JP4861121B2 - Hollow needle inspection device, hollow needle inspection method, and microinjection system - Google Patents

Hollow needle inspection device, hollow needle inspection method, and microinjection system Download PDF

Info

Publication number
JP4861121B2
JP4861121B2 JP2006285539A JP2006285539A JP4861121B2 JP 4861121 B2 JP4861121 B2 JP 4861121B2 JP 2006285539 A JP2006285539 A JP 2006285539A JP 2006285539 A JP2006285539 A JP 2006285539A JP 4861121 B2 JP4861121 B2 JP 4861121B2
Authority
JP
Japan
Prior art keywords
pressure
pressure chamber
hollow needle
valve
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006285539A
Other languages
Japanese (ja)
Other versions
JP2008102042A (en
Inventor
順 佐々木
彰彦 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006285539A priority Critical patent/JP4861121B2/en
Publication of JP2008102042A publication Critical patent/JP2008102042A/en
Application granted granted Critical
Publication of JP4861121B2 publication Critical patent/JP4861121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

この発明は、中空針を検査する中空針検査装置、中空針検査方法およびマイクロインジェクションシステムに関し、特に、中空針を破壊することなく検査することによって、中空針の全数検査を可能とする中空針検査装置、中空針検査方法およびマイクロインジェクションシステムに関するものである。   The present invention relates to a hollow needle inspection device, a hollow needle inspection method, and a microinjection system for inspecting a hollow needle, and more particularly, a hollow needle inspection that enables a total inspection of hollow needles by inspecting the hollow needle without destroying it. The present invention relates to a device, a hollow needle inspection method, and a microinjection system.

マイクロインジェクションは、細胞および細胞様の微細粒子(以下細胞と総称)内に、遺伝子溶液および薬剤溶液(以下導入液体と総称)を、針を用いて導入する技術である(例えば、非特許文献1および2参照。)。   Microinjection is a technique for introducing a gene solution and a drug solution (hereinafter collectively referred to as an introduction liquid) into cells and cell-like fine particles (hereinafter collectively referred to as cells) using a needle (for example, Non-Patent Document 1). And 2).

再生医療および新薬開発等の分野において、細胞に物質を導入して効果の有無を検証す
る機会が増加している。これまでにも多くの物質導入技術が用いられているが、今後は微量の細胞および導入液体を用いて、多くのパターンの実験を行う必要がある。このような背景から、個々の粒子に、定量の導入液体を、無菌的に、確実かつ大量の個数に入れる技術が要求されている。
In fields such as regenerative medicine and new drug development, opportunities to introduce substances into cells and verify their effectiveness are increasing. Many substance introduction techniques have been used so far, but in the future, it will be necessary to conduct many patterns of experiments using a small amount of cells and introduction liquid. From such a background, there is a demand for a technique for ascertaining and reliably assembling a predetermined amount of introduced liquid into individual particles in a large number.

マイクロインジェクションに使用する針は、ガラス製の中空針(以下キャピラリと呼称)である。直径十数μmであることが多い一般体細胞を穿刺するために、キャピラリの先端は1μm以下まで絞りこむ。一般に円管内に充填した液体を押し出すために必要な圧力は、円管の半径の4乗に反比例するため、先端内径が圧力管理に鋭く影響する。このため、作成したキャピラリの内径の測定および管理が重要になる。   A needle used for microinjection is a glass hollow needle (hereinafter referred to as a capillary). In order to puncture general somatic cells often having a diameter of several tens of μm, the tip of the capillary is squeezed to 1 μm or less. In general, the pressure required to push out the liquid filled in the circular pipe is inversely proportional to the fourth power of the radius of the circular pipe, and therefore the inner diameter of the tip sharply affects the pressure management. For this reason, it is important to measure and manage the inner diameter of the created capillary.

「SUTTER INSTRUMENT」、[平成18年9月12日検索]、インターネット<URL:http://www.shoshinem.com/puller-ivf.htm>"SUTTER INSTRUMENT", [searched on September 12, 2006], Internet <URL: http://www.shoshinem.com/puller-ivf.htm> 「自動マイクロインジェクション装置」、[平成18年9月12日検索]、インターネット<URL:http://jp.fujitsu.com/group/automation/services/cellinjector>"Automatic microinjection device", [Search September 12, 2006], Internet <URL: http://jp.fujitsu.com/group/automation/services/cellinjector>

キャピラリの先端径の測定方法としては、二つの方法がある。ひとつは、直接画像で測定する方法である。光学顕微鏡の場合はステージにキャピラリを装着し、拡大観察する。しかし、1μm以下の先端形状を観察するには、光学顕微鏡では解像度の点で限界がある。電子顕微鏡(SEM)による観察では、キャピラリの長さ(50mm以上)を収納できる機種に制限がある。したがって、多くの場合はキャピラリを切断してステージに搭載するため、サンプリング検査となる。また、良い画像を得るためにはスパッタによる前処理が必要など、簡便な測定法とはいえない。   There are two methods for measuring the tip diameter of the capillary. One is a method of directly measuring with an image. In the case of an optical microscope, a capillary is attached to the stage and magnified observation is performed. However, in order to observe the tip shape of 1 μm or less, the optical microscope has a limit in terms of resolution. In observation with an electron microscope (SEM), there is a limit to the models that can accommodate the capillary length (50 mm or more). Therefore, in many cases, since the capillary is cut and mounted on the stage, a sampling inspection is performed. In addition, it is not a simple measurement method because pretreatment by sputtering is necessary to obtain a good image.

もうひとつは、液中にキャピラリを入れ、先端から気体を放出して測定する方法である。エタノールを満たした容器中にキャピラリ先端を浸漬し、内部から空気または窒素を放出する。先端から気泡が出始めるときの圧力を記録し、計算によって先端内径を求める手法である。しかし、この測定方法では、液体にキャピラリを浸漬するために、一度測定に用いたキャピラリは製品として使用できず、サンプリング検査にならざるを得ない。   The other is a method in which a capillary is put in the liquid and gas is discharged from the tip for measurement. The tip of the capillary is immersed in a container filled with ethanol, and air or nitrogen is released from the inside. This is a method of recording the pressure when bubbles start to emerge from the tip and calculating the tip inner diameter by calculation. However, in this measurement method, since the capillary is immersed in a liquid, the capillary once used for measurement cannot be used as a product, and must be subjected to a sampling inspection.

このように、従来のキャピラリの先端径の測定検査では、サンプリング検査にならざるを得ないが、キャピラリは、その製作原理上、先端径のばらつきが大きいため、サンプリング検査では測定の精度が高くないという問題がある。   As described above, in the conventional measurement and inspection of the tip diameter of the capillary, it is unavoidable to be a sampling inspection. However, the capillary has a large variation in the tip diameter due to its manufacturing principle, so the measurement accuracy is not high in the sampling inspection. There is a problem.

この発明は、上述した従来技術による問題点を解消するためになされたものであり、キャピラリなどの中空針を破壊することなく検査することによって、中空針の全数検査を可能とする中空針検査装置、中空針検査方法およびマイクロインジェクションシステムを提供することを目的とする。   The present invention has been made in order to solve the above-described problems caused by the prior art, and is a hollow needle inspection device that can inspect all the hollow needles by inspecting the hollow needles such as capillaries without breaking them. An object of the present invention is to provide a hollow needle inspection method and a microinjection system.

上述した課題を解決し、目的を達成するため、発明は、気体の供給に用いられる配管に接続された第一の圧力室と、前記第一の圧力室とは弁を介して接続された第二の圧力室と、前記配管を用いて供給される気体の圧力を調整するレギュレータと、前記レギュレータによる圧力調整後に閉鎖された前記弁により第一の圧力室とは仕切られた第二の圧力室に接続された中空針が第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサと、前記差圧センサにより測定された圧力差から差圧の上昇速度を算出し、該算出した上昇速度から前記中空針の先端内径を算出する内径算出手段とを備える。 In order to solve the above-described problems and achieve the object, the present invention provides a first pressure chamber connected to a pipe used for gas supply, and the first pressure chamber is connected via a valve. A second pressure chamber, a regulator that adjusts the pressure of the gas supplied using the pipe, and a second pressure that is separated from the first pressure chamber by the valve that is closed after pressure adjustment by the regulator. A differential pressure sensor for measuring a pressure difference generated between the first pressure chamber and the second pressure chamber when the hollow needle connected to the chamber leaks gas in the second pressure chamber; and the differential pressure sensor calculating the rate of increase in the differential pressure from the pressure difference measured by, Ru and an inner diameter calculating means for calculating a tip inner diameter of the hollow needle from the rising speed of the calculated.

この発明によれば、気体の供給に用いられる配管に接続された第一の圧力室と、第一の圧力室とは弁を介して接続された第二の圧力室と、配管を用いて供給される気体の圧力を調整するレギュレータと、レギュレータによる圧力調整後に閉鎖された弁により第一の圧力室とは仕切られた第二の圧力室に接続された中空針が第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサとで中空針検査装置を構成したので、圧力差を複数回測定することによって圧力差の時間変化を算出することができる。 According to the present invention, the first pressure chamber connected to the pipe used for gas supply, the second pressure chamber connected to the first pressure chamber via the valve, and the pipe A regulator for adjusting the pressure of the supplied gas, and a hollow needle connected to a second pressure chamber separated from the first pressure chamber by a valve closed after pressure adjustment by the regulator is provided in the second pressure chamber. Since the hollow needle inspection device is configured with the differential pressure sensor that measures the pressure difference generated between the first pressure chamber and the second pressure chamber when the gas leaks, by measuring the pressure difference multiple times The time change of the pressure difference can be calculated.

また、発明は、上記の発明において、前記レギュレータは、弁が閉鎖される際の気体の圧力を所定の下限値および上限値の範囲に調整することを特徴とする。 Moreover, the present invention is characterized in that, in the above invention, the regulator adjusts the pressure of the gas when the valve is closed to a range between a predetermined lower limit value and an upper limit value.

この発明によれば、弁が閉鎖される際の気体の圧力を所定の下限値および上限値の範囲に調整するよう構成したので、第一の圧力室と第二の圧力室との間に生じる圧力差を適切に測定することができる。 According to the present invention, since the pressure of the gas when the valve is closed is adjusted to the predetermined lower limit value and upper limit value range, the first pressure chamber and the second pressure chamber are The resulting pressure differential can be measured appropriately.

また、発明は、上記発明において、前記第一の圧力室および第二の圧力室は、同一の部材から切り出されて構成されることを特徴とする。 Moreover, the present invention is characterized in that, in the above invention, the first pressure chamber and the second pressure chamber are cut out from the same member.

この発明によれば、第一の圧力室および第二の圧力室を同一の部材から切り出して構成したので、第一の圧力室と第二の圧力室との間に生じる圧力差を正確に測定することができる。 According to the present invention, since the first pressure chamber and the second pressure chamber are cut out from the same member, the pressure difference generated between the first pressure chamber and the second pressure chamber can be accurately determined. Can be measured.

この発明によれば、差圧センサにより測定された圧力差から差圧の上昇速度を算出し、算出した上昇速度から中空針の先端内径を算出するよう構成したので、中空針の先端内径を簡単に算出することができる。 According to the present invention, the pressure increase rate is calculated from the pressure difference measured by the differential pressure sensor, and the tip inner diameter of the hollow needle is calculated from the calculated speed increase. It can be calculated easily.

また、発明は、上記発明において、前記レギュレータによる気圧の調整、弁の閉鎖、差圧の上昇速度の算出および弁の開放の繰り返しによって算出される複数の差圧上昇速度のうち、前記内径算出手段は、最初の差圧上昇速度を除いて前記中空針の先端内径を算出することを特徴とする。 Further, according to the present invention, in the above invention, the inner diameter calculation among a plurality of differential pressure increasing speeds calculated by repeatedly adjusting an atmospheric pressure by the regulator, closing a valve, calculating a differential pressure increasing speed, and opening a valve. The means is characterized in that the tip inner diameter of the hollow needle is calculated excluding the initial differential pressure increase rate.

この発明によれば、レギュレータによる気圧の調整、弁の閉鎖、差圧の上昇速度の算出および弁の開放の繰り返しによって算出される複数の差圧上昇速度のうち、最初の差圧上昇速度を除いて中空針の先端内径を算出するよう構成したので、差圧上昇速度を算出する際の初期誤差を除外することができる。 According to the present invention, the first differential pressure increase speed among the plurality of differential pressure increase speeds calculated by repeatedly adjusting the air pressure by the regulator, closing the valve, calculating the differential pressure increase speed, and opening the valve is obtained. In addition, since the tip inner diameter of the hollow needle is calculated, an initial error when calculating the differential pressure increase speed can be excluded.

また、発明は、中空針が接続された第二の圧力室および該第二の圧力室に弁を介して接続された第一の圧力室に所定の圧力の気体を前記弁を開放して供給する気体供給ステップと、前記気体供給ステップにより所定の圧力の気体を第一の圧力室と第二の圧力室に充填して前記弁を閉鎖後に第一の圧力室と第二の圧力室との間の差圧を測定して該差圧の上昇速度を算出する差圧上昇速度算出ステップと、前記差圧上昇速度算出ステップにより算出された差圧上昇速度に基づいて前記中空針の先端内径を算出する先端内径算出ステップと、を含んだことを特徴とする。 Further, the present invention provides a second pressure chamber to which a hollow needle is connected and a first pressure chamber connected to the second pressure chamber via a valve by opening the valve with a predetermined pressure. A gas supply step to supply; after filling the first pressure chamber and the second pressure chamber with a gas of a predetermined pressure by the gas supply step and closing the valve, the first pressure chamber and the second pressure chamber; A differential pressure increase rate calculation step for measuring the differential pressure between the two and calculating the differential pressure increase rate, and a tip inner diameter of the hollow needle based on the differential pressure increase rate calculated by the differential pressure increase rate calculation step And a tip inner diameter calculating step for calculating.

この発明によれば、中空針が接続された第二の圧力室および第二の圧力室に弁を介して接続された第一の圧力室に所定の圧力の気体を弁を開放して供給し、第一の圧力室と第二の圧力室に充填して弁を閉鎖後に第一の圧力室と第二の圧力室との間の差圧を測定して差圧の上昇速度を算出し、算出した差圧上昇速度に基づいて中空針の先端内径を算出するよう構成したので、中空針を破壊することなく先端内径を算出することができる。 According to the present invention, a gas having a predetermined pressure is supplied to the second pressure chamber connected to the hollow needle and the first pressure chamber connected to the second pressure chamber via the valve by opening the valve. Then, after filling the first pressure chamber and the second pressure chamber and closing the valve, the differential pressure between the first pressure chamber and the second pressure chamber is measured to calculate the differential pressure increase rate. Since the tip inner diameter of the hollow needle is calculated based on the calculated differential pressure increase rate, the tip inner diameter can be calculated without destroying the hollow needle.

また、発明は、キャピラリを用いるマイクロインジェクションシステムであって、気体の供給に用いられる配管に接続された第一の圧力室と、前記第一の圧力室とは弁を介して接続された第二の圧力室と、前記配管を用いて供給される気体の圧力を調整するレギュレータと、前記レギュレータによる圧力調整後に閉鎖された前記弁により第一の圧力室とは仕切られた第二の圧力室に接続されたキャピラリが第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサと、前記差圧センサにより測定された圧力差から差圧の上昇速度を算出し、該算出した上昇速度から前記キャピラリの先端内径を算出する内径算出手段とを備える。 Further, the present invention is a microinjection system using a capillary, wherein a first pressure chamber connected to a pipe used for gas supply and the first pressure chamber are connected via a valve. A second pressure chamber that is partitioned from the first pressure chamber by the valve closed after the pressure adjustment by the regulator, and a regulator that adjusts the pressure of the gas supplied using the pipe A differential pressure sensor for measuring a pressure difference generated between the first pressure chamber and the second pressure chamber when the capillary connected to the gas leaks gas in the second pressure chamber, and measured by the differential pressure sensor And an inner diameter calculating means for calculating an increasing speed of the differential pressure from the calculated pressure difference and calculating an inner diameter of the tip of the capillary from the calculated increasing speed.

この発明によれば、気体の供給に用いられる配管に接続された第一の圧力室と、第一の圧力室とは弁を介して接続された第二の圧力室と、配管を用いて供給される気体の圧力を調整するレギュレータと、レギュレータによる圧力調整後に閉鎖された弁により第一の圧力室とは仕切られた第二の圧力室に接続されたキャピラリが第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサをマイクロインジェクションシステムに備えることとしたので、マイクロインジェクションシステム自体でキャピラリの先端内径を算出することが可能となる。 According to the present invention, the first pressure chamber connected to the pipe used for gas supply, the second pressure chamber connected to the first pressure chamber via the valve, and the pipe A regulator that adjusts the pressure of the supplied gas, and a capillary connected to the second pressure chamber that is partitioned from the first pressure chamber by a valve that is closed after pressure adjustment by the regulator is the gas in the second pressure chamber Since the microinjection system is equipped with a differential pressure sensor that measures the pressure difference generated between the first pressure chamber and the second pressure chamber when leaking It is possible to calculate.

本発明によれば、第一の圧力室と第二の圧力室との間に生じる圧力差の時間変化を算出することができるので、圧力差の時間変化と中空針の先端内径との対応関係を用いて各中空針の先端内径を正確に求めることができるという効果を奏する。   According to the present invention, since it is possible to calculate the time change of the pressure difference generated between the first pressure chamber and the second pressure chamber, the correspondence between the time change of the pressure difference and the tip inner diameter of the hollow needle It is possible to accurately obtain the tip inner diameter of each hollow needle using the.

また、本発明によれば、第一の圧力室と第二の圧力室との間に生じる圧力差を適切に測定するので、圧力差の時間変化を精度良く算出することができるという効果を奏する。   In addition, according to the present invention, since the pressure difference generated between the first pressure chamber and the second pressure chamber is appropriately measured, it is possible to accurately calculate the time change of the pressure difference. .

また、本発明によれば、第一の圧力室と第二の圧力室との間に生じる圧力差を正確に測定するので、圧力差の時間変化を精度良く算出することができるという効果を奏する。   In addition, according to the present invention, since the pressure difference generated between the first pressure chamber and the second pressure chamber is accurately measured, the time change of the pressure difference can be calculated with high accuracy. .

また、本発明によれば、中空針の先端内径を簡単に算出するので、中空針の全数検査を少ない負担で行うことができるという効果を奏する。   In addition, according to the present invention, since the tip inner diameter of the hollow needle is easily calculated, there is an effect that the total number inspection of the hollow needle can be performed with a small burden.

また、本発明によれば、差圧上昇速度を算出する際の初期誤差を除外するので、差圧上昇速度から算出される中空針の先端内径の精度を向上させることができるという効果を奏する。   In addition, according to the present invention, since the initial error when calculating the differential pressure increase rate is excluded, it is possible to improve the accuracy of the tip inner diameter of the hollow needle calculated from the differential pressure increase rate.

また、本発明によれば、中空針を破壊することなく先端内径を算出するので、中空針ごとに先端内径を算出することができるという効果を奏する。   In addition, according to the present invention, since the tip inner diameter is calculated without destroying the hollow needle, the tip inner diameter can be calculated for each hollow needle.

また、本発明によれば、マイクロインジェクションシステム自体でキャピラリの先端内径を算出することが可能となるので、インジェクションの際のキャピラリの先端内径を精度良く算出することができるという効果を奏する。   Further, according to the present invention, it is possible to calculate the tip inner diameter of the capillary by the microinjection system itself, so that it is possible to accurately calculate the tip inner diameter of the capillary at the time of injection.

以下に添付図面を参照して、この発明に係る中空針検査装置、中空針検査方法およびマイクロインジェクションシステムの好適な実施例を詳細に説明する。   Exemplary embodiments of a hollow needle inspection apparatus, a hollow needle inspection method, and a microinjection system according to the present invention will be described below in detail with reference to the accompanying drawings.

まず、本実施例に係るキャピラリ検査装置の構成について説明する。図1は、本実施例に係るキャピラリ検査装置の構成を示す図である。同図に示すように、このキャピラリ検査装置100では、キャピラリ1は、キャピラリ装着部2に対してねじまたは適当な装着手段によって装着されている。キャピラリ装着部2から第二の圧力室3、第一の圧力室7、バルブ8、レギュレータユニット10、フィルタ11の間はすべて内部が配管9による接続または一体成形によって、装置を構成する。   First, the configuration of the capillary inspection apparatus according to this embodiment will be described. FIG. 1 is a diagram illustrating a configuration of a capillary inspection apparatus according to the present embodiment. As shown in the figure, in this capillary inspection apparatus 100, the capillary 1 is mounted on the capillary mounting portion 2 by screws or appropriate mounting means. From the capillary mounting part 2 to the second pressure chamber 3, the first pressure chamber 7, the valve 8, the regulator unit 10 and the filter 11, all are internally connected by piping 9 or formed integrally.

第一と第二の圧力室の間には、両圧力室を遮断して差圧を発生せしめるための電磁弁5が備えられている。なお、ここでは、全体の寸法を小さくするために、電磁弁5としてダイアフラム型の電磁弁を用いるが、他の型の電磁弁を用いることもできる。   Between the first and second pressure chambers, there is provided an electromagnetic valve 5 for blocking both pressure chambers to generate a differential pressure. Here, in order to reduce the overall dimensions, a diaphragm type electromagnetic valve is used as the electromagnetic valve 5, but other types of electromagnetic valves can also be used.

両圧力室の間に生じる圧力は、差圧センサ4によって測定される。この差圧センサ4は、最小分解能0.1Paの微差圧を検出することができる。また、差圧センサ4とは別に、第一の圧力室内の圧力を圧力センサ6によって測定する。この圧力センサ6は、レギュレータユニット10で元圧を調整するときの指標として用いられる。   The pressure generated between the two pressure chambers is measured by the differential pressure sensor 4. The differential pressure sensor 4 can detect a fine differential pressure with a minimum resolution of 0.1 Pa. Separately from the differential pressure sensor 4, the pressure in the first pressure chamber is measured by the pressure sensor 6. The pressure sensor 6 is used as an index when the regulator unit 10 adjusts the original pressure.

このキャピラリ検査装置100による検査では、フィルタ11を経てクリーン化した窒素もしくは空気を、第一の圧力室7およびキャピラリ1に接続された第二の圧力室3に充填し、両圧力室を電磁弁5にて隔離する。そして、両圧力室の差圧を差圧センサ4が数分間にわたって計測し、内径算出装置12が差圧上昇の変化率からキャピラリ1の先端内径を算出して表示する。なお、内径算出装置12は、差圧上昇の変化率とキャピラリ1の先端内径との対応関係を記憶し、記憶した対応関係を用いて差圧上昇の変化率からキャピラリ1の先端内径を算出する。   In the inspection by the capillary inspection apparatus 100, nitrogen or air cleaned through the filter 11 is filled in the first pressure chamber 7 and the second pressure chamber 3 connected to the capillary 1, and both pressure chambers are electromagnetic valves. Isolate at 5. Then, the differential pressure sensor 4 measures the pressure difference between the two pressure chambers over several minutes, and the inner diameter calculation device 12 calculates and displays the tip inner diameter of the capillary 1 from the rate of change in the differential pressure. The inner diameter calculating device 12 stores the correspondence between the change rate of the differential pressure increase and the tip inner diameter of the capillary 1 and calculates the tip inner diameter of the capillary 1 from the change rate of the differential pressure increase using the stored correspondence. .

また、マイクロインジェクションにおいては、被測定物(=キャピラリ)の内部容積が0.1cc以下と非常に小さい。このため、測定器の内部容積を抑えることと、装置内の接続配管を排除する構造が求められる。そこで、ここでは、圧力室とキャピラリ内部の圧力差を直接差圧センサ4で測定することとしている。また、圧力室とキャピラリ装着部2は同一の部品で製作し、測定場所以外からのリークを抑えるようにしている。   In microinjection, the internal volume of the object to be measured (= capillary) is as small as 0.1 cc or less. For this reason, the structure which suppresses the internal volume of a measuring device and excludes the connection piping in an apparatus is calculated | required. Therefore, here, the pressure difference between the pressure chamber and the capillary is directly measured by the differential pressure sensor 4. Further, the pressure chamber and the capillary mounting portion 2 are manufactured with the same parts so as to suppress leakage from other than the measurement place.

次に、キャピラリ検査装置100を用いた差圧の測定について説明する。図2は、キャピラリ検査装置100へのキャピラリ装着までの状態を示す図である。操作者は、電磁弁5を解放した状態で、供給元圧を圧力センサ6の指示値ベースでゼロとする。これは元圧供給ラインが大気圧(P0)と同等になることを意味する。この状態で、操作者は、キャピラリ1の取り外しおよび交換を行う。 Next, the measurement of the differential pressure using the capillary inspection apparatus 100 will be described. FIG. 2 is a diagram illustrating a state until the capillary is mounted on the capillary inspection apparatus 100. The operator sets the supply source pressure to zero on the basis of the indication value of the pressure sensor 6 with the electromagnetic valve 5 released. This means that the source pressure supply line is equivalent to the atmospheric pressure (P 0 ). In this state, the operator removes and replaces the capillary 1.

なお、これらの動作を電磁弁5が解放した状態で行うのは、元圧変化やキャピラリ1のねじ込みによる内圧変化によって、両圧力室を接続する差圧センサ4に測定レンジ以上の差圧が掛かって差圧センサ4が破損するのを防ぐためである。   Note that these operations are performed in a state where the solenoid valve 5 is released because the differential pressure sensor 4 connecting the two pressure chambers is subjected to a differential pressure exceeding the measurement range due to a change in the original pressure or a change in the internal pressure due to screwing of the capillary 1. This is to prevent the differential pressure sensor 4 from being damaged.

一般的に、キャピラリ1のガラス管部の内径は0.6mm、キャピラリ装着部2を含めた長さは50mm程度であり、キャピラリ内部の総体積は15μL程度である。この内部の圧力変動を検知するためには、キャピラリ1に接続される配管および圧力室の体積は可能な限り抑える必要がある。ここでは、配管を短く設計することにより、キャピラリ装着部2および第二の圧力室3を含めた、電磁弁5よりキャピラリ側の総体積は100μL程度に抑えている。   Generally, the inner diameter of the glass tube portion of the capillary 1 is about 0.6 mm, the length including the capillary mounting portion 2 is about 50 mm, and the total volume inside the capillary is about 15 μL. In order to detect the internal pressure fluctuation, it is necessary to suppress the volume of the pipe connected to the capillary 1 and the pressure chamber as much as possible. Here, the total volume on the capillary side from the solenoid valve 5 including the capillary mounting portion 2 and the second pressure chamber 3 is suppressed to about 100 μL by designing the piping to be short.

また、測定すべき部品内に高圧の気体を詰め、そこからの圧力変化を測定して開口の有無を検出する装置はリークテスタと呼ばれ、通常のリークテスタでは、検出するものは漏洩の有無のみで、検出物体の体積はmL〜Lオーダとなることが多い。この種の測定では、漏洩が無いと保証されている同一形状部品(リークマスタ)を用意し、この部品と検出部品の差圧を測定するのが通常である。   In addition, a device that packs high-pressure gas into the part to be measured and measures the pressure change from it to detect the presence or absence of an opening is called a leak tester. In a normal leak tester, the only thing that can be detected is the presence or absence of a leak. The volume of the detection object is often on the order of mL to L. In this type of measurement, it is usual to prepare a part having the same shape (leak master) that is guaranteed to have no leakage, and to measure the differential pressure between this part and the detection part.

しかし、このキャピラリ検査装置100の場合は、測定対象が極小体積であるためにリークマスタに直接センサを設置できないこと、マスタを接続する際に生じるごくわずかな漏洩も許されないことから、リークマスタの使用は逆に非効率的となる。そこで、ここでは、第一と第二の圧力室の間に差圧センサ4を設置し、元圧とキャピラリ内圧の差を直接計測する手法を採用している。   However, in the case of this capillary inspection apparatus 100, since the measurement object is a very small volume, the sensor cannot be directly installed on the leak master, and the slight leak that occurs when the master is connected is not allowed. Use is conversely inefficient. Therefore, here, a technique is adopted in which the differential pressure sensor 4 is installed between the first and second pressure chambers and the difference between the original pressure and the capillary internal pressure is directly measured.

キャピラリ装着後、電磁弁5が開いた状態のまま、操作者は、差圧センサ4の指示値を確認しながらレギュレータユニット10を操作し、装置全体の圧力を徐々に上げる。その様子を図3に示す。なお、元圧の設定は、電磁弁5にかける負荷および測定される圧力により決める必要があるが、一般的な条件であれば、元圧は80kPa以上、100kPa程度が適当である。また、差圧センサ内、およびキャピラリ先端部など、電磁弁5以後の全体に圧力を均一に行き渡らせるために、測定前に電磁弁5は数度開閉される。   After the capillary is mounted, the operator operates the regulator unit 10 while confirming the indication value of the differential pressure sensor 4 while the electromagnetic valve 5 is open, and gradually increases the pressure of the entire apparatus. This is shown in FIG. The setting of the source pressure needs to be determined by the load applied to the solenoid valve 5 and the pressure to be measured. However, the source pressure is appropriately about 80 kPa or more and about 100 kPa under general conditions. In addition, the electromagnetic valve 5 is opened and closed several times before the measurement in order to distribute the pressure uniformly throughout the electromagnetic valve 5 and the like, such as in the differential pressure sensor and the tip of the capillary.

電磁弁5を閉めると同時に操作者は測定を開始する。測定中の様子を図4に示す。キャピラリ先端の開口部より、充填された圧縮空気(または窒素)が排出されることにより、第二の圧力室3の内圧が低下する。第一の圧力室7の内圧をPH、第二の圧力室3の内圧をPLとすると、差圧センサ4にはPH−PLが現れる。キャピラリ先端からの漏洩により、その値は徐々に増加する。 As soon as the solenoid valve 5 is closed, the operator starts measurement. A state during measurement is shown in FIG. By discharging the filled compressed air (or nitrogen) from the opening at the tip of the capillary, the internal pressure of the second pressure chamber 3 decreases. When the internal pressure of the first pressure chamber 7 is P H and the internal pressure of the second pressure chamber 3 is P L , P H −P L appears in the differential pressure sensor 4. The value gradually increases due to leakage from the capillary tip.

内径算出装置12は、その値を、時間とともに記録する。記録は、1−2秒ごとに60秒程度行うが、可能である場合には120秒以上行う。装置全体の熱平衡を待つ必要から、測定開始後数十秒は差圧の増加率が不安定であるが、以後は差圧の増加が時間に対してほぼ直線的になり、内径算出装置12は直線の傾きの値(以下減圧率と呼ぶ)を求めることができる。   The inner diameter calculation device 12 records the value with time. Recording is performed for about 60 seconds every 1-2 seconds, but 120 seconds or more if possible. Since it is necessary to wait for the thermal equilibrium of the entire apparatus, the increase rate of the differential pressure is unstable for several tens of seconds after the start of measurement, but thereafter, the increase of the differential pressure becomes almost linear with respect to time, The value of the slope of the straight line (hereinafter referred to as the decompression rate) can be obtained.

また、先端内径が大きくなると減圧率は大きくなるという関係があることから、内径算出装置12は、先端内径が既知の複数のキャピラリについて減圧率の測定結果を記憶することによって、減圧率から先端内径を算出することができる。   Further, since the pressure reduction rate increases as the tip inner diameter increases, the inner diameter calculation device 12 stores the measurement result of the pressure reduction rate for a plurality of capillaries whose tip inner diameters are known, thereby calculating the tip inner diameter from the pressure reduction rate. Can be calculated.

図5は、ある同一ロットのキャピラリに対して、「60秒間減圧率測定〜10秒間電磁弁を開閉して気体を最充填〜再測定」を5回繰り返したものである。同一キャピラリによる測定結果を線で結んでいる。これによれば、2回目の測定以降では、同一キャピラリにおける測定誤差は高々1Pa/sの幅に収まることが分かる。   FIG. 5 shows five times of “measurement of pressure reduction rate for 60 seconds and refilling gas by opening / closing the electromagnetic valve for 10 seconds” for a capillary of the same lot five times. Measurement results from the same capillary are connected by a line. According to this, it can be seen that the measurement error in the same capillary is at most 1 Pa / s after the second measurement.

なお、本実施例においては、気密性の確保は極めて重要である。したがって、キャピラリ1と第二の圧力室3は気密性を保って接続する必要がある。そこで、本実施例では、図6(a)に示すように、ねじによってキャピラリ1と第二の圧力室3を接続する。第二の圧力室3に切られるめねじ部の気密性に問題があるようであれば、該当部分をパテ等で埋める。   In this embodiment, ensuring airtightness is extremely important. Therefore, it is necessary to connect the capillary 1 and the second pressure chamber 3 while maintaining airtightness. Therefore, in this embodiment, as shown in FIG. 6A, the capillary 1 and the second pressure chamber 3 are connected by a screw. If there seems to be a problem with the airtightness of the female thread portion cut into the second pressure chamber 3, the corresponding portion is filled with putty or the like.

また、インジェクション用マニピュレータに自動的に着脱しうる構造を有するキャピラリに対しても、本実施例に係るキャピラリ検査装置100の適用は可能である。簡易的には、第二の圧力室3にオーリング等の気密性保持材を配し、これに図6(b)に示す形状を有するキャピラリを押し付けるように装着し、その上からU字型の治具をねじで締結することで気密性が確保できる。なお、図6(b)では、接続は手動であるが、自動での着脱も可能である。   Further, the capillary inspection apparatus 100 according to the present embodiment can also be applied to a capillary having a structure that can be automatically attached to and detached from the injection manipulator. For simplicity, an airtight holding material such as an O-ring is arranged in the second pressure chamber 3, and a capillary having the shape shown in FIG. 6B is attached to the second pressure chamber 3. Airtightness can be secured by fastening the jig with screws. In FIG. 6 (b), the connection is manual, but automatic attachment / detachment is also possible.

また、気密性確保の不足により、気体がキャピラリ先端部以外から漏洩することがある。この場合は差圧センサで感知する値の上昇速度が、漏洩無き場合と明確に異なることが実験の結果により分かっている。具体的には数秒ないし十数秒でセンサの測定限界を超過する。このため、測定開始直後のセンサ値の変化が以上であれば、警報音ないしメッセージなどの適当な手段で操作者に通知する構造を取り入れることにより、取り付け部の気密性不足による漏洩を検出することが可能である。   In addition, due to insufficient airtightness, gas may leak from other than the capillary tip. In this case, it is known from experimental results that the rate of increase in the value sensed by the differential pressure sensor is clearly different from that without leakage. Specifically, the measurement limit of the sensor is exceeded in a few seconds to a few dozen seconds. For this reason, if the sensor value change immediately after the start of measurement is as described above, it is possible to detect leaks due to insufficient airtightness of the mounting part by adopting a structure that notifies the operator by appropriate means such as an alarm sound or a message. Is possible.

また、図7に示すように、本実施例に係るキャピラリ検査装置をインジェクションシステムの一部として実装することも可能である。本実施例に係るキャピラリ検査装置を実現する最小限の構成要素は、第一および第二の圧力室と電磁弁、差圧センサである。インジェクションシステムでは供給圧力の制御機能が備わっているため、これらの構成要素をマニピュレータ上に搭載し、インジェクションシステム上でリアルタイムに針の特性を把握することによって、吐出量の制御をより精密に行うことができる。   As shown in FIG. 7, the capillary inspection apparatus according to this embodiment can be mounted as a part of the injection system. The minimum components for realizing the capillary inspection apparatus according to this embodiment are the first and second pressure chambers, the electromagnetic valve, and the differential pressure sensor. Since the injection system has a function to control the supply pressure, these components are mounted on the manipulator, and the needle volume is grasped in real time on the injection system, so that the discharge amount can be controlled more precisely. Can do.

上述してきたように、本実施例では、第二の圧力室3にキャピラリ1を接続し、レギュレータユニット10によって所定の圧力に調整された圧縮空気または圧縮窒素を第一の圧力室7および第二の圧力室3に充填した後に電磁弁5を閉鎖した状態で、差圧センサ4が二つの圧力室の間の差圧を測定し、内径算出装置12が差圧の変化率からキャピラリ1の先端内径を算出することとしたので、キャピラリ1を破壊することなく先端内径を求めることができる。   As described above, in this embodiment, the capillary 1 is connected to the second pressure chamber 3, and compressed air or compressed nitrogen adjusted to a predetermined pressure by the regulator unit 10 is used as the first pressure chamber 7 and the second pressure chamber 3. The pressure sensor 4 measures the pressure difference between the two pressure chambers with the solenoid valve 5 closed after the pressure chamber 3 is filled, and the inner diameter calculation device 12 determines the tip of the capillary 1 from the rate of change of the pressure difference. Since the inner diameter is calculated, the inner diameter of the tip can be obtained without destroying the capillary 1.

なお、本実施例では、キャピラリ1の先端内径を算出する場合について説明したが、本発明はこれに限定されるものではなく、一般の中空針の先端内径を算出する場合にも同様に適用することができる。   In this embodiment, the case where the tip inner diameter of the capillary 1 is calculated has been described. However, the present invention is not limited to this, and the same applies to the case where the tip inner diameter of a general hollow needle is calculated. be able to.

また、本実施例では、操作者が電磁弁の開閉やレギュレータユニットの操作を行うこととしたが、本発明はこれに限定されるものではなく、電磁弁、レギュレータユニット、差圧センサを制御する制御装置を設け、制御装置からの指示に基づいて第一の圧力室と第二の圧力室との間の差圧を測定して先端内径を算出する場合にも同様に適用することができる。   In this embodiment, the operator opens / closes the solenoid valve and operates the regulator unit. However, the present invention is not limited to this, and controls the solenoid valve, the regulator unit, and the differential pressure sensor. The present invention can be similarly applied to a case where a control device is provided and the tip inner diameter is calculated by measuring a differential pressure between the first pressure chamber and the second pressure chamber based on an instruction from the control device.

(付記1)気体の供給に用いられる配管に接続された第一の圧力室と、
前記第一の圧力室とは弁を介して接続された第二の圧力室と、
前記配管を用いて供給される気体の圧力を調整するレギュレータと、
前記レギュレータによる圧力調整後に閉鎖された前記弁により第一の圧力室とは仕切られた第二の圧力室に接続された中空針が第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサと、
を備えたことを特徴とする中空針検査装置。
(Appendix 1) a first pressure chamber connected to a pipe used for gas supply;
A second pressure chamber connected via a valve to the first pressure chamber;
A regulator for adjusting the pressure of the gas supplied using the pipe;
The first pressure when the hollow needle connected to the second pressure chamber separated from the first pressure chamber by the valve closed after the pressure adjustment by the regulator leaks the gas in the second pressure chamber. A differential pressure sensor for measuring a pressure difference generated between the chamber and the second pressure chamber;
A hollow needle inspection apparatus comprising:

(付記2)前記レギュレータは、弁が閉鎖される際の気体の圧力を所定の下限値および上限値の範囲に調整することを特徴とする付記1に記載の中空針検査装置。 (Additional remark 2) The said regulator adjusts the pressure of the gas at the time of a valve being closed to the range of a predetermined | prescribed lower limit and upper limit, The hollow needle inspection apparatus of Additional remark 1 characterized by the above-mentioned.

(付記3)前記第一の圧力室および第二の圧力室は、同一の部材から切り出されて構成されることを特徴とする付記1または2に記載の中空針検査装置。 (Supplementary note 3) The hollow needle inspection apparatus according to supplementary note 1 or 2, wherein the first pressure chamber and the second pressure chamber are cut out from the same member.

(付記4)前記差圧センサにより測定された圧力差から差圧の上昇速度を算出し、該算出した上昇速度から前記中空針の先端内径を算出する内径算出手段をさらに備えたことを特徴とする付記1、2または3に記載の中空針検査装置。 (Additional remark 4) It further provided with the internal diameter calculation means which calculates the raise speed | rate of a differential pressure from the pressure difference measured by the said differential pressure sensor, and calculates the front-end | tip internal diameter of the said hollow needle from this calculated rise speed, The hollow needle inspection apparatus according to Supplementary Note 1, 2, or 3.

(付記5)前記中空針は、キャピラリであることを特徴とする付記1〜4のいずれか一つに記載の中空針検査装置。 (Additional remark 5) The said hollow needle is a capillary, The hollow needle inspection apparatus as described in any one of additional marks 1-4 characterized by the above-mentioned.

(付記6)前記中空針は、ねじによって第二の圧力室に接続されることを特徴とする付記5に記載の中空針検査装置。 (Additional remark 6) The said hollow needle is connected to a 2nd pressure chamber with a screw | thread, The hollow needle inspection apparatus of Additional remark 5 characterized by the above-mentioned.

(付記7)前記レギュレータによる気圧の調整、弁の閉鎖、差圧の上昇速度の算出および弁の開放の繰り返しによって算出される複数の差圧上昇速度のうち、前記内径算出手段は、最初の差圧上昇速度を除いて前記中空針の先端内径を算出することを特徴とする付記4に記載の中空針検査装置。 (Supplementary note 7) Among the plurality of differential pressure increase speeds calculated by repeatedly adjusting the pressure by the regulator, closing the valve, calculating the differential pressure increase speed, and opening the valve, the inner diameter calculating means is the first difference The hollow needle inspection apparatus according to appendix 4, wherein a tip inner diameter of the hollow needle is calculated excluding a pressure increasing speed.

(付記8)中空針が接続された第二の圧力室および該第二の圧力室に弁を介して接続された第一の圧力室に所定の圧力の気体を前記弁を開放して供給する気体供給ステップと、
前記気体供給ステップにより所定の圧力の気体を第一の圧力室と第二の圧力室に充填して前記弁を閉鎖後に第一の圧力室と第二の圧力室との間の差圧を測定して該差圧の上昇速度を算出する差圧上昇速度算出ステップと、
前記差圧上昇速度算出ステップにより算出された差圧上昇速度に基づいて前記中空針の先端内径を算出する先端内径算出ステップと、
を含んだことを特徴とする中空針検査方法。
(Supplementary Note 8) A gas having a predetermined pressure is supplied to the second pressure chamber connected to the hollow needle and the first pressure chamber connected to the second pressure chamber via the valve by opening the valve. A gas supply step;
After the gas supply step, the first pressure chamber and the second pressure chamber are filled with a gas having a predetermined pressure and the valve is closed, and then the differential pressure between the first pressure chamber and the second pressure chamber is measured. A differential pressure increase rate calculating step for calculating the increase rate of the differential pressure;
A tip inner diameter calculating step for calculating a tip inner diameter of the hollow needle based on the differential pressure increasing speed calculated by the differential pressure increasing speed calculating step;
A hollow needle inspection method characterized by comprising:

(付記9)キャピラリを用いるマイクロインジェクションシステムであって、
気体の供給に用いられる配管に接続された第一の圧力室と、
前記第一の圧力室とは弁を介して接続された第二の圧力室と、
前記配管を用いて供給される気体の圧力を調整するレギュレータと、
前記レギュレータによる圧力調整後に閉鎖された前記弁により第一の圧力室とは仕切られた第二の圧力室に接続されたキャピラリが第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサと、
を備えたことを特徴とするマイクロインジェクションシステム。
(Supplementary note 9) A microinjection system using a capillary,
A first pressure chamber connected to a pipe used for gas supply;
A second pressure chamber connected via a valve to the first pressure chamber;
A regulator for adjusting the pressure of the gas supplied using the pipe;
When the capillary connected to the second pressure chamber separated from the first pressure chamber by the valve closed after the pressure adjustment by the regulator leaks the gas in the second pressure chamber, the first pressure chamber A differential pressure sensor for measuring a pressure difference generated between the first pressure chamber and the second pressure chamber;
A microinjection system characterized by comprising:

以上のように、本発明に係る中空針検査装置、中空針検査方法およびマイクロインジェクションシステムは、再生医療や新薬開発で細胞内に薬剤溶液を導入する場合に有用であり、特に、キャピラリの先端内径を精度良く求める必要がある場合に適している。   As described above, the hollow needle inspection device, the hollow needle inspection method, and the microinjection system according to the present invention are useful when introducing a drug solution into cells in regenerative medicine or new drug development, and in particular, the tip inner diameter of the capillary This is suitable when it is necessary to accurately obtain the value.

本実施例に係るキャピラリ検査装置の構成を示す図である。It is a figure which shows the structure of the capillary inspection apparatus which concerns on a present Example. キャピラリ装着までの状態を示す図である。It is a figure which shows the state until capillary mounting. 元圧印加時の状態を示す図である。It is a figure which shows the state at the time of original pressure application. 差圧測定時の状態を示す図である。It is a figure which shows the state at the time of a differential pressure measurement. 同一ロットキャピラリにおける測定回数と減圧率実測値の関係(例)を示す図である。It is a figure which shows the relationship (example) of the frequency | count of a measurement in the same lot capillary, and a pressure reduction rate actual value. キャピラリ装着部の構成例を示す図である。It is a figure which shows the structural example of a capillary mounting part. 本実施例に係るキャピラリ検査装置のインジェクションシステム本体への装着例を示す図である。It is a figure which shows the example of mounting to the injection system main body of the capillary inspection apparatus which concerns on a present Example.

符号の説明Explanation of symbols

1 キャピラリ
2 キャピラリ装着部
3 第二の圧力室
4 差圧センサ
5 電磁弁
6 圧力センサ
7 第一の圧力室
8 バルブ(元圧供給用)
9 配管
10 レギュレータユニット
11 フィルタ
12 内径算出装置
100 キャピラリ検査装置
DESCRIPTION OF SYMBOLS 1 Capillary 2 Capillary mounting part 3 2nd pressure chamber 4 Differential pressure sensor 5 Electromagnetic valve 6 Pressure sensor 7 1st pressure chamber 8 Valve (for source pressure supply)
9 Piping 10 Regulator unit 11 Filter 12 Inner diameter calculation device 100 Capillary inspection device

Claims (6)

気体の供給に用いられる配管に接続された第一の圧力室と、
前記第一の圧力室とは弁を介して接続された第二の圧力室と、
前記配管を用いて供給される気体の圧力を調整するレギュレータと、
前記レギュレータによる圧力調整後に閉鎖された前記弁により第一の圧力室とは仕切られた第二の圧力室に接続された中空針が第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサと、
前記差圧センサにより測定された圧力差から差圧の上昇速度を算出し、該算出した上昇速度から前記中空針の先端内径を算出する内径算出手段と
を備えたことを特徴とする中空針検査装置。
A first pressure chamber connected to a pipe used for gas supply;
A second pressure chamber connected via a valve to the first pressure chamber;
A regulator for adjusting the pressure of the gas supplied using the pipe;
The first pressure when the hollow needle connected to the second pressure chamber separated from the first pressure chamber by the valve closed after the pressure adjustment by the regulator leaks the gas in the second pressure chamber. A differential pressure sensor for measuring a pressure difference generated between the chamber and the second pressure chamber;
A hollow needle inspection comprising: an inner diameter calculating means for calculating a rising speed of a differential pressure from a pressure difference measured by the differential pressure sensor and calculating a tip inner diameter of the hollow needle from the calculated rising speed. apparatus.
前記レギュレータは、弁が閉鎖される際の気体の圧力を所定の下限値および上限値の範囲に調整することを特徴とする請求項1に記載の中空針検査装置。   The hollow needle inspection apparatus according to claim 1, wherein the regulator adjusts a gas pressure when the valve is closed to a range between a predetermined lower limit value and an upper limit value. 前記第一の圧力室および第二の圧力室は、同一の部材から切り出されて構成されることを特徴とする請求項1または2に記載の中空針検査装置。   The hollow needle inspection apparatus according to claim 1 or 2, wherein the first pressure chamber and the second pressure chamber are cut out from the same member. 前記レギュレータによる気圧の調整、弁の閉鎖、差圧の上昇速度の算出および弁の開放の繰り返しによって算出される複数の差圧上昇速度のうち、前記内径算出手段は、最初の差圧上昇速度を除いて前記中空針の先端内径を算出することを特徴とする請求項1、2または3に記載の中空針検査装置。Among the plurality of differential pressure increase speeds calculated by adjusting the atmospheric pressure by the regulator, closing the valve, calculating the differential pressure increase speed, and repeatedly opening the valve, the inner diameter calculating means determines the initial differential pressure increase speed. The hollow needle inspection apparatus according to claim 1, wherein the tip inner diameter of the hollow needle is calculated except for the above. 中空針が接続された第二の圧力室および該第二の圧力室に弁を介して接続された第一の圧力室に所定の圧力の気体を前記弁を開放して供給する気体供給ステップと、A gas supply step of supplying a gas of a predetermined pressure to the second pressure chamber connected to the hollow needle and the first pressure chamber connected to the second pressure chamber via a valve by opening the valve; ,
前記気体供給ステップにより所定の圧力の気体を第一の圧力室と第二の圧力室に充填して前記弁を閉鎖後に第一の圧力室と第二の圧力室との間の差圧を測定して該差圧の上昇速度を算出する差圧上昇速度算出ステップと、  After the gas supply step, the first pressure chamber and the second pressure chamber are filled with a gas having a predetermined pressure and the valve is closed, and then the differential pressure between the first pressure chamber and the second pressure chamber is measured. A differential pressure increase rate calculating step for calculating the increase rate of the differential pressure;
前記差圧上昇速度算出ステップにより算出された差圧上昇速度に基づいて前記中空針の先端内径を算出する先端内径算出ステップと、  A tip inner diameter calculating step for calculating a tip inner diameter of the hollow needle based on the differential pressure increasing speed calculated by the differential pressure increasing speed calculating step;
を含んだことを特徴とする中空針検査方法。  A hollow needle inspection method characterized by comprising:
キャピラリを用いるマイクロインジェクションシステムであって、A microinjection system using a capillary,
気体の供給に用いられる配管に接続された第一の圧力室と、  A first pressure chamber connected to a pipe used for gas supply;
前記第一の圧力室とは弁を介して接続された第二の圧力室と、  A second pressure chamber connected via a valve to the first pressure chamber;
前記配管を用いて供給される気体の圧力を調整するレギュレータと、  A regulator for adjusting the pressure of the gas supplied using the pipe;
前記レギュレータによる圧力調整後に閉鎖された前記弁により第一の圧力室とは仕切られた第二の圧力室に接続されたキャピラリが第二の圧力室の気体をリークする際に第一の圧力室と第二の圧力室との間に生じる圧力差を測定する差圧センサと、  When the capillary connected to the second pressure chamber separated from the first pressure chamber by the valve closed after the pressure adjustment by the regulator leaks the gas in the second pressure chamber, the first pressure chamber A differential pressure sensor for measuring a pressure difference generated between the first pressure chamber and the second pressure chamber;
前記差圧センサにより測定された圧力差から差圧の上昇速度を算出し、該算出した上昇速度から前記キャピラリの先端内径を算出する内径算出手段と  An inner diameter calculating means for calculating an increase rate of the differential pressure from the pressure difference measured by the differential pressure sensor, and calculating an inner diameter of the tip of the capillary from the calculated increase rate;
を備えたことを特徴とするマイクロインジェクションシステム。  A microinjection system characterized by comprising:
JP2006285539A 2006-10-19 2006-10-19 Hollow needle inspection device, hollow needle inspection method, and microinjection system Expired - Fee Related JP4861121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285539A JP4861121B2 (en) 2006-10-19 2006-10-19 Hollow needle inspection device, hollow needle inspection method, and microinjection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285539A JP4861121B2 (en) 2006-10-19 2006-10-19 Hollow needle inspection device, hollow needle inspection method, and microinjection system

Publications (2)

Publication Number Publication Date
JP2008102042A JP2008102042A (en) 2008-05-01
JP4861121B2 true JP4861121B2 (en) 2012-01-25

Family

ID=39436473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285539A Expired - Fee Related JP4861121B2 (en) 2006-10-19 2006-10-19 Hollow needle inspection device, hollow needle inspection method, and microinjection system

Country Status (1)

Country Link
JP (1) JP4861121B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347583B2 (en) * 2013-08-28 2018-06-27 日本空圧システム株式会社 Position or hole diameter detection device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105033A (en) * 1981-12-17 1983-06-22 Meiji Seika Kaisha Ltd Measuring method for leakage of gas from package
JPS62134508A (en) * 1985-12-02 1987-06-17 キヤリア・コ−ポレイシヨン Method and device for measuring size of small hole of outer surface of tube, heat transfer property thereof is improved
JPH01196503A (en) * 1988-02-01 1989-08-08 Jeol Ltd Method and apparatus for inspecting bore of very fine diameter capillary
JP2788162B2 (en) * 1993-04-06 1998-08-20 京セラ株式会社 Non-contact length measuring device
US6116516A (en) * 1996-05-13 2000-09-12 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
US5670707A (en) * 1996-11-01 1997-09-23 Varian Associates, Inc. Calibration method for a chromatography column
JPH11153462A (en) * 1997-11-21 1999-06-08 Dkk Corp Liquid outflow detection mechanism and flow analyzer using the same
JP2000055773A (en) * 1998-08-04 2000-02-25 Cosmo Keiki:Kk Leakage inspecting device
JP3654439B2 (en) * 2001-02-16 2005-06-02 株式会社東京精密 Internal diameter measuring device for workpiece
JP2002277384A (en) * 2001-03-19 2002-09-25 Ishikawajima Inspection & Instrumentation Co Method and device for detecting defect
JP3981763B2 (en) * 2003-03-20 2007-09-26 株式会社東京精密 Method and apparatus for measuring inner diameter of workpiece
JP4743745B2 (en) * 2004-01-09 2011-08-10 株式会社フジキン Small hole diameter automatic measuring device, small hole diameter measuring method and shower plate

Also Published As

Publication number Publication date
JP2008102042A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US6164116A (en) Gas module valve automated test fixture
KR20180091901A (en) Leakage test apparatus and method
KR20010013118A (en) Predicting logarithmic reduction values
US9354152B2 (en) Rheometry apparatus
JP2009063553A (en) Vacuum gauge apparatus enabling calibration and test without moving, and utilization method therefor
CL2012001801A1 (en) Apparatus and method for evaluating the integrity of a container seal, comprising; a holder for the container; a device for actuating a first probe that is inserted into the container; a supply of fluid; a tank containing an electrolyte bath and a second probe; and an electrical conductivity meter.
US10197469B2 (en) Device and method for differentiating a gas in a sample
US10816433B2 (en) Leakage inspection method and leakage inspection device for container to be inspected
JP2006206190A (en) Liquid housing container and liquid supply apparatus
JP4861121B2 (en) Hollow needle inspection device, hollow needle inspection method, and microinjection system
JP2009092585A (en) Leak detector
JP2009281934A (en) External pressure detection type leak inspection device and leak inspection method using the same
JP4120576B2 (en) Liquid volume measuring device
JP2015537209A (en) How to inspect a leak detection system
BRPI0617494B1 (en) method for testing a lighter comprising a fuel tank; method for manufacturing a lighter having a flow restrictor for establishing a non-combustible fluid flow rate within a specified range; and method for manufacturing a rechargeable lighter that has a flow restrictor
JP3983479B2 (en) Battery leakage inspection device
JP2018084427A (en) Battery pack inspection method
JP4391682B2 (en) Leakage gas measuring device and leak gas measuring device evaluation device
CN204924872U (en) Hole measuring device
JP3715543B2 (en) Airtight performance test method
JP2018189514A (en) Vapor leakage inspection device and vapor leakage inspection method of disk type steam trap
JP2019033017A (en) Inspection method of fuel battery single cell
CN113654492A (en) Inner diameter measuring device adopting air pressure microspur method and control method thereof
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
KR20110050052A (en) Method and apparatus for damage measurement using a pressure difference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees