JPH01196503A - Method and apparatus for inspecting bore of very fine diameter capillary - Google Patents

Method and apparatus for inspecting bore of very fine diameter capillary

Info

Publication number
JPH01196503A
JPH01196503A JP63021465A JP2146588A JPH01196503A JP H01196503 A JPH01196503 A JP H01196503A JP 63021465 A JP63021465 A JP 63021465A JP 2146588 A JP2146588 A JP 2146588A JP H01196503 A JPH01196503 A JP H01196503A
Authority
JP
Japan
Prior art keywords
capillary
pressure
fluid
inner diameter
inspecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63021465A
Other languages
Japanese (ja)
Inventor
Makoto Takeuchi
誠 竹内
Toshinori Saito
斉藤 利徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP63021465A priority Critical patent/JPH01196503A/en
Publication of JPH01196503A publication Critical patent/JPH01196503A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/6073Construction of the column body in open tubular form
    • G01N30/6078Capillaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/89Inverse chromatography

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Abstract

PURPOSE:To obtain a method which enables inspection of the bore of a capillary with high accuracy, by feeding a fluid to a capillary at a fixed flow rate being compressed to inspect the bore thereof with a compression controlled to balance the pressure of a feed liquid. CONSTITUTION:A liquid having a known characteristic of viscosity is fed to a capillary 2 having a very fine diameter with a pump 1 or the like while being compressed. Then, a compression is controlled to balance the pressure of the feed liquid. Then, based on a feeding requirement as met when the pressure of the feed liquid is balanced, the bore of the capillary is inspected. This enables the confirmation of the degree of penetration and passage in a very fine diameter capillary made of ceramics or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック焼成等の極微小径キャピラリーの
内径を検査する極微小径キャピラリーの内径検査方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for inspecting the inner diameter of an extremely small diameter capillary, such as a ceramic fired capillary.

〔従来の技術〕[Conventional technology]

一般にクロマトグラフィーに用いられている抵抗管とし
ては、従来より内径100μm程度のステンレス管を必
要な長さに巻いたものや、内径IIm〜2nのステンレ
ス管に3〜10μmの粒径の充填剤をつめたもの、ある
いは溶融石英管を適当な長さにしたもの等がある。溶融
石英管は、内径が50μm〜300゛μmの範囲で自由
に選択できるが、外径は500μm以下のものが多い。
Resistance tubes commonly used in chromatography include stainless steel tubes with an inner diameter of about 100 μm wound to the required length, and stainless steel tubes with an inner diameter of IIm to 2n filled with fillers with particle sizes of 3 to 10 μm. There are tubes made of solid quartz or fused silica tubes of appropriate length. The inner diameter of the fused silica tube can be freely selected within the range of 50 .mu.m to 300 .mu.m, but the outer diameter is often 500 .mu.m or less.

上記従来の抵抗管の中で、ステンレス管は、粘性の小さ
い超臨界流体やミクロ、セミミクロ流量域を対象にする
と、内径が大きすぎる上、管の内面が粗になっていて汚
れ易いという問題がある。
Among the conventional resistance tubes mentioned above, stainless steel tubes have problems in that they have too large an inner diameter and are easy to get dirty when used for supercritical fluids with low viscosity or in the micro and semi-micro flow range. be.

充填カラムは、目的に応じて所望の抵抗のものを作るこ
とは可能であるが、高価でしかも取り扱いも簡便という
訳にはいかない。また、溶融石英管は、壊れやすく他の
流体部品との結合が容易でないという問題がある。
Packed columns can be made with desired resistance depending on the purpose, but they are expensive and not easy to handle. Additionally, fused silica tubes have the problem of being fragile and difficult to connect with other fluid components.

ところで、細管内を流れる流体がニュートン粘性の物質
であれば、発生する圧力は、内径の4剰分の1、長さ、
粘性係数、及び流速に比例する。
By the way, if the fluid flowing inside the tube is a material with Newtonian viscosity, the pressure generated is equal to 1/4 of the inner diameter, the length,
Viscosity coefficient and proportional to flow rate.

例えば、長さ、内径がそれぞれ010cm X 20μ
係、010cm X 30 u m 、010cm x
 40μmの抵抗管に一端よりエチルアルコールを流す
と、発生ずる圧力は次表の通りとなる。
For example, the length and inner diameter are each 010cm x 20μ.
Section, 010cm x 30 um, 010cm x
When ethyl alcohol is passed through a 40 μm resistance tube from one end, the pressure generated is as shown in the table below.

従って、管径と管長を選択すると適当な圧力を発生させ
ることができる。
Therefore, appropriate pressure can be generated by selecting the pipe diameter and pipe length.

特に、超臨界流体クロマトグラフィーやミクロ、セミミ
クロでのクロマトグラフィー等の開発では、極微小径で
使い勝手の良い抵抗管を必要としている。しかし、従来
の抵抗管では、上記のように極微小径のものをつくるこ
とはできず、また種々の問題がある。そこで、超臨界流
体クロマトグラフィーやミクロ、セミミクロでのクロマ
トグラフィーの抵抗管としての要求に応え得るキャピラ
リーが試作された。これは、ファインセラミックスを用
いたジルコニヤキャピラリーで、外径を通常の5LIS
クロマト管と同一寸法の1716“にし、内径を20μ
m〜50 p−mの間でいくつかのステップでつくり、
長さを10cmもしくは5cmとし、流量レンジ、必要
とする発生圧力レンジに応じて選べるようにしたもので
ある。
In particular, the development of supercritical fluid chromatography, micro and semi-micro chromatography, etc. requires resistance tubes that are extremely small in diameter and easy to use. However, with conventional resistance tubes, it is not possible to manufacture tubes with extremely small diameters as described above, and there are various problems. Therefore, a prototype capillary was created that could meet the requirements as a resistance tube for supercritical fluid chromatography and micro and semi-micro chromatography. This is a zirconia capillary using fine ceramics, and the outer diameter is 5LIS.
The same size as the chromato tube, 1716", and the inner diameter of 20μ.
made in several steps between m and 50 p-m,
The length is 10 cm or 5 cm, which can be selected depending on the flow rate range and required pressure range.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記のような抵抗管を製作できたとしても、実
用に供するためにはこのキャピラリが良品かどうかを検
査することが必要になるが、従来よりこのような極微小
径のキャピラリーは、製作、使用されていないため、有
効な検査手段が未だ存在しない。
However, even if a resistance tube like the one described above can be manufactured, it is necessary to inspect whether the capillary is a good product in order to put it into practical use. Since it is not used, there are no effective testing methods yet.

管の内径が100μm以上であれば、細かいワイヤーを
挿入することによってその良否の確認をすることはでき
るが、内径が50μm以下となると、長さ10cmにわ
たって挿入確認できるワイヤーはない。
If the inner diameter of the tube is 100 μm or more, it is possible to check the quality of the tube by inserting a fine wire, but if the inner diameter is 50 μm or less, there is no wire that can be used to confirm insertion over a length of 10 cm.

そこで、例えばインキしみ出し試験によって、貫通して
いるかどうかを検査することも考えられているが、この
方法でも、単に貫通しているか否かが確認できるにすぎ
ず、管内に狭いところがあっても判らないという問題が
ある。また、顕微鏡を用いれば両端面の穴径を調べるこ
とは可能であるが、その穴径が長さ10cI11全体に
わたって貫通しているかどうかを確認することはできな
い。
Therefore, it has been considered to check whether the pipe has penetrated, for example by using an ink bleed test, but even this method can only confirm whether the pipe has penetrated or not. The problem is that I don't understand. Furthermore, although it is possible to examine the diameter of the hole on both end faces using a microscope, it is not possible to confirm whether the diameter of the hole penetrates the entire length of 10 cI11.

本発明は、上記の考察に基づくものであって、極微小径
のキャピラリの貫通及び流通度を高い精度で確認するこ
とができる極微小径キャピラリーの内径検査方法及び装
置を提供することを目的とするものである。
The present invention is based on the above consideration, and an object of the present invention is to provide a method and apparatus for inspecting the inner diameter of an extremely small diameter capillary, which can confirm the penetration and flow rate of an extremely small diameter capillary with high accuracy. It is.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、極微小径キャピラリーに粘性特性
が既知の流体を送液して内径の検査を行う極微小径キャ
ピラリーの内径検査方法であって、流体を圧縮しながら
定流量をキャピラリーに送液し、送液圧力が平衡するま
で圧縮量を制御して、送液圧力が平衡したときの送液条
件を基に内径の検査を行うことを特徴とし、そのための
装置は、流体を圧縮する圧縮手段、該圧縮された流体を
キャピラリーに定it送液する送液手段、該送液手段の
吐出側流体圧力を検出する圧力検出手段、該検出された
圧力が平衡するように圧縮手段の制御パラメータを制御
し平衡圧力が得られたときの送液条件を基にキャピラリ
ーの内径を検査する制御検査手段を備えたことを特徴と
する。
To this end, the present invention provides a method for inspecting the inner diameter of an ultra-fine capillary by feeding a fluid with known viscosity characteristics into the capillary, in which a constant flow rate is fed to the capillary while compressing the fluid. , the compression amount is controlled until the liquid feeding pressure is balanced, and the inner diameter is inspected based on the liquid feeding conditions when the liquid feeding pressure is balanced, and the apparatus for this purpose includes a compression means for compressing the fluid. , a liquid feeding means for feeding the compressed fluid to the capillary at a constant rate, a pressure detection means for detecting the fluid pressure on the discharge side of the liquid feeding means, and a control parameter of the compression means so that the detected pressure is balanced. The present invention is characterized in that it includes a control inspection means for inspecting the inner diameter of the capillary based on the liquid feeding conditions when an equilibrium pressure is obtained.

〔作用〕[Effect]

本発明の極微小径キャピラリーの内径検査方法及び装置
では、流体を圧縮しながら定流量をキャピラリーに送液
し、送液圧力が平衡するまで圧縮量を制御するので、送
液圧力が平衡した状態では、キャピラリーへの送液段階
での流体の圧縮がなくなる。そこで、そのときの送液条
件より、平衡圧力P、送液流体の粘性係数η、送液流、
IU、キャピラリー長し、内径dの間では、 L・η・U P=K         (但しKは定数)の関係が得
られる。この関係から内径dの検査を行うことができる
In the method and apparatus for inspecting the inner diameter of a very small diameter capillary of the present invention, a constant flow rate is sent to the capillary while compressing the fluid, and the amount of compression is controlled until the liquid feeding pressure is balanced, so that when the liquid feeding pressure is balanced, , there is no compression of the fluid during the liquid delivery stage to the capillary. Therefore, from the liquid feeding conditions at that time, the equilibrium pressure P, the viscosity coefficient η of the liquid feeding fluid, the liquid feeding flow,
Between IU, capillary length, and inner diameter d, the following relationship is obtained: L・η・U P=K (K is a constant). From this relationship, the inner diameter d can be inspected.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る極微小径キャピラリーの内径検査
方法及び装置の1実施例を示す図であり、1はインテリ
ジェントカスケードポンプ、2はキャピラリー、3は送
液槽、4は中圧フィルター、5は押しねじ、6は廃液槽
を示す。
FIG. 1 is a diagram showing an embodiment of the method and apparatus for inspecting the inner diameter of an extremely small diameter capillary according to the present invention, in which 1 is an intelligent cascade pump, 2 is a capillary, 3 is a liquid feeding tank, 4 is a medium pressure filter, and 5 6 indicates a push screw, and 6 indicates a waste liquid tank.

インテリジェントカスケードポンプ1は、負荷が変化し
ても、送液流体の種類に関わりなく、定量送液するよう
に作られたポンプであり、既に本発明者によって提案(
例えば特開昭61−178582号公報)されたものを
使用することができる0本発明は、このインテリジェン
トカスケードポンプlに中圧フィルター4や押しねじ5
を介してキャピラリー2を接続し、送液槽3から検査し
ようとするファインセラミックス製キャピラリー2の中
にインテリジェントカスケードポンプlを用いて送液す
るものである。
The intelligent cascade pump 1 is a pump that is designed to feed a fixed amount of liquid regardless of the type of fluid to be fed even if the load changes, and has already been proposed by the present inventor (
For example, it is possible to use a pump disclosed in Japanese Patent Laid-open No. 61-178582).The present invention provides this intelligent cascade pump l with a medium pressure filter 4 and a set screw 5.
The capillary 2 is connected through the capillary 2, and an intelligent cascade pump 1 is used to send liquid from the liquid sending tank 3 into the fine ceramic capillary 2 to be inspected.

第2図はインテリジェントカスケードポンプ1の例を示
す図であり、11はドレインバルブ、12は圧力センサ
、13は計量ポンプ、14は圧縮ポンプ、15と16は
ステッピングモータ、17と18はモータドライバー、
19はA/D変換器、20はマイクロプロセッサ、21
は′@、源、22は表示操作ユニットを示す。
FIG. 2 is a diagram showing an example of the intelligent cascade pump 1, in which 11 is a drain valve, 12 is a pressure sensor, 13 is a metering pump, 14 is a compression pump, 15 and 16 are stepping motors, 17 and 18 are motor drivers,
19 is an A/D converter, 20 is a microprocessor, 21
'@' indicates the source, and 22 indicates the display operation unit.

計量ポンプ13も圧縮ポンプ14もプランジャストロー
ク長を可変にし、マイクロプロセッサ20では、流体の
圧縮率、作動圧力、流量範囲によってそれぞれのポンプ
の動作条件を最適値に選べるようにしている。このポン
プシステムの基本動作モードは、ゆっくり吸引してすば
やく吐出する圧縮ポンプ14に対し、計量ポンプ13を
ゆっくり吐出してすばやく吸引するように対応させてい
る。そして、圧縮ポンプ14の吐出工程は、移送液の圧
縮工程と実移送工程からなり、計量ポンプ13の吸引工
程を後者の工程と同期させ、計量ポンプ13の吸引側圧
力と吐出側圧力とをほぼ等しくする。つまり、計量ポン
プ13内では「圧縮」の工程は全く含まず、計量ポンプ
13のプランジャ体積とストローク周期により送液量を
決める。
Both the metering pump 13 and the compression pump 14 have variable plunger stroke lengths, and the microprocessor 20 allows the optimum operating conditions of each pump to be selected depending on the compressibility of the fluid, the operating pressure, and the flow rate range. The basic operating mode of this pump system is such that the metering pump 13 is configured to slowly discharge and quickly suck, while the compression pump 14 slowly sucks and quickly discharges. The discharge process of the compression pump 14 consists of a compression process of the transfer liquid and an actual transfer process, and the suction process of the metering pump 13 is synchronized with the latter process, so that the suction side pressure and the discharge side pressure of the metering pump 13 are approximately equal to each other. Make equal. That is, the metering pump 13 does not include any "compression" process, and the amount of liquid sent is determined by the plunger volume and stroke period of the metering pump 13.

このようにすると、圧縮ポンプ14の補償量が圧力によ
る体積収縮のもたらす影響をちょうど補う場合は、計量
ポンプ13の吐出工程のどの時点も一定の圧力を示すの
に対し、不足する場合も過剰の場合も吐出工程の初めと
終わりとで圧力値が変化する。そこで、マイクロプロセ
ッサ20は、この変化の大きさと傾きに応じて最適値か
らのずれを判断し、制御パラメータを変え圧縮ポンプの
ストローク長を決めて最適条件(圧力変化がゼロ)に収
斂させる。
In this way, if the compensation amount of the compression pump 14 just compensates for the effect of volumetric contraction caused by pressure, the pressure will be constant at any point in the discharge process of the metering pump 13, whereas if there is a shortage, there will be an excess. In this case, the pressure value changes between the beginning and end of the discharge process. Therefore, the microprocessor 20 determines the deviation from the optimal value according to the magnitude and slope of this change, changes the control parameters, determines the stroke length of the compression pump, and converges to the optimal condition (pressure change is zero).

第3図は動作モニター画面の表示例を示す図である。■
は設定流量、■は発生圧力、■は計量ポンプのプランジ
ャー容積、■は圧縮ポンプのプランジャー容積、■は圧
縮体積横置、■は計量ポンプ吐出工程中の圧力変化量を
示す、このモニターの場合には、計量ポンプ吐出工程中
の圧力変化量■が所定値以下例えば1以下になるのを待
って内径検査の判断を行い、発生圧力■によって評価す
ることになる。なお、圧縮体積横置■はプリセントされ
るものである。
FIG. 3 is a diagram showing a display example of the operation monitor screen. ■
This monitor indicates the set flow rate, ■ indicates the generated pressure, ■ indicates the plunger volume of the metering pump, ■ indicates the plunger volume of the compression pump, ■ indicates the compression volume horizontally, and ■ indicates the amount of pressure change during the metering pump discharge process. In this case, the inner diameter inspection is determined after waiting until the pressure change amount (■) during the metering pump discharge process becomes less than a predetermined value, for example, less than 1, and the evaluation is made based on the generated pressure (2). Note that the compressed volume horizontal position (■) is precented.

上記のようなインテリジェントカスケードポンプを用い
、例えば30μmX10cmのキャピラリー2にエチル
アルコールを流すと、プランジャーストローク繰り返し
毎に圧力が増加する。同時にインテリジェントカスケー
ドポンプ1の計量ポンプの送液工程の圧力変化ΔPが減
少して行き、ΔPが1kg/−以下でほぼ平衡状態にな
る。この時の発生した圧力が内径検査の判断基準となる
。もし仮に圧力が一定にならず、常に増加傾向を示し、
且つΔPが正の比較的大きい値を示すものは、管の内部
で異常に流体抵抗の大きい部分のある証査となる。
When using an intelligent cascade pump as described above and flowing ethyl alcohol through a capillary 2 of, for example, 30 μm x 10 cm, the pressure increases with each repeated plunger stroke. At the same time, the pressure change ΔP in the liquid feeding process of the metering pump of the intelligent cascade pump 1 decreases, and when ΔP is 1 kg/- or less, an almost equilibrium state is reached. The pressure generated at this time becomes the criterion for inner diameter inspection. If the pressure is not constant and always shows an increasing tendency,
In addition, if ΔP exhibits a relatively large positive value, this is evidence that there is a portion with abnormally large fluid resistance inside the tube.

実際に試作品24本について検査したところ、11本が
20kg/cal以下となり、合格の判定ができた。他
に3本は100 kg/cj 〜200 kg/clI
+の間の値を示して平衡(ΔP〜0)となり、他の10
本は200kg/cdの圧力を発生し、尚、ΔP〉0で
あった。
When 24 prototypes were actually inspected, 11 had a weight of less than 20 kg/cal and were judged to be acceptable. The other three are 100 kg/cj ~ 200 kg/clI
It shows a value between + and becomes equilibrium (ΔP ~ 0), and the other 10
The book generated a pressure of 200 kg/cd, and ΔP>0.

この検査の過程で、キャピラリーを通過して来た流体に
は、切断用削粉か原料のジルコニヤか不明の微粒子を含
んでいた。即ち、本検査の過程でキャピラリー内にあっ
た微粉末が押し出されてきたものである。
During this test, the fluid that passed through the capillary contained fine particles that were unknown, whether they were cutting powder or raw material zirconia. That is, the fine powder that was inside the capillary was pushed out during the process of this inspection.

被検体は2回にわたって検査前に超音波洗浄を施しであ
るが、30μmという極微小径の内部に入った微粉末は
、超音波洗浄では除けない事が明らかとなった。
Although the specimen was subjected to ultrasonic cleaning twice before testing, it became clear that ultrasonic cleaning could not remove the fine powder that had entered the inside of the specimen, which had an extremely small diameter of 30 μm.

また、検査の過程で流体を一端から流した場合と他端か
ら流した場合で発生圧力が異なる場合かあ・ったが、こ
れは明らかに流れの圧力によって位置が変わる異物が内
部にある証査である。合格した11本の中の3本は最初
不合格であったが、強制流れによって異物が押法されて
合格となった。
In addition, during the inspection process, there were cases where the pressure generated was different when the fluid was flowed from one end and the other, but this was clearly evidence that there was a foreign object inside whose position changed depending on the flow pressure. This is an investigation. Three of the 11 specimens that passed the test initially failed, but the foreign objects were pushed out by the forced flow and they passed the test.

従って、合格となったものは、流れの方向をどちらにと
っても発生圧力は一定であった。
Therefore, in those that passed the test, the generated pressure was constant regardless of the flow direction.

また、同上の検査で不合格になったものも、これを2分
割し、夫々に同様なテストを行うと、長さの異なる分だ
け、圧力は低下するが合否を判断できる。不合格の10
本中3本について、このような検査を行ったところ、目
づまり箇所は10(Jの4分割中の1部分のみであるこ
とが判明した。
Furthermore, if a piece that fails the above test is divided into two parts and the same test is performed on each piece, it is possible to judge whether the piece passes or fails, although the pressure will decrease due to the difference in length. 10 failures
When we conducted such an inspection on 3 of the books, it was found that only 1 of the 4 parts of 10 (J) were clogged.

このように10amでは不合格でも2分割した5clN
では少なくとも各1本は合格になる。
In this way, even if it fails at 10am, 5clN divided into two
At least one of each will pass.

この方法は、圧力をP、キャピラリーの長さをし、粘性
係数をη、流速をU、内径をd、定数をKとすると、 L・η・U P=に□ であることを意味する。すなわち、ηが既知の流体を用
いてPとUの関係を実測しなからdを求めることができ
る。
This method means that, where P is the pressure, the length of the capillary is η, the flow rate is U, the inner diameter is d, and the constant is K, L・η・U P=□. That is, d can be found by actually measuring the relationship between P and U using a fluid whose η is known.

このことは、この検査方法が一般的なポンプと圧力計と
流量計があれば、実行可能である。ことを示している。
This test method can be carried out using a common pump, pressure gauge, and flow meter. It is shown that.

しかし、特に上記のようなインテリジェントカスケード
ポンプの使用が最適であることは勿論で−ある。その理
由は、 ■μm7mmレンジの流量測定は非常に困難であり、出
来たとしても特に短時間測定では誤差が大きい ■流速と圧力の関係が夫々リアルタイム測定でない場合
には、系が平衡になるまで待たねばならない。これは一
般の定流量ポンプで行う場合、非常に長時間となる。
However, it goes without saying that the use of intelligent cascade pumps as described above is particularly optimal. The reason for this is: - It is very difficult to measure the flow rate in the μm 7mm range, and even if it is possible, there will be large errors, especially in short-time measurements. - If the relationship between flow velocity and pressure is not measured in real time, it will take until the system reaches equilibrium. I have to wait. This takes a very long time when using a general constant flow pump.

■一定の流量にて一定の抵抗中を流す時、昇圧のみに必
要とするプランジャーストローク長(圧縮ボリュウム)
が決まり、このような最適条件を得ると、上記のインテ
リジェントカスケードポンプでは、このパラメーターを
最初からセットしておくことによって、25sec〜3
0secもしくはこの2〜3倍の範囲で平衡状態にする
ことができる。また、平衡状態が達せられたかどうかは
、ΔPの測定結果を表示することによって直ちに判断で
きる。
■When flowing at a constant flow rate through a constant resistance, the plunger stroke length required only for pressure increase (compression volume)
Once the parameters are determined and such optimal conditions are obtained, the intelligent cascade pump described above can be used for 25 seconds to 3 seconds by setting this parameter from the beginning.
An equilibrium state can be achieved within a range of 0 sec or 2 to 3 times this time. Further, whether or not an equilibrium state has been reached can be immediately determined by displaying the measurement result of ΔP.

■上記のインテリジェントカスケードポンプでは流量計
が不要あり、圧力指示が内蔵されていればよい。
■The above intelligent cascade pump does not require a flow meter; it only needs to have a built-in pressure indicator.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、負荷
抵抗、流体のコンブレソシビリテーに関係なく、ミクロ
領域で定量送液できるインテリジェントカスケードポン
プを使用すると、内径100μm以下の細管の良否を発
生圧力によって判断できる。特に、ジルコニア等ファイ
ンセラミックス製キャピラリーの仕上げ状態(内部に目
づまり部分がないかどうか、或いは径の平均値)を判断
できる。しかも、長さ方向に切断し、切断片を同様な方
法で調べることにより、良品の回収、不良部分の特定が
できる。また、どんな粘性の流体をいくら流すと圧損失
がいくらになるか等抵抗流体としての特性を決定するこ
とができる。
As is clear from the above description, according to the present invention, if an intelligent cascade pump is used that can deliver a fixed amount of liquid in the micro region, regardless of load resistance or fluid combustibility, it can be used to detect the quality of thin tubes with an inner diameter of 100 μm or less. This can be determined by the pressure generated. In particular, it is possible to judge the finishing condition of capillaries made of fine ceramics such as zirconia (whether there are any clogged parts inside or the average value of the diameter). Moreover, by cutting the material in the length direction and examining the cut pieces using the same method, it is possible to recover good products and identify defective parts. Furthermore, it is possible to determine the characteristics of the fluid as an iso-resistance fluid, such as how much pressure loss will result when a fluid of any viscosity is flowed and how much.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る極微小径キャピラリーの内径検査
方法及び装置の1実施例を示す図、第2図はインテリジ
ェントカスケードポンプlの例を示す図、第3図は動作
モニター画面の表示例を示す図である。 1・・・インテリジェントカスケードポンプ、2・・・
キャピラリー、3・・・送液槽、4・・・中圧フィルタ
ー、5・・・押しねじ、6・・・廃液槽。 出 願 人  日木電子株式会社 代理人 弁理士 阿 部 龍 吉(外4名)第1図 第2図 第3図
Fig. 1 is a diagram showing an embodiment of the method and apparatus for inspecting the inner diameter of an extremely small diameter capillary according to the present invention, Fig. 2 is a diagram showing an example of an intelligent cascade pump l, and Fig. 3 is a diagram showing an example of a display on an operation monitor screen. FIG. 1... Intelligent cascade pump, 2...
Capillary, 3...Liquid feeding tank, 4...Medium pressure filter, 5...Press screw, 6...Waste liquid tank. Applicant: Hiki Denshi Co., Ltd. Agent: Patent attorney Ryukichi Abe (4 others) Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)極微小径キャピラリーに粘性特性が既知の流体を
送液して内径の検査を行う極微小径キャピラリーの内径
検査方法であって、流体を圧縮しながら定流量をキャピ
ラリーに送液し、送液圧力が平衡するまで圧縮量を制御
して、送液圧力が平衡したときの送液条件を基に内径の
検査を行うことを特徴とする極微小径キャピラリーの内
径検査方法。
(1) A method for inspecting the inner diameter of a micro-diameter capillary by sending a fluid with known viscosity characteristics into the capillary, in which the fluid is compressed and a constant flow rate is sent to the capillary. A method for inspecting the inner diameter of an extremely small diameter capillary, characterized in that the amount of compression is controlled until the pressure is balanced, and the inner diameter is inspected based on the liquid feeding conditions when the liquid feeding pressure is balanced.
(2)極微小径キャピラリーに粘性特性が既知の流体を
送液して内径の検査を行う極微小径キャピラリーの内径
検査装置であって、流体を圧縮する圧縮手段、該圧縮さ
れた流体をキャピラリーに定流量送液する送液手段、該
送液手段の吐出側流体圧力を検出する圧力検出手段、該
検出された圧力が平衡するように圧縮手段の制御パラメ
ータを制御し平衡圧力が得られたときの送液条件を基に
キャピラリーの内径を検査する制御検査手段を備えたこ
とを特徴とする極微小径キャピラリーの内径検査装置。
(2) An apparatus for inspecting the inner diameter of a micro-diameter capillary, which tests the inner diameter by feeding a fluid with known viscosity characteristics into the micro-diameter capillary, which includes a compression means for compressing the fluid, and a compression means for compressing the fluid; A liquid feeding means for feeding the liquid at a flow rate, a pressure detection means for detecting the fluid pressure on the discharge side of the liquid feeding means, and a control parameter of the compression means so that the detected pressure is balanced, and when an equilibrium pressure is obtained. An apparatus for inspecting the inner diameter of a very small diameter capillary, characterized by comprising a control inspection means for inspecting the inner diameter of the capillary based on liquid feeding conditions.
JP63021465A 1988-02-01 1988-02-01 Method and apparatus for inspecting bore of very fine diameter capillary Pending JPH01196503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021465A JPH01196503A (en) 1988-02-01 1988-02-01 Method and apparatus for inspecting bore of very fine diameter capillary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021465A JPH01196503A (en) 1988-02-01 1988-02-01 Method and apparatus for inspecting bore of very fine diameter capillary

Publications (1)

Publication Number Publication Date
JPH01196503A true JPH01196503A (en) 1989-08-08

Family

ID=12055732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021465A Pending JPH01196503A (en) 1988-02-01 1988-02-01 Method and apparatus for inspecting bore of very fine diameter capillary

Country Status (1)

Country Link
JP (1) JPH01196503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065742A (en) * 2001-08-29 2003-03-05 Tokyo Seimitsu Co Ltd Method and device for measuring inside diameter
JP2008102042A (en) * 2006-10-19 2008-05-01 Fujitsu Ltd Hollow needle inspection apparatus, hollow needle inspection method, and microinjection system
US9752950B2 (en) 2004-03-05 2017-09-05 Waters Technologies Corporation Pressure monitor optimizaiton of fluid path utilization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065742A (en) * 2001-08-29 2003-03-05 Tokyo Seimitsu Co Ltd Method and device for measuring inside diameter
US9752950B2 (en) 2004-03-05 2017-09-05 Waters Technologies Corporation Pressure monitor optimizaiton of fluid path utilization
US10345186B2 (en) 2004-03-05 2019-07-09 Waters Technologies Corporation Pressure monitor optimization of fluid path utilization
JP2008102042A (en) * 2006-10-19 2008-05-01 Fujitsu Ltd Hollow needle inspection apparatus, hollow needle inspection method, and microinjection system

Similar Documents

Publication Publication Date Title
US7694591B2 (en) Method and apparatus for evaluating a dosing operation
US6386016B1 (en) Method and device for simultaneous determination of shear viscosity and extensional viscosity
US5465610A (en) Device for the characterization of the foaming properties of a product which is at least partially soluable
Jena et al. Advances in pore structure evaluation by porometry
US20090320568A1 (en) Method and apparatus for measuring viscosity and surface tension
JPH0799366B2 (en) Device and method for liquid chromatography
WO1992017764A1 (en) Capillary rheometer plunger pressure transducer and measurement technique
EP0417936A2 (en) Water-cut monitoring means and method
EP0382752A1 (en) Improved differential pressure capillary viscometer.
EP0380864B1 (en) Viscosity detection method for liquid chromatography systems with carrier liquids having time-varying viscosity
JPH01196503A (en) Method and apparatus for inspecting bore of very fine diameter capillary
DE3830356A1 (en) Device for testing the tightness of gas conduits
US5388447A (en) Viscosity measurement apparatus
US7900503B2 (en) Method of high throughput viscometry
US20180106710A1 (en) Balanced capillary bridge viscometry
JPS6411888B2 (en)
WO2019120791A1 (en) Method for determining a volumetric and/or mass flow rate
US3115768A (en) Viscosimeter apparatus
US2352835A (en) Apparatus for and method of determining physical properties of porous material
US20050213427A1 (en) Mixing utility, liquid viscometric apparatus
US20040182436A1 (en) High pressure, low flow rate fluid flow control
JPH0843167A (en) Capacity measuring method of liquid reagent
EP0371355A1 (en) Process for supervising the flow of gas in a gas analyser and for correcting the interfering effects of pressure and flow on the measure signal
US20030136180A1 (en) Method of directly measuring the permittivity of geotextile and biotextile fabrics
US3208267A (en) Contaminant measurement