JP4861529B1 - Secondary vortex separator - Google Patents

Secondary vortex separator Download PDF

Info

Publication number
JP4861529B1
JP4861529B1 JP2011177359A JP2011177359A JP4861529B1 JP 4861529 B1 JP4861529 B1 JP 4861529B1 JP 2011177359 A JP2011177359 A JP 2011177359A JP 2011177359 A JP2011177359 A JP 2011177359A JP 4861529 B1 JP4861529 B1 JP 4861529B1
Authority
JP
Japan
Prior art keywords
vortex
cylinder
cyclone
collection chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011177359A
Other languages
Japanese (ja)
Other versions
JP2013039519A (en
Inventor
芳夫 溝口
Original Assignee
芳夫 溝口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芳夫 溝口 filed Critical 芳夫 溝口
Priority to JP2011177359A priority Critical patent/JP4861529B1/en
Application granted granted Critical
Publication of JP4861529B1 publication Critical patent/JP4861529B1/en
Publication of JP2013039519A publication Critical patent/JP2013039519A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cyclone type separator which is reduced in resistance of the passage and separates efficiently even minute target substances so far being difficult for conventional techniques to separate. <P>SOLUTION: In the cyclone type separator, a secondary vortex cylinder having an opening at the first end and a pivot not overlapping the extension of the pivot of the main vortex flow is arranged in a plane in contact with the vortex flow in the main passage for a carrying fluid, and a collection chamber having no opened parts other than an opening at the second end of the secondary vortex cylinder is disposed. A target substance in the carrying fluid is separated by means of a secondary vortex flow which is generated by the vortex flow in the main passage, has a small diameter and circles at high speeds. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は気体や液体などの搬送流体に渦流を形成し、搬送流体中の目的物を分離するためのサイクロン式分離器に関する。 The present invention relates to a cyclonic separator for forming a vortex in a carrier fluid such as a gas or a liquid and separating an object in the carrier fluid.

(既存の技術)
従来のサイクロン式分離器を図4〜9を用いて説明する。
(Existing technology)
A conventional cyclone separator will be described with reference to FIGS.

図4は最も基本的なサイクロン式分離器400の斜視図で、サイクロン筒部410と、収集室420からなり、サイクロン筒部410は、直円筒411に偏心して取り付けられた流入口412と流出口413、及び円錐台状円筒414と415、排出口416よりなり、収集室420は、円錐台状円筒の一部415を壁の一部とし、排出口416にてサイクロン筒部410と連絡している。(例えば、特許文献1参照。)。 FIG. 4 is a perspective view of the most basic cyclonic separator 400, which includes a cyclone cylinder portion 410 and a collection chamber 420, and the cyclone cylinder portion 410 has an inlet 412 and an outlet that are eccentrically attached to the right cylinder 411. 413, the circular truncated cones 414 and 415, and the discharge port 416. The collection chamber 420 has a part of the circular truncated cone 415 as a part of the wall and communicates with the cyclone cylinder 410 at the discharge port 416. Yes. (For example, see Patent Document 1.)

まず、流体の挙動について図5をもって説明する。流入口412より流入した流体はサイクロン筒部410の軸に対して偏心した位置に流入するため、直円筒411の内側で旋回しながら上昇し、流出口413より流出する流れと、旋回しながら下降する流れに分かれる。
下降する流れは円錐台状円筒414と415の内面に沿って旋回し、一部が排出口416より収集室420にも流入するため、旋回軸の中心側に流速に応じて上昇流が発生し、流出口413への流れに合流し流出する。
First, the behavior of the fluid will be described with reference to FIG. Since the fluid flowing in from the inflow port 412 flows into a position eccentric with respect to the axis of the cyclone cylinder portion 410, the fluid rises while turning inside the straight cylinder 411, and flows out from the outflow port 413 and descends while turning. It is divided into the flow to do.
The descending flow swirls along the inner surfaces of the frustoconical cylinders 414 and 415, and a part flows into the collection chamber 420 from the discharge port 416. Therefore, an ascending flow is generated on the center side of the swivel shaft according to the flow velocity. , Merges with the flow to the outlet 413 and flows out.

次に、流体中から分離しようとする目的物の挙動について図5をもって説明する。
サイクロン式分離器では、流体に渦流を発生させて目的物が遠心力によって移動することにより分離が実現するが、サイクロン式分離器400では、流出口413が流入口412よりも上部に設け、目的物が重力に逆らって上昇しない限り流出口413に達しない構造とし、直円筒411の渦流により、外周側に移動した目的物が壁面に接触し流れから離脱し、主に重力によって下降することにより、円錐台状円筒414と415の内面を経て収集室420へと入って分離が実現される構造となっている。但し、渦流の内周側にある目的物は、直円筒411の壁面まで移動する必要があり、この間に流体に搬送されて上部にある流出口413近辺まで達する場合や、目的物に発生する遠心力や重力が流体の搬送力に劣る場合には、流れにのったまま流出口413より排出されてしまう。また、円錐台状円筒414と415は渦流の流れが直接及ばないために、強い旋回流は発生しにくいため目的物を収集室420に導く案内板としての役割がつよいが、流体の流れを強くしていくと、旋回流が発生して目的物が外周側へと移動し、収集室420へと移動する。しかしながら、旋回軸の中心付近に上昇流も発生し、いったん分離された目的物を収集室420から運び出し流出口413より排出してしまう。円錐台状円筒415が収集室420内に延長して設けてあるのは、目的物の再混入を防止する目的がある。
Next, the behavior of the object to be separated from the fluid will be described with reference to FIG.
In the cyclonic separator, separation is realized by generating a vortex in the fluid and the target object is moved by centrifugal force. In the cyclonic separator 400, the outlet 413 is provided above the inlet 412, and the target is moved. As long as the object does not rise against gravity, the structure does not reach the outlet 413. Due to the vortex flow of the straight cylinder 411, the object moved to the outer peripheral side comes into contact with the wall surface and leaves the flow, and mainly descends due to gravity. The separation is realized by entering the collection chamber 420 through the inner surfaces of the truncated cones 414 and 415. However, the object on the inner peripheral side of the vortex flow needs to move to the wall surface of the right cylinder 411. During this time, the object is transported to the fluid and reaches the vicinity of the outlet 413 at the upper part, or the centrifugal object generated in the object. When the force or gravity is inferior to the fluid conveyance force, the fluid is discharged from the outlet 413 while remaining on the flow. The frustoconical cylinders 414 and 415 are not directly affected by the vortex flow, so that a strong swirl flow is unlikely to occur. Therefore, the frustoconical cylinders 414 and 415 function as a guide plate for guiding the object to the collection chamber 420. As a result, a swirling flow is generated, and the target object moves to the outer peripheral side and moves to the collection chamber 420. However, an upward flow is also generated in the vicinity of the center of the swivel axis, and the object once separated is carried out of the collection chamber 420 and discharged from the outlet 413. The fact that the truncated cone 415 extends in the collection chamber 420 has the purpose of preventing re-mixing of the object.

図6は最も一般的なサイクロン式分離器600の斜視図で、サイクロン外筒部610と、収集室620に加え、円筒状のサイクロン内筒部630からなり、サイクロン外筒部610は、直円筒611に偏心して取り付けられた流入口612と、円錐台状円筒614と615、排出口616よりなり、収集室620は、円錐台状円筒の一部615を壁とし、排出口616にてサイクロン外筒部610と連絡している。サイクロン内筒部630はサイクロン外筒部610の上部面を貫通して設けられ、サイクロン外筒部610の内部に開口部631を有し、流出口633とを結ぶサイクロン内筒632よりなる。 FIG. 6 is a perspective view of the most common cyclone separator 600, which includes a cyclone outer cylinder 610 and a collection chamber 620, and a cylindrical cyclone inner cylinder 630. The cyclone outer cylinder 610 is a straight cylinder. 612 is composed of an inlet 612 eccentrically attached to 611, truncated cones 614 and 615, and a discharge port 616. The collection chamber 620 has a portion 615 of the truncated cone as a wall, and is outside the cyclone at the discharge port 616. The tube portion 610 is in communication. The cyclone inner cylinder part 630 is provided through the upper surface of the cyclone outer cylinder part 610, has an opening 631 inside the cyclone outer cylinder part 610, and includes a cyclone inner cylinder 632 that connects the outlet 633.

流体の挙動について図7をもって説明する。サイクロン式分離器600では流入口612より流入した流体がサイクロン内筒632と直円筒611の間で旋回しながら下降し、サイクロン内筒632の開口部631を過ぎた時点から、流体の一部が旋回軸方向の移動を逆転し下降から上昇へと転じ、開口部631へと向かう流れとなり、他の一部は、旋回しながら円錐台状円筒614と615に沿って下降し排出口616を経て収集室620へと流入する。また、開口部631が収集室の方向をむいているため、流体の速度が遅い場合でも、収集室620からの上昇流が発生しやすい。 The behavior of the fluid will be described with reference to FIG. In the cyclonic separator 600, the fluid flowing in from the inlet 612 descends while turning between the cyclone inner cylinder 632 and the right cylinder 611, and a part of the fluid is passed from the time when it passes the opening 631 of the cyclone inner cylinder 632. The movement in the swivel axis direction is reversed to turn from descending to ascending and flow toward the opening 631, and the other part descends along the frustoconical cylinders 614 and 615 while turning and passes through the discharge port 616. It flows into the collection chamber 620. Further, since the opening 631 faces the direction of the collection chamber, an upward flow from the collection chamber 620 is likely to occur even when the fluid velocity is low.

サイクロン式分離器600での目的物の挙動について図7をもって説明する。
前記サイクロン式分離器400では旋回の軸近辺で流速が低下し、目的物に遠心力が発生しにくい部分が存在し、分離能力を低下させていたが、サイクロン式分離器600では、この部分にサイクロン内筒632が存在するため、目的物の全てに遠心力がかかることになり、また、直円筒611とサイクロン内筒632の流路がせまくなっているために、目的物は少ない移動距離で直円筒611の壁面にまで達するため、目的物の分離に有利となる。
サイクロン内筒632によって、流体は旋回しながら下降しその後上昇するために、目的物の慣性力によって流体から離脱する効果が期待でき、また、流体がいったん円錐台状円筒614と615部分まで下降する流路となるため、この場においても旋回が発生し、遠心力による分離が行われ、サイクロン式分離器400の場合よりも微細な目的物も分離できる構造となっている。
その反面、流体が円錐台状円筒614と615に沿って旋回しながら下降し、そのまま収集室620内に進入するため、収集室620内に旋回流が発生し、排出口616から開口部631へ向かう上昇流も発生し、目的物が再混入してしまう。より微細な目的物を分離するには、旋回軸方向の長さが長く、排出口616が小径であること、ならびに、流速を制限して強い上昇流の発生を防ぐことが必要となるが、流速を制限すると目的物の遠心力や慣性力も弱くなるため、結果として、搬送流体や目的物の性状に応じた設計が必要となるばかりでなく、エネルギー効率の良好な分離を実現するためには、分離収集できる目的物の性状の幅が制限されることとなる。
The behavior of the object in the cyclonic separator 600 will be described with reference to FIG.
In the cyclonic separator 400, the flow velocity is reduced near the swivel axis, and there is a portion where the centrifugal force is difficult to be generated in the target object, and the separation ability is reduced. In the cyclonic separator 600, however, Since the cyclone inner cylinder 632 exists, centrifugal force is applied to all the objects, and since the flow path between the straight cylinder 611 and the cyclone inner cylinder 632 is constricted, the object can be moved with a small moving distance. Since it reaches the wall surface of the right cylinder 611, it is advantageous for separation of the object.
The cyclone inner cylinder 632 causes the fluid to descend while swirling and then rise, so that it can be expected to be separated from the fluid by the inertial force of the object, and the fluid once descends to the frustoconical cylinders 614 and 615. Since it becomes a flow path, swirl also occurs in this place, separation by centrifugal force is performed, and a structure that can separate a finer object than in the case of the cyclonic separator 400 is formed.
On the other hand, the fluid descends while swirling along the frustoconical cylinders 614 and 615 and enters the collection chamber 620 as it is, so that a swirling flow is generated in the collection chamber 620 and the discharge port 616 to the opening 631. An upward flow is also generated, and the target object is mixed again. In order to separate a finer object, it is necessary that the length in the swivel axis direction is long, the discharge port 616 is small in diameter, and that the flow rate is limited to prevent the occurrence of a strong upward flow. If the flow rate is limited, the centrifugal force and inertial force of the target will also be weakened.As a result, not only the design according to the properties of the carrier fluid and the target is required, but also to achieve energy-efficient separation. Therefore, the width of the properties of the object that can be separated and collected is limited.

収集後の目的物が、主たる流路へ再度戻ってしまい、そのまま流出口より排出される問題を解決する為に、サイクロン内筒の長さを短くし、サイクロン外筒の長さを長く、更に、収集室を深くする事で防止する策がみられるが、このほかに、収集室の流体の旋回を抑制する板を設けたり、収集室の上側に傘状の逆流防止板を設けてこれを防止しようとする発明がある。(例えば、特許文献2〜3参照。)。 In order to solve the problem that the collected object returns to the main flow path again and is discharged from the outlet, the length of the cyclone inner cylinder is shortened, the length of the cyclone outer cylinder is lengthened, and There are other measures to prevent this by deepening the collection chamber.In addition to this, a plate that suppresses the swirling of the fluid in the collection chamber is provided, or an umbrella-shaped backflow prevention plate is provided above the collection chamber. There are inventions to prevent. (For example, refer to Patent Documents 2 to 3.)

サイクロン筒が小径であると、より高い遠心力がえられ、サイクロン外筒の円錐円筒の長さ方向の比率が大きいと、旋回軸方向での逆転時に流体が鋭利な角度で方向を変えるため、より微細な目的物を分離できる。その反面、流路径の減少と、流体の鋭利な方向変換のため、流路の抵抗が増加し、流量が制限されてしまう。
これを防ぐために小型サイクロンを並列に複数配置して流量を確保し、流路の抵抗を軽減して、更に、小径のサイクロンに大型の目的物がつまってしまうのを防ぐために上流に大型のサイクロンを設置したマルチサイクロン式分離装置がある。(例えば、特許文献4〜5参照。)。
If the cyclone cylinder has a small diameter, higher centrifugal force can be obtained, and if the ratio of the length direction of the conical cylinder of the cyclone outer cylinder is large, the fluid changes direction at a sharp angle when reversing in the swivel axis direction, Finer objects can be separated. On the other hand, due to the decrease in the diameter of the flow path and the sharp direction change of the fluid, the resistance of the flow path increases and the flow rate is limited.
To prevent this, multiple small cyclones are arranged in parallel to secure the flow rate, reduce the resistance of the flow path, and to prevent large objects from becoming clogged in the small-diameter cyclone, There is a multi-cyclone separation device installed. (For example, refer to Patent Documents 4 to 5.)

図8は、大型のサイクロンを上流に有し、下流に小型のサイクロンを並列に4基含むマルチサイクロン式分離装置800の斜視図である。図9を用いて、構成を説明する。
マルチサイクロン式分離装置800は、下部外郭部810と、上部外郭部850、内部構成の下部品820、中部品830、上部品840からなり、
下部外郭部810は、有底円筒811に偏心して設けた流入口812からなり、
上部外郭部850は、外郭852と、流出口853を有し、上部品840との空隙で、上部連絡流路851をなす。
下部品820は、二重円筒821と、ドーナッツ状の底蓋822、及び、開口部824を有する中央の上流サイクロン外筒823よりなる。
中部品830は上流サイクロン内筒832と、4基の下流サイクロン外筒833を、円盤上の板に開口させてなる。
上部品840は、円盤形状に、分配流路の形状を削りとった分配流路部品841と、4基の下流サイクロン内筒843を円盤上の板に開口させた上部品蓋844からなる。
FIG. 8 is a perspective view of a multi-cyclone separator 800 having a large cyclone upstream and four downstream small cyclones in parallel. The configuration will be described with reference to FIG.
The multi-cyclone separator 800 includes a lower outer part 810, an upper outer part 850, a lower part 820, an inner part 830, and an upper part 840 of an internal configuration.
The lower outer portion 810 is composed of an inlet 812 provided eccentric to the bottomed cylinder 811.
The upper outer shell 850 has an outer shell 852 and an outlet 853, and forms an upper communication channel 851 in a gap with the upper part 840.
The lower part 820 includes a double cylinder 821, a donut-shaped bottom lid 822, and a central upstream cyclone outer cylinder 823 having an opening 824.
The middle part 830 is formed by opening an upstream cyclone inner cylinder 832 and four downstream cyclone outer cylinders 833 in a plate on a disk.
The upper part 840 includes a distribution channel part 841 in which the shape of the distribution channel is cut into a disk shape, and an upper part lid 844 in which four downstream cyclone inner cylinders 843 are opened in a plate on the disk.

マルチサイクロン式分離装置800の平面図と縦断面図である図9をもって流体の挙動について説明する。流入口812より流入した流体は、有底円筒811の内面と二重円筒821の間を旋回しながら下降し、有底円筒811の底部で旋回軸方向の運動を反転し、旋回流となりながら開口部824に流入する。
次に、上流サイクロン外筒823の内側を旋回しながら上昇し、一部は開口部831に入るが、他の一部は外周側を上流サイクロンの上面にまで達し、上流サイクロン内筒832の周りを旋回しながら下降し開口部831に入る。
次に、開口部831より上流サイクロン内筒832の内部を経て、中心部から、下流サイクロン内筒843に偏心して流入する流路を設けた分配流路部品841に入り、下流サイクロン内筒843と下流サイクロン外筒833の間で旋回流が発生し、下流サイクロン外筒833の内面沿いに旋回しながら下降、開口部834を経て、二重円筒821と底蓋822で構成される収集室に入り、再度開口部834より上昇し、開口部842を経て上部連絡流路851にて、他の3基の下流サイクロンからの流れと合流し、流出口853よりマルチサイクロン式分離装置800の外へと流出する。
The behavior of the fluid will be described with reference to FIG. 9 which is a plan view and a longitudinal sectional view of the multi-cyclone separation device 800. The fluid flowing in from the inflow port 812 descends while swirling between the inner surface of the bottomed cylinder 811 and the double cylinder 821, reverses the motion in the swivel axis direction at the bottom of the bottomed cylinder 811, and opens as a swirling flow. Into the part 824.
Next, ascending while turning inside the upstream cyclone outer cylinder 823, a part thereof enters the opening 831, while the other part reaches the upper surface of the upstream cyclone on the outer peripheral side and around the upstream cyclone inner cylinder 832. And descends while turning to enter the opening 831.
Next, through the inside of the upstream cyclone inner cylinder 832 from the opening 831, it enters the distribution channel component 841 provided with a flow path eccentrically flowing into the downstream cyclone inner cylinder 843 from the center, and the downstream cyclone inner cylinder 843 A swirling flow is generated between the downstream cyclone outer cylinder 833, descends while swirling along the inner surface of the downstream cyclone outer cylinder 833, enters the collection chamber composed of the double cylinder 821 and the bottom lid 822 through the opening 834. Then, it rises again from the opening 834, and merges with the flow from the other three downstream cyclones in the upper communication channel 851 via the opening 842, and out of the multi-cyclone separator 800 from the outlet 853. leak.

マルチサイクロン式分離装置800での目的物は、有底円筒811と二重円筒821の間の旋回により、粗粒の目的物は底部外周側に分離され、他の目的物は開口部824から上流サイクロン外筒823内へ入り、ここで発生する旋回にて、前記粗粒の目的物よりも細かな目的物が分離され、上流サイクロン外筒823内面や、上流サイクロン内筒832の外側に付着するが、微細な目的物は開口部831をへて、4基の下流サイクロンへと送られる。下流サイクロン内筒843と、下流サイクロン外筒833、および、開口部834は、上流サイクロンよりも小径であるため、更に小径の旋回流が発生し、微細な目的物も分離され収集室内に入り沈降したり、下流サイクロン外筒833の内側面、下流サイクロン内筒843の外側面に付着する。尚、下流サイクロンでも分離されなかった目的物は、上部連絡流路851で統合され、流出口853よりマルチサイクロン式分離装置800外部へと流出する。 The target object in the multi-cyclonic separation device 800 is a coarse target object separated on the outer peripheral side of the bottom by the rotation between the bottomed cylinder 811 and the double cylinder 821, and the other target object is upstream from the opening 824. By entering the cyclone outer cylinder 823, the object that is finer than the coarse object is separated by the turning generated here, and adheres to the inner surface of the upstream cyclone outer cylinder 823 and the outer side of the upstream cyclone inner cylinder 832. However, the fine object passes through the opening 831 and is sent to the four downstream cyclones. Since the downstream cyclone inner cylinder 843, the downstream cyclone outer cylinder 833, and the opening 834 are smaller in diameter than the upstream cyclone, a smaller-diameter swirl flow is generated, and fine objects are separated and settled in the collection chamber. Or attached to the inner surface of the downstream cyclone outer cylinder 833 and the outer surface of the downstream cyclone inner cylinder 843. In addition, the target object which was not isolate | separated also by the downstream cyclone is integrated in the upper connection flow path 851, and flows out of the multi cyclone type | mold separation apparatus 800 from the outflow port 853.

マルチサイクロン式分離装置の複雑な流路は複数のサイクロン分離器を連絡するのに不可欠だが、各サイクロン式分離器の設置による流路の抵抗増加に加えて、分配流路や連絡流路での流体の抵抗が加わり、分離装置全体のエネルギー効率を低下させるばかりでなく、特に、搬送流体が気体の場合は騒音が発生する原因となり、様々な改善策が提案されているものの、根本的な改善をなしているものはない。
また、流量を確保するために、下流サイクロンの径をあまり小さくできないために、微細な目的物の分離には限界があり、家庭用掃除機などでは、物理的フィルターを最下流に設けるものが多く、分離済みの目的物の再混入を防ぐために、流量を制限せざるを得ない状態となりやすい。
The complex flow path of the multi-cyclonic separation device is indispensable for connecting multiple cyclone separators, but in addition to increasing the resistance of the flow path by installing each cyclone separator, Not only will the resistance of the fluid be added and the energy efficiency of the entire separation device will be reduced, but especially if the carrier fluid is a gas, it will cause noise and various improvements have been proposed, but fundamental improvements have been made. There is nothing that makes.
In addition, since the diameter of the downstream cyclone cannot be made too small in order to secure the flow rate, there is a limit to the separation of minute objects, and many household vacuum cleaners have a physical filter at the most downstream. In order to prevent re-mixing of the separated object, the flow rate is inevitably limited.

(既存技術の問題点)
既存のサイクロン式分離器では、搬送流体の主たる経路(以降、主経路と呼称。)に発生させた渦流(以降、主渦と呼称。)の遠心力を用いて、目的物を渦流の外周部へと移動させ、サイクロン外筒の下部に設けられた円錐台状円筒部分にて収集室へと向かう外周部の流れにより、目的物を収集室へと導き収集室内の壁に至らせて蓄積し、流体を逆流として円錐台状円筒部の中心より返すことにより、流体と目的物を分離している。
従って、流体と目的物を分離する場は主渦そのものであり、主渦の旋回速度と、主渦の径によって目的物の遠心力がきまり、より微細な目的物をも分離し、蓄積するには流速をあげるか、主経路の渦室を小型化して遠心力を高める必要があるが、流速をあげると、収集室内で流体が旋回をはじめ、逆流も強まり、結果的に微細な目的物は逆流に搬出されてしまう。
収集室側の開口部の大きさについても、同様に、目的物の大きさにたいして小さすぎると目的物が開口部を通りぬける前に逆流にさらされて、渦室へと戻ってしまい、大きすぎると、収集室内の目的物が逆流に搬送されて開口部へ近づいた際に、開口部外周側の噴流にて戻されることなく開口部を通りぬけて、渦室へと戻ってしまう。
従って、目的物の大きさに合わせた出来るだけ小型のサイクロン式分離器が適することになり、性状の異なる目的物をひとつの経路で分離する手法としてマルチサイクロン式分離装置が提案されているが、個別のサイクロン式分離器における前記問題が解決されたわけではなく、微細な目的物の流出を防ぐための流量の制限が、経路全体の流量の上限となってしまう上に、各サイクロンの連絡流路や分配流路を設ける必要から、更に、エネルギー効率が悪化してしまう。
既存のサイクロン式分離器の前記のごとき問題点は、いわば、既存のサイクロン式分離器の原理に基づくものであり、これを軽減する様々な改善案が提案されているが、根本解決にいたるものはなく、実用的なエネルギー効率でのサイクロン式分離器の分離能力の限界をつくりだしている。
(Problems with existing technology)
In the existing cyclone type separator, the centrifugal force of the vortex (hereinafter referred to as the main vortex) generated in the main path of the carrier fluid (hereinafter referred to as the main vortex) is used to remove the object from the outer periphery of the vortex. The object is guided to the collection chamber by the flow of the outer periphery toward the collection chamber at the frustoconical cylindrical portion provided in the lower part of the cyclone outer cylinder, and reaches the collection chamber wall for accumulation. The fluid and the object are separated by returning the fluid as a reverse flow from the center of the frustoconical cylindrical portion.
Therefore, the field where the fluid and the target object are separated is the main vortex itself, and the centrifugal force of the target object is determined by the swirling speed of the main vortex and the diameter of the main vortex, so that finer target objects can be separated and accumulated. However, it is necessary to increase the centrifugal force by increasing the flow velocity or downsizing the vortex chamber of the main path. It will be carried out in the reverse flow.
Similarly, if the size of the opening on the collection chamber side is too small for the size of the target object, the target object is exposed to a backflow before passing through the opening and returns to the vortex chamber, which is too large. Then, when the object in the collection chamber is conveyed in a reverse flow and approaches the opening, it passes through the opening without being returned by the jet on the outer periphery of the opening and returns to the vortex chamber.
Therefore, a cyclone separator that is as small as possible according to the size of the object is suitable, and a multi-cyclone separator has been proposed as a method for separating objects with different properties in one path. The above-mentioned problem in the individual cyclone type separators has not been solved, and the flow rate restriction for preventing the flow of minute objects becomes the upper limit of the flow rate of the entire path, and the connection flow path of each cyclone. Further, the energy efficiency is further deteriorated because it is necessary to provide a distribution channel.
The above-mentioned problems of the existing cyclone type separator are based on the principle of the existing cyclone type separator, and various improvements have been proposed to alleviate this problem. Rather, it limits the separation capacity of cyclone separators with practical energy efficiency.

米国公開特許和文抄録 公開番号20030029790 FIG.3 FIG.4US Published Patent Abstract Publication Number 20030029790 FIG.3 FIG.4 特許第2930689号Japanese Patent No. 2930689 特許第4626587号Japanese Patent No. 4626587 特許明68418公報(第一図、第二図)Japanese Patent Publication No. 68418 (first figure, second figure) 特許4546015公報(Fig.4a)Japanese Patent No. 4546015 (Fig.4a)

本発明は、上記の事情に鑑みてなされたもので、流路の抵抗が少なく、かつ、従来のサイクロン式分離器では分離が困難であったような微細な目的物の分離も可能とし、更に、一つの分離器で、特定の性状の目的物を分離回収でき、また、主経路の渦流として様々な発生手段に対応可能で、コンパクトなサイクロン式分離器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and enables the separation of minute objects that have low flow path resistance and are difficult to separate with conventional cyclone separators. An object of the present invention is to provide a compact cyclone separator that can separate and recover a target object having a specific property with a single separator and can be used for various generation means as a vortex flow in a main path.

本発明が解決しようとする課題は、既存のサイクロン式分離器がもつ原理的な問題であり、搬送流体からの目的物の分離を、搬送流体の主たる経路(以降、主経路と呼称。)の渦流(以降、主渦と呼称。)で行うかぎり、解決困難な問題である。
そこで、本発明者は、目的物の分離に主渦を直接用いるのではなく、主渦を利用して副次的に主渦よりも小型で高速に回転する渦流(以降、副次渦と呼称。)を発生させ、主たる分離の場とすることができれば、主渦の径にとらわれずに、分離しようとする目的物の密度が高い場所に、分離しようとする目的物に最適な形状の渦筒を設けることができ、既存技術の限界を超えた分離が実現できると考え、主経路の流体の抵抗を低く保ったまま、分離に適した副次渦を発生させる手段を鋭意研究を重ねた結果、以下の様な手段で実現可能であることを見出した。
The problem to be solved by the present invention is a fundamental problem of existing cyclone separators, and the separation of the object from the carrier fluid is performed on the main route of the carrier fluid (hereinafter referred to as the main route). As long as it is performed by eddy current (hereinafter referred to as main vortex), it is a difficult problem to solve.
Therefore, the present inventor does not directly use the main vortex for the separation of the object, but uses the main vortex to make a vortex that is smaller and faster than the main vortex (hereinafter referred to as a secondary vortex). )) And can be used as the main separation field, the vortex of the optimum shape for the target object to be separated can be obtained in a place where the density of the target object to be separated is high, regardless of the diameter of the main vortex. We thought that separation beyond the limits of existing technology could be realized because cylinders could be provided, and earnestly researched means to generate secondary vortices suitable for separation while keeping the resistance of the fluid in the main path low As a result, it has been found that it can be realized by the following means.

上記目的を達成するために本発明は、
搬送流体の主たる経路において任意の方法で渦流を発生させる手段と、
前記渦流の旋回の場となる渦室と、
前記渦室を構成する面に直接に開口する第1端部をもち、円筒もしくは一端の所定部分が円錐台状円筒である渦筒で、中心軸が前記渦流の旋回軸延長上に重ならない渦筒(以降、副次渦筒と呼称。)を少なくともひとつ有し、
前記搬送流体から分離する目的物の収集室で、前記副次渦筒の第2端部が開口し、運転中は前記副次渦筒の開口部、または、収集室よりも減圧された空間以外には、開口部をもたず他は密閉された収集室、
から構成されるサイクロン式分離器としたものである。
In order to achieve the above object, the present invention provides:
Means for generating a vortex in any way in the main path of the carrier fluid;
A vortex chamber serving as a swirl field for the vortex,
A vortex cylinder having a first end opening directly on a surface constituting the vortex chamber and a cylinder or a predetermined portion of one end being a circular truncated cone, and a vortex whose central axis does not overlap the extension of the swirl axis of the vortex Having at least one cylinder (hereinafter referred to as a secondary vortex cylinder),
In the collection chamber of the object to be separated from the carrier fluid, the second end of the secondary vortex cylinder is open, and during operation, other than the opening of the secondary vortex cylinder or a space depressurized from the collection chamber The collection chamber has no openings and the others are sealed,
This is a cyclonic separator composed of

主経路に発生させた主渦の渦室を構成する面に、主渦の旋回軸延長線上に重ならない位置を中心に円筒もしくは一端の所定部分が円錐台状円筒である渦筒を開口させると、流路面積が拡大し、開口面を通る主渦の流れにより、副次渦筒内面において主渦の上流側が減圧するので、前記減圧部を中心に流体が立体的に回り込む力がはたらく。
主渦の流れは旋回軸に対して垂直方向、及び、平行方向において、なんらかの流速差が生じているため、副次渦筒の渦室側開口部にて、流速の早い側から立体的に下流側の内面に流れ込み、副次渦筒の内面に沿って、螺旋状に旋回しながら収集室側へと進む渦流が発生し、収集室が他に開口部を持たない場合は、収集室へ入る流体と同じ量の流体が副次渦筒中心側を通って渦室に向う逆流が発生する。
主渦を利用して、副次渦筒によって副次的に発生させる渦(以降、副次渦と呼称。)は、主渦の旋回に比して小径で、回転数も多いものとなり、かつ、主渦により旋回力を与え続けられるため、主渦中にも渦の一端を伸ばし、主渦中では副次渦により蛇行する流れが発生し流路の抵抗が増加するが、前記副次渦と同径の主渦を発生させた際に比べてわずかな増加となる。
When a cylinder or a vortex cylinder whose predetermined part at one end is a frustoconical cylinder is opened on the surface constituting the vortex chamber of the main vortex generated in the main path, centering on a position that does not overlap the swirl axis extension line of the main vortex The flow area increases and the upstream side of the main vortex is depressurized on the inner surface of the secondary vortex cylinder due to the flow of the main vortex passing through the opening surface, so that the force that the fluid sterically moves around the pressure reducing portion works.
Since the flow of the main vortex has some flow velocity difference in the direction perpendicular to and parallel to the swivel axis, it is three-dimensionally downstream from the higher flow velocity side at the vortex chamber side opening of the secondary vortex tube. If the collection chamber does not have any other opening, it enters the collection chamber. A reverse flow is generated in which the same amount of fluid as the fluid passes through the center side of the secondary vortex tube toward the vortex chamber.
The vortex generated by the secondary vortex cylinder using the main vortex (hereinafter referred to as the secondary vortex) has a smaller diameter and a higher rotational speed than the main vortex, and Since the swirl force can be continuously applied by the main vortex, one end of the vortex is also extended in the main vortex, and a meandering flow is generated by the secondary vortex in the main vortex, increasing the resistance of the flow path. This is a slight increase compared to when the main diameter vortex is generated.

主経路の渦室で、副次渦の外周は副次渦筒に向かう旋回流となっているため、主経路の目的物は少ない移動距離で流体と共に容易に副次渦に巻き込まれ、流体に搬送されやすい微細な目的物も良好に捕捉することができる。
更に、副次渦筒中を収集室側へと旋回しながら移動する課程で、副次渦の高速で小径な旋回によって目的物に高い遠心力が与えられ、主渦では分離できなかった微細な目的物も旋回の外周側に移動し、収集室方向への慣性力もあいまって、逆流に搬送されることなく、開口部を通り抜けて収集室に放射状に放出されて収集室の壁へと付着するので、従来技術では分離が困難であった微細な目的物も分離できる。
尚、収集室内において極めて微細な目的物が逆流に搬送されて開口部へ接近することがあるものの、その移動は遅く、開口部の外周側からの噴流に押し戻され開口部中心まで移動するのは困難となり、収集室側からの再混入を防ぐことができる。
従って、流路の抵抗を抑えた状態で、従来技術では分離が困難であったような微細な目的物を効率よく分離できる。
In the vortex chamber of the main path, the outer periphery of the secondary vortex is a swirling flow toward the secondary vortex tube, so the target object of the main path is easily caught in the secondary vortex together with the fluid with a small moving distance. Fine objects that are easily transported can also be captured well.
Furthermore, in the process of moving while moving to the collection chamber side in the secondary vortex cylinder, a high centrifugal force is given to the target object due to the high-speed and small-diameter rotation of the secondary vortex, and the minute object that could not be separated by the main vortex The object also moves to the outer periphery of the swivel, and the inertial force in the direction of the collection chamber is combined, so that it is not transported in a reverse flow, passes through the opening, is discharged radially to the collection chamber, and adheres to the collection chamber wall. In addition, it is possible to separate a fine object that has been difficult to separate by the prior art.
Although very fine objects may be transported in the back flow and approach the opening in the collection chamber, the movement is slow, and it is pushed back by the jet from the outer periphery of the opening and moves to the center of the opening. It becomes difficult to prevent re-mixing from the collection chamber side.
Therefore, it is possible to efficiently separate a fine object that is difficult to separate by the conventional technique while suppressing the resistance of the flow path.

渦流は旋回軸に対して垂直方向、及び、平行方向において、なんらかの流速差が生じているため、本発明を実施するにあたり主渦の発生手段は限定されない。
例えば、送流機器など、本来の機能を分離としない機器に発生している渦流の隔壁に副次渦筒の一端を開口させ、他端を、他を密閉した収集室に開口させた場合にも、 従来のサイクロン式分離器を送流機器に組み込んだ場合に比べて、流体の抵抗の増加は極めて低い状態で目的物の分離が可能となり、新たに分離の為の渦流を発生させる必要がなく、コンパクトにサイクロン式分離の機能を付与できる。
例えば、独立した分離器として躯体を構成する場合の、本発明に適した渦流の発生手段については、開口部が流出口につながるサイクロン内筒の存在により生じる旋回軸方向の運動の逆転は、副次渦を用いた分離においても、おおきな効果をもたらし、更に、サイクロン内筒の開口部に相対する面に設けた副次渦筒では、主渦の旋回軸方向の運動が副次渦筒から離れる方向となるため、主渦中により深く副次渦を成長させることができることから、従来のサイクロン式分離器では、そのままサイクロン内筒開口部より搬出されていた微細な目的物をより多く捕捉し、分離することができる。
Since the vortex flow has some difference in flow velocity in the direction perpendicular to the rotation axis and in the parallel direction, the means for generating the main vortex is not limited in carrying out the present invention.
For example, when one end of the secondary vortex tube is opened in the partition wall of the vortex generated in a device that does not separate the original function, such as a flow-feed device, and the other end is opened in a collection chamber that is sealed in the other However, compared with the case where a conventional cyclone separator is incorporated in a flow-feeding device, the increase in fluid resistance is extremely low, and the object can be separated, and it is necessary to newly generate a vortex for separation. The function of cyclonic separation can be added in a compact manner.
For example, in the case of the vortex generating means suitable for the present invention when the casing is configured as an independent separator, the reversal of the movement in the swirl axis direction caused by the presence of the cyclone inner cylinder whose opening is connected to the outlet is Separation using secondary vortices also has a great effect. In addition, in the secondary vortex cylinder provided on the surface opposite to the opening of the cyclone inner cylinder, the movement of the main vortex in the direction of the rotation axis is separated from the secondary vortex cylinder. Since the secondary vortex can be grown deeper in the main vortex, the conventional cyclone separator can capture and separate more minute objects that have been unloaded from the cyclone inner cylinder opening. can do.

渦流の定義上、主渦の旋回軸に対して垂直方向において、旋回軸からの距離によるなんらかの流速差が存在するため、副次渦筒を開口させる場所としては、主渦の旋回軸に直交する面において良好な副次渦が得られるが、他の面において設置した場合にも副次渦は発生し、例えば、主渦の旋回軸と平行な面に設置する場合では収集室側の開口部が主渦の上流側へ傾斜するような角度で、副次渦筒の軸と、主渦の旋回軸が直交しないように角度を持たせると、良好な副次渦が発生する場合がある。
また、本発明の分離は副次渦の旋回による遠心力と収集室方向への慣性力によるため、主経路の渦室の上面、側面、底面のどの面に設置しても効果が得られるため、主渦での目的物の分離を利用し、目的とする分離物の存在密度が高い部分に副次渦筒を設置することで、性状を限定した目的物の収集が可能で、既存技術ではサイクロン式分離器を複数連ねて徐々に微細な目的物を分離する中で、一部を回収していた分級などの分野において、一つの分離器内での分級も可能となる。
例えば、主渦の旋回軸からの距離が等しくなる副次渦筒毎に収集室を設けることにより、ひとつのサイクロン式分離器により、性状の異なる目的物を収集室毎に分けて収集したり、更に、精密な分級を行うために設けられた複数の次工程に至る管を各々設けて各収集室に開口させ、次工程を減圧して送流することにより、従来技術における分級の工程を合理化できる。
Due to the definition of vortex flow, there is some difference in flow velocity due to the distance from the swirl axis in the direction perpendicular to the swirl axis of the main vortex, so the secondary vortex tube is opened perpendicular to the swirl axis of the main vortex. Good secondary vortices can be obtained on the surface, but secondary vortices also occur when installed on other surfaces. For example, when installed on a surface parallel to the pivot axis of the main vortex, the opening on the collection chamber side If the angle of the secondary vortex cylinder and the rotation axis of the main vortex are not orthogonal to each other, the secondary vortex may be favorably generated.
Further, since the separation of the present invention is based on the centrifugal force due to the swirling of the secondary vortex and the inertial force in the direction of the collection chamber, the effect can be obtained regardless of whether it is installed on the upper surface, side surface or bottom surface of the vortex chamber of the main path. By using the main vortex separation of the target object and installing the secondary vortex cylinder in the part where the target separation is high in density, it is possible to collect the target object with limited properties. While a plurality of cyclone separators are connected to gradually separate a fine object, classification in a single separator is possible in a field such as classification where a part of the cyclone separator is recovered.
For example, by providing a collection chamber for each secondary vortex cylinder where the distance from the swirling axis of the main vortex is equal, a single cyclone type separator separates and collects objects with different properties for each collection chamber, Furthermore, streamlining the classification process in the prior art by providing multiple pipes to the next process provided for precise classification, opening each collection chamber, and sending the next process under reduced pressure. it can.

例えば、副次渦筒を複数設置した場合、主渦が複数の副次渦の間をぬう様な流れが発生するため、より多くの目的物を回収できるほか、例えば、外周部に比較的大きな開口径の副次渦筒を開口させ、内周側ほど微細な開口径の副次渦筒を設置すると、微細な副次渦筒が大きな目的物で閉塞することを防げるため、単数の場合よりも更に微細な目的物の分離が可能となる。
また、例えば、複数の副次渦筒を同一の収集室に開口させると、構造が単純化でき、非運転時の目的物の排除作業が容易となるが、副次渦筒の渦室側の開口部における流体の圧力差によって各副次渦筒での流体の吸い込み量と逆流量に差がつく場合があり、
これを防止する方法として、主渦の旋回軸からの距離が等しい副次渦筒毎に、共通の収集室を設ける方法や、副次渦筒の渦室側の開口径に対する収集室側の開口径の比率と、収集室側の開口径の、片方、または、双方が、主渦流の旋回軸からの距離が近くなるに従って小さくなっている前記副次渦筒を配する方法がある。
また、主渦の状況によっては、単体の副次渦筒の主渦側の開口面での流速差が弱い場合も想定されるが、
前記の各副次渦筒で流体の吸い込み量と逆流量に差がつくことを利用して、例えば、主渦の圧力が異なる箇所に開口した副次渦筒を故意に共通の収集室内に開口させ、圧力が高い側を吸い込み専用として、目的物の収集量を増加して、圧力の低い側を逆流専用とすることで、収集室内にゆっくりとした流れを発生させ、吸い込み専用の副次渦筒の収集室側の開口部から、逆流専用の副次渦筒の収集室側の開口部に、目的物が移動する間で収集室内の壁に付着させて、目的物が分離された後の流体を逆流側の開口部から主渦中に返す構造にすることにより、目的物の収集量を増加させることができる。
For example, when a plurality of secondary vortex cylinders are installed, a flow in which the main vortex penetrates between the plurality of secondary vortices is generated. Opening a secondary vortex cylinder with an opening diameter and installing a secondary vortex cylinder with a finer opening diameter on the inner circumference side prevents the fine secondary vortex cylinder from being blocked by a large object. In addition, it becomes possible to separate a finer target object.
Further, for example, if a plurality of secondary vortex cylinders are opened in the same collection chamber, the structure can be simplified and the object can be easily removed when not in operation. Depending on the pressure difference of the fluid in the opening, there may be a difference between the amount of fluid sucked in each secondary vortex cylinder and the reverse flow rate,
To prevent this, a common collection chamber is provided for each secondary vortex cylinder whose distance from the swirling axis of the main vortex is equal, or the collection chamber side opening relative to the vortex chamber opening diameter of the secondary vortex cylinder is established. There is a method of arranging the secondary vortex cylinder in which one or both of the ratio of the diameter and the opening diameter on the collection chamber side becomes smaller as the distance from the swirling axis of the main vortex becomes smaller.
In addition, depending on the situation of the main vortex, it may be assumed that the flow velocity difference at the opening surface on the main vortex side of a single secondary vortex cylinder is weak,
By utilizing the difference between the fluid suction amount and the reverse flow rate in each of the secondary vortex cylinders, for example, the secondary vortex cylinders that are opened at different main vortex pressures are intentionally opened in a common collection chamber. The high pressure side is dedicated to suction, the collection volume of the target object is increased, and the low pressure side is dedicated to reverse flow, so that a slow flow is generated in the collection chamber, and the secondary vortex dedicated to suction is used. After the object is separated from the opening on the collecting chamber side of the cylinder to the opening on the collecting chamber side of the secondary vortex cylinder dedicated to backflow, By collecting the fluid from the opening on the reverse flow side into the main vortex, the collection amount of the object can be increased.

本発明は、分離できる目的物の範囲においても、分離に要するエネルギー効率においても、従来のサイクロン式分離器を超えるものであるにもかかわらず、基本的には副次渦筒と収集室を主渦に面して設けることで実現可能であり、その構成は極めてシンプルであるので、高性能を有する分離器を小さく作ることが可能であり、かつ、主経路の流速が早いほど良好な副次渦が発生するので、効率のよい分離が実現するため、多重に配したマルチサイクロン装置とする事に適している。さらには、実際の分離の場となる副次渦の旋回速度が小径で高速であるため、特に、搬送流体が気体である場合には分離器に流入する気体の密度が低い場合にも、副次渦筒には分離に要する十分な旋回が得られるために、むしろ、気体圧力が低下している場合のほうが、更に微細な目的物をも分離する能力を有するため、多重に配列することにより、従来のマルチサイクロン式分離装置では分離が不可能であった微細な目的物を、極めて良好な効率で分離することができる。 The present invention is basically composed of a secondary vortex cylinder and a collection chamber in spite of the range of objects that can be separated and the energy efficiency required for the separation, which exceeds conventional cyclone separators. It can be realized by facing the vortex, and its configuration is extremely simple. Therefore, it is possible to make a high-performance separator small, and the faster the main path, the better the secondary Since vortices are generated, efficient separation is realized, so that it is suitable for a multi-cyclone device arranged in multiple. Furthermore, since the swirling speed of the secondary vortex, which is the actual separation field, is small and high, especially when the carrier fluid is a gas, the secondary vortex also has a secondary vortex even when the density of the gas flowing into the separator is low. In order to obtain sufficient swirl required for separation in the next vortex cylinder, rather, when the gas pressure is lowered, it has the ability to separate even finer objects. Thus, it is possible to separate a fine object, which could not be separated by a conventional multi-cyclone separation apparatus, with extremely good efficiency.

本発明によれば、流体の抵抗が少なく、かつ、従来のサイクロン式分離器では分離が困難であったような微細な目的物の分離も可能で、分離できる目的物の範囲も広げる事ができ、かつ、一つのサイクロン式分離器で、複数の清浄を有する目的物を分級できる。更に、シンプルで小型の構成のため、主たる目的が分離ではない機器にも利用でき、多重に設置するマルチサイクロン式分離装置としても効果を奏する。 According to the present invention, it is possible to separate fine objects that have low fluid resistance and are difficult to separate with a conventional cyclonic separator, and it is possible to widen the range of objects that can be separated. In addition, a single cyclone separator can classify objects having a plurality of cleanliness. Furthermore, since it has a simple and small configuration, it can be used for devices whose main purpose is not separation, and it is also effective as a multi-cyclone separation device installed in multiple.

本発明の実施例を示す副次渦式分離器の斜視図The perspective view of the secondary vortex separator which shows the Example of this invention 本発明の実施例を示す副次渦式分離器の各部品の斜視図The perspective view of each component of the subsidiary vortex separator which shows the Example of this invention (a)図1の平面図、(b)図1のA−A線断面図(A) Plan view of FIG. 1, (b) AA line sectional view of FIG. 従来のサイクロン式分離器の一例を示す斜視図A perspective view showing an example of a conventional cyclone separator (a)図4の平面図、(b)図4のA−A線断面図(A) Plan view of FIG. 4, (b) AA line sectional view of FIG. 従来のサイクロン式分離器の一例を示す斜視図A perspective view showing an example of a conventional cyclone separator (a)図6の平面図、(b)図6のA−A線断面図(A) Top view of FIG. 6, (b) AA sectional view of FIG. 従来のマルチサイクロン式分離装置の一例を示す斜視図A perspective view showing an example of a conventional multi-cyclone separator (a)図8の平面図、(b)図8のA−A線断面図(A) Plan view of FIG. 8, (b) AA line sectional view of FIG.

本発明の請求項1記載の発明は、
搬送流体の主たる経路において任意の方法で渦流を発生させる手段と、
前記渦流の旋回の場となる渦室と、
前記渦室を構成する面に直接に開口する第1端部をもち、円筒もしくは一端の所定部分が円錐台状円筒である渦筒で、中心軸が前記渦流の旋回軸延長上に重ならない渦筒(以降、副次渦筒と呼称。)を少なくともひとつ有し、
前記搬送流体から分離する目的物の収集室で、前記副次渦筒の第2端部が開口し、運転中は前記副次渦筒の開口部、または、収集室よりも減圧された空間以外には、開口部をもたず他は密閉された収集室、
からなるものである。
Invention of claim 1 of the present invention,
Means for generating a vortex in any way in the main path of the carrier fluid;
A vortex chamber serving as a swirl field for the vortex,
A vortex cylinder having a first end opening directly on a surface constituting the vortex chamber and a cylinder or a predetermined portion of one end being a circular truncated cone, and a vortex whose central axis does not overlap the extension of the swirl axis of the vortex Having at least one cylinder (hereinafter referred to as a secondary vortex cylinder),
In the collection chamber of the object to be separated from the carrier fluid, the second end of the secondary vortex cylinder is open, and during operation, other than the opening of the secondary vortex cylinder or a space depressurized from the collection chamber The collection chamber has no openings and the others are sealed,
It consists of

主経路に発生させた主渦の渦室を構成する面に、主渦の旋回軸延長線上に重ならない位置を中心に円筒もしくは一端の所定部分が円錐台状円筒である渦筒を開口させると、流路面積が拡大し、開口面を通る主渦の流れにより、副次渦筒内面において主渦の上流側が減圧するので、前記減圧部を中心に流体が立体的に回り込む力がはたらく。
主渦の流れは旋回軸に対して垂直方向、及び、平行方向において、なんらかの流速差が生じているため、副次渦筒の渦室側開口部にて、流速の早い側から立体的に下流側の内面に流れ込み、副次渦筒の内面に沿って、螺旋状に旋回しながら収集室側へと進む渦流が発生し、収集室が他に開口部を持たない場合は、収集室へ入る流体と同じ量の流体が副次渦筒中心側を通って渦室に向う逆流が発生する。
主渦を利用して、副次渦筒によって副次的に発生させる渦(以降、副次渦と呼称。)は、主渦の旋回に比して小径で、回転数も多いものとなり、かつ、主渦により旋回力を与え続けられるため、主渦中にも渦の一端を伸ばし、主渦中では副次渦により蛇行する流れが発生し流路の抵抗が増加するが、前記副次渦と同径の主渦を発生させた際に比べてわずかな増加となる。
When a cylinder or a vortex cylinder whose predetermined part at one end is a frustoconical cylinder is opened on the surface constituting the vortex chamber of the main vortex generated in the main path, centering on a position that does not overlap the swirl axis extension line of the main vortex The flow area increases and the upstream side of the main vortex is depressurized on the inner surface of the secondary vortex cylinder due to the flow of the main vortex passing through the opening surface, so that the force that the fluid sterically moves around the pressure reducing portion works.
Since the flow of the main vortex has some flow velocity difference in the direction perpendicular to and parallel to the swivel axis, it is three-dimensionally downstream from the higher flow velocity side at the vortex chamber side opening of the secondary vortex tube. If the collection chamber does not have any other opening, it enters the collection chamber. A reverse flow is generated in which the same amount of fluid as the fluid passes through the center side of the secondary vortex tube toward the vortex chamber.
The vortex generated by the secondary vortex cylinder using the main vortex (hereinafter referred to as the secondary vortex) has a smaller diameter and a higher rotational speed than the main vortex, and Since the swirl force can be continuously applied by the main vortex, one end of the vortex is also extended in the main vortex, and a meandering flow is generated by the secondary vortex in the main vortex, increasing the resistance of the flow path. This is a slight increase compared to when the main diameter vortex is generated.

主経路の渦室で、副次渦の外周は副次渦筒に向かう旋回流となっているため、主経路の目的物は少ない移動距離で流体と共に容易に副次渦に巻き込まれ、流体に搬送されやすい微細な目的物も良好に捕捉することができる。
更に、副次渦筒中を収集室側へと旋回しながら移動する課程で、副次渦の高速で小径な旋回によって目的物に高い遠心力が与えられ、主渦では分離できなかった微細な目的物も旋回の外周側に移動し、収集室方向への慣性力もあいまって、逆流に搬送されることなく、開口部を通り抜けて収集室に放射状に放出されて収集室の壁へと付着するので、従来技術では分離が困難であった微細な目的物も分離できる。
尚、収集室内において極めて微細な目的物が逆流に搬送されて開口部へ接近することがあるものの、その移動は遅く、開口部の外周側からの噴流に押し戻され開口部中心まで移動するのは困難となり、収集室側からの再混入を防ぐことができる。
従って、流路抵抗を抑えた状態で、従来技術では分離が困難であったような微細な目的物を効率よく分離できる。
In the vortex chamber of the main path, the outer periphery of the secondary vortex is a swirling flow toward the secondary vortex tube, so the target object of the main path is easily caught in the secondary vortex together with the fluid with a small moving distance. Fine objects that are easily transported can also be captured well.
Furthermore, in the process of moving while moving to the collection chamber side in the secondary vortex cylinder, a high centrifugal force is given to the target object due to the high-speed and small-diameter rotation of the secondary vortex, and the minute object that could not be separated by the main vortex The object also moves to the outer periphery of the swivel, and the inertial force in the direction of the collection chamber is combined, so that it is not transported in a reverse flow, passes through the opening, is discharged radially to the collection chamber, and adheres to the collection chamber wall. In addition, it is possible to separate a fine object that has been difficult to separate by the prior art.
Although very fine objects may be transported in the back flow and approach the opening in the collection chamber, the movement is slow, and it is pushed back by the jet from the outer periphery of the opening and moves to the center of the opening. It becomes difficult to prevent re-mixing from the collection chamber side.
Therefore, it is possible to efficiently separate a fine object that has been difficult to separate with the prior art while the flow resistance is suppressed.

渦流は旋回軸に対して垂直方向、及び、平行方向において、なんらかの流速差が生じているため、本発明を実施するにあたり主渦の発生手段は限定されない。
例えば、送流機器など、本来の機能を分離としない機器に発生している渦流を隔離する隔壁に副次渦筒の一端を開口させ、他端を他を密閉した収集室に開口させた場合にも、 従来のサイクロン式分離器を送流機器に組み込んだ場合に比べて、流体の抵抗の増加は極めて低い状態で目的物の分離が可能となり、新たに分離の為の渦流を発生させる必要がなく、コンパクトにサイクロン式分離の機能を付与できる。
Since the vortex flow has some difference in flow velocity in the direction perpendicular to the rotation axis and in the parallel direction, the means for generating the main vortex is not limited in carrying out the present invention.
For example, when one end of a secondary vortex tube is opened in a partition that isolates vortex flow generated in a device that does not separate its original function, such as a flow-feed device, and the other end is opened in a collection chamber that is sealed in the other In addition, compared with the case where a conventional cyclone separator is incorporated in a flow-feeding device, the increase in fluid resistance is extremely low, so that the object can be separated, and it is necessary to newly generate a vortex for separation. No cyclone type separation function can be added in a compact manner.

渦流の定義上、主渦の旋回軸に対して垂直方向において、旋回軸からの距離によるなんらかの流速差が存在するため、副次渦筒を開口させる場所としては、主渦の旋回軸に直交する面において良好な副次渦が得られるが、他の面において設置した場合にも副次渦は発生し、例えば、主渦の旋回軸と平行な面に設置する場合では収集室側の開口部が主渦の上流側へ傾斜するような角度で、副次渦筒の軸と、主渦の旋回軸が直交しないように角度を持たせると、良好な副次渦が発生する場合がある。
また、本発明の分離は副次渦の旋回による遠心力と収集室方向への慣性力によるため、主経路の渦室の上面、側面、底面のどの面に設置しても効果が得られるため、主渦での目的物の分離を利用し、目的とする分離物の存在密度が高い部分に副次渦筒を設置することで、性状を限定した目的物の収集が可能で、既存技術ではサイクロン式分離器を複数連ねて徐々に微細な目的物を分離する中で、一部を回収していた分級などの分野において、一つの分離器内での分級も可能となる。
Due to the definition of vortex flow, there is some difference in flow velocity due to the distance from the swirl axis in the direction perpendicular to the swirl axis of the main vortex, so the secondary vortex tube is opened perpendicular to the swirl axis of the main vortex. Good secondary vortices can be obtained on the surface, but secondary vortices also occur when installed on other surfaces. For example, when installed on a surface parallel to the pivot axis of the main vortex, the opening on the collection chamber side If the angle of the secondary vortex cylinder and the rotation axis of the main vortex are not orthogonal to each other, the secondary vortex may be favorably generated.
Further, since the separation of the present invention is based on the centrifugal force due to the swirling of the secondary vortex and the inertial force in the direction of the collection chamber, the effect can be obtained regardless of whether it is installed on the upper surface, side surface or bottom surface of the vortex chamber of the main path. By using the main vortex separation of the target object and installing the secondary vortex cylinder in the part where the target separation is high in density, it is possible to collect the target object with limited properties. While a plurality of cyclone separators are connected to gradually separate a fine object, classification in a single separator is possible in a field such as classification where a part of the cyclone separator is recovered.

本発明の請求項2記載の発明は、
前記副次渦筒を複数有すること
からなるもので、副次渦筒を複数設けることにより、より多くの目的物を捕捉し分離できる。
また、複数の副次渦が渦室の壁を覆い、かつ、副次渦の外周側の流れが主渦の流れに沿う形で配列されるため、副次渦筒単位あたりの主経路の流体の抵抗は低下し、より効率のよい分離ができる。
Invention of claim 2 of the present invention,
It comprises a plurality of the secondary vortex cylinders, and by providing a plurality of secondary vortex cylinders, more objects can be captured and separated.
In addition, since a plurality of secondary vortices cover the wall of the vortex chamber and the flow on the outer peripheral side of the secondary vortex is arranged along the flow of the main vortex, the fluid in the main path per secondary vortex tube unit The resistance is reduced and more efficient separation is possible.

本発明の請求項3の発明は、
前記副次渦筒を複数有し、
副次渦筒の渦室側の開口径に対する収集室側の開口径の比率と、収集室側の開口径の、片方、または、双方が、
主経路の渦流の旋回軸からの距離が近くなるに従って小さくなっている前記副次渦筒を配する
ことからなるもので、
副次渦筒が開口する渦室の部位による圧力差に起因する副次渦筒内の軸方向での流量の偏りを緩和でき、
内周側の副次渦筒が目的物を捕集、分離する能力の低下を補い、ひとつの収集室に微細な目的物をも同時に分離することができる。
また、共通の収集室内に内周に向かう流れが発生することを防止し、収集物が主たる経路に再度流入するのを防止できる。
また、主経路の渦室においては渦流の旋回軸からの距離が遠いほど大きな目的物の存在率が高くなるが、この部分に開口する副次渦筒の開口径もおおきく、順次小さくなっていくため、小径の副次渦筒が目的物で閉塞することを防止でき、従来のサイクロン式分離器に比して、より広い幅の性状を有する目的物をひとつの収集室に分離することができる。
また、収集室が集約されることから、構造が単純になり、高性能でコンパクトな分離器が実現するほか、非運転時における目的物の取り出しが容易になる。
また、多様な目的物を共通の収集室に分離格納でき、かつ、コンパクトな構造を取れるため、多重して設置することも容易となり、多重式のサイクロン式分離装置の構成に有利なものとなる。
The invention of claim 3 of the present invention
A plurality of the secondary vortex tubes;
The ratio of the opening diameter on the collection chamber side to the opening diameter on the vortex chamber side of the secondary vortex tube and one or both of the opening diameters on the collection chamber side are:
It consists of arranging the secondary vortex cylinder which becomes smaller as the distance from the swirling axis of the vortex of the main path becomes closer,
The flow rate deviation in the axial direction in the secondary vortex cylinder caused by the pressure difference due to the vortex chamber portion where the secondary vortex cylinder opens can be mitigated,
The secondary vortex cylinder on the inner peripheral side compensates for a decrease in the ability to collect and separate the target object, and a fine target object can be simultaneously separated into one collection chamber.
Further, it is possible to prevent the flow toward the inner circumference from occurring in the common collection chamber, and it is possible to prevent the collected material from flowing again into the main route.
In addition, in the vortex chamber of the main path, the larger the distance from the swirl axis of the vortex flow, the higher the existence rate of the large target object, but the opening diameter of the secondary vortex tube opening in this part increases, and it gradually decreases. Therefore, it is possible to prevent the secondary vortex cylinder having a small diameter from being blocked by the object, and the object having a wider property can be separated into one collection chamber as compared with the conventional cyclonic separator. .
Further, since the collection chambers are integrated, the structure becomes simple, a high-performance and compact separator is realized, and the object can be easily taken out when not in operation.
In addition, since various objects can be separated and stored in a common collection chamber and a compact structure can be obtained, it is easy to install them in a multiplexed manner, which is advantageous for the configuration of a multiple cyclone separator. .

本発明の請求項4と請求項5、及び請求項6記載の発明は、
前記の主たる経路において渦流を発生させる手段が、
搬送流体が外側を旋回し、内側より搬送流体が流出されるサイクロン内筒を含む機構であることにより
なるもので、
サイクロン内筒により渦流の旋回速度を増し、旋回軸方向の運動を発生させることで、副次渦筒に発生する副次渦の旋回を促進し、
より効率的な目的物の捕捉と分離を行うことができる。
また、サイクロン内筒の開口部側において、旋回軸方向の運動を反転させることで、慣性力により目的物が流体から分離しやすくさせることで、副次渦筒への捕捉を容易にし、より微細な目的物の分離ができる。
また、サイクロン内筒の開口部側において、流体の減圧を発生させることで、主たる経路中に副次渦をより深く成長させることができるので、より多くの目的物を捕捉し、分離することができる。
The inventions according to claims 4 and 5 and 6 of the present invention are as follows:
Means for generating a vortex in the main path;
It consists of a mechanism that includes a cyclone inner cylinder in which the carrier fluid swirls outside and the carrier fluid flows out from the inside.
The cyclone inner cylinder increases the swirling speed of the vortex and generates movement in the direction of the swirling axis, thereby promoting the swirling of the secondary vortex generated in the secondary vortex cylinder.
More efficient capture and separation of the target object can be performed.
In addition, by reversing the movement in the swivel axis direction on the opening side of the cyclone inner cylinder, the target object can be easily separated from the fluid by the inertial force, facilitating the capture to the secondary vortex cylinder, and finer The target object can be separated.
In addition, by generating a reduced pressure of the fluid on the opening side of the cyclone inner cylinder, the secondary vortex can be grown deeper in the main path, so that more objects can be captured and separated. it can.

以下本発明の実施例を、図1〜3を用いて説明する。 Embodiments of the present invention will be described below with reference to FIGS.

図2は実施例の部品図をしめしている。副次渦式分離器本体100は、
サイクロン外筒122に偏心して設けた流入口121と、雌ねじ部123よりなるサイクロン外筒部品120と、サイクロン内筒開口部111を有するサイクロン内筒112と、
組み立て時に、前記サイクロン外筒部品120に接着させる環状の平面部113と流出口114よりなるサイクロン内筒部品110、および、
渦室の底面をなす平面に副次渦筒渦室側開口部143を開口させて、副次渦筒142と、副次渦筒の収集室側開口部141を一体で成型し、主たる経路の渦室の底面とした副次渦筒ユニット140と、
雄ねじ部151と、収集室下部152を有する収集室150と、
前記雌ねじ部123と、雄ねじ部151の締め込みによって、前記サイクロン外筒部品120と副次渦筒ユニット140と、更に、収集室150を連結する際の密閉を担保するパッキン130よりなる。
FIG. 2 shows a component diagram of the embodiment. The secondary vortex separator body 100 is
An inflow port 121 provided eccentric to the cyclone outer cylinder 122, a cyclone outer cylinder part 120 formed of a female screw portion 123, a cyclone inner cylinder 112 having a cyclone inner cylinder opening 111,
A cyclone inner cylinder part 110 composed of an annular flat part 113 and an outlet 114 to be bonded to the cyclone outer cylinder part 120 during assembly; and
The secondary vortex cylinder vortex chamber side opening 143 is opened in the plane that forms the bottom surface of the vortex chamber, and the secondary vortex cylinder 142 and the collection chamber side opening 141 of the secondary vortex cylinder are integrally molded, and the main path A secondary vortex cylinder unit 140 as a bottom surface of the vortex chamber;
A collection chamber 150 having a male thread 151 and a collection chamber lower part 152;
The internal thread part 123 and the external thread part 151 are tightened to form the cyclone outer cylinder part 120, the secondary vortex cylinder unit 140, and a packing 130 that ensures sealing when the collection chamber 150 is connected.

本実施例では、主たる経路の渦室の底面に、複数の副次渦を開口させて形成した副次渦筒ユニット140を配置し、これを一体成型とすることでシンプルな工作と組み立てを実現している。また、複数の副次渦筒をひとつの収集室に開口させることで、非運転時に目的物を取り出しやすくしている。さらに、副次渦筒ユニットでは渦室側の開口径を等しくし、収集室側の開口径は内周におけるほど狭い副次渦筒を配している。これにより、渦室における外周部と内周部の圧力差を緩和する効果と、内周部に至るに従い微細な目的物を分離しやすくする効果がある。 In this embodiment, the secondary vortex tube unit 140 formed by opening a plurality of secondary vortices is arranged on the bottom surface of the vortex chamber of the main path, and this is integrated to realize simple work and assembly. is doing. In addition, by opening a plurality of secondary vortex cylinders in one collection chamber, it is easy to take out the object during non-operation. Further, in the secondary vortex cylinder unit, the opening diameter on the vortex chamber side is made equal, and the secondary vortex cylinder whose opening diameter on the collection chamber side is narrower toward the inner periphery is arranged. Thereby, there exists an effect which eases the pressure difference of the outer peripheral part and inner peripheral part in a vortex chamber, and the effect which makes it easy to isolate | separate a fine target object as it reaches an inner peripheral part.

実施例における搬送流体の挙動について実施例の縦断面図である図3(b)を用いて説明する。
流入口121より流入した搬送流体はサイクロン外筒122とサイクロン内筒112の間を旋回しながら、下降する渦流となり、副次渦筒ユニット140で構成される渦室の底面に達すると、旋回しながら軸方向の運動を逆転させ、サイクロン内筒の中心部を経て、流出口114よりサイクロン分離器外へと流出する。
この際、副次渦筒ユニット140に接近した流体は、副次渦筒渦室側開口部143で流速の異なる流れとなり、副次渦筒の内面の上流側に減圧が生じ、これにより、開口部の外周側の流れは水平方向と垂直方向の両側から、開口部内側に曲がりこみ、副次渦筒内の壁に沿った旋回流となるが、副次渦筒が主たる経路の旋回に比べて小径であることから、回転数が高いものとなり、流体自体の遠心力と慣性力により内側の外周部を旋回する渦流となり、収集室150中に流入する。
この際、渦室側の開口部では一部が減圧されていることと、収集室が副次渦筒以外、もしくは、収集室より減圧された中心部の小径な渦筒以外に開口部を持たないことから、渦室側への流れが発生する。逆流した流体は、隣接する副次渦筒の開口部から取り込まれ、同様の挙動を繰り返しながら内周側へと進み、やがて、サイクロン内筒の開口部111から流出口114へいたりサイクロン分離器外へ流出する。また、副次渦筒ユニット140付近には複数の副次渦が発生していて、主たる経路の流体は、これらの間を蛇行しながら進むことになる。
The behavior of the carrier fluid in the embodiment will be described with reference to FIG. 3B which is a longitudinal sectional view of the embodiment.
The carrier fluid flowing in from the inflow port 121 swirls between the cyclone outer cylinder 122 and the cyclone inner cylinder 112 and becomes a vortex flow that descends. When the carrier fluid reaches the bottom of the vortex chamber formed by the secondary vortex cylinder unit 140, the carrier fluid swirls. However, the axial movement is reversed, and the gas flows out of the cyclone separator through the outlet 114 through the center of the cyclone inner cylinder.
At this time, the fluid that has approached the secondary vortex cylinder unit 140 becomes a flow having a different flow velocity at the secondary vortex cylinder vortex chamber side opening 143, and decompression occurs on the upstream side of the inner surface of the secondary vortex cylinder. The flow on the outer peripheral side of the section bends into the opening from both the horizontal and vertical directions, and turns along the inner wall of the secondary vortex tube. Because of the small diameter, the number of rotations is high, and the vortex flows around the inner periphery due to the centrifugal force and inertial force of the fluid itself, and flows into the collection chamber 150.
At this time, the opening on the vortex chamber side is partially depressurized, and the collection chamber has an opening other than the secondary vortex cylinder or a small-diameter vortex cylinder in the central portion depressurized from the collection chamber. Since there is no flow, a flow toward the vortex chamber occurs. The back-flowed fluid is taken in from the opening of the adjacent secondary vortex cylinder and proceeds to the inner peripheral side while repeating the same behavior, and eventually goes from the opening 111 of the cyclone inner cylinder to the outlet 114 or outside the cyclone separator. Spill to Further, a plurality of secondary vortices are generated in the vicinity of the secondary vortex cylinder unit 140, and the fluid in the main path travels while meandering between them.

搬送流体中の目的物の挙動について同じく、図3(b)をもって説明する。
流入口121より搬送流体とともに流入した目的物は、主たる経路の渦流により、遠心力を得て大きな目的物は渦流の外周側へ移動した状態で、副次渦筒ユニット140に接近する。この際、搬送力に打ち勝つ遠心力を得るものは外周側を旋回し続けようとするため、隣接した外周側の副次渦にやがて巻き込まれ、副次渦の強い遠心力により逆流に打ち勝ち、収集室へ放出される。この際、一部の微細な目的物は逆流により渦室側へ逆流するが、微細な目的物ほど、急激な流れの変化によく追随するため隣接する副次渦に捕捉されやすく、内周側に隣接する副次渦に再び巻き込まれる確率は高い。更に、副次渦筒ユニット140における収集室側の開口径は、内周ほど小さいために、更に強い遠心力が与えられ逆流することなく収集室に分離される。
Similarly, the behavior of the object in the carrier fluid will be described with reference to FIG.
The target object that has flowed in along with the carrier fluid from the inflow port 121 obtains a centrifugal force by the vortex flow of the main path, and the large target object moves to the outer peripheral side of the vortex flow and approaches the secondary vortex cylinder unit 140. At this time, the one that obtains centrifugal force that overcomes the conveyance force tries to continue to swivel on the outer peripheral side, so it is eventually caught in the adjacent outer side vortex, and overcomes the reverse flow by the strong centrifugal force of the side vortex, and collects Released into the chamber. At this time, some fine objects flow backward to the vortex chamber due to the reverse flow, but the finer objects follow the rapid flow change more easily and are easily trapped by the adjacent secondary vortex. There is a high probability of being engulfed again in the secondary vortex adjacent to Further, since the opening diameter on the side of the collection chamber in the secondary vortex cylinder unit 140 is smaller toward the inner periphery, a stronger centrifugal force is applied and the separation chamber is separated into the collection chamber without backflow.

実施例では、主たる経路の渦室を構成する壁の一面にのみ、副次渦筒を複数もうけているが、渦室の上面に副次渦筒の渦室側の開口部を設けた場合でも、特に微細な目的物が良く分離される。また、主経路の旋回軸と平行な面において設置しても同様の効果が得られるが、主たる経路の渦流の旋回軸に対する副次渦筒の長さ方向の軸を、水平垂直の両方向に対して角度を持たせると、より良好な副次渦が発生する。また、実施例では、収集室を下方に配置しているが、副次渦筒による分離は基本的に渦流の遠心分離と、副次渦の旋回軸方向の運動による慣性力によるため、重力の影響をうけにくく、本発明は重力の方向を限定するものではない。 In the embodiment, a plurality of secondary vortex cylinders are provided only on one surface of the wall constituting the vortex chamber of the main path, but even when the vortex chamber side opening of the secondary vortex cylinder is provided on the upper surface of the vortex chamber. Especially fine objects are well separated. The same effect can be obtained even if it is installed in a plane parallel to the swivel axis of the main path, but the lengthwise axis of the secondary vortex cylinder with respect to the swirl axis of the vortex flow of the main path is set to both horizontal and vertical directions. If an angle is given, better secondary vortices are generated. In the embodiment, the collection chamber is arranged below, but the separation by the secondary vortex tube is basically due to the centrifugal force of the vortex and the inertial force due to the movement of the secondary vortex in the direction of the swirling axis. It is difficult to be affected, and the present invention does not limit the direction of gravity.

本発明は、流路の抵抗を抑えつつ、かつ、従来技術では分離が困難であった微細な目的物の分離が可能となるため、従来のサイクロン式分離器が利用される全ての分野において、エネルギー効率と、分離性能を向上させる目的で利用の可能性がある。
また、微細な目的物は重力に頼らず分離する機構のため、横置きも可能でさらに、流量が多い状態での分離に有利なため、特に家庭用掃除機などに有効である。
また、本発明の構成は非常にコンパクトであり、流体の流路抵抗の増加が少ないことから、従来のサイクロン式分離器が設置しにくかった箇所にも設置可能となるので、流体に係る動力機器において付属的に不純物排除の機能を付与する目的で利用できる。
特に、流路の抵抗の増加が少ないことから、自動車や機械類のオイルフィルターやエアフィルター、ディーゼルエンジンの煤煙の回収や、更に、工場の煤煙回収装置や上下水道の浄化、更には、河川や風力などの自然流を利用した浄化装置としても有効なほか、
副次渦筒を面として一体成型することも可能で、気体や液体の浄化装置への応用や、分離物の利用を目的とする分野や、分級を目的とする分野にも利用される可能性がある。
In the present invention, since it is possible to separate a fine object that is difficult to separate by the prior art while suppressing the resistance of the flow path, in all fields where a conventional cyclone separator is used, It may be used for the purpose of improving energy efficiency and separation performance.
In addition, since a fine object is separated without relying on gravity, it can be placed horizontally and is advantageous for separation in a state where the flow rate is large.
In addition, since the configuration of the present invention is very compact and the increase in the flow path resistance of the fluid is small, it can be installed in places where conventional cyclone separators are difficult to install. In addition, it can be used for the purpose of providing an impurity removal function.
In particular, since the resistance of the flow path is small, oil and air filters for automobiles and machinery, soot recovery from diesel engines, and soot collection equipment and water and sewage purification in factories, and rivers and In addition to being effective as a purification device using natural flow such as wind power,
It can also be molded integrally with the secondary vortex cylinder as a surface, and it can be used for gas and liquid purification equipment, in the field of using separated materials, and in the field of classification. There is.

100 副次渦式分離器本体
110 サイクロン内筒部品
111 サイクロン内筒開口部
112 サイクロン内筒
113 平面部
114 流出口
120 サイクロン外筒部品
121 流入口
122 サイクロン外筒
123 雌ねじ部
130 パッキン
140 副次渦筒ユニット
141 副次渦筒収集室側開口部
142 副次渦筒
143 副次渦筒渦室側開口部
150 収集室
151 雄ねじ部
152 収集室下部
100 Secondary vortex separator body
110 Cyclone inner cylinder parts
111 Cyclone inner cylinder opening
112 Cyclone inner cylinder
113 Plane section
114 outlet
120 Cyclone outer cylinder parts
121 Inlet
122 Cyclone outer cylinder
123 Female thread
130 Packing
140 Secondary vortex cylinder unit
141 Side vortex tube collection chamber side opening
142 Secondary vortex tube
143 Secondary vortex tube vortex chamber side opening
150 Collection room
151 Male thread
152 Lower collection room

Claims (4)

サイクロン式分離器において、
搬送流体の主たる経路において任意の方法で渦流を発生させる手段と、
前記渦流の旋回の場となる渦室と、
前記渦室を構成する面に直接に開口する第1端部をもち、円筒もしくは一端の所定部分が円錐台状円筒である渦筒で、中心軸が前記渦流の旋回軸延長上に重ならない渦筒(以降、副次渦筒と呼称。)を複数有し、
前記搬送流体から分離する目的物の収集室で、前記副次渦筒の第2端部が開口し、運転中は前記副次渦筒の開口部、または、収集室よりも減圧された空間以外には、開口部をもたず他は密閉された収集室、
を有する事を特徴とするサイクロン式分離器。
In the cyclonic separator,
Means for generating a vortex in any way in the main path of the carrier fluid;
A vortex chamber serving as a swirl field for the vortex,
A vortex cylinder having a first end opening directly on a surface constituting the vortex chamber and a cylinder or a predetermined portion of one end being a circular truncated cone, and a vortex whose central axis does not overlap the extension of the swirl axis of the vortex A plurality of tubes (hereinafter referred to as secondary vortex tubes);
In the collection chamber of the object to be separated from the carrier fluid, the second end of the secondary vortex cylinder is open, and during operation, other than the opening of the secondary vortex cylinder or a space depressurized from the collection chamber The collection chamber has no openings and the others are sealed,
A cyclone separator characterized by having
副次渦筒の渦室側の開口径に対する収集室側の開口径の比率と、収集室側の開口径の、片方、または、双方が、主たる経路の渦流の旋回軸からの距離が近くなるに従って小さくなっている前記副次渦筒を配することを特徴とする請求項1に示すサイクロン式分離器。 The ratio of the opening diameter on the collection chamber side to the opening diameter on the vortex chamber side of the secondary vortex cylinder and one or both of the opening diameters on the collection chamber side are closer to the swirl axis of the vortex flow of the main path. The cyclonic separator according to claim 1, wherein the secondary vortex cylinder is reduced in size according to claim 1. 前記の主たる経路において渦流を発生させる手段が、
搬送流体が外側を旋回し、内側より搬送流体が流出されるサイクロン内筒を含む機構であること、
を特徴とする請求項1に記載のサイクロン式分離器。
Means for generating a vortex in the main path;
A mechanism including a cyclone inner cylinder in which the carrier fluid swirls outside and the carrier fluid flows out from the inside;
The cyclonic separator according to claim 1.
前記の主たる経路において渦流を発生させる手段が、
搬送流体が外側を旋回し、内側より搬送流体が流出されるサイクロン内筒を含む機構であること、
を特徴とする請求項2に記載のサイクロン式分離器。
Means for generating a vortex in the main path;
A mechanism including a cyclone inner cylinder in which the carrier fluid swirls outside and the carrier fluid flows out from the inside;
The cyclonic separator according to claim 2.
JP2011177359A 2011-08-13 2011-08-13 Secondary vortex separator Expired - Fee Related JP4861529B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177359A JP4861529B1 (en) 2011-08-13 2011-08-13 Secondary vortex separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177359A JP4861529B1 (en) 2011-08-13 2011-08-13 Secondary vortex separator

Publications (2)

Publication Number Publication Date
JP4861529B1 true JP4861529B1 (en) 2012-01-25
JP2013039519A JP2013039519A (en) 2013-02-28

Family

ID=45604569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177359A Expired - Fee Related JP4861529B1 (en) 2011-08-13 2011-08-13 Secondary vortex separator

Country Status (1)

Country Link
JP (1) JP4861529B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007164A1 (en) * 2012-07-04 2014-01-09 アイシン精機株式会社 Oil separator
JP2014013012A (en) * 2012-07-04 2014-01-23 Aisin Seiki Co Ltd Oil separator
JP2014013033A (en) * 2012-11-22 2014-01-23 Aisin Seiki Co Ltd Oil separator
CN106076841A (en) * 2016-07-27 2016-11-09 无锡市华通电力设备有限公司 A kind of flyash grader secondary air and ash bucket structure
CN116140284A (en) * 2022-09-09 2023-05-23 安徽德昌药业股份有限公司 Traditional chinese medicine decoction piece processing washing medicine device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093763A (en) * 2014-11-12 2016-05-26 株式会社日進製作所 Filter device
KR102202268B1 (en) 2014-12-17 2021-01-13 엘지전자 주식회사 Dust collector for vacuum cleaner
JP6222383B2 (en) * 2015-01-14 2017-11-01 三菱電機株式会社 Electric vacuum cleaner
JP2017205704A (en) * 2016-05-18 2017-11-24 株式会社日進製作所 Filter device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119569A (en) * 1976-03-26 1977-10-07 Celleco Ab Wet cyclone separator
JPS5415575A (en) * 1977-05-05 1979-02-05 Donaldson Co Inc Side portion outlet type cyclone separating pipe and eddy current cenerator and air purifier
JPS5638146A (en) * 1979-09-06 1981-04-13 Sumitomo Heavy Ind Ltd Cyclon for cement preheater
JPS5678650A (en) * 1979-11-29 1981-06-27 Kubota Ltd Cyclone type sand removing and washing device
JPS58146460A (en) * 1982-02-26 1983-09-01 Fuji Electric Corp Res & Dev Ltd Cyclone separator
JP2002503541A (en) * 1998-02-19 2002-02-05 クリストファー アーノルド,エードリアン Purification device
JP2005230712A (en) * 2004-02-20 2005-09-02 Tama Tlo Kk Particulate separation treatment system
JP2006205162A (en) * 2005-01-31 2006-08-10 Samsung Kwangju Electronics Co Ltd Multicyclone dust collecting device
JP2006272322A (en) * 2005-03-29 2006-10-12 Samsung Kwangju Electronics Co Ltd Cyclone dust separating apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119569A (en) * 1976-03-26 1977-10-07 Celleco Ab Wet cyclone separator
JPS5415575A (en) * 1977-05-05 1979-02-05 Donaldson Co Inc Side portion outlet type cyclone separating pipe and eddy current cenerator and air purifier
JPS5638146A (en) * 1979-09-06 1981-04-13 Sumitomo Heavy Ind Ltd Cyclon for cement preheater
JPS5678650A (en) * 1979-11-29 1981-06-27 Kubota Ltd Cyclone type sand removing and washing device
JPS58146460A (en) * 1982-02-26 1983-09-01 Fuji Electric Corp Res & Dev Ltd Cyclone separator
JP2002503541A (en) * 1998-02-19 2002-02-05 クリストファー アーノルド,エードリアン Purification device
JP2005230712A (en) * 2004-02-20 2005-09-02 Tama Tlo Kk Particulate separation treatment system
JP2006205162A (en) * 2005-01-31 2006-08-10 Samsung Kwangju Electronics Co Ltd Multicyclone dust collecting device
JP2006272322A (en) * 2005-03-29 2006-10-12 Samsung Kwangju Electronics Co Ltd Cyclone dust separating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007164A1 (en) * 2012-07-04 2014-01-09 アイシン精機株式会社 Oil separator
JP2014013012A (en) * 2012-07-04 2014-01-23 Aisin Seiki Co Ltd Oil separator
US9630128B2 (en) 2012-07-04 2017-04-25 Aisin Seiki Kabushiki Kaisha Oil separator
JP2014013033A (en) * 2012-11-22 2014-01-23 Aisin Seiki Co Ltd Oil separator
CN106076841A (en) * 2016-07-27 2016-11-09 无锡市华通电力设备有限公司 A kind of flyash grader secondary air and ash bucket structure
CN116140284A (en) * 2022-09-09 2023-05-23 安徽德昌药业股份有限公司 Traditional chinese medicine decoction piece processing washing medicine device

Also Published As

Publication number Publication date
JP2013039519A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP4861529B1 (en) Secondary vortex separator
CN101437596B (en) Particle separator
US6277278B1 (en) Cyclone separator having a variable longitudinal profile
US6312594B1 (en) Insert for a cyclone separator
US6129775A (en) Terminal insert for a cyclone separator
CN100577081C (en) Cyclone separation device of dust collector
EP1842475A1 (en) A Second-Stage Separator Device For A Vacuum Cleaner
US20140298761A1 (en) Centrifugal Separator and Filter Arrangement Having a Centrifugal Separator of Said Type
JP6066136B2 (en) Vacuum cleaner separation device
CN201179364Y (en) Vertical gas (steam) liquid cyclone separator with built-in helical commutating device
US6168716B1 (en) Cyclone separator having a variable transverse profile
CN102921259B (en) Self-circulation rotary liquid combined type gas filter and filtering method thereof
JP2016511140A (en) Centrifuge with stretched struts
CN106474830B (en) Gas-solid separating device
CN210729883U (en) Spiral-flow type gas-liquid separation device
EP2533905B1 (en) Separator fluid collector and method
CN105999869A (en) Self-circulation two-stage axial gas-liquid separation cyclone tube
JP5342205B2 (en) Magnetic particle separator
JP2011083702A (en) Cleaning system for fluid to be treated
WO2022144739A1 (en) Compact disc stack cyclone separator
JP2010075793A (en) Dust collecting device and vacuum cleaner having the same
CN112439261B (en) Multiple cyclone type dust filtering device
JP2011230101A (en) Foreign matter particle separator
CN105964425B (en) A kind of cyclonic inertia deduster with double isolation wards
RU2379120C1 (en) Centrifugal return-uniflow separator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4861529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees