strong strength as a magnet. It is possible to obtain a magnet that has excellent characteristics and strength that could not be obtained with a resin magnet.
The effects 1) and 2) are achieved as described above, for example, as follows.
It is necessary to infiltrate the binder solution into the gap between the magnetic powder of 1 μm or less and the magnetic powder, which is generated when the magnetic powder is compression molded without a resin. For this purpose, the viscosity of the binder solution must be 100 mPa · s or less, and the wettability of the magnetic powder and the binder solution must be high. Furthermore, it is important that the adhesive between the binder after curing and the magnetic powder is high, the mechanical strength of the binder is large, and the binder is continuously formed.
The viscosity of the binder solution depends on the size of the magnet, but when the thickness of the compression molded body is 5 mm or less and the gap between the magnetic powder and the magnetic powder is about 1 μm, the viscosity of the binder solution is about 100 mPa · s. It is possible to introduce the binder solution into the gap between the magnetic powders up to the center of the compression molded body. When the thickness of the compression molded body is 5 mm or more and the gap between the magnetic powder and the magnetic powder is about 1 μm, for example, in a compression molded body having a thickness of about 30 mm, the binder solution is introduced to the center of the compression molded body When the viscosity of the binder solution is about 100 mPa · s, the viscosity of the binder solution is 20 mPa · s or less, preferably 10 mPa · s or less. This is a viscosity that is one digit or more lower than that of a normal resin. For that purpose, SiO 2 Therefore, it is necessary to control the hydrolysis amount of the alkoxy group and to suppress the molecular weight of the alkoxysiloxane. That is, when an alkoxy group is hydrolyzed, a silanol group is generated. The silanol group easily undergoes a dehydration condensation reaction, and the dehydration condensation reaction means an increase in the molecular weight of the alkoxysiloxane. Further, since silanol groups generate hydrogen bonds with each other, SiO 2 The viscosity of the alkoxysiloxane solution, which is the precursor of, increases. Specifically, the amount of water added to the hydrolysis reaction equivalent of alkoxysiloxane and the hydrolysis reaction conditions are controlled. As the solvent used for the binder solution, it is desirable to use alcohol because the alkoxy group in alkoxysiloxane has a fast dissociation reaction. As the solvent alcohol, methanol, ethanol, n-propanol, and iso-propanol having a lower boiling point than water and a low viscosity are preferable, but the viscosity of the binder solution does not increase in several hours and the boiling point is lower than that of water. If it is, it can be used for manufacture of the magnet according to the present invention.
Regarding the adhesion between the cured binder and the magnetic powder, SiO, which is the binder used in the present invention, is used. 2 As for the precursor, the product after heat treatment is SiO 2 Therefore, if the magnetic powder surface is covered with a natural oxide film, the magnetic powder surface and SiO 2 Adhesion with SiO 2 For rare earth magnets with a binder, the surface when the magnet is broken is magnetic powder or SiO 2 Most of the cohesive failure surface. On the other hand, when a resin is used as the binder, the adhesion between the resin and the magnetic powder is such that the surface of the magnetic powder and SiO 2 Is generally smaller than Therefore, in a bonded magnet using a resin, the surface when the magnet is broken has both an interface between the resin and magnetic powder or a cohesive failure surface of the resin. Therefore, to improve the magnet strength, SiO 2 It is more advantageous to use as a binder than to use a resin as a binder.
When the content of the rare earth magnetic powder in the magnet is 75 vol% or more, a compression molding type rare earth magnet is used, but the strength of the rare earth magnet after curing the binder is that of the binder after curing. Whether or not a continuum is generated has a great influence. This is because the breaking strength of the binder alone having the same area is larger than the breaking strength of the adhesive interface. When using a resin such as an epoxy resin, if the resin volume fraction in the total solid content is 15 vol% or less, it cannot be said that the wettability between the resin and the rare earth magnetic powder is good. Does not become a continuum but is distributed in islands. On the other hand, as described above, SiO 2 Since the precursor has good wettability with rare earth magnetic powder, SiO 2 The precursor spreads continuously, and is cured by heat treatment in the continuously spread state. 2 become. On the other hand, the strength of the binder after curing is expressed as SiO 2 Is 1 to 3 orders of magnitude larger than that of resin. Therefore, the strength of the rare earth magnet after curing the binder is 2 Using the precursor is orders of magnitude higher than using the resin.
Next, magnet materials more suitable for the magnet according to the present invention will be described. Rare earth magnet powder consists of a ferromagnetic main phase and other components. When the rare earth magnet is an Nd-Fe-B magnet, the main phase is Nd 2 Fe 14 B phase. Considering improvement of magnet characteristics, the rare earth magnet powder is preferably a magnet powder prepared by using the HDDR method or hot plastic working. Examples of the rare earth magnet powder include Sm—Co magnets in addition to Nd—Fe—B magnets. Considering the magnet characteristics of the obtained rare earth magnet and the manufacturing cost, Nd—Fe—B type magnets are preferable. However, the rare earth magnet of the present invention is not limited to Nd—Fe—B magnets. In some cases, two or more rare earth magnet powders may be mixed in the rare earth magnet. That is, two or more types of Nd—Fe—B magnets having different composition ratios may be included, and Nd—Fe—B magnets and Sm—Co magnets may be mixed.
In the present specification, the “Nd—Fe—B magnet” is a concept including a form in which a part of Nd or Fe is substituted with another element. Nd may be substituted with other rare earth elements such as Dy and Tb. Only one of these may be used for substitution, or both may be used. The substitution can be performed by adjusting the blending amount of the raw material alloy. By such replacement, the coercive force of the Nd—Fe—B magnet can be improved. The amount of Nd to be substituted is preferably 0.01 atom% or more and 50 atom% or less with respect to Nd. If it is less than 0.01 atom%, the effect of substitution may be insufficient. If it exceeds 50 atom%, the residual magnetic flux density may not be maintained at a high level, and it is desirable to pay attention to the application in which the magnet is used.
On the other hand, Fe may be substituted with other transition metals such as Co. By such substitution, the Curie temperature (Tc) of the Nd—Fe—B magnet can be increased and the operating temperature range can be expanded. The amount of Fe to be substituted is preferably 0.01 atom% or more and 30 atom% or less with respect to Fe. If it is less than 0.01 atom%, the effect of substitution may be insufficient. If it exceeds 30 atom%, the coercive force may decrease significantly, and it is desirable to pay attention to the application in which the magnet is used.
The average particle diameter of the rare earth magnet powder in the rare earth magnet is preferably 1 to 500 μm. If the average particle diameter of the rare earth magnet powder is less than 1 μm, the specific surface area of the magnetic powder is large and the influence of oxidative degradation is great, and there is a concern that the magnet characteristics of a rare earth magnet using the rare earth magnet powder may deteriorate. Therefore, in this case, it is desirable to pay attention to the usage state of the magnet.
On the other hand, if the average particle size of the rare earth magnet powder is larger than 500 μm, the magnet powder is crushed by the pressure at the time of manufacture, and it becomes difficult to obtain sufficient electric resistance. In addition, when an anisotropic magnet is manufactured using anisotropic rare earth magnet powder as a raw material, the main phase in rare earth magnet powder (in Nd-Fe-B magnets, Nd 2 Fe 14 It is difficult to align the orientation direction of the (B phase). The particle size of the rare earth magnet powder is controlled by adjusting the particle size of the rare earth magnet powder that is the raw material of the magnet. The average particle size of the rare earth magnet powder can be calculated from the SEM image.
The present invention relates to an isotropic magnet manufactured from isotropic magnet powder, an isotropic magnet in which anisotropic magnet powder is randomly oriented, and an anisotropic magnet in which anisotropic magnet powder is oriented in a certain direction. Any of them can be applied. If a magnet having a high energy product is required, an anisotropic magnet using anisotropic magnet powder as a raw material and oriented in a magnetic field is suitable.
The rare earth magnet powder is produced by blending raw materials according to the composition of the rare earth magnet to be produced. The main phase is Nd 2 Fe 14 When producing an Nd-Fe-B magnet that is a B phase, Nd, Fe, and B are mixed in a predetermined amount. As the rare earth magnet powder, one produced by a known method may be used, or a commercially available product may be used. Such rare earth magnet powder is an aggregate of a large number of crystal grains. The crystal grains constituting the rare earth magnet powder are suitable for improving the coercive force when the average particle diameter is not more than the single domain critical particle diameter. Specifically, the average grain size of the crystal grains is preferably 500 nm or less. In addition, HDDR method is Nd which is a main phase by hydrogenating a Nd-Fe-B type alloy. 2 Fe 14 Compound B is NdH 3 , Α-Fe, and Fe 2 B is decomposed into three phases and then again Nd by forced dehydrogenation. 2 Fe 14 This is a technique for generating B. The UPSET method is a technique in which an Nd—Fe—B alloy produced by an ultra-quenching method is subjected to plastic working hot after pulverization and temporary molding.
As a use application of the magnet, an inorganic insulating film is preferably formed on the surface of the rare earth magnet powder under a condition where a high frequency magnetic field including harmonics is applied to the magnet. Thereby, the electrical resistance inside a magnet can be enlarged, an eddy current can be reduced, and the eddy current loss in a magnet can be reduced. As such an inorganic insulating film, a film formed by using a phosphating solution containing phosphoric acid, boric acid, and magnesium ions is preferable. In order to ensure the uniformity of the film thickness and the magnetic properties of the magnetic powder, the surface activity is required. It is desirable to use an agent and a rust inhibitor in combination. In particular, it is desirable that the surfactant is a perfluoroalkyl surfactant and the rust inhibitor is a benzotriazole rust inhibitor.
Furthermore, a fluoride coat film is desirable as the inorganic insulating film for the purpose of improving the insulating properties and magnetic characteristics of the magnetic powder. As the treatment liquid for forming the fluoride coat film, rare earth fluoride or alkaline earth metal fluoride is swollen in a solvent mainly composed of alcohol, and the rare earth fluoride or alkaline earth metal fluoride is used. Is preferably a solution in a sol state in which the average particle size is pulverized to 10 μm or less and dispersed in a solvent containing alcohol as a main component. In order to improve the magnetic properties, 1 × 10 of the magnetic powder on which the fluoride coat film is formed is used. -4 It is desirable to perform heat treatment in an atmosphere of Pa or lower and a temperature of 600 to 700 ° C.
<Effect of rotating electrical machine with the above structure>
The magnets used in the first and second rotating electric machines 200 and 202 shown in FIG. 1 have the above-described structure, that is, the powder magnet material and the binder precursor having good wettability are magnets. By manufacturing the magnet by impregnating with, it has at least one or more of the following effects. As described above, as a binder for a powder magnet material and a precursor with good wettability, SiO 2 Is the best.
Effect 1 In the above-described magnet manufacturing process, there is no sintering process heated to a high temperature, so that the magnet can be manufactured easily.
Since it is not the magnet which uses the epoxy resin called the effect 2 and a common bond magnet, the magnetic characteristic of a magnet is superior to a bond magnet, and it can be cheap and can obtain the rotary electric machine of a comparatively favorable characteristic.
Effect 3, after the magnet is molded with the magnet material, the binder can be cured at a relatively low temperature, and the shape and size of the molded magnet material are less changed. Since it can be manufactured with high accuracy with respect to the shape and dimensions of the magnet, high characteristics can be obtained as a motor or a generator. That is, the cutting work after binding the magnet material with the binder is very little and easy. For example, it is not a substantial magnet-shaped forming process such as cutting the protruding part of the adhesive, so that the process is easy. Since the conventional sintered magnet is heated to a high temperature for sintering, it shrinks in the process of lowering the temperature thereafter, and the shape of the magnet material changes. Therefore, in the conventional sintered magnet, it has been necessary to spend a lot of time for cutting for adjusting the shape and dimensions of the magnet after the sintering process. In the above-described embodiment, a necessary magnet shape can be obtained with extremely few cutting processes and, in some cases, without a cutting process.
Effect 4, as described above, since the molding shape of the magnet material hardly changes in the subsequent binder impregnation or curing process, the magnet is manufactured while maintaining the curved shape of the magnet material by pressing or the like with high accuracy. It is possible. Theoretically, even if the thickness and shape of the preferred magnet are known, it is possible to achieve the curved shape of the magnet that was difficult to commercialize because there is no method that can be mass-produced, and it is possible to obtain a rotating electrical machine with good characteristics It is.
Effect 5, sintered rare earth magnets have low electrical resistance and large loss and heat generation due to eddy currents. The magnet can form an insulating film on the surface of the powder magnet, and the eddy current loss and heat generation of the magnet can be greatly reduced. A rotating electrical machine for automobiles, particularly a rotating electrical machine used in a hybrid vehicle, may be used in an environment exceeding 100 degrees, and it is necessary to suppress heat generation due to eddy current in the magnet. In the above-described embodiment, since the electric resistance can be increased, the heat generation of the magnet can be reduced. Further, the loss of the rotating electrical machine can be reduced correspondingly, and the efficiency is improved.
<Other embodiments of rotating electrical machine>
FIG. 13 shows another embodiment relating to the rotating electrical machines 200 and 202 described in FIGS. Each of these rotating electric machines 200 and 202 is formed by compression molding iron powder by a fixed 230 or a rotor 250. The structure and operation of the stator 230 are the same as those of the stator 230 of the rotating electrical machines 200 and 202 described with reference to FIGS.
As described above, the stator core 232 of the stator 230 is formed by compressing iron powder having an electric insulating film on the surface. First, the stator winding is molded, the stator winding is temporarily fixed, the iron winding is filled so that the temporarily fixed stator winding is built in, and then the entire iron powder is compression-molded to form the entire stator. Can be made and productivity is improved. In some cases, the space factor of the stator winding can be further improved. The electrical insulation film on the surface of the iron powder increases the electrical resistance in the stator core, thereby reducing eddy currents in the stator core, reducing heat generation and improving the efficiency of the rotating electrical machine.
The rotor core 252 can also reduce the eddy current of the rotor core 250 by compressing and molding the iron powder that has been subjected to the process of attaching an electrical insulating film to the surface. Further, as described above, the permanent magnets 254 and 256 have a structure that reduces eddy currents, so that the internal heat generation of the rotor 250 can be reduced comprehensively. Rare earth permanent magnets have the disadvantage that their magnetic properties deteriorate, that is, demagnetize when the temperature rises. In-vehicle rotating electrical machines are often used in situations where the ambient temperature is high, and reducing internal heat generation can prevent the deterioration of the magnetic properties of the magnet, reducing various obstacles caused by heat and reliability. It is very preferable for maintaining a high value.
The permanent magnets 254 and 256 provided on the rotor 250 shown in FIG. 13 are basically the same as the permanent magnets 254 and 256 described in FIGS. 3 to 6, but the magnet shape is different. Along with this, the action is slightly different. In FIG. 13, the permanent magnets 254 and 256 have an integral shape, and at least the stator side has a curved shape. At both ends of the permanent magnets 254 and 256, the radial thickness of the magnet is thinner than that of the central portion. As a result, the magnetomotive force of the permanent magnet at the central portion of the magnetic pole of the rotor 250 is larger than the magnetomotive force of the permanent magnet at the magnetic pole end, and the thickness in the diameter direction of the permanent magnets 254 and 256 changes gently. The magnetomotive force changes smoothly. As described below, there is an effect of smoothing the torque and electromotive force of the rotating electrical machine.
The thickness in the radial direction of the magnetic pole piece 280 located on the rotor side of the permanent magnets 254 and 256 is thinner than that described in FIG. With this structure, the magnetic circuit between the magnetic pole piece 280 and the auxiliary magnetic pole 290 is in a temporally saturated state, and the amount of magnetic flux is suppressed. The bridge structure 282 or 284 is also provided in the structure of FIG. 13, and the amount of magnetic flux existing between the magnetic pole piece 280 and the auxiliary magnetic pole 290 is limited by saturating the magnetic circuit including the bridge section. is doing. At the end of the auxiliary pole side magnet from the bridge portions 282 and 284, the iron core width between the magnet and the outer periphery of the rotor on the stator side is gradually increased. In the vicinity of both ends of the permanent magnets 254 and 256, the width of the iron core between the magnet and the outer periphery of the rotor on the stator side is gradually increased as the auxiliary magnetic pole 290 is approached. The change in the amount of magnetic flux in the circumferential direction in the air gap gradually changes from the portion where the magnets 254 and 256 are present to the auxiliary magnetic pole. The torque pulsation is reduced by the gentle change in the amount of magnetic flux. There is an effect that the cogging of the torque pulsation can be reduced.
Furthermore, as described above, the thickness of the permanent magnet in the radial direction is reduced between the bridge portions 282 and 284 and both end portions of the permanent magnet, so that the magnetomotive force of the magnet is gently reduced, and the stator 230 and the rotor The amount of magnetic flux between 250 and 250 decreases smoothly.
FIG. 14 shows the magnetic flux distribution in the circumferential direction of the gap 222 when no current flows through the stator winding. FIG. 14 (A) shows the structure of the stator and the rotor described in FIG. 13. The rotor 230 and the stator 250 have a circular shape centering on the rotation axis of the rotor, but are planar. This is shown in the figure. FIG. 14B shows the change in the circumferential direction of the magnetic flux amount of the gap 222, that is, the magnetic flux density. Between the auxiliary magnetic pole part 290 and the stator 230, the amount of magnetic flux by the permanent magnets 254 and 256 is substantially zero as shown by the area (d) in FIG. 14 (B). Between the left end portion of the permanent magnet 254/256 and the bridge portion 282, the magnet width in the radial direction is gradually increased, and the magnetic force is gradually increased. Along with this, as shown in region (a) of FIG. 14B, the amount of magnetic flux from the rotor 250 to the stator 230 gradually increases. Between the bridge part 282 and the bridge part 284, the thickness of the magnet in the diametrical direction of the rotor changes gently, and the magnet center part is thicker than the end part. The amount of magnetic flux from the rotor to the stator is the end of the magnet, as shown by the region (b) in FIG. 14 (B), where the amount of magnetic flux at the center of the magnetic pole is large corresponding to the radial thickness of the magnet. The magnetic flux amount changes more slowly than the region (a) or the region (c) in a state where the magnetic flux amount at the magnetic pole end is small. Between the bridge portion 282 and the right end portion of the permanent magnet 254/256, the magnet width in the radial direction of the rotor is gradually decreased, and the magnetic force is gradually decreased. Along with this, as shown in a region (c) of FIG. 14B, the amount of magnetic flux from the rotor 250 to the stator 230 is gradually reduced. The change in the amount of magnetic flux in the region (a) and the region (c) is based on the change in the radial thickness of the magnet, and this change is a little sharper than the region (b), but is a smooth change that is not angular. Yes, the pulsation of torque and generated voltage can be reduced.
In the region (d) of FIG. 14 (B), the magnetic flux by the permanent magnet is almost zero as described above. The further right side of the auxiliary magnetic pole portion 290 at the right end in FIG. 14 (A) is the adjacent magnetic pole, and the shape of the permanent magnet is the same, but the magnetization direction is reversed. That is, the stator side is the S pole and the center side of the rotor is the N pole. The relationship between the thickness of the magnet in the radial direction and the strength of the magnetic flux is as described above, but the magnetization direction is opposite, and the direction of the magnetic field lines is the direction from the stator to the rotor.
<Effects of Embodiments of FIGS. 13 and 14>
13 and 14, the permanent magnet 254/256 is bonded to a rare earth magnet material and a precursor having good wettability, preferably SiO. 2 Is used, and the above-described magnet is used, so that at least one of the following effects is provided.
Since the magnet of the effect 1 and a curved shape is used, as shown in FIG. 14 (B), the amount of magnetic flux based on the permanent magnet can be changed smoothly. Torque pulsation can be reduced when this rotating electrical machine is used as a motor. When used as a generator, the pulsation of the generated voltage can be reduced, the pulsation change of the load acting as a load can be reduced, and the influence of the load pulsation on the system including the rotating electrical machine can be reduced.
Effect 2, harmonic flux acts on the stator side of the rotor along with the shape of the slot and the like during operation. By making the above-mentioned rotor into a laminated structure of laminated electromagnetic steel sheets, iron loss and heat generation due to harmonic magnetic flux are suppressed. Further, in order to prevent the harmonic magnetic flux from acting on the permanent magnets 254/256 to generate eddy currents in the magnets and increase eddy current loss and heat generation of the magnets, an insulating film is applied to the powder surface of the magnet material. After the formation, the magnetic material formed from the magnet powder is impregnated with a binder. Thereby, the electrical resistance inside the permanent magnet can be increased, the eddy current loss can be reduced, and the heat generation of the magnet can be reduced. In a rotating electrical machine for automobiles, in particular, a rotating electrical machine for hybrids, there is a possibility that the magnet is used under a high temperature condition in which the ambient temperature exceeds 100 degrees, and it is desirable to reduce internal heat generation of the magnet. Magnets using rare earth materials should be used at 180 degrees or less, preferably 140 degrees or less, and it is desirable to reduce internal heat generation.
<Embodiment of FIGS. 15 to 18>
FIG. 15 shows another embodiment of a three-phase motor rotating electrical machine. The basic structure and operation of the stator 230 and the rotor 250 of the rotating electrical machine are the same as those of the rotating electrical machine shown in FIG. The stator 230 is provided with a three-phase stator winding as in FIG. 4, but the illustration is omitted.
The stator core 232 and the rotor core 252 are formed by compressing iron powder that has been subjected to a process of attaching an electrical insulating film to the surface. The stator core 232 has a structure formed by compressing iron powder. By adopting such a structure, the stator winding is formed first, the stator winding is temporarily fixed, the iron winding is filled so as to incorporate the temporarily fixed stator winding, and then the iron powder is filled. By forming the entire stator by compression molding, the productivity is improved and the space factor of the stator winding is improved. Furthermore, eddy current can be reduced and the efficiency of the rotating electrical machine is improved.
The rotor core 252 can be reduced in eddy current of the rotor core 250 by compressing and molding the iron powder that has been subjected to the process of attaching an electrical insulating film to the surface. Further, the permanent magnets 254 and 256 described below have a structure for reducing eddy current, and the internal heat generation of the rotor 250 can be reduced comprehensively. Rare earth permanent magnets have the disadvantage that their magnetic properties deteriorate, that is, demagnetize when the temperature rises. In-vehicle rotating electrical machines are often used in situations where the ambient temperature is high, and reducing internal heat generation is very preferable for maintaining high reliability.
In FIG. 15, the rotor 250 is compression-molded with iron powder whose surface is electrically insulated, and a magnet insertion hole 258 is provided in the rotor 250 that has been compression-molded. A magnet assembly 270 is inserted into the magnet insertion hole. This structure is the same as the structure shown in FIG. 4 except that the magnet inserted into the magnet insertion hole 258 is a magnet assembly 270. In this embodiment, a rotor 250 is provided, and each magnet insertion hole 258 has a magnet assembly 270 disposed therein. However, the four magnet insertion holes 258 are an example, and may be eight, ten, or twelve. The magnet inserted into each magnet insertion hole 258 forms a pole of the rotor, but the magnet that forms the pole may be divided and inserted as shown in FIG. The magnet assembly 270 includes a permanent magnet 254/256 and an iron core obtained by compressing a powdery iron core described below, and acts as a main magnetic pole. In this embodiment, auxiliary magnetic poles 290 that generate reluctance torque exist between the main magnetic poles. The method for manufacturing the magnet assembly will be described below with reference to FIG. 16 or FIG.
In FIG. 16, steps 12 to 25 are the same as described in FIG. In step 12, an electrical insulating film is formed on the surface of the plate-like rare earth magnetic material, and in step 15, a press machine press-molds it into a predetermined shape to produce a magnetic body having a predetermined shape. In step 20, a precursor of a magnetic binder having a predetermined shape is impregnated, and in step 25, the binder is cured by being heated to several hundred degrees to produce a magnetic body. In step 25, since the temperature for curing the binder is low, the insulating film formed in step 12 is less damaged and can maintain high electrical resistance. Further, there is almost no change in the shape of the magnetic body in step 25. In the embodiment shown in FIGS. 4 and 13, the magnetic body made in step 25 is inserted into the magnet insertion hole. In the embodiment shown in FIG. 16, the magnetic body and powder made in step 25 are used. The magnet core is made by compression-molding the iron core material in a step 30 in step 30. In step 35, the magnet assembly is inserted into the magnet insertion hole 258 and magnetized. In step 30, the magnet assembly is compression-molded so that a powdery magnetic core exists on one side or both sides of the magnetic body. The powdered iron core material used in step 30 has an electrical insulating film formed on the surface thereof, and has a large electric resistance and very little eddy current loss.
In the above-described embodiment, a process for forming an electrical insulating film on the surface of the plate-like rare earth magnetic material is performed. However, when the binder precursor is impregnated in the step 20, the binder precursor enters between the rare earth magnetic materials that are layered, and an electrical insulating film is formed between the layered rare earth magnetic materials. Therefore, even if it does not perform the process which produces an electrical insulating film, it will have an electrical resistance 5 to 10 times or more compared with the conventional sintered rare earth magnet. Accordingly, the heat generation is reduced by 5 to 10 times or more. This also applies to the embodiment shown in FIG.
FIG. 17 shows another embodiment of FIG. The powdered rare earth magnetic material having an insulating film formed on the surface in step 12 is compression-molded into a predetermined shape in step 15. After step 15, in step 17, it is compression molded into a predetermined shape together with a powdered iron core material having an insulating film on the surface, and a porous magnet assembly is made. In step 22, the porous magnet assembly is impregnated with the binder precursor, and in step 27, the precursor of the binder is cured by heat treatment to produce a magnet assembly. In step 37, the magnet assembly is inserted into the rotor magnet insertion hole 258 and magnetized. Note that the binder precursor may be poured after the magnet assembly is inserted into the magnet insertion hole. In this case, the porous magnet assembly in the previous stage of the step 22 and the step 27 may be inserted into the magnet insertion hole 258 of the rotor, and then the steps 22 and 27 may be performed. And may be cured by heat treatment.
In FIG. 17, as in the description of FIG. 16, an insulating film is formed on the plate-like powder of rare earth magnetic material in step 12. By doing in this way, electrical resistance can be made very high and the eddy current in a magnet can be made very low. However, even if the insulating film is not formed on the powder surface of the rare earth magnetic material in step 12, a thin film of SiO-based amorphous state is formed on the powder surface of the rare earth magnetic material. It becomes high, eddy current can be reduced, and heat generation inside the magnet can be kept low.
The thin film of the SiO type amorphous state has an effect of increasing electric resistance as well as an effect of a binder. Moreover, since it is in the form of a thin film in an amorphous state, the ratio of the magnetic material per unit volume of the magnet can be increased, and the magnetic characteristics are also good.
FIG. 18 is a view showing a state in which the porous magnet assembly 270 in step 22 is impregnated with a binder precursor. SiO, which is a binder, in the container 360 2 The precursor magnetic solution 362 is contained, and the porous magnet assembly 270 is immersed in the solution. The magnet assembly 270 includes a magnet 254/256 which is a porous magnetic body and a dust core 312 or 314 provided on the outer periphery thereof. As described above, the dust cores 312 and 314 are iron cores obtained by compression-molding pure iron powder whose surface is treated with an insulating film. Since the iron powder is deformed in the powder iron core part, the solution is difficult to penetrate, but the porous magnetic material part is penetrated by the precursor with good wettability, and the porous solution fills the porous pores. It becomes. Thereafter, in the step 27, the precursor is cured by heat treatment and has a binding action.
In the description using FIGS. 15 to 18, the rotor 250 is compression-molded with iron powder whose surface is electrically insulated, and the magnet-insertion hole 258 is provided in the compression-molded rotor 250. Yes. However, as described above, a manufacturing method different from the manufacturing method in which the magnet insertion hole 258 is provided in the rotor 250 in advance and the magnet is inserted into the magnet insertion hole 258 may be used. In this case, the magnet assembly 270 is temporarily fixed, and the iron powder that has been electrically insulated so as to incorporate the temporarily fixed magnet assembly 270 is supplied, and the iron powder is incorporated in the state where the magnet assembly 270 is incorporated. And the rotor 250 is compression-molded. By manufacturing in this way, the magnet assembly 270 and the rotor core 252 can be integrally formed.
<Effects of Embodiment of FIGS. 15 to 18>
The embodiment described in FIGS. 15 to 18 has one, a plurality, or all of the following effects.
Effect 1 The shape of the magnet insertion hole 258 provided in the rotor 250 of FIG. 15 can be made simple. When the rotor iron core is made by cutting magnetic steel sheets and laminating the cut magnetic steel sheets, the workability is improved by making the magnet insertion hole a simple shape. Although it is possible to make the shape of the magnets 254/256 have a curved shape, it is easy to form a magnet insertion hole in an electromagnetic steel sheet by cutting such as punching in accordance with such a curve. There is no workability. Such a decrease in workability can be prevented.
When the rotor core 252 is manufactured by compression molding of iron powder instead of using the laminated electromagnetic steel sheet, the shape of the compressor to be manufactured can be made simple. This makes the compressor mold difficult to wear and reduces the possibility of breakage.
Effect 2, the compression-molded magnetic body may have a narrow end, a bend as a whole, or a shape that is vulnerable to mechanical shock. In the case of a shape that is vulnerable to such an impact, there is a risk that the magnetic body molded into the magnet insertion hole of the rotor may be damaged when inserted. In the present embodiment, the powder iron core is reinforced from a shape that is vulnerable to impact to a shape that is resistant to impact, and thus is less likely to break. Moreover, it is possible to make it easy to insert into the magnet insertion hole.
The internal heat generation of the rotor can be reduced. That is, the heat generation inside the magnet can be reduced, and the rotor core 252 of the rotor 250 is made by compression molding powdered iron powder having an electric insulating film on the surface, thereby reducing the heat generation inside the rotor core 252. it can. Rare earth permanent magnets have the disadvantage of demagnetizing when the temperature rises above a predetermined temperature, but it is possible to suppress the temperature rise of the permanent magnets by suppressing heat generation. This makes it easy to maintain high reliability of the rotating electrical machine.
<Other embodiments>
FIG. 19 shows another embodiment of the magnet assembly 270 of FIG. The rotor 250 to which the magnet assembly 270 shown in FIG. 19 is fixed is the same as described above. That is, the eddy current of the rotor core 250 can be reduced by compressing and molding the rotor core 252 with iron powder that has been subjected to a process of attaching an electrical insulating film to the surface. The magnet assembly 270 described below has a structure that reduces eddy currents, and the internal heat generation of the rotor 250 can be reduced comprehensively. Rare earth permanent magnets have the disadvantage that their magnetic properties deteriorate, that is, demagnetize when the temperature rises. In-vehicle rotating electrical machines are often used in situations where the ambient temperature is high, and reducing internal heat generation is very preferable for maintaining high reliability.
A magnet assembly 270 shown in FIG. 19A has the same structure as the magnet assembly shown in FIG. FIG. 19B shows a structure in which two magnetic bodies are inserted into the magnet insertion hole 258. Forming a complex-shaped magnetic flux insertion hole in the rotor core 252 reduces productivity. Further, the magnets 272 and 274 themselves are thin and are vulnerable to mechanical shock. Therefore, a plurality of magnetic bodies 272 and 274 are integrally compression-molded with a powdered iron core material further coated with an electrical insulating film, and handled as a shape resistant to impact. A plurality of magnetic bodies 272 and 274 are integrated with the dust cores 314 and 312, and this is easier to form integrally with the rotor core 252, and the workability of manufacturing the rotor is improved.
FIG. 19 (C) shows a structure in which the magnetomotive force of the magnet assembly is changed. The powder iron core and the magnetic body are compression-molded. The compression-molded magnet 254/256 and the dust core are compressed together. Molded. Workability is improved as described above. Further, the amount of magnetic flux in the circumferential direction of each main magnetic pole can be changed with high accuracy along the axial direction of the rotating electrical machine, and torque pulsation and induced voltage pulsation can be reduced.
FIG. 19 (D) shows a magnet assembly composed of a compacted iron core 314 formed by compression molding of a powdery iron core and a magnet 254/256 formed by compression molding, and the magnet insertion hole of the rotor core is largely formed. The magnet assembly 270 can be inserted into the magnet insertion hole formed in the above-described size with the magnet 254/256 having an optimum shape with high accuracy. Thereby, improvement of workability | operativity and ensuring of the favorable characteristic by precision improvement can be made compatible.
19 (A) to 19 (D), as described above, by using iron powder whose surface is treated with an insulating film, eddy currents in the dust cores 314 and 312 can be reduced, and iron loss can be reduced. Can be reduced. Further, since the magnets 254/256, 272, and 274, which are magnetic materials, use a magnetic powder material whose surface is treated with an insulating film, the amount of eddy current inside the magnet can be reduced.
The magnet assembly 270 in FIGS. 19C and 19D has magnets arranged asymmetrically in the circumferential direction, and is suitable for use as a magnetic pole of a rotating electrical machine whose rotational direction is one direction.
FIG. 20 shows still another embodiment of the magnet assembly 270. The magnet assembly 270 inserted into the magnet insertion hole 258 is composed of a magnet 272, a magnet 270, and a dust core 312. The magnet 272 and the magnet 270 are skewed with respect to the rotation axis. Thereby, the torque pulsation of a rotary electric machine and the torque pulsation of an induced voltage can be reduced. The structure of the magnet assembly has a skew effect, the manufacture of the rotor core is easy, and the productivity is improved as a whole. Further, the manufacturing accuracy is improved and the characteristics are improved.
The magnet assembly disclosed in FIG. 21 has a structure in which a magnetic assembly is formed by combining a magnetic body 254/256 and a nonmagnetic material such as aluminum. FIG. 21 (A) shows a nonmagnetic material 266 provided on both sides in the circumferential direction of the magnetic material 254/256. In the manufacturing method of FIG. 16 or FIG. The magnet assembly is compression molded by adding the non-magnetic material powder. The non-magnetic material 266 functions in the same manner as the air gaps 262 and 264 in FIG. By press-molding the shape of the non-magnetic material 266, it can be molded with high accuracy and the characteristics of the rotating electrical machine are improved. FIG. 21 (B) shows a structure in which a dust core is added to one side to form a magnet assembly. This is suitable for rotating electric machines in one direction.
In FIGS. 21A and 21B, the voids of the rotor core are compression-molded with a non-magnetic material, and good characteristics can be obtained by maintaining high molding accuracy. Further, since the voids in the iron core are not required, the mechanical strength is increased. In addition, workability is improved.
FIG. 22 shows cross sections of the stator 230 and the rotor 250 in the same manner as the cross section shown in FIG. The structure and operating principle are also almost the same. As in FIG. 4, the stator core 232 of the stator 230 and the rotor core 252 of the rotor 250 are formed by compressing iron powder having an electric insulating film on the surface. As in FIG. 4, the eddy current in the stator core 232 can be reduced, the efficiency of the rotating electrical machine can be improved, and the heat generation in the stator core 232 can be reduced. Similarly, the rotor core 252 can reduce internal heat generation and eddy current loss, thereby improving the efficiency of the rotating electrical machine.
The difference between the embodiment shown in FIG. 22 and the embodiment shown in FIG. 4 is that the shape of the permanent magnet 276 shown in FIG. 22 is a block shape. The manufacturing method is as described with reference to FIGS. 8 to 12 or with reference to FIGS. The operation of the permanent magnet 276 and the operation of the stator 230 and the rotor 250 are substantially the same as those described in FIG. 4. The permanent magnet 276 corresponds to the permanent magnets 254 and 256 in FIG. The block-type magnet has a rectangular cross section in a plane perpendicular to the rotation axis of the rotor, and extends along the rotation axis. Each permanent magnet 276 acts as a magnetic pole, and an auxiliary magnetic pole 290 that passes a q-axis magnetic flux exists between the magnetic poles. The rotor core 252 on the stator side of each permanent magnet 276 acts as a pole piece 280 as in FIG. As described above, a bridge portion exists between the magnetic pole piece 280 and the auxiliary magnetic pole 290, and the amount of magnetic flux passing through the bridge portion is limited to be very small due to a saturation phenomenon. The permanent magnets 276 constituting the magnetic poles have different magnetization directions on both sides of the magnetic pole piece 280. For example, if one permanent magnet 276 is magnetized so that the stator side has an N pole, the other permanent magnet 276 is provided. Is magnetized so that the stator side is the south pole.
The permanent magnet 276 of FIG. 22 may be skewed as shown in FIG. 20, in which case torque pulsation is reduced. Further, the permanent magnet 276 of FIG. 22 may have a non-magnetic material such as aluminum or stainless steel as shown in FIG. In this case, the magnetic air gap is made of the aluminum material or the stainless steel material, and has the same action as the magnetic air gaps 262 and 264 described with reference to FIG. Further, when the nonmagnetic material shown in FIG. 21 is used for the magnetic air gaps 262 and 264 in comparison with the physical air gap, there is an advantage that the mechanical strength is increased, and the bridge portions 282 and 284 described in FIG. It can be set as the shape with the favorable characteristic of a rotary electric machine. For example, even if it cannot be thinned in the radial direction due to mechanical strength, the mechanical strength can be increased as described above. Therefore, when the nonmagnetic material shown in FIG. It becomes possible.
FIG. 23 shows a structure in which the shape of the permanent magnet 276 in FIG. 22 is changed, and a permanent magnet is provided on a rotor core 252 formed by compressing iron powder having an electric insulating film on the surface. is there. In particular, FIG. 23 shows a structure in which a permanent magnet is embedded in the rotor core 252. The basic operation of the rotating electrical machine disclosed in FIG. 23 is substantially the same as FIG. 4 and FIG. FIG. 23A shows an example in which the shape of the permanent magnet 276 is an arc type. FIG. 23B is an example in which the shape of the permanent magnet 276 is U-shaped. FIG. 23C shows an example in which the shape of the permanent magnet 276 is V-shaped. Similarly to the rotating electrical machine with the built-in block magnet shown in FIG. 22, the rotating electrical machine shown in FIG. 23 (A), FIG. 23 (B), and FIG. Exists and the principle of torque generation is substantially the same. As described with reference to FIG. 15, a rotor core 252 provided with a magnet insertion hole in advance is formed, and the magnet body described with reference to FIGS. 8 to 11 or the magnet assembly described with reference to FIGS. Can be inserted to produce a rotor. Further, the magnet body described in FIGS. 8 to 11 or the magnet assembly described in FIGS. 16 to 21 is manufactured in advance, and the magnet body, the magnet assembly and iron powder are compression molded. A rotor may be manufactured.
FIG. 24 is a partially enlarged view of a rotor showing still another embodiment of the rotor 250 shown in FIG. 22 and FIG. The rotor 250 shown in FIG. 24 is different from the shape of the permanent magnet 276 shown in FIG. 22 and FIG. When a complex-shaped permanent magnet is used, such as the so-called crescent-shaped permanent magnet 276 shown in FIG. 24, it is difficult to provide a complex-shaped magnet insertion hole in the laminated steel sheet. Productivity can be improved by using a powdery iron core having an electrical insulating film on the surface as described above instead of the laminated steel sheet. That is, by compressing and molding the powdery iron core and the complex-shaped permanent magnet integrally, a rotor 250 incorporating the complex-shaped permanent magnet can be manufactured, for example, as shown in FIG.
FIG. 25 is a partially enlarged view of a rotor showing still another embodiment of the rotor 250 shown in FIGS. The rotor 250 shown in FIG. 25 is different from the shape of the permanent magnet 276 shown in FIGS. 22 to 24. The permanent magnet 276 shown in FIG. 25 has an asymmetrical magnet thickness in the rotational direction of the rotor. A rotating electrical machine may require similar characteristics in both directions of rotation, or may require different characteristics depending on the direction of rotation. In this case, it is desirable to match the magnet shape of the permanent magnet 276 according to the characteristics to the required characteristics. By matching these characteristics, the permanent magnet 276 can be made asymmetric.
A rotating electrical machine may be used in both motor and generator operating modes. Even when the direction of the rotor of the rotating electrical machine is the same, it may be desirable to make the permanent magnet 276 asymmetric when used in both motor and generator operating modes. In this case, for example, as shown in FIG. 25, the radial thickness of the permanent magnet 276 is asymmetric in the circumferential direction, and the generated magnetic flux density is asymmetric in the circumferential direction.
A rotor having an asymmetric shape in the circumferential direction shown in FIG. 25 is prepared by preliminarily creating a magnet body or magnet assembly as an asymmetric shape, and compressing and molding the powdered iron core and the above-described complex shape permanent magnet as one body. Easy to manufacture.
FIG. 26 and FIG. 27 show still another embodiment. In FIG. 27, the stator is the same as FIG. The stator 230 has a stator core 232 having a slot 234, and the stator 230 and the stator core 232 have the same structure as described in FIG.
The basic structure and operation are the same as those described in FIGS. 4 and 15 except that the arrangement of the permanent magnets of the rotor 250 is different. Each pole of the rotor 250 has a plurality of permanent magnets, for example, two permanent magnets arranged in the radial direction of the rotor. 26 and 27, a permanent magnet 277 and a permanent magnet 278 are arranged so as to overlap each other in the radial direction of the rotor, and these permanent magnets 277 and 278 constitute each magnetic pole of the rotor 250. The permanent magnets 277 and 278 use the magnets described with reference to FIGS. These permanent magnets 277 and 278 are manufactured in advance, and then the permanent magnets 277 and 278 are temporarily fixed inside the compressor, and then the interior of the compressor is filled with iron powder having an electrically insulating film on the surface. The rotor is formed by compression molding the permanent magnet and filled iron powder with the compressor. By doing so, the rotor can be easily manufactured.
FIG. 27 shows a rotor 250 in which nonmagnetic powder 279 is mixed in a place where a magnetic space is to be specially provided and compression-molded by the compressor. Conventionally, it was created by forming a physical gap filled with air in a magnetic space. In this embodiment, the nonmagnetic powder 279 is mixed to form a magnetic space, so that the mechanical strength is stronger than that of the conventional structure. As shown in FIGS. 26 and 27, the rotor 250 can be easily manufactured by compressing the iron powder together with the magnet body and the magnet assembly with a compressor, and a portion requiring a magnetic space is required. A non-magnetic powder 279 is mixed into the rotary electric machine, so that a rotary electric machine suitable for the characteristics required for the rotary electric machine can be easily manufactured.
26 and 27, the permanent magnets 277 and 278 are manufactured and used in advance by the manufacturing method described with reference to FIGS. 8 to 12, but steps 10 to 15 in FIGS. 8 to 9 are performed. In this state, the stator is temporarily fixed inside the compressor, and then the iron powder whose surface is provided with an electric insulating film is filled in the compressor, and the magnet manufactured in the above steps 10 to 15 and the iron powder filled. The rotor may be formed by compression molding with the above compressor. In this case, since the magnet is not impregnated with the binder precursor, the binder SiO as shown in FIG. 2 A rotor formed by compression molding is immersed in the precursor of the binder SiO. 2 The precursor may be impregnated. Binder SiO 2 In addition to impregnating the magnet portion, the precursor of the surface of the rotor 250 compression-molded with iron powder and the vicinity of the surface are bound to the binder SiO. 2 It is possible to fix with, and has the effect of increasing the mechanical strength. The rotor 250 formed by compression-molding iron powder has a drawback that the mechanical strength against centrifugal force or the like tends to be lower than that of the laminated iron core, and it is a very desirable effect that the mechanical strength is increased.

Claims (42)

固定子鉄心と3相の固定子巻線とを有する固定子と、
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、前記永久磁石は界磁極を構成し、
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、
前記永久磁石は、アルコキシ基を含有すると共にSiO 2 を主成分とするアモルファス状で連続膜形状のバインダーにより希土類磁性粉体を結着して成形しており、
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、
前記固定子巻線に3相交流電流が供給されることにより、希土類磁性粉体をSiO系の材料により結着して成形された前記永久磁石を有する回転子に回転トルクが発生する、車載用の永久磁石回転電機。
A stator having a stator core and a three-phase stator winding;
Having a gap between the stator and a rotor disposed rotatably,
The rotor includes a rotor core and a plurality of permanent magnets, and the permanent magnets constitute field poles,
The rotor core is formed by compressing iron powder,
The permanent magnet contains an alkoxy group and is formed by binding rare earth magnetic powder with an amorphous and continuous film-shaped binder containing SiO 2 as a main component,
The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
When a three-phase alternating current is supplied to the stator winding , rotational torque is generated in the rotor having the permanent magnet formed by binding rare earth magnetic powder with a SiO-based material . Permanent magnet rotating electric machine.
固定子鉄心と3相の固定子巻線とを有する固定子と、
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、前記永久磁石は界磁極を構成し、
前記永久磁石は、アルコキシ基を含有すると共にSiO 2 を主成分とするアモルファス状で連続膜形状のバインダーにより希土類磁性粉体を結着して成形しており、
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、
前記固定子巻線に3相交流電流が供給されることにより、希土類磁性粉体をSiO系の材料により結着して成形された前記永久磁石を有する回転子に回転トルクが発生する、車載用の永久磁石回転電機。
A stator having a stator core and a three-phase stator winding;
Having a gap between the stator and a rotor disposed rotatably,
The stator core is formed by compressing iron powder,
The rotor includes a rotor core and a plurality of permanent magnets, and the permanent magnets constitute field poles,
The permanent magnet contains an alkoxy group and is formed by binding rare earth magnetic powder with an amorphous and continuous film-shaped binder containing SiO 2 as a main component,
The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
When a three-phase alternating current is supplied to the stator winding , rotational torque is generated in the rotor having the permanent magnet formed by binding rare earth magnetic powder with a SiO-based material . Permanent magnet rotating electric machine.
請求項1またはのいずれかに記載の永久磁石回転電機において、
前記磁性粉体は表面に10μm〜10nm厚の無機絶縁膜を有し、前記無機絶縁膜を有する磁性粉体をSiO2により結着して前記永久磁石が形成されている、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 1 or 2 ,
The magnetic powder has an inorganic insulating film having a thickness of 10 μm to 10 nm on the surface, and the permanent magnet is formed by binding the magnetic powder having the inorganic insulating film with SiO 2 to form the permanent magnet. Rotating electric machine.
請求項1乃至3のいずれかに記載の永久磁石回転電機において、
前記永久磁石を形成するためのSiO系の材料あるいはSiO2を主成分とする結着剤は、SiO2の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 1 to 3 ,
The SiO-based material or the binder mainly composed of SiO 2 for forming the permanent magnet is a precursor of SiO 2 , alkoxysiloxane, alkoxysilane, a product obtained by hydrolysis thereof, and dehydration condensation thereof. An in-vehicle permanent magnet rotating electrical machine including at least one kind of object and water.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。A permanent magnet rotating electrical machine for vehicle use containing at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記永久磁石は永久磁石が発生する磁束が上記固定子鉄心を通るように磁化されていると共に、前記永久磁石は界磁極毎に磁化方向が反転するように磁化されており、The permanent magnet is magnetized so that the magnetic flux generated by the permanent magnet passes through the stator core, and the permanent magnet is magnetized so that the magnetization direction is reversed for each field pole,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。A permanent magnet rotating electrical machine for vehicle use containing at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
固定子鉄心と3相の固定子巻線とを有する固定子と、A stator having a stator core and a three-phase stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記界磁極間に補助磁極が形成され、前記補助磁極の両サイドの界磁極を構成する永久磁石が互いに異なる極性に磁化されており、Auxiliary magnetic poles are formed between the field magnetic poles, and permanent magnets constituting the field magnetic poles on both sides of the auxiliary magnetic poles are magnetized with different polarities,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
前記永久磁石は、SiO系の材料がアモルファス状態で希土類磁性粉体を結着しており、The permanent magnet has a rare earth magnetic powder bound with a SiO-based material in an amorphous state,
前記固定子巻線に3相交流電流が供給されることにより、希土類磁性粉体をSiO系の材料により結着して成形された前記永久磁石を有する回転子に回転トルクが発生するとともに、When a three-phase alternating current is supplied to the stator winding, a rotational torque is generated in the rotor having the permanent magnet formed by binding rare earth magnetic powder with a SiO-based material,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。A permanent magnet rotating electrical machine for vehicle use containing at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、The stator core is formed by compressing iron powder,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。A permanent magnet rotating electrical machine for vehicle use containing at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、The stator core is formed by compressing iron powder,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記永久磁石は永久磁石が発生する磁束が上記固定子鉄心を通るように磁化されていると共に、前記永久磁石は界磁極毎に磁化方向が反転するように磁化されており、The permanent magnet is magnetized so that the magnetic flux generated by the permanent magnet passes through the stator core, and the permanent magnet is magnetized so that the magnetization direction is reversed for each field pole,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。A permanent magnet rotating electrical machine for vehicle use containing at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
固定子鉄心と3相の固定子巻線とを有する固定子と、A stator having a stator core and a three-phase stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、The stator core is formed by compressing iron powder,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記界磁極間に補助磁極が形成され、前記補助磁極の両サイドの界磁極を構成する永久磁石が互いに異なる極性に磁化されており、Auxiliary magnetic poles are formed between the field magnetic poles, and permanent magnets constituting the field magnetic poles on both sides of the auxiliary magnetic poles are magnetized with different polarities,
前記永久磁石は、SiO系の材料がアモルファス状態で希土類磁性粉体を結着しており、The permanent magnet has a rare earth magnetic powder bound with a SiO-based material in an amorphous state,
前記固定子巻線に3相交流電流が供給されることにより、希土類磁性粉体をSiO系の材料により結着して成形された前記永久磁石を有する回転子に回転トルクが発生するとともに、When a three-phase alternating current is supplied to the stator winding, a rotational torque is generated in the rotor having the permanent magnet formed by binding rare earth magnetic powder with a SiO-based material,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含んでいる、車載用の永久磁石回転電機。A permanent magnet rotating electrical machine for vehicle use containing at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
請求項1乃至10のいずれかに記載の永久磁石回転電機において、
前記永久磁石を形成するためのSiO系の材料あるいはSiO2を主成分とする結着剤は、SiO2の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 1 to 10 ,
The SiO-based material for forming the permanent magnet or the binder mainly composed of SiO 2 is composed of an alkoxysiloxane, an alkoxysilane, a hydrolysis product thereof, and a dehydration condensate thereof, which are precursors of SiO 2 . An in-vehicle permanent magnet rotating electrical machine comprising at least one kind and water, and further containing an alcohol and a catalyst for hydrolysis.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。A permanent component for automobile use, which contains at least one of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof, water, and an alcohol and a catalyst for hydrolysis. Magnet rotating electric machine.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記永久磁石は永久磁石が発生する磁束が上記固定子鉄心を通るように磁化されていると共に、前記永久磁石は界磁極毎に磁化方向が反転するように磁化されており、The permanent magnet is magnetized so that the magnetic flux generated by the permanent magnet passes through the stator core, and the permanent magnet is magnetized so that the magnetization direction is reversed for each field pole,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。A permanent component for automobile use, which contains at least one of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof, water, and an alcohol and a catalyst for hydrolysis. Magnet rotating electric machine.
固定子鉄心と3相の固定子巻線とを有する固定子と、A stator having a stator core and a three-phase stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記界磁極間に補助磁極が形成され、前記補助磁極の両サイドの界磁極を構成する永久磁石が互いに異なる極性に磁化されており、Auxiliary magnetic poles are formed between the field magnetic poles, and permanent magnets constituting the field magnetic poles on both sides of the auxiliary magnetic poles are magnetized with different polarities,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
前記永久磁石は、SiO系の材料がアモルファス状態で希土類磁性粉体を結着しており、The permanent magnet has a rare earth magnetic powder bound with a SiO-based material in an amorphous state,
前記固定子巻線に3相交流電流が供給されることにより、希土類磁性粉体をSiO系の材料により結着して成形された前記永久磁石を有する回転子に回転トルクが発生するとともに、When a three-phase alternating current is supplied to the stator winding, a rotational torque is generated in the rotor having the permanent magnet formed by binding rare earth magnetic powder with a SiO-based material,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。A permanent component for automobile use, which contains at least one of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof, water, and an alcohol and a catalyst for hydrolysis. Magnet rotating electric machine.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、The stator core is formed by compressing iron powder,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。A permanent component for automobile use, which contains at least one of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof, water, and an alcohol and a catalyst for hydrolysis. Magnet rotating electric machine.
固定子鉄心と固定子巻線とを有する固定子と、A stator having a stator core and a stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、The stator core is formed by compressing iron powder,
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets,
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
前記永久磁石は永久磁石が発生する磁束が上記固定子鉄心を通るように磁化されていると共に、前記永久磁石は界磁極毎に磁化方向が反転するように磁化されており、The permanent magnet is magnetized so that the magnetic flux generated by the permanent magnet passes through the stator core, and the permanent magnet is magnetized so that the magnetization direction is reversed for each field pole,
前記永久磁石は、磁性粉体をSiO系の材料により結着して成形されており、The permanent magnet is formed by binding magnetic powder with a SiO-based material,
鉄性の粉が圧縮成形されてつくられた回転子鉄心に設けられた、磁性粉体をSiO系の材料により結着して成形した前記永久磁石を有する回転子に、前記固定子巻線に交流電流が供給されることにより回転トルクが発生するとともに、A rotor having a permanent magnet formed by binding magnetic powder with a SiO-based material and provided on a rotor core made by compression molding iron powder, and a stator winding. When alternating current is supplied, rotational torque is generated,
前記永久磁石を形成するためのSiO系の材料あるいはSiOSiO-based material for forming the permanent magnet or SiO 22 を主成分とする結着剤は、SiOThe binder mainly composed of SiO is SiO. 22 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。A permanent component for automobile use, which contains at least one of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof, water, and an alcohol and a catalyst for hydrolysis. Magnet rotating electric machine.
固定子鉄心と3相の固定子巻線とを有する固定子と、
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、
前記固定子鉄心は、鉄性の粉が圧縮されて成形されており、
前記回転子は、回転子鉄心と複数の永久磁石とを備えており、
前記回転子には前記永久磁石により構成される偶数個の界磁極が回転軸の周方向に形成されており、
前記界磁極間に補助磁極が形成され、前記補助磁極の両サイドの界磁極を構成する永久磁石が互いに異なる極性に磁化されており、
前記永久磁石は、SiO系の材料がアモルファス状態で希土類磁性粉体を結着しており、
前記固定子巻線に3相交流電流が供給されることにより、希土類磁性粉体をSiO系の材料により結着して成形された前記永久磁石を有する回転子に回転トルクが発生するとともに、
前記永久磁石を形成するためのSiO系の材料あるいはSiO 2 を主成分とする結着剤は、SiO 2 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒とを含んでいる、車載用の永久磁石回転電機。
A stator having a stator core and a three-phase stator winding;
Having a gap between the stator and a rotor disposed rotatably,
The stator core is formed by compressing iron powder,
The rotor includes a rotor core and a plurality of permanent magnets,
The rotor is formed with an even number of field poles composed of the permanent magnets in the circumferential direction of the rotating shaft,
Auxiliary magnetic poles are formed between the field magnetic poles, and permanent magnets constituting the field magnetic poles on both sides of the auxiliary magnetic poles are magnetized with different polarities,
The permanent magnet has a rare earth magnetic powder bound with a SiO-based material in an amorphous state,
When a three-phase alternating current is supplied to the stator winding, a rotational torque is generated in the rotor having the permanent magnet formed by binding rare earth magnetic powder with a SiO-based material,
The SiO-based material for forming the permanent magnet or the binder mainly composed of SiO 2 is composed of an alkoxysiloxane, an alkoxysilane, a hydrolysis product thereof, and a dehydration condensate thereof, which are precursors of SiO 2 . An in-vehicle permanent magnet rotating electrical machine comprising at least one kind and water, and further containing an alcohol and a catalyst for hydrolysis.
請求項1乃至17のいずれかに記載の永久磁石回転電機において、
前記永久磁石は、希土類磁性粉体を圧縮成型し、前記圧縮成型により形成された希土類磁性粉体にSiO2の前駆体を含浸させ、SiO2にて希土類磁性粉体を結着して成形した、車載用の永久磁石回転電機。
The permanent magnet rotating electrical machine according to any one of claims 1 to 17 ,
The permanent magnet, compression molding the rare earth magnetic powder, the rare earth magnetic powder formed by compression molding is impregnated with a SiO 2 precursor was molded by binding a rare earth magnetic powder with SiO 2 , Permanent magnet rotating electric machine for in-vehicle use.
固定子鉄心と固定子巻線とを備えた固定子と、
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、
前記回転子は、回転子鉄心と、前記回転子鉄心の内部に配置された複数の永久磁石とを備えており、
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、
前記回転子鉄心には、回転軸の周方向において等間隔に形成される複数の補助磁極部と、
前記補助磁極部の間に設けられた永久磁石挿入孔と、
前記永久磁石挿入孔の固定子側の回転子鉄心に形成される磁極片部と、
前記永久磁石と前記補助磁極部との間に形成された磁気ギャップと前記磁気ギャップの外周側の回転子鉄心に形成されるブリッジ部とを有し、
前記永久磁石は前記永久磁石挿入孔の内部に配置され、前記補助磁極を挟んでその周方向両側に配置された前記永久磁石の極性が互いに逆極性になるように前記永久磁石は磁化されており、
前記永久磁石は、希土類磁性粉体をアモルファス状で連続膜形状のSiO2により結着して成形している、車載用の永久磁石回転電機。
A stator having a stator core and a stator winding;
Having a gap between the stator and a rotor disposed rotatably,
The rotor includes a rotor core and a plurality of permanent magnets arranged inside the rotor core;
The rotor core is formed by compressing iron powder,
In the rotor core, a plurality of auxiliary magnetic pole portions formed at equal intervals in the circumferential direction of the rotation shaft,
A permanent magnet insertion hole provided between the auxiliary magnetic pole portions;
Magnetic pole piece formed on the rotor core on the stator side of the permanent magnet insertion hole;
A magnetic gap formed between the permanent magnet and the auxiliary magnetic pole part, and a bridge part formed on a rotor core on the outer peripheral side of the magnetic gap,
The permanent magnet is disposed inside the permanent magnet insertion hole, and the permanent magnet is magnetized so that polarities of the permanent magnets disposed on both sides in the circumferential direction with the auxiliary magnetic pole interposed therebetween are opposite to each other. ,
The permanent magnet rotating electric machine for vehicle use, wherein the permanent magnet is formed by binding rare earth magnetic powder with amorphous and continuous film-shaped SiO 2 .
固定子鉄心と3相の固定子巻線とを有する固定子と、
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、
前記回転子は、回転子鉄心と前記回転子鉄心の内部に埋設され界磁極を構成する複数の永久磁石とを備えており、
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、
前記回転子鉄心には、複数の永久磁石挿入孔と、前記永久磁石挿入孔の固定子側の回転子鉄心に形成される磁極片部と、前記回転子鉄心の回転軸の周方向に形成された複数の補助磁極部と、前記磁極片部と前記補助磁極とをつなぐブリッジ部とが形成されており、
前記永久磁石は、前記補助磁極を挟んでその周方向両側に配置された前記永久磁石の極性が互いに逆極性になるように磁化されており、
前記永久磁石は、略層状に配置された希土類磁性粉体と前記層間に存在して前記希土類磁性粉体を結着するアモルファス状で膜形状のSiO系の材料を有している、車載用の永久磁石回転電機。
A stator having a stator core and a three-phase stator winding;
Having a gap between the stator and a rotor disposed rotatably,
The rotor includes a rotor core and a plurality of permanent magnets embedded in the rotor core and constituting a field pole,
The rotor core is formed by compressing iron powder,
The rotor core is formed with a plurality of permanent magnet insertion holes, a magnetic pole piece formed on a rotor core on the stator side of the permanent magnet insertion hole, and a circumferential direction of the rotation axis of the rotor core. A plurality of auxiliary magnetic pole portions and a bridge portion connecting the magnetic pole piece portion and the auxiliary magnetic pole are formed,
The permanent magnet is magnetized so that polarities of the permanent magnets arranged on both sides in the circumferential direction with the auxiliary magnetic pole in between are opposite to each other,
The permanent magnet has a rare earth magnetic powder arranged in a substantially layered manner and an amorphous, film-shaped SiO-based material that is present between the layers and binds the rare earth magnetic powder. Permanent magnet rotating electric machine.
請求項19または請求項20のいずれかに記載の永久磁石回転電機において、
前記永久磁石は界磁極を構成し、
前記永久磁石は前記界磁極の中心から補助磁極に近づくに従って回転子の外周側に近づくように曲線形状を成している、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 19 and 20 ,
The permanent magnet constitutes a field pole,
The on-vehicle permanent magnet rotating electrical machine, wherein the permanent magnet has a curved shape so as to approach the outer peripheral side of the rotor as it approaches the auxiliary magnetic pole from the center of the field magnetic pole.
請求項19または請求項20のいずれかに記載の永久磁石回転電機において、
前記永久磁石は径方向に複数列配置されており、
前記永久磁石は、補助磁極側に近づくに従って回転子外周側に近づくように曲線形状を成している、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 19 and 20 ,
The permanent magnets are arranged in a plurality of rows in the radial direction,
The on-vehicle permanent magnet rotating electrical machine has a curved shape so that the permanent magnet approaches the rotor outer peripheral side as it approaches the auxiliary magnetic pole side.
請求項19または請求項20のいずれかに記載の永久磁石回転電機において、
前記永久磁石の希土類磁性粉体を結着するSiO系の材料は、SiO2の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含む、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 19 and 20 ,
The SiO-based material for binding the rare-earth magnetic powder of the permanent magnet includes at least one of an alkoxysiloxane, an alkoxysilane, a hydrolysis product thereof, and a dehydration condensate thereof, which are SiO 2 precursors, and water. In-vehicle permanent magnet rotating electric machine.
固定子鉄心と3相の固定子巻線とを有する固定子と、A stator having a stator core and a three-phase stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と前記回転子鉄心の内部に埋設され界磁極を構成する複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets embedded in the rotor core and constituting a field pole,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
前記回転子鉄心には、複数の永久磁石挿入孔と、前記永久磁石挿入孔の固定子側の回転子鉄心に形成される磁極片部と、前記回転子鉄心の回転軸の周方向に形成された複数の補助磁極部と、前記磁極片部と前記補助磁極とをつなぐブリッジ部とが形成されており、The rotor core is formed with a plurality of permanent magnet insertion holes, a magnetic pole piece formed on a rotor core on the stator side of the permanent magnet insertion hole, and a circumferential direction of the rotation axis of the rotor core. A plurality of auxiliary magnetic pole portions and a bridge portion connecting the magnetic pole piece portion and the auxiliary magnetic pole are formed,
前記永久磁石は、前記補助磁極を挟んでその周方向両側に配置された前記永久磁石の極性が互いに逆極性になるように磁化されており、The permanent magnet is magnetized so that polarities of the permanent magnets arranged on both sides in the circumferential direction with the auxiliary magnetic pole in between are opposite to each other,
前記永久磁石は、アルコキシ基を含有するSiO系の材料により希土類磁性粉体を結着して成形されているとともに、The permanent magnet is formed by binding rare earth magnetic powder with a SiO-based material containing an alkoxy group,
前記永久磁石の希土類磁性粉体を結着するSiO系の材料は、SiOThe SiO-based material for binding the rare earth magnetic powder of the permanent magnet is SiO 22 の前駆体である、アルコキシシロキサン,アルコキシシラン、その加水分解による生成物、及びその脱水縮合物の少なくとも一種と、水とを含む、車載用の永久磁石回転電機。An in-vehicle permanent magnet rotating electrical machine comprising at least one of alkoxysiloxane, alkoxysilane, a product of hydrolysis thereof, and a dehydration condensate thereof, and water.
請求項19または請求項20のいずれかに記載の永久磁石回転電機において、
前記永久磁石の希土類磁性粉体を結着するSiO系の材料は、SiO2の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒を含んでいる、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 19 and 20 ,
The material of SiO system for binding a rare earth magnetic powder of the permanent magnet, alkoxysiloxane that is a precursor of SiO 2, an alkoxysilane, hydrolysis product thereof, and at least one of the dewatering condensate, and water An in-vehicle permanent magnet rotating electric machine that further includes alcohol and a catalyst for hydrolysis.
固定子鉄心と3相の固定子巻線とを有する固定子と、A stator having a stator core and a three-phase stator winding;
前記固定子との間に空隙を有して、回転可能に配置された回転子とを有し、Having a gap between the stator and a rotor disposed rotatably,
前記回転子は、回転子鉄心と前記回転子鉄心の内部に埋設され界磁極を構成する複数の永久磁石とを備えており、The rotor includes a rotor core and a plurality of permanent magnets embedded in the rotor core and constituting a field pole,
前記回転子鉄心は、鉄性の粉が圧縮されて成形されており、The rotor core is formed by compressing iron powder,
前記回転子鉄心には、複数の永久磁石挿入孔と、前記永久磁石挿入孔の固定子側の回転子鉄心に形成される磁極片部と、前記回転子鉄心の回転軸の周方向に形成された複数の補助磁極部と、前記磁極片部と前記補助磁極とをつなぐブリッジ部とが形成されており、The rotor core is formed with a plurality of permanent magnet insertion holes, a magnetic pole piece formed on a rotor core on the stator side of the permanent magnet insertion hole, and a circumferential direction of the rotation axis of the rotor core. A plurality of auxiliary magnetic pole portions and a bridge portion connecting the magnetic pole piece portion and the auxiliary magnetic pole are formed,
前記永久磁石は、前記補助磁極を挟んでその周方向両側に配置された前記永久磁石の極性が互いに逆極性になるように磁化されており、The permanent magnet is magnetized so that polarities of the permanent magnets arranged on both sides in the circumferential direction with the auxiliary magnetic pole in between are opposite to each other,
前記永久磁石は、アルコキシ基を含有するSiO系の材料により希土類磁性粉体を結着して成形されているとともに、The permanent magnet is formed by binding rare earth magnetic powder with a SiO-based material containing an alkoxy group,
前記永久磁石の希土類磁性粉体を結着するSiO系の材料は、SiOThe SiO-based material for binding the rare earth magnetic powder of the permanent magnet is SiO 22 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と、水とを含み、更にアルコールと加水分解用の触媒を含んでいる、車載用の永久磁石回転電機。Permanent magnet for vehicle use, comprising at least one of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof, and water, and further containing alcohol and a catalyst for hydrolysis. Rotating electric machine.
請求項23または24のいずれかに記載の永久磁石回転電機において、
前記永久磁石が有するSiO系の材料は、加水分解用の触媒として中性触媒を含有してなる、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 23 and 24 ,
The SiO-based material of the permanent magnet is an in-vehicle permanent magnet rotating electrical machine that contains a neutral catalyst as a catalyst for hydrolysis.
請求項27に記載の永久磁石回転電機において、
前記中性触媒が錫触媒である、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 27 ,
An in-vehicle permanent magnet rotating electrical machine, wherein the neutral catalyst is a tin catalyst.
請求項25または26のいずれかに記載の永久磁石回転電機において、
SiO系の材料中のアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の総和の体積分率が5vol%以上かつ96vol%以下である、車載用の永久磁石回転電機。
In the permanent magnet rotating electric machine according to any one of claims 25 and 26 ,
An in-vehicle permanent magnet rotating electrical machine in which the total volume fraction of an alkoxysiloxane, an alkoxysilane, a hydrolysis product thereof, and a dehydration condensate thereof in a SiO-based material is 5 vol% or more and 96 vol% or less.
請求項29に記載の永久磁石回転電機において、
SiO系の材料中の水の含有量がアルコキシシロキサン,アルコキシシラン及び、その加水分解による生成物、及びその脱水縮合物の前駆体であるアルコキシシロキサン,アルコキシシランの総量に対して、加水分解反応当量の1/10〜1である、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 29 ,
The water content in the SiO-based material is equivalent to the hydrolysis reaction equivalent to the total amount of alkoxysiloxane, alkoxysilane, the product of hydrolysis thereof, and the alkoxysiloxane and alkoxysilane that are precursors of the dehydration condensate thereof. 1/10 to 1 of the in-vehicle permanent magnet rotating electric machine.
請求項19乃至29のいずれかに記載の永久磁石回転電機において、
前記磁性粉体は、表面に10μm〜10nm厚の無機絶縁膜を有し、前記無機絶縁膜を有する磁性粉体を、SiO2を主成分とする結着剤にて結着して前記永久磁石が形成されている、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to any one of claims 19 to 29 ,
The magnetic powder has an inorganic insulating film having a thickness of 10 μm to 10 nm on the surface, and the permanent magnet is formed by binding the magnetic powder having the inorganic insulating film with a binder mainly composed of SiO 2. An in-vehicle permanent magnet rotating electrical machine in which is formed.
請求項31に記載の永久磁石回転電機において、
前記無機絶縁膜は、希土類フッ化物又はアルカリ土類金属フッ化物のコート膜、又はリン酸塩化成処理膜からなる、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 31 ,
The said inorganic insulating film is a permanent magnet rotary electric machine for vehicles which consists of a coating film of a rare earth fluoride or an alkaline earth metal fluoride, or a phosphate chemical conversion treatment film.
請求項32に記載の永久磁石回転電機において、
希土類フッ化物又はアルカリ土類金属フッ化物のコート膜は、Mg,Ca,Sr,Ba,La,Ce,Pr,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luフッ化物中の少なくとも1種類以上含有する、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 32 ,
The coating film of rare earth fluoride or alkaline earth metal fluoride is Mg, Ca, Sr, Ba, La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu fluoride. An in-vehicle permanent magnet rotating electrical machine containing at least one of them.
請求項33に記載の永久磁石回転電機において、
希土類フッ化物又はアルカリ土類金属フッ化物のコート膜は、該希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤されており、ゾル状態の該希土類フッ化物又はアルカリ土類金属フッ化物の平均粒径が10μm以下まで粉砕され、かつアルコールを主成分とした溶媒に混合した処理液を用いて形成されている、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 33 ,
The coating film of rare earth fluoride or alkaline earth metal fluoride has the rare earth fluoride or alkaline earth metal fluoride swelled in a solvent containing alcohol as a main component, and the rare earth fluoride or alkaline earth fluoride in a sol state. An in-vehicle permanent magnet rotating electric machine formed by using a treatment liquid in which an average particle size of a metal fluoride is pulverized to 10 μm or less and mixed with a solvent containing alcohol as a main component.
請求項34に記載の永久磁石回転電機において、
前記アルコールはメチルアルコール,エチルアルコール,n−プロピルアルコール又はイソプロピルアルコールである、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 34 ,
The on-vehicle permanent magnet rotating electric machine, wherein the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol or isopropyl alcohol.
請求項31に記載のリン酸塩化成処理膜は、リン酸,ほう酸、及びMg,Zn,Mn,Cd,Ca,Sr,Baの内の一種類以上含有している、車載用の永久磁石回転電機。The phosphate chemical conversion film according to claim 31 contains phosphoric acid, boric acid, and one or more of Mg, Zn, Mn, Cd, Ca, Sr, and Ba. Electric. 請求項32に記載のリン酸塩化成処理膜は、リン酸,ほう酸,Mg,Zn,Mn,Cd,Ca,Sr,Baの内の一種類以上を含有する水溶液から形成されている、車載用の永久磁石回転電機。The phosphate chemical conversion treatment film according to claim 32 is formed from an aqueous solution containing at least one of phosphoric acid, boric acid, Mg, Zn, Mn, Cd, Ca, Sr, and Ba. Permanent magnet rotating electric machine. 請求項32に記載のリン酸塩化成処理膜は、リン酸,ほう酸,Mg,Zn,Mn,Cd,Ca,Sr,Baの内の一種類以上を含有し、かつ界面活性剤と防錆剤とを含有する水溶液から形成されている、車載用の永久磁石回転電機。The phosphate chemical conversion treatment film according to claim 32 contains at least one of phosphoric acid, boric acid, Mg, Zn, Mn, Cd, Ca, Sr, and Ba, and a surfactant and a rust inhibitor. An in-vehicle permanent magnet rotating electrical machine formed of an aqueous solution containing 請求項38に記載の界面活性剤は、パーフルオロアルキル系,アルキルベンゼンスルホン酸系,両性イオン系、またはポリエーテル系である、車載用の永久磁石回転電機。The in-vehicle permanent magnet rotating electric machine, wherein the surfactant according to claim 38 is a perfluoroalkyl-based, alkylbenzenesulfonic acid-based, zwitterionic-based, or polyether-based material. 請求項38に記載の防錆剤は、孤立電対を有する窒素または硫黄の少なくとも1種を含む有機化合物である、車載用の永久磁石回転電機。The rust preventive agent according to claim 38 is an on-vehicle permanent magnet rotating electrical machine that is an organic compound containing at least one of nitrogen and sulfur having an isolated couple. 請求項40に記載の孤立電対を有する窒素または硫黄の少なくとも1種を含む有機化合物防錆剤は、化学式1
(式中、XはH,CH3,C25,C37,NH2,OH,COOHの中のいずれかである。)で表されるベンゾトリアゾールである、車載用の永久磁石回転電機。
The organic compound rust preventive agent containing at least one of nitrogen and sulfur having an isolated couple according to claim 40 is represented by chemical formula 1
(In the formula, X is any one of H, CH 3 , C 2 H 5 , C 3 H 7 , NH 2 , OH, and COOH.) Rotating electric machine.
請求項19乃至30のいずれかに記載の永久磁石回転電機において、
前記永久磁石は、希土類磁性粉体を圧縮成型し、前記圧縮成型により形成された希土類磁性粉体を前記永久磁石挿入孔に挿入し、前記永久磁石挿入孔に挿入した希土類磁性粉体にSiO2の前駆体を含浸させ、SiO2を主成分とする結着剤にて希土類磁性粉体を結着して成形した、車載用の永久磁石回転電機。
The permanent magnet rotating electric machine according to any one of claims 19 to 30 ,
The permanent magnet compresses rare earth magnetic powder, inserts the rare earth magnetic powder formed by the compression molding into the permanent magnet insertion hole, and adds SiO 2 to the rare earth magnetic powder inserted into the permanent magnet insertion hole. An in-vehicle permanent magnet rotating electric machine formed by impregnating the above precursor and binding rare earth magnetic powder with a binder mainly composed of SiO 2 .
JP2008548158A 2006-12-08 2006-12-08 Permanent magnet rotating electric machine Expired - Fee Related JP4862049B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324994 WO2008068876A1 (en) 2006-12-08 2006-12-08 Permanent magnet rotating electrical machine

Publications (2)

Publication Number Publication Date
JPWO2008068876A1 JPWO2008068876A1 (en) 2010-03-18
JP4862049B2 true JP4862049B2 (en) 2012-01-25

Family

ID=39491795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008548158A Expired - Fee Related JP4862049B2 (en) 2006-12-08 2006-12-08 Permanent magnet rotating electric machine

Country Status (2)

Country Link
JP (1) JP4862049B2 (en)
WO (1) WO2008068876A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022147A (en) * 2008-07-11 2010-01-28 Hitachi Ltd Sintered magnet motor
US11228214B2 (en) 2016-04-06 2022-01-18 Mitsubishi Electric Corporation Motor, fan, compressor, and air conditioning apparatus
JP7009069B2 (en) * 2017-03-08 2022-01-25 Tdk株式会社 Magnet laminate and motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775296A (en) * 1993-09-03 1995-03-17 Isuzu Ceramics Kenkyusho:Kk Permanent magnet rotor
JPH09135549A (en) * 1995-11-06 1997-05-20 Matsushita Electric Ind Co Ltd Assembling of permanent magnet motor
JPH09162054A (en) * 1995-12-01 1997-06-20 Sumitomo Special Metals Co Ltd Manufacture of r-t-b anisotropic bond magnet
JP2000204256A (en) * 1998-11-11 2000-07-25 Dow Corning Toray Silicone Co Ltd Silicone rubber composition
WO2003093534A1 (en) * 2002-05-01 2003-11-13 Otsuka Chemical Co., Ltd. Rust preventives and method of rust prevention with the same
JP2004064981A (en) * 2002-07-31 2004-02-26 Daikin Ind Ltd Brushless dc motor and compressor
JP2004140951A (en) * 2002-10-18 2004-05-13 Asmo Co Ltd Permanent magnet-embedded motor
JP2006169618A (en) * 2004-12-20 2006-06-29 Sumitomo Metal Mining Co Ltd Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet
JP2006254584A (en) * 2005-03-10 2006-09-21 Japan Servo Co Ltd Rotating electric machine having coil arranged at rotor side

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775296A (en) * 1993-09-03 1995-03-17 Isuzu Ceramics Kenkyusho:Kk Permanent magnet rotor
JPH09135549A (en) * 1995-11-06 1997-05-20 Matsushita Electric Ind Co Ltd Assembling of permanent magnet motor
JPH09162054A (en) * 1995-12-01 1997-06-20 Sumitomo Special Metals Co Ltd Manufacture of r-t-b anisotropic bond magnet
JP2000204256A (en) * 1998-11-11 2000-07-25 Dow Corning Toray Silicone Co Ltd Silicone rubber composition
WO2003093534A1 (en) * 2002-05-01 2003-11-13 Otsuka Chemical Co., Ltd. Rust preventives and method of rust prevention with the same
JP2004064981A (en) * 2002-07-31 2004-02-26 Daikin Ind Ltd Brushless dc motor and compressor
JP2004140951A (en) * 2002-10-18 2004-05-13 Asmo Co Ltd Permanent magnet-embedded motor
JP2006169618A (en) * 2004-12-20 2006-06-29 Sumitomo Metal Mining Co Ltd Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet
JP2006254584A (en) * 2005-03-10 2006-09-21 Japan Servo Co Ltd Rotating electric machine having coil arranged at rotor side

Also Published As

Publication number Publication date
JPWO2008068876A1 (en) 2010-03-18
WO2008068876A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP2009071910A (en) Rotary electric machine and automobile mounting the same
JP5094111B2 (en) Permanent magnet rotating electrical machine, method of manufacturing the same, and automobile equipped with permanent magnet rotating electrical machine
JP4774378B2 (en) Magnet using binder and method for producing the same
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
DK2306620T3 (en) Rotary for permanent magnet rotary machine
JP4867632B2 (en) Low loss magnet and magnetic circuit using it
KR101678221B1 (en) Assembling method of rotor for ipm type permanent magnet rotating machine
US20090224615A1 (en) Sintered Magnet and Rotating Machine Equipped with the Same
US8638017B2 (en) Rotor for permanent magnet rotating machine
JP2008282832A (en) Rare-earth magnet
JP2008236844A (en) Rotary electric machine and its manufacturing method and automobile equipped with rotary electric machine
JP2005183781A (en) Rare earth magnet and its manufacturing method
JP5002601B2 (en) Permanent magnet rotating electric machine
JP2009254092A (en) Rotor for permanent magnet rotating machine
CN104637667B (en) A kind of anti-oxidation flexible stickup NdFeB magnetic stripes and preparation method thereof
JP2005191187A (en) Rare-earth magnet and its manufacturing method
JP2008130781A (en) Magnet, motor using magnet, and manufacturing method of magnet
JP4862049B2 (en) Permanent magnet rotating electric machine
JP4238114B2 (en) Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor
CN113053605A (en) Magnet material, permanent magnet, rotating electrical machine, and vehicle
KR101638090B1 (en) Rotor for permanent magnet type rotary machine
JP2008141851A (en) Self-starting permanent magnet synchronous motor
JP2000295804A (en) Rare earth sintered magnet and permanent magnet type synchronous motor
JP2020047628A (en) Magnet material, permanent magnet, rotary electric machine and vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees