JP4861910B2 - Diffusion combustion type gas turbine combustor - Google Patents

Diffusion combustion type gas turbine combustor Download PDF

Info

Publication number
JP4861910B2
JP4861910B2 JP2007161347A JP2007161347A JP4861910B2 JP 4861910 B2 JP4861910 B2 JP 4861910B2 JP 2007161347 A JP2007161347 A JP 2007161347A JP 2007161347 A JP2007161347 A JP 2007161347A JP 4861910 B2 JP4861910 B2 JP 4861910B2
Authority
JP
Japan
Prior art keywords
air
inner cylinder
outer peripheral
swirler
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007161347A
Other languages
Japanese (ja)
Other versions
JP2009002535A (en
Inventor
義隆 平田
正平 吉田
洋 井上
俊文 笹尾
浩美 小泉
達也 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007161347A priority Critical patent/JP4861910B2/en
Publication of JP2009002535A publication Critical patent/JP2009002535A/en
Application granted granted Critical
Publication of JP4861910B2 publication Critical patent/JP4861910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気体燃料及び液体燃料の少なくとも一方を燃焼する拡散燃焼式ガスタービン燃焼器に関する。   The present invention relates to a diffusion combustion gas turbine combustor that burns at least one of gaseous fuel and liquid fuel.

一般に、ガスタービン燃焼器の燃焼方式は、拡散燃焼と予混合燃焼に大別される。前者は燃料を燃焼場に直接噴射して燃焼する方法で、予混合燃焼に比較して燃料過濃領域が発生し易く局部的な高温領域の発生に伴うサーマルNOxが多く排出される課題を抱えている。一方、後者は予め燃料を空気と混合してから燃焼する方法で、拡散燃焼に比較して局部的な高温領域の発生が抑制されNOx排出量が少ない。しかしながら、予混合燃焼の場合、希薄な予混合火炎を形成するため燃焼状態が不安定になり易く、また予混合ガスを生成するための混合器に火炎が逆流(火炎戻り)する場合がある等の課題がある。さらに、拡散燃焼に比べて燃焼器構造や燃料系統が複雑化するため、イニシャルコストが高くなる。   In general, the combustion system of a gas turbine combustor is roughly divided into diffusion combustion and premixed combustion. The former is a method in which fuel is directly injected into the combustion field and burns. Compared to premixed combustion, the fuel-rich region is more likely to be generated, and there is a problem that a large amount of thermal NOx is emitted due to the occurrence of a local high-temperature region. ing. On the other hand, the latter is a method in which fuel is previously mixed with air and then burned. In comparison with diffusion combustion, generation of a local high temperature region is suppressed and NOx emission is small. However, in the case of premixed combustion, a lean premixed flame is formed, so that the combustion state is likely to be unstable, and the flame may flow backward (flame return) to the mixer for generating the premixed gas, etc. There is a problem. Furthermore, since the combustor structure and the fuel system are complicated compared to diffusion combustion, the initial cost is increased.

そこで、拡散燃焼方式の燃焼器の燃焼安定性及び点火特性を向上させるために、燃焼器上流部分の軸中心付近に燃焼空気に旋回成分を与える旋回器を設け、この旋回器の近傍に液体燃料及び気体燃料を噴射する燃料ノズルを配置したものがある(特許文献1等参照)。この技術では、旋回器の外周側に燃焼ガスの低流速循環領域を形成するための燃焼空気導入用のスリットを有するコーン状部材が配置されている。   Therefore, in order to improve the combustion stability and ignition characteristics of the diffusion combustion type combustor, a swirler that provides swirl components to the combustion air is provided near the axial center of the upstream portion of the combustor, and liquid fuel is disposed in the vicinity of the swirler. In addition, there is a fuel nozzle that injects gaseous fuel (see Patent Document 1). In this technique, a cone-shaped member having a slit for introducing combustion air for forming a low flow rate circulation region of combustion gas is disposed on the outer peripheral side of the swirler.

特開2005−226849号公報JP 2005-226849 A

ガスタービン燃焼器では、近年の地球環境保護の観点から、排ガス中に含まれる窒素酸化物(以下、NOxと記載する)の排出量低減、そして液体燃料焚きの場合に生じる煤塵発生量の低減が急務である。しかしながら、上記特許文献1の記載技術では、旋回器から噴出する空気流が燃焼場の中心に向かうようにしてあるため、火炎の形成される位置で燃焼空気に対する燃料割合が高くなり、局部的な高温領域の発生によってNOx排出量や煤塵の発生が十分に抑えられない場合があった。   In the gas turbine combustor, from the viewpoint of protecting the global environment in recent years, the emission amount of nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas is reduced, and the generation amount of dust generated when liquid fuel is burned is reduced. There is an urgent need. However, in the technique described in Patent Document 1, since the air flow ejected from the swirler is directed toward the center of the combustion field, the fuel ratio to the combustion air is increased at the position where the flame is formed, and is localized. Occurrence of NOx emissions and dust generation may not be sufficiently suppressed due to generation of a high temperature region.

そこで本発明は、気体燃料及び液体燃料の少なくとも一方を燃焼した場合のNOx排出量を低減することができる拡散燃焼式ガスタービン燃焼器を提供することを目的とする。   Accordingly, an object of the present invention is to provide a diffusion combustion type gas turbine combustor capable of reducing NOx emission when at least one of gaseous fuel and liquid fuel is burned.

上記目的を達成するために、本発明の拡散燃焼式ガスタービン燃焼器は、圧縮機からの燃焼空気を燃料と混合して燃焼する内筒と、前記内筒の軸心線上の上流側位置に設けられ、液体燃料を微粒化し前記内筒内に噴射する液体燃料ノズルと、前記液体燃料ノズルの外周側に位置する空気流路を有し前記内筒内に噴出する燃焼空気に旋回成分を付与する旋回器と、前記旋回器の空気流路に向かって気体燃料を噴射する複数の気体燃料ノズルと、前記旋回器の外周側に設けられ、前記内筒の中心側に向かう燃焼空気の流れを形成する複数の空気導入用スリットを有し、前記複数の空気導入用スリットから噴出する空気流によって前記旋回器の外周側に低速循環流領域を形成するコーン状部材とを備え、前記旋回器から前記内筒内に噴出する気体燃料及び燃焼空気の混合気が前記低速循環流領域を形成する燃焼空気と混合するように、前記内筒の軸心線を含む断面で見たときに前記空気流路が前記内筒の軸心線と平行か軸心線に対し下流側に向かって外周側に傾斜していることを特徴とする。
In order to achieve the above object, a diffusion combustion type gas turbine combustor according to the present invention includes an inner cylinder that burns combustion air from a compressor mixed with fuel, and an upstream position on an axial center line of the inner cylinder. A liquid fuel nozzle that is provided and atomizes the liquid fuel and injects it into the inner cylinder, and an air flow path located on the outer peripheral side of the liquid fuel nozzle and imparts a swirl component to the combustion air that is injected into the inner cylinder A swirler, a plurality of gaseous fuel nozzles for injecting gaseous fuel toward the air flow path of the swirler, and a flow of combustion air that is provided on the outer peripheral side of the swirler and toward the center side of the inner cylinder A cone-shaped member that has a plurality of air introduction slits to be formed, and that forms a low-speed circulation flow region on the outer peripheral side of the swirler by an air flow ejected from the plurality of air introduction slits; gas fuel jetted into said inner cylinder And as the air-fuel mixture in the combustion air is mixed with combustion air to form the low-speed circulation flow region, the axial line of the air passage within the cylinder when viewed in cross section including the axial line of the inner tube Or inclined toward the outer peripheral side toward the downstream side with respect to the axial center line.

本発明によれば、拡散燃焼式ガスタービン燃焼器において気体燃料及び液体燃料の少なくとも一方を燃焼した場合のNOx排出量を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, NOx emission amount at the time of combusting at least one of gaseous fuel and liquid fuel in a diffusion combustion type gas turbine combustor can be reduced.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第1の実施の形態>
図1は本発明の第1の実施の形態に係るガスタービン燃焼器を備えたガスタービンプラントの概略構成図である。以下の説明において、上流・下流と記載した場合には、燃焼ガスの流れ方向の上流・下流を指すものとする。
<First Embodiment>
FIG. 1 is a schematic configuration diagram of a gas turbine plant including a gas turbine combustor according to a first embodiment of the present invention. In the following description, the term “upstream / downstream” refers to upstream / downstream in the flow direction of the combustion gas.

図1に示したガスタービンプラントは、主として、空気を圧縮して高圧の燃焼用空気を生成する圧縮機1、圧縮機1から導入される燃焼空気13と燃料とを混合して燃焼ガス14を生成する拡散燃焼式のガスタービン燃焼器(以下、単に燃焼器と記載)3、及び燃焼器3で生成された燃焼ガス14が導入されるタービン2を備えている。圧縮機1とタービン2の軸は連結されている。   The gas turbine plant shown in FIG. 1 mainly compresses air to produce high-pressure combustion air, and mixes combustion air 13 introduced from the compressor 1 and fuel to produce combustion gas 14. A diffusion combustion type gas turbine combustor (hereinafter simply referred to as a combustor) 3 to be generated and a turbine 2 into which a combustion gas 14 generated by the combustor 3 is introduced are provided. The shafts of the compressor 1 and the turbine 2 are connected.

燃焼器3は、燃焼室を形成し圧縮機からの燃焼空気13を燃料16,17と混合・燃焼して燃焼ガスを生成する内筒7、内筒7で生成した燃焼ガス14をタービン2に導くためのトランジションピース8、燃料供給圧力を高くして液体燃料17を微粒化し内筒7内に噴射する圧力噴霧式(1流体噴霧式)の液体燃料ノズル12、気体燃料16を噴射する気体燃料ノズル15、燃焼空気13に旋回成分を付与する旋回器11、燃焼空気13を噴射するためのスリット(後述)を有する内筒キャップ10、及び燃焼器3を点火させるための点火栓9を、外筒5とエンドカバー6とで密閉した構成となっている。   The combustor 3 forms a combustion chamber and mixes and burns combustion air 13 from the compressor with fuels 16 and 17 to generate combustion gas, and the combustion gas 14 generated by the inner cylinder 7 is supplied to the turbine 2. A transition piece 8 for guiding, a pressure spray type (one fluid spray type) liquid fuel nozzle 12 for atomizing the liquid fuel 17 by increasing the fuel supply pressure and injecting it into the inner cylinder 7, and a gaseous fuel for injecting the gaseous fuel 16 A nozzle 15, a swirler 11 that imparts a swirl component to the combustion air 13, an inner cylinder cap 10 having a slit (described later) for injecting the combustion air 13, and an ignition plug 9 for igniting the combustor 3 are externally provided. The cylinder 5 and the end cover 6 are hermetically sealed.

燃焼器3は、気体燃料16と液体燃料17の双方を燃焼可能なデュアルタイプの燃焼器であり、気体燃料16のみを燃焼させての運転、液体燃料17のみを燃焼させての運転、両燃料16,17を同時に燃焼させての運転のいずれも可能である。   The combustor 3 is a dual-type combustor capable of combusting both the gaseous fuel 16 and the liquid fuel 17. The combustor 3 operates by burning only the gaseous fuel 16, operates by burning only the liquid fuel 17, and both fuels. Any of the operations by burning 16 and 17 at the same time is possible.

圧縮機1から吐出された燃焼空気13は、外筒5・内筒7・トランジションピース8で画定される環状の空気流路を通り、内筒7の外周部壁面に設けた図示しない燃焼孔や冷却孔、内筒キャップ10に設けたスリット孔(図2で後述するスリット孔23)、旋回器11に設けた旋回器空気孔(図2で後述する空気孔19,20)等から内筒7内に導入されて燃料16,17と混ざり合い、この燃焼用空気13と燃料16,17の混合気が内筒7内で点火栓9により点火されて燃焼する。燃焼によって生成した燃焼ガス14は、トランジションピース8を介しタービン2に噴射されてタービン2を駆動する。タービン2で得られた回転動力は、同軸上に連結された発電機4を駆動して電気エネルギーに変換されるとともに、圧縮機1の回転動力としても利用される。   The combustion air 13 discharged from the compressor 1 passes through an annular air flow path defined by the outer cylinder 5, the inner cylinder 7, and the transition piece 8, and combustion holes (not shown) provided on the outer peripheral wall surface of the inner cylinder 7 The inner cylinder 7 includes a cooling hole, a slit hole provided in the inner cylinder cap 10 (a slit hole 23 described later in FIG. 2), a swirler air hole provided in the swirler 11 (air holes 19 and 20 described later in FIG. 2), and the like. It is introduced into the fuel and mixes with the fuels 16 and 17, and the air-fuel mixture of the combustion air 13 and the fuels 16 and 17 is ignited and burned in the inner cylinder 7 by the spark plug 9. The combustion gas 14 generated by the combustion is injected into the turbine 2 through the transition piece 8 to drive the turbine 2. The rotational power obtained by the turbine 2 is converted into electric energy by driving the generator 4 connected coaxially, and is also used as rotational power for the compressor 1.

図2は燃焼器3の旋回器11及びその周囲の構成を表す側断面図である。   FIG. 2 is a side sectional view showing the configuration of the swirler 11 of the combustor 3 and its surroundings.

図2に示したように、液体燃料ノズル12は、内筒7の軸心線X上の上流位置(つまり図2中の左側)に配設されている。液体燃料ノズル12から噴射された液体燃料17は円錐状の燃料噴霧領域18を形成する。   As shown in FIG. 2, the liquid fuel nozzle 12 is disposed at an upstream position on the axis X of the inner cylinder 7 (that is, the left side in FIG. 2). The liquid fuel 17 injected from the liquid fuel nozzle 12 forms a conical fuel spray region 18.

内筒7の外周部壁面には、内筒7と外筒5の間の環状流路からの燃焼空気13を内筒7内に導入する燃焼孔24が複数設けられている。   A plurality of combustion holes 24 for introducing the combustion air 13 from the annular flow path between the inner cylinder 7 and the outer cylinder 5 into the inner cylinder 7 are provided on the outer peripheral wall surface of the inner cylinder 7.

内筒キャップ10は、旋回器11の外周側に設けたコーン状の部材であり、その内壁面に沿って内筒7の中心側に向かう燃焼空気13の流れを形成する空気導入用のスリット孔23を複数有している。内筒キャップ10の上流側には、燃焼空気13を導入する多孔板21が設置されており、多孔板21を通過した燃焼空気13が内筒キャップ10のスリット孔23から内筒7内に噴出する。内筒キャップ10のスリット孔23から噴出した燃焼空気13の空気流は、旋回器11の外周側で内筒キャップ10の下流側の領域における内筒キャップ10の内壁面の近傍領域に低速の循環流100を形成する。   The inner cylinder cap 10 is a cone-shaped member provided on the outer peripheral side of the swirler 11, and is a slit hole for air introduction that forms a flow of combustion air 13 toward the center side of the inner cylinder 7 along the inner wall surface thereof. A plurality of 23 are provided. A porous plate 21 for introducing combustion air 13 is installed on the upstream side of the inner cylinder cap 10, and the combustion air 13 that has passed through the porous plate 21 is ejected into the inner cylinder 7 from the slit hole 23 of the inner cylinder cap 10. To do. The air flow of the combustion air 13 ejected from the slit hole 23 of the inner cylinder cap 10 is circulated at a low speed in a region near the inner wall surface of the inner cylinder cap 10 in the region on the outer peripheral side of the swirler 11 and downstream of the inner cylinder cap 10. A stream 100 is formed.

旋回器11は、液体燃料ノズル12の外周側に環状に配置された複数の外周側空気孔19、及び複数の外周側空気孔19と液体燃料ノズル12の間に外周側空気孔19と概略同心の環状に配置された複数の内周側空気孔20を有している。これら2列の空気孔19,20は、軸心線Xから見ると、下流側(つまり図2中右側)に向かって内筒7の周方向の一方側にそれぞれ傾斜しているため、空気孔19,20から内筒7内に噴出する燃焼空気13には旋回成分が付与される。本実施の形態における気体燃料ノズル15は、各外周側空気孔19に向かって気体燃料16をそれぞれ噴射する複数の燃料噴射孔を有している。空気孔19,20の断面形状(孔の軸心線と直角な断面)は略円形である。   The swirler 11 has a plurality of outer peripheral air holes 19 arranged in an annular shape on the outer peripheral side of the liquid fuel nozzle 12, and the outer peripheral air holes 19 are substantially concentric between the plurality of outer air holes 19 and the liquid fuel nozzle 12. The plurality of inner peripheral air holes 20 are arranged in an annular shape. Since these two rows of air holes 19 and 20 are inclined to one side in the circumferential direction of the inner cylinder 7 toward the downstream side (that is, the right side in FIG. 2) when viewed from the axis X, the air holes A swirling component is imparted to the combustion air 13 that is jetted into the inner cylinder 7 from 19 and 20. The gaseous fuel nozzle 15 in the present embodiment has a plurality of fuel injection holes for injecting the gaseous fuel 16 toward the respective outer peripheral side air holes 19. The cross-sectional shape of the air holes 19 and 20 (cross section perpendicular to the axial center line of the holes) is substantially circular.

このとき、外周側空気孔19は、気体燃料16の拡散に主に寄与する空気流を形成する空気孔であり、そこから内筒7内に噴出する燃焼空気13が前出の循環流100を形成する燃焼空気13と積極的に混合するように、それぞれ内筒7の軸心線Xを含む断面で見た場合に軸心線Xと平行になっている。一方、各内周側空気孔20は、液体燃料17の拡散に主に寄与する空気流を形成する空気孔であり、同様に内筒7の軸心線Xを含む断面で見た場合に、それぞれ軸心線Xに対し下流側に向かって内筒7の内周側(軸心線X側)に角度αで傾斜している。   At this time, the outer peripheral air hole 19 is an air hole that mainly forms an air flow that contributes to the diffusion of the gaseous fuel 16, and the combustion air 13 that is jetted into the inner cylinder 7 from the above-described circulation flow 100. Each of the inner cylinders 7 is parallel to the axis X when viewed in a cross section including the axis X of the inner cylinder 7 so as to be actively mixed with the combustion air 13 to be formed. On the other hand, each inner peripheral air hole 20 is an air hole that forms an air flow that mainly contributes to the diffusion of the liquid fuel 17, and similarly when viewed in a cross section including the axial line X of the inner cylinder 7, Each is inclined at an angle α toward the inner peripheral side (axial center line X side) of the inner cylinder 7 toward the downstream side with respect to the axial center line X.

なお、旋回器11は、液体燃料ノズル12の外周側に位置する空気流路を有するものであるが、この空気流路は図示したような空気孔19,20に限らず、液体燃料ノズル12の外側に位置する環状の空気流路に代えることもできる。環状の空気流路中には旋回羽根が配置され、この旋回羽根が周方向に傾斜することにより流通する燃焼空気に旋回成分が付与される。本実施の形態では、例えば外周側空気孔19をこうした旋回羽根付きの空気流路に代える場合、その空気流路を上記内筒7の軸心線Xを含む断面で見たときに軸心線Xと平行に形成する。或いは、後の実施の形態(図5等)のように軸心線Xに対し下流側に向かって外周側に傾斜させる構成とすることもできる。一方、内周側空気孔20をこの種の空気流路に代える場合、内周側空気孔20と同様に、軸心線Xに対し下流側に向かって内筒7の内周側(軸心線X側)に角度αで傾斜させる。   The swirler 11 has an air flow path located on the outer peripheral side of the liquid fuel nozzle 12, but this air flow path is not limited to the air holes 19, 20 as shown, and the liquid fuel nozzle 12 It can also replace with the annular air flow path located outside. A swirl vane is disposed in the annular air flow path, and a swirl component is imparted to the combustion air that circulates when the swirl vane is inclined in the circumferential direction. In the present embodiment, for example, when the air hole 19 on the outer peripheral side is replaced with such an air flow path with swirl vanes, when the air flow path is viewed in a cross section including the axial center line X of the inner cylinder 7, the axial center line is obtained. Form parallel to X. Or it can also be set as the structure which inclines to an outer peripheral side toward the downstream with respect to the axial center line X like subsequent embodiment (FIG. 5 etc.). On the other hand, when the inner circumferential air hole 20 is replaced with this type of air flow path, the inner circumferential side (axial center of the inner cylinder 7 toward the downstream side with respect to the axial center line X is the same as the inner circumferential air hole 20. Inclined to the line X side) at an angle α.

ここで、図3は比較例を例示した側断面図である。図3において図2と同様の役割を果たす部分には同符号を付して説明を省略する。   Here, FIG. 3 is a side sectional view illustrating a comparative example. In FIG. 3, parts having the same functions as those in FIG.

図3に例示した比較例は、本実施の形態のガスタービン燃焼器3の旋回器11と気体燃料ノズル15を、旋回器11’と気体燃料ノズル26に変更してある。旋回器11’には、下流側に向かって軸心線X側に角度γで傾斜した旋回器空気孔25が設けられており、その流路側壁面には気体燃料ノズル26が接続している。   In the comparative example illustrated in FIG. 3, the swirler 11 and the gaseous fuel nozzle 15 of the gas turbine combustor 3 of the present embodiment are changed to a swirler 11 ′ and a gaseous fuel nozzle 26. The swirler 11 ′ is provided with a swirler air hole 25 inclined at an angle γ toward the axial center line X toward the downstream side, and a gaseous fuel nozzle 26 is connected to the side wall surface of the flow path.

この比較例の場合、内筒7に設けた燃焼孔24、内筒キャップ10に設けたスリット孔23、及び旋回器空気孔25から燃焼空気13が内筒7内に噴出する。内筒キャップ10のスリット孔23から噴出した燃焼空気13は低速の循環流100を形成し、旋回器空気孔25から噴出する燃焼空気13は内筒7の軸心線Xに向かい更に旋回の作用により循環流104を形成する。気体燃料ノズル26や液体燃料ノズル12から噴出した燃料16,17は旋回器空気孔25から噴出した燃焼空気13と混合・燃焼し、循環流104によってその火炎が保持される。循環流100はこの火炎を安定化する。   In the case of this comparative example, combustion air 13 is jetted into the inner cylinder 7 from the combustion hole 24 provided in the inner cylinder 7, the slit hole 23 provided in the inner cylinder cap 10, and the swirler air hole 25. The combustion air 13 ejected from the slit hole 23 of the inner cylinder cap 10 forms a low-speed circulation flow 100, and the combustion air 13 ejected from the swirler air hole 25 moves toward the axis X of the inner cylinder 7 and further swirls. Thus, a circulating flow 104 is formed. The fuels 16 and 17 ejected from the gaseous fuel nozzle 26 and the liquid fuel nozzle 12 are mixed and combusted with the combustion air 13 ejected from the swirler air hole 25, and the flame is held by the circulating flow 104. Circulating flow 100 stabilizes this flame.

しかしながら、この比較例では、旋回器空気孔25から径方向内向きに噴射される燃焼空気13により火炎の広がりが抑制され、火炎が形成される位置で燃焼空気13に対する燃料割合が高くなる。そのため、局部的な高温領域が発生することがあり、NOx排出量や液体燃料燃焼時の煤塵の発生量が十分に抑えられない場合が生じる可能性があった。   However, in this comparative example, the spread of the flame is suppressed by the combustion air 13 injected inward in the radial direction from the swirler air hole 25, and the fuel ratio to the combustion air 13 is increased at the position where the flame is formed. Therefore, a local high temperature region may occur, and there may be a case where the amount of NOx emission and the amount of dust generated during liquid fuel combustion cannot be sufficiently suppressed.

それに対し、本実施の形態の場合、内筒7に設けた燃焼孔24、内筒キャップ10のスリット孔23、旋回器空気孔19,20から燃焼空気13が内筒7内に噴出する。内筒キャップ10から噴出する燃焼空気13は、低速の循環流100を形成し火炎を安定化させる。そして、液体燃料用の内周側空気孔20から噴出した燃焼空気13は、内筒7の軸心線Xに向かって噴出し、その後、旋回の作用で循環流102を形成する。また、気体燃料用の外周側空気孔19から噴出した燃焼空気13は、旋回の作用により下流側に向かって拡大して循環流101を形成する。   On the other hand, in the case of the present embodiment, the combustion air 13 is jetted into the inner cylinder 7 from the combustion hole 24 provided in the inner cylinder 7, the slit hole 23 of the inner cylinder cap 10, and the swirler air holes 19 and 20. The combustion air 13 ejected from the inner cylinder cap 10 forms a low-speed circulation flow 100 and stabilizes the flame. The combustion air 13 ejected from the inner peripheral air hole 20 for liquid fuel is ejected toward the axial center line X of the inner cylinder 7 and then forms a circulation flow 102 by the swirling action. Further, the combustion air 13 ejected from the outer peripheral side air hole 19 for the gaseous fuel expands toward the downstream side due to the swirling action to form a circulating flow 101.

このように、本実施の形態によれば、気体燃料ノズル15から旋回器11の外周側空気孔19に向かって噴射された気体燃料16は、外周側空気孔19の内部で燃焼空気13と混ざり合いながら内筒7内に噴出する。外周側空気孔19から噴出する気体燃料16と燃焼空気13の混合気は、旋回の作用による遠心力を受けて下流側に向かって拡径し内筒キャップ10の付近に渦巻く低速の循環流100に向かい、循環流100を形成する燃焼空気13とさらに混合される。そのため、図3の比較例に比べても、火炎形成位置での燃焼空気13に対する燃料の割合が低下するとともに気体燃料16と燃焼空気13の混合が促進され、局所的な高温領域の発生を抑制することができるので、NOx排出量を低減させることができる。   Thus, according to the present embodiment, the gaseous fuel 16 injected from the gaseous fuel nozzle 15 toward the outer peripheral air hole 19 of the swirler 11 is mixed with the combustion air 13 inside the outer peripheral air hole 19. It spouts into the inner cylinder 7 while fitting. The mixture of the gaseous fuel 16 and the combustion air 13 ejected from the outer peripheral side air hole 19 receives a centrifugal force due to the swirling action, expands the diameter toward the downstream side, and swirls in the vicinity of the inner cylinder cap 10. And is further mixed with the combustion air 13 forming the circulating flow 100. Therefore, as compared with the comparative example of FIG. 3, the ratio of the fuel to the combustion air 13 at the flame forming position is reduced, and the mixing of the gaseous fuel 16 and the combustion air 13 is promoted, thereby suppressing the occurrence of a local high temperature region. Therefore, the NOx emission amount can be reduced.

また、液体燃料ノズル12から噴射された燃料噴霧領域18の外周側の液体燃料17の液滴も、外周側空気孔19からの循環流101に随伴することで、内筒キャップ10からの循環流100に向かい、燃料液滴がより微粒化され燃焼空気13との混合が促進される。これにより、NOx・煤塵の排出量を低減させることができる。さらには、旋回器11に設けた液体燃料用の内周側空気孔20から噴出する循環流102が、燃料噴霧領域18の内部に向かうため、燃料噴霧領域18の内部に積極的に燃焼空気13が取り込まれることで、燃料噴霧領域18をより多くの燃焼空気13と混合することができ、これによっても、燃料の希薄化によるNOx排出量の低減、燃料の微粒化・酸化反応促進による煤塵排出量の低減の効果が得られる。   Further, the liquid fuel 17 droplets on the outer peripheral side of the fuel spray region 18 injected from the liquid fuel nozzle 12 also accompany the circulating flow 101 from the outer peripheral air hole 19, thereby circulating the liquid from the inner cylinder cap 10. Toward 100, the fuel droplets are further atomized and mixing with the combustion air 13 is promoted. Thereby, the discharge amount of NOx / dust can be reduced. Furthermore, since the circulating flow 102 ejected from the inner peripheral air hole 20 for liquid fuel provided in the swirler 11 is directed to the inside of the fuel spray region 18, the combustion air 13 is positively introduced into the fuel spray region 18. As a result, the fuel spray region 18 can be mixed with a larger amount of the combustion air 13, which also reduces the NOx emission due to the dilution of the fuel and the dust emission due to the atomization of the fuel and the promotion of the oxidation reaction. The effect of reducing the amount is obtained.

このように、本実施の形態のガスタービン燃焼器によれば、気体燃料ノズル15及び液体燃料ノズル12から噴射した燃料16,17は、旋回器空気孔19,20から噴出する燃焼空気13の循環流101,102と一次混合され、その後さらに、内筒キャップ10から噴出する燃焼空気13の循環流100と二次混合されて燃焼するため、燃料過濃領域の発生が抑制され、局部的な高温領域の発生が抑制されるので、NOx排出量・煤塵発生量を低減させることができる。   Thus, according to the gas turbine combustor of the present embodiment, the fuels 16 and 17 injected from the gaseous fuel nozzle 15 and the liquid fuel nozzle 12 circulate the combustion air 13 ejected from the swirler air holes 19 and 20. Since it is first mixed with the streams 101 and 102 and then further mixed with the circulating flow 100 of the combustion air 13 ejected from the inner cylinder cap 10 and burned, the generation of the fuel rich region is suppressed, and the local high temperature Since the generation of the region is suppressed, the NOx emission amount / dust generation amount can be reduced.

さらに、予混合燃焼方式を採用した場合に比べて拡散燃焼方式を採用している本実施の形態の燃焼器3は構造が簡単で製作し易く低廉であることも大きなメリットである。さらには、圧力噴射式の液体燃料ノズル12を用いているので、空気流で剪断して液体燃料を微粒化する空気噴霧式(2流体噴霧式)の液体燃料ノズルを採用した場合に比べて作動流体以外の用途に消費される圧縮空気量が減少し、ガスタービンプラントの効率向上にも寄与する。   Furthermore, the combustor 3 according to the present embodiment adopting the diffusion combustion method as compared with the case where the premixed combustion method is adopted has a great merit in that the structure is simple, easy to manufacture, and inexpensive. Furthermore, since the pressure injection type liquid fuel nozzle 12 is used, it operates in comparison with the case where an air spray type (two-fluid spray type) liquid fuel nozzle that shears with an air flow to atomize the liquid fuel is employed. The amount of compressed air consumed for applications other than fluids is reduced, contributing to improved efficiency of the gas turbine plant.

また、燃料の微粒化に空気等の二次媒体を用いない圧力噴霧式の液体燃料ノズルは、液体燃料に強力な旋回を付与するので粒径の大きな燃料液滴が燃料噴霧領域の外周側に集中し易い。また、二次媒体で剪断して液体燃料を微粒化する空気噴霧式の液体燃料ノズルに比べて燃料液滴の粒径が傾向として大きい。   In addition, the pressure spray type liquid fuel nozzle that does not use a secondary medium such as air for atomizing the fuel imparts a powerful swirl to the liquid fuel, so that large droplets of fuel droplets are placed on the outer periphery of the fuel spray region. Easy to concentrate. In addition, the particle size of the fuel droplets tends to be larger than that of an air spray type liquid fuel nozzle that atomizes the liquid fuel by shearing with a secondary medium.

圧力噴霧方式の液体燃料ノズルにはこのような特性が伴われるが、本実施の形態の場合、圧力噴霧方式の液体燃料ノズルを採用しても、粒径の大きな燃料液滴が集中し易い燃料噴霧領域18の外周側の部分は、外周側空気孔19から噴出した循環流101と内筒キャップ10からの循環流100によって更に微粒化され燃焼空気との混合が促進されるので、燃料の酸化反応を促進することができ、空気噴霧式の液体燃料ノズルを用いる場合に比べても、NOx・煤塵の低減効果が一層顕著となる。   The pressure spray type liquid fuel nozzle has such characteristics. In the case of the present embodiment, even if the pressure spray type liquid fuel nozzle is adopted, the fuel droplets having large particle diameters tend to concentrate. The portion on the outer peripheral side of the spray region 18 is further atomized by the circulating flow 101 ejected from the outer peripheral air hole 19 and the circulating flow 100 from the inner cylinder cap 10 to promote mixing with the combustion air. The reaction can be promoted, and the NOx / dust reduction effect becomes even more prominent as compared to the case of using an air spray type liquid fuel nozzle.

また、図4は燃焼器点火時の火炎の状態を示したもので、図4(a)は本実施の形態のガスタービン燃焼器の側断面図、図4(b)は図3の比較例のガスタービン燃焼器の側断面図である。   FIG. 4 shows the state of the flame when the combustor is ignited. FIG. 4A is a side sectional view of the gas turbine combustor of the present embodiment, and FIG. 4B is a comparative example of FIG. It is a sectional side view of the gas turbine combustor.

燃焼器3は、内筒7の外周部壁面から挿入される点火栓9のスパークによって点火される。圧縮機1の周囲に複数の燃焼器3が設置される場合には、点火栓9を設置した燃焼器3の内筒7aと、点火栓9が設置されない隣接する燃焼器3の内筒7bを火炎伝播管29で連絡し、燃焼ガス14の授受によって点火させる火炎伝播によって点火栓9を持たない燃焼器3の点火操作を行う。火炎伝播とは、点火栓9を設置した燃焼器3を点火栓9で点火することで、隣接する未点火燃焼器との間に生じる圧力差により、点火した燃焼器3から火炎伝播管29を介して隣の未点火燃焼器に燃焼ガス14を流入させ、流入した燃焼ガス14によって未点火の燃焼器を点火させることである。このような点火動作の点火特性を向上させるには、火炎伝播管29が接続する内筒7bの火炎伝播孔27や点火栓9の近傍に可燃混合気が存在していることが重要となる。   The combustor 3 is ignited by the spark of the spark plug 9 inserted from the outer peripheral wall surface of the inner cylinder 7. When a plurality of combustors 3 are installed around the compressor 1, the inner cylinder 7 a of the combustor 3 in which the ignition plug 9 is installed and the inner cylinder 7 b of the adjacent combustor 3 in which the ignition plug 9 is not installed are provided. An ignition operation of the combustor 3 having no ignition plug 9 is performed by flame propagation that is communicated by the flame propagation tube 29 and ignited by the exchange of the combustion gas 14. The flame propagation means that the combustor 3 in which the ignition plug 9 is installed is ignited by the ignition plug 9, and the flame propagation tube 29 is moved from the ignited combustor 3 by the pressure difference generated between the adjacent unignited combustors. The combustion gas 14 is caused to flow into the adjacent unignited combustor, and the unignited combustor is ignited by the introduced combustion gas 14. In order to improve the ignition characteristics of such an ignition operation, it is important that a combustible air-fuel mixture exists in the vicinity of the flame propagation hole 27 and the spark plug 9 of the inner cylinder 7b to which the flame propagation tube 29 is connected.

図4(b)の比較例の場合、旋回器11’からの燃焼空気13は内筒7aの軸心線Xに向かって噴出するため、燃料と空気の混合気や火炎28が径方向外側に広がらず、燃焼器軸中心Xの近傍に集中し易い。それに対し、本実施の形態の場合、外周側空気孔19からの燃焼空気13が内筒7aの内壁面側に向かって噴出する効果により、図4(a)に示したように燃料と空気の混合気や火炎28を径方向外側に広げることができ、火炎伝播孔27や点火栓9に混合気や火炎28が近付くので図4(b)に比べて点火特性を向上させることができる。   In the case of the comparative example of FIG. 4B, the combustion air 13 from the swirler 11 ′ is ejected toward the axial center line X of the inner cylinder 7a, so that the fuel / air mixture and the flame 28 are radially outward. It does not spread and tends to concentrate in the vicinity of the combustor shaft center X. On the other hand, in the case of the present embodiment, due to the effect that the combustion air 13 from the outer peripheral side air hole 19 is ejected toward the inner wall surface side of the inner cylinder 7a, as shown in FIG. The air-fuel mixture and the flame 28 can be spread radially outward, and the air-fuel mixture and the flame 28 come close to the flame propagation hole 27 and the spark plug 9, so that the ignition characteristics can be improved as compared with FIG.

<第2の実施の形態>
図5は本発明の第2の実施の形態に係るガスタービン燃焼器の旋回器及びその周囲の構成を表す側断面図である。第1の実施の形態と同様の部分及び同様の役割を果たす部分には同符号を付して説明を省略する。
<Second Embodiment>
FIG. 5 is a side cross-sectional view showing a configuration of a swirler of a gas turbine combustor according to the second embodiment of the present invention and its surroundings. Parts that are the same as those in the first embodiment and parts that play the same role are denoted by the same reference numerals and description thereof is omitted.

本実施の形態では、旋回器11に設けた外周側空気孔30から内筒7内に噴出する燃焼空気13が循環流100を形成する燃焼空気13と混合し易いように、内筒7の軸心線Xを含む断面で見た場合に外周側空気孔30が内筒7の軸心線に対し下流側に向かって外周側に角度βで傾斜している。その他の構成は第1の実施の形態と同様である。   In the present embodiment, the shaft of the inner cylinder 7 is arranged so that the combustion air 13 ejected into the inner cylinder 7 from the outer peripheral air hole 30 provided in the swirler 11 can be easily mixed with the combustion air 13 forming the circulation flow 100. When viewed in a cross section including the core X, the outer peripheral air hole 30 is inclined toward the outer peripheral side at an angle β toward the downstream side with respect to the axial center line of the inner cylinder 7. Other configurations are the same as those of the first embodiment.

かかる構成の本実施の形態によれば、外周側空気孔30から噴出する燃焼空気13が第1の実施の形態と比較して外周側に更に拡径し易く、内筒キャップ10から噴出する燃焼空気13と燃料16,17との更なる混合促進、ひいてはNOxや煤塵の排出量の更なる低減効果が期待できる。また、第1の実施の形態に比べて燃料16,17と燃焼空気13の混合気や火炎の更なる拡径効果が期待できるので、燃焼器3の点火特性の更なる向上も期待される。   According to the present embodiment having such a configuration, the combustion air 13 ejected from the outer peripheral air hole 30 is more easily expanded to the outer peripheral side as compared with the first embodiment, and the combustion ejected from the inner cylinder cap 10. Further promotion of mixing of the air 13 and the fuels 16, 17 can be expected, and as a result, a further reduction effect of NOx and dust emission can be expected. Further, since a further diameter expansion effect of the air-fuel mixture and flame of the fuels 16 and 17 and the combustion air 13 can be expected as compared with the first embodiment, further improvement of the ignition characteristics of the combustor 3 is expected.

<第3の実施の形態>
図6は本発明の第3の実施の形態に係るガスタービン燃焼器の旋回器及びその周囲の構成を表す側断面図である。第1の実施の形態と同様の部分及び同様の役割を果たす部分には同符号を付して説明を省略する。
<Third Embodiment>
FIG. 6 is a side sectional view showing a swirler of a gas turbine combustor according to the third embodiment of the present invention and the surrounding configuration. Parts that are the same as those in the first embodiment and parts that play the same role are denoted by the same reference numerals and description thereof is omitted.

本実施の形態では、旋回器11の内周側空気孔20と外周側空気孔19のいずれにも気体燃料16が噴射されるように、気体燃料ノズル15に加え、内周側空気孔20のそれぞれに向かって気体燃料16を噴出する複数の気体燃料ノズル31が追加されている。外周側気体燃料ノズル15と内周側気体燃料ノズル31の燃料供給系統は共用であるが、別系統にしても構わない。外周側空気孔19は第2の実施の形態のように外側に傾斜していても良い。その他の構成は第1の実施の形態と同様である。   In the present embodiment, in addition to the gaseous fuel nozzle 15, the inner circumferential air hole 20 is provided so that the gaseous fuel 16 is injected into both the inner circumferential air hole 20 and the outer circumferential air hole 19 of the swirler 11. A plurality of gaseous fuel nozzles 31 for ejecting the gaseous fuel 16 toward each of them are added. The fuel supply system of the outer peripheral side gas fuel nozzle 15 and the inner peripheral side gas fuel nozzle 31 is shared, but may be a separate system. The outer peripheral side air hole 19 may be inclined outward as in the second embodiment. Other configurations are the same as those of the first embodiment.

かかる構成の本実施の形態によれば、第1の実施の形態と同様の効果に加え、内周側気体燃料ノズル31が追加されて燃料噴射孔数が増加したことにより、気体燃料16を分散させることができる。また、外周側空気孔19・内周側空気孔20の双方から気体燃料16と燃焼空気13の混合気が噴出することで、既述の実施の形態に比べて気体燃料16の更なる希薄化、ひいては気体燃料焚きのNOx排出量の更なる低減効果を期待することができる。   According to this embodiment having such a configuration, in addition to the same effects as those of the first embodiment, the gas fuel 16 is dispersed by adding the inner peripheral side gas fuel nozzle 31 and increasing the number of fuel injection holes. Can be made. Further, the gas mixture of the gaseous fuel 16 and the combustion air 13 is ejected from both the outer peripheral side air hole 19 and the inner peripheral side air hole 20, so that the gaseous fuel 16 is further diluted as compared with the above-described embodiment. As a result, it is possible to expect further reduction effect of the NOx emission amount of the gaseous fuel burning.

<第4の実施の形態>
図7は本発明の第4の実施の形態に係るガスタービン燃焼器の構成図であり、図7(a)は旋回器及びその周囲の構成を表す側断面図、図7(b)は図7(a)のA−A矢視図、図7(c)は図7(b)のB−B断面図である。これらの図において、第1の実施の形態と同様の部分及び同様の役割を果たす部分には同符号を付して説明を省略する。
<Fourth embodiment>
FIG. 7 is a configuration diagram of a gas turbine combustor according to a fourth embodiment of the present invention. FIG. 7A is a side sectional view showing a configuration of a swirler and its surroundings, and FIG. FIG. 7A is a cross-sectional view taken along line AA in FIG. 7A, and FIG. 7C is a cross-sectional view taken along line BB in FIG. In these drawings, the same parts as those in the first embodiment and the parts having the same functions are denoted by the same reference numerals and the description thereof is omitted.

本実施の形態における気体燃料ノズル32の燃料噴射孔は、旋回器11の外周側空気孔19から内筒7内に噴出する燃焼空気13と略同軸方向に気体燃料16が噴出するように外周側空気孔19の穿設方向に合わせて傾斜して穿設されている。つまり、図7(c)に示したように、気体燃料ノズル32は、旋回器11の外周側空気孔19に向かって噴射する気体燃料16が外周側空気孔19から噴出する燃焼空気13と概略同軸の噴流となるように、その燃料噴射孔の軸心線が外周側空気孔19の軸心線Yと概略一致している。気体燃料ノズル32の燃料噴射孔や空気孔19,20の断面形状(孔の軸心線と直角な断面)は略円形である。その他の構成は第1の実施の形態と同様である。   The fuel injection hole of the gaseous fuel nozzle 32 in the present embodiment is arranged on the outer peripheral side so that the gaseous fuel 16 is ejected in a direction substantially coaxial with the combustion air 13 ejected from the outer peripheral side air hole 19 of the swirler 11 into the inner cylinder 7. The air holes 19 are formed so as to be inclined in accordance with the direction in which the air holes 19 are formed. That is, as shown in FIG. 7C, the gaseous fuel nozzle 32 is roughly the same as the combustion air 13 in which the gaseous fuel 16 injected toward the outer peripheral air hole 19 of the swirler 11 is ejected from the outer air hole 19. The axial center line of the fuel injection hole is substantially coincident with the axial center line Y of the outer peripheral air hole 19 so as to be a coaxial jet. The cross-sectional shape (cross section perpendicular to the axial center line of the hole) of the fuel injection hole and the air holes 19 and 20 of the gaseous fuel nozzle 32 is substantially circular. Other configurations are the same as those of the first embodiment.

かかる構成の本実施の形態によれば、外周側空気孔19の内部において気体燃料ノズル32から噴出した気体燃料16が燃焼空気13により周囲を均一に包み込まれ、旋回器11の外周側空気孔19から噴出する際の流路の急拡大に伴って発生する微細な渦流によって気体燃料16と燃焼空気13の混合を促進することができる。これにより、第1の実施の形態と同様の効果に加え、更なるNOx排出量の低減の効果が期待される。   According to the present embodiment having such a configuration, the gaseous fuel 16 ejected from the gaseous fuel nozzle 32 inside the outer peripheral air hole 19 is uniformly surrounded by the combustion air 13, and the outer peripheral air hole 19 of the swirler 11. Mixing of the gaseous fuel 16 and the combustion air 13 can be promoted by the fine vortex generated along with the rapid expansion of the flow path at the time of jetting from. Thereby, in addition to the effect similar to 1st Embodiment, the effect of the further reduction of NOx discharge | emission amount is anticipated.

なお、本実施の形態では、旋回器11の外周側空気孔19にのみ気体燃料16を噴射するように気体燃料ノズル32を設置しているが、第3の実施の形態(図6)のように内周側空気孔20に気体燃料16を噴射する気体燃料ノズルを追加すれば、気体燃料16の希薄化、気体燃料16と燃焼空気13の混合が促進され、更なるNOxの低減効果が期待できる。また、第2の実施の形態(図5)のように、外周側空気孔19を外側に傾斜させても良い。   In the present embodiment, the gaseous fuel nozzle 32 is installed so as to inject the gaseous fuel 16 only into the outer peripheral side air hole 19 of the swirler 11, but as in the third embodiment (FIG. 6). If a gas fuel nozzle for injecting the gaseous fuel 16 to the inner peripheral side air hole 20 is added to the inner circumferential side air hole 20, dilution of the gaseous fuel 16 and mixing of the gaseous fuel 16 and the combustion air 13 are promoted, and further NOx reduction effect is expected. it can. Further, as in the second embodiment (FIG. 5), the outer peripheral air hole 19 may be inclined outward.

また、本実施の形態のように、旋回器空気孔19,20の断面を略円形とすることで、例えば、断面矩形に構成した空気孔に比べて旋回器11の製作コストを抑えることができる利点もある。   Further, by making the cross section of the swirler air holes 19 and 20 substantially circular as in the present embodiment, for example, the manufacturing cost of the swirler 11 can be reduced as compared with an air hole having a rectangular cross section. There are also advantages.

以上の第1〜第4の実施の形態に係るガスタービン燃焼器3は、構成が簡便であるため、例えば図3の比較例のような構成の既存設備が存在する場合、旋回器11や気体燃料ノズルの燃料噴射孔部分のみの簡単な改造で製作することができることも大きな利点である。   Since the gas turbine combustor 3 according to the first to fourth embodiments described above has a simple configuration, for example, when there is an existing facility having a configuration such as the comparative example of FIG. It is also a great advantage that the fuel nozzle can be manufactured by simple modification of only the fuel injection hole portion.

本発明の第1の実施の形態に係るガスタービン燃焼器を備えたガスタービンプラントの概略構成図である。It is a schematic block diagram of the gas turbine plant provided with the gas turbine combustor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るガスタービン燃焼器の旋回器及びその周囲の構成を表す側断面図である。It is a sectional side view showing the structure of the swirler of the gas turbine combustor which concerns on the 1st Embodiment of this invention, and its periphery. 比較例を例示した側断面図である。It is the sectional side view which illustrated the comparative example. 本発明の第1の実施の形態に係るガスタービン燃焼器と図3の比較例の燃焼器点火時の火炎の状態を比較して示した図である。It is the figure which compared and showed the state of the flame at the time of the combustor ignition of the gas turbine combustor which concerns on the 1st Embodiment of this invention, and the comparative example of FIG. 本発明の第2の実施の形態に係るガスタービン燃焼器の旋回器及びその周囲の構成を表す側断面図である。It is a sectional side view showing the swirler of the gas turbine combustor which concerns on the 2nd Embodiment of this invention, and the structure of the circumference | surroundings. 本発明の第3の実施の形態に係るガスタービン燃焼器の旋回器及びその周囲の構成を表す側断面図である。It is a sectional side view showing the swirler of the gas turbine combustor which concerns on the 3rd Embodiment of this invention, and the structure of the circumference | surroundings. 本発明の第4の実施の形態に係るガスタービン燃焼器の構成図である。It is a block diagram of the gas turbine combustor which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機
3 ガスタービン燃焼器
7 内筒
10 内筒キャップ
11 旋回器
12 液体燃料ノズル
13 燃焼空気
15 気体燃料ノズル
16 気体燃料
17 液体燃料
19 外周側空気孔
20 内周側空気孔
23 スリット孔
30 外周側空気孔
31 内周側気体燃料ノズル
32 気体燃料ノズル
100 循環流
101 循環流
102 循環流
X 軸心線
Y 軸心線
DESCRIPTION OF SYMBOLS 1 Compressor 3 Gas turbine combustor 7 Inner cylinder 10 Inner cylinder cap 11 Swivel machine 12 Liquid fuel nozzle 13 Combustion air 15 Gas fuel nozzle 16 Gas fuel 17 Liquid fuel 19 Outer peripheral side air hole 20 Inner peripheral side air hole 23 Slit hole 30 Outer peripheral side air hole 31 Inner peripheral side gas fuel nozzle 32 Gaseous fuel nozzle 100 Circulating flow 101 Circulating flow 102 Circulating flow X axis center line Y axis center line

Claims (6)

圧縮機からの燃焼空気を燃料と混合して燃焼する内筒と、
前記内筒の軸心線上の上流側位置に設けられ、液体燃料を微粒化し前記内筒内に噴射する液体燃料ノズルと、
前記液体燃料ノズルの外周側に位置する空気流路を有し前記内筒内に噴出する燃焼空気に旋回成分を付与する旋回器と、
前記旋回器の空気流路に向かって気体燃料を噴射する複数の気体燃料ノズルと、
前記旋回器の外周側に設けられ、前記内筒の中心側に向かう燃焼空気の流れを形成する複数の空気導入用スリットを有し、前記複数の空気導入用スリットから噴出する空気流によって前記旋回器の外周側に低速循環流領域を形成するコーン状部材とを備え、
前記旋回器から前記内筒内に噴出する気体燃料及び燃焼空気の混合気が前記低速循環流領域を形成する燃焼空気と混合するように、前記内筒の軸心線を含む断面で見たときに前記空気流路が前記内筒の軸心線と平行か軸心線に対し下流側に向かって外周側に傾斜していることを特徴とする拡散燃焼式ガスタービン燃焼器。
An inner cylinder that burns combustion air from the compressor mixed with fuel; and
A liquid fuel nozzle that is provided at an upstream position on the axial line of the inner cylinder and atomizes the liquid fuel and injects it into the inner cylinder;
A swirler having an air flow path located on the outer peripheral side of the liquid fuel nozzle and imparting a swirl component to the combustion air ejected into the inner cylinder;
A plurality of gaseous fuel nozzles for injecting gaseous fuel toward the air flow path of the swirler;
The swirler includes a plurality of air introduction slits that are provided on an outer peripheral side of the swirler and that form a flow of combustion air toward the center side of the inner cylinder, and the swirl is performed by the air flow ejected from the plurality of air introduction slits. A cone-shaped member that forms a low-speed circulating flow region on the outer peripheral side of the vessel,
When viewed in a cross-section including the axial center line of the inner cylinder so that a mixture of gaseous fuel and combustion air ejected from the swirler into the inner cylinder mixes with the combustion air forming the low-speed circulation flow region The diffusion combustion type gas turbine combustor is characterized in that the air flow path is parallel to the axial center line of the inner cylinder or inclined toward the outer peripheral side toward the downstream side with respect to the axial center line.
圧縮機からの燃焼空気を燃料と混合して燃焼する内筒と、
前記内筒の軸心線上の上流側位置に設けられ、液体燃料を微粒化し前記内筒内に噴射する液体燃料ノズルと、
前記液体燃料ノズルの外周側に環状に配置された複数の空気孔を有し、前記複数の空気孔から前記内筒内に噴出する燃焼空気に旋回成分を付与する旋回器と、
前記旋回器の前記複数の空気孔に向かって気体燃料を噴射する複数の気体燃料ノズルと、
前記旋回器の外周側に設けられ、前記内筒の中心側に向かう燃焼空気の流れを形成する複数の空気導入用スリットを有し、前記複数の空気導入用スリットから噴出する空気流によって前記旋回器の外周側に低速循環流領域を形成するコーン状部材とを備え、
前記空気孔から前記内筒内に噴出する気体燃料及び燃焼空気の混合気が前記低速循環流領域を形成する燃焼空気と混合するように、前記内筒の軸心線を含む断面で見たときに前記空気孔が前記内筒の軸心線と平行か軸心線に対し下流側に向かって外周側に傾斜していることを特徴とする拡散燃焼式ガスタービン燃焼器。
An inner cylinder that burns combustion air from the compressor mixed with fuel; and
A liquid fuel nozzle that is provided at an upstream position on the axial line of the inner cylinder and atomizes the liquid fuel and injects it into the inner cylinder;
A swirler having a plurality of air holes arranged annularly on the outer peripheral side of the liquid fuel nozzle, and imparting a swirl component to the combustion air ejected into the inner cylinder from the plurality of air holes;
A plurality of gaseous fuel nozzles for injecting gaseous fuel toward the plurality of air holes of the swirler;
The swirler includes a plurality of air introduction slits that are provided on an outer peripheral side of the swirler and that form a flow of combustion air toward the center side of the inner cylinder, and the swirl is performed by the air flow ejected from the plurality of air introduction slits. A cone-shaped member that forms a low-speed circulating flow region on the outer peripheral side of the vessel,
When viewed in a cross-section including the axial center line of the inner cylinder so that a mixture of gaseous fuel and combustion air ejected from the air hole into the inner cylinder mixes with the combustion air forming the low-speed circulation flow region A diffusion combustion type gas turbine combustor characterized in that the air hole is parallel to the axial center line of the inner cylinder or inclined toward the outer peripheral side toward the downstream side with respect to the axial center line.
請求項2の拡散燃焼式ガスタービン燃焼器において、
前記旋回器は、前記複数の空気孔と前記液体燃料ノズルの間に環状に配置され、前記内筒の軸心線を含む断面で見たときに前記内筒の軸心線に対し下流側に向かって内周側に傾斜した複数の内周側空気孔を備えていることを特徴とする拡散燃焼式ガスタービン燃焼器。
The diffusion combustion gas turbine combustor according to claim 2,
The swirler is annularly arranged between the plurality of air holes and the liquid fuel nozzle, and is downstream of the axis of the inner cylinder when viewed in a cross section including the axis of the inner cylinder. A diffusion combustion type gas turbine combustor comprising a plurality of inner peripheral side air holes inclined toward the inner peripheral side.
請求項3の拡散燃焼式ガスタービン燃焼器において、
前記複数の内周側空気孔に向かって気体燃料を噴射する複数の内周側気体燃料ノズルを備えたことを特徴とする拡散燃焼式ガスタービン燃焼器。
The diffusion combustion gas turbine combustor according to claim 3,
A diffusion combustion type gas turbine combustor comprising a plurality of inner peripheral side gas fuel nozzles for injecting gaseous fuel toward the plurality of inner peripheral side air holes.
請求項2〜4のいずれかの拡散燃焼式ガスタービン燃焼器において、
前記気体燃料ノズルの燃料噴射孔は、前記空気孔から前記内筒内に噴出する燃焼空気と略同軸方向に気体燃料が噴出するように前記空気孔の穿設方向に合わせて傾斜して穿設されていることを特徴とする拡散燃焼式ガスタービン燃焼器。
In the diffusion combustion type gas turbine combustor according to any one of claims 2 to 4,
The fuel injection hole of the gaseous fuel nozzle is provided with an inclination in accordance with the direction of the air hole so that the gaseous fuel is ejected in a direction substantially coaxial with the combustion air ejected from the air hole into the inner cylinder. A diffusion combustion type gas turbine combustor characterized in that:
圧縮機からの燃焼空気を燃料と混合して燃焼する内筒と、
前記内筒の軸心線上の上流側位置に設けられ、燃料供給圧力を高くして液体燃料を微粒化し前記内筒内に噴射する圧力噴霧式の液体燃料ノズルと、
前記液体燃料ノズルの外周側に環状に配置された複数の外周側空気孔及び前記複数の外周側空気孔と前記液体燃料ノズルの間に環状に配置された複数の内周側空気孔を有し、前記複数の外周側空気孔及び内周側空気孔から前記内筒内に噴出する燃焼空気に旋回成分を付与する旋回器と、
前記旋回器の前記複数の外周側空気孔に向かって気体燃料を噴射する複数の気体燃料ノズルと、
前記旋回器の外周側に設けられ、前記内筒の中心側に向かう燃焼空気の流れを形成する複数の空気導入用スリットを有し、前記複数の空気導入用スリットから噴出する空気流によって前記旋回器の外周側に低速循環流領域を形成するコーン状部材とを備え、
前記外周側空気孔から前記内筒内に噴出する気体燃料及び燃焼空気の混合気が前記低速循環流領域を形成する燃焼空気と混合するように、前記内筒の軸心線を含む断面で見たときに前記外周側空気孔が前記内筒の軸心線と平行か軸心線に対し下流側に向かって外周側に傾斜する一方、前記複数の内周側空気孔が前記内筒の軸心線に対し下流側に向かって内周側に傾斜していることを特徴とする拡散燃焼式ガスタービン燃焼器。
An inner cylinder that burns combustion air from the compressor mixed with fuel; and
A pressure spray type liquid fuel nozzle which is provided at an upstream position on the axial line of the inner cylinder and which atomizes the liquid fuel by increasing the fuel supply pressure and injects it into the inner cylinder;
A plurality of outer peripheral air holes disposed annularly on the outer peripheral side of the liquid fuel nozzle; and a plurality of inner peripheral air holes disposed annularly between the plurality of outer peripheral air holes and the liquid fuel nozzle. A swirler for imparting a swirl component to the combustion air ejected into the inner cylinder from the plurality of outer peripheral air holes and inner peripheral air holes;
A plurality of gaseous fuel nozzles for injecting gaseous fuel toward the plurality of outer peripheral air holes of the swirler;
The swirler includes a plurality of air introduction slits that are provided on an outer peripheral side of the swirler and that form a flow of combustion air toward the center side of the inner cylinder, and the swirl is performed by the air flow ejected from the plurality of air introduction slits. A cone-shaped member that forms a low-speed circulating flow region on the outer peripheral side of the vessel,
As seen in a cross section including the axial center line of the inner cylinder so that the mixture of gaseous fuel and combustion air ejected from the outer peripheral side air hole into the inner cylinder mixes with the combustion air forming the low-speed circulation flow region. The outer peripheral air holes are parallel to the axial center line of the inner cylinder or are inclined toward the outer peripheral side toward the downstream side with respect to the axial center line, while the plurality of inner peripheral air holes are shafts of the inner cylinder A diffusion combustion type gas turbine combustor which is inclined toward the inner peripheral side toward the downstream side with respect to the core wire.
JP2007161347A 2007-06-19 2007-06-19 Diffusion combustion type gas turbine combustor Active JP4861910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161347A JP4861910B2 (en) 2007-06-19 2007-06-19 Diffusion combustion type gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161347A JP4861910B2 (en) 2007-06-19 2007-06-19 Diffusion combustion type gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2009002535A JP2009002535A (en) 2009-01-08
JP4861910B2 true JP4861910B2 (en) 2012-01-25

Family

ID=40319115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161347A Active JP4861910B2 (en) 2007-06-19 2007-06-19 Diffusion combustion type gas turbine combustor

Country Status (1)

Country Link
JP (1) JP4861910B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103454B2 (en) * 2009-09-30 2012-12-19 株式会社日立製作所 Combustor
BR112017011472B1 (en) 2014-12-15 2022-09-13 Nuovo Pignone Tecnologie Srl COMBUSTOR FOR A GAS TURBINE AND METHOD FOR ASSEMBLING A COMBUSTOR LINER
JP6929063B2 (en) * 2017-01-10 2021-09-01 大阪瓦斯株式会社 Type 2 fuel burner
KR102382600B1 (en) * 2020-11-25 2022-04-06 한국생산기술연구원 Combined swirl combustor
CN114659140B (en) * 2022-03-21 2023-06-23 杭州汽轮动力集团有限公司 Low-emission combustor for grading fuel of gas turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125324B2 (en) * 1971-12-30 1976-07-30
JPS48100517A (en) * 1972-04-10 1973-12-19
JPS61246507A (en) * 1985-04-24 1986-11-01 Kawasaki Heavy Ind Ltd Fuel injection device for gas turbine
JPS62166210A (en) * 1986-01-20 1987-07-22 Hitachi Ltd Vapor injection nozzle of gas turbine burner or the like
JPH02100060A (en) * 1988-10-07 1990-04-12 Fujitsu Ltd Exception processing mode controller for image forming device
JP2005226849A (en) * 2004-02-10 2005-08-25 Hitachi Ltd Gas turbine combustor and its combustion air supply method
JP4653985B2 (en) * 2004-09-02 2011-03-16 株式会社日立製作所 Combustor and gas turbine combustor, and method for supplying air to the combustor

Also Published As

Publication number Publication date
JP2009002535A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5393745B2 (en) Gas turbine combustor
WO2016104725A1 (en) Burner, combustor, and gas turbine
JP6196868B2 (en) Fuel nozzle and its assembly method
JP2008111651A (en) Gas turbine combustor and method for supplying fuel to gas turbine combustor
JP2009133508A (en) Burner, combustion device, and improving method of combustion device
JP2011058775A (en) Gas turbine combustor
JP4937158B2 (en) Gas turbine combustor
KR102165972B1 (en) Burner assembly, combustor, and gas turbine
WO2015080131A1 (en) Nozzle, combustion apparatus, and gas turbine
JP2008128631A (en) Device for injecting fuel-air mixture, combustion chamber and turbomachine equipped with such device
JP4861910B2 (en) Diffusion combustion type gas turbine combustor
JP4400314B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor
JP5896443B2 (en) Fuel nozzle
JP2005180729A (en) Combustibility improving device of premixed-fuel injection valve
JP2014105886A (en) Combustor
JP2011075173A (en) Combustor
JP4854613B2 (en) Combustion apparatus and gas turbine combustor
JP2013174367A (en) Premix combustion burner, combustor and gas turbine
JP2005147459A (en) Gas turbine combustor and method of supplying fuel to it
JP5610446B2 (en) Gas turbine combustor
CN215175236U (en) Center staged combustion chamber based on self-excitation sweep oscillation fuel nozzle
JP4584054B2 (en) Fuel nozzle for gas turbine combustor
JP2011038710A (en) Gas turbine combustor
JP2005226850A (en) Combustion device
JP5978750B2 (en) RQL low NOx combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250