JP4860203B2 - Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger - Google Patents

Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger Download PDF

Info

Publication number
JP4860203B2
JP4860203B2 JP2005227701A JP2005227701A JP4860203B2 JP 4860203 B2 JP4860203 B2 JP 4860203B2 JP 2005227701 A JP2005227701 A JP 2005227701A JP 2005227701 A JP2005227701 A JP 2005227701A JP 4860203 B2 JP4860203 B2 JP 4860203B2
Authority
JP
Japan
Prior art keywords
mass
less
heat exchanger
laminated
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005227701A
Other languages
Japanese (ja)
Other versions
JP2006289489A (en
Inventor
智明 山ノ井
和彦 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005227701A priority Critical patent/JP4860203B2/en
Publication of JP2006289489A publication Critical patent/JP2006289489A/en
Application granted granted Critical
Publication of JP4860203B2 publication Critical patent/JP4860203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えばろう付けによって製作される自動車用その他の各種熱交換器の構成材料として用いられ、特に高強度と高耐食性を要求される部材に好適に用いられる熱交換器用積層材、及びこの積層材からなる熱交換器用チューブ材、熱交換器用ヘッダー材、熱交換器の製造方法並びに熱交換器に関する。   The present invention is used, for example, as a constituent material of various other heat exchangers for automobiles manufactured by brazing, and is particularly suitable for a member requiring high strength and high corrosion resistance, and a laminated material for a heat exchanger, and this The present invention relates to a tube material for a heat exchanger made of a laminated material, a header material for a heat exchanger, a manufacturing method of the heat exchanger, and a heat exchanger.

冷媒としてCO2を用いた次世代のCO2熱交換器用の構成部材、例えばチューブやヘッダーにおいては、高温での高強度を必要とするために、Al−Mn系合金(3003)合金が用いられるのが通例であった。また、さらなる高温高強度を得るために、Al−Mn系合金にCuを添加するという手法も開示されている(特許文献1、2、3)。 In a component for a next generation CO 2 heat exchanger using CO 2 as a refrigerant, for example, a tube or a header, an Al—Mn alloy (3003) alloy is used in order to require high strength at a high temperature. It was customary. In addition, a technique of adding Cu to an Al—Mn alloy in order to obtain further high temperature and high strength is also disclosed (Patent Documents 1, 2, and 3).

また、特許文献4には、Cu:0.1〜1.0wt%を含有するAl−Si−Fe−Cu−Mn系合金芯材の一面にAl−Sl系合金ろう材を、他面にCaを含有するAl−Zn系合金材をそれぞれクラッドした真空ブレージング用アルミニウム合金複合材が開示されている。   Patent Document 4 discloses that an Al—Si—Fe—Cu—Mn alloy core material containing Cu: 0.1 to 1.0 wt% is formed on one surface with an Al—Sl alloy brazing material and the other surface is formed with Ca. An aluminum alloy composite for vacuum brazing, which is clad with an Al—Zn-based alloy material containing Nb, is disclosed.

また、特許文献5には、Al−Si−Fe−Cu−Mn系合金芯材の片面に、Cu:0.4wt%を超え8.0wt%以下のCuを含有するAl−Si系ろう材をクラッドしたアルミニウム合金ブレージングシートが開示されている。
特許第2528187号公報 特開平2000−119784号公報 特開2003−27166号公報 特開平8−260085号公報 特開平9−194975号公報
Patent Document 5 discloses an Al—Si brazing material containing Cu: more than 0.4 wt% and not more than 8.0 wt% Cu on one surface of an Al—Si—Fe—Cu—Mn alloy core material. A clad aluminum alloy brazing sheet is disclosed.
Japanese Patent No. 2528187 JP 2000-119784 A JP 2003-27166 A JP-A-8-260085 JP-A-9-194975

しかしながら、Al−Mn系合金にCuを添加した場合には、高強度を得ることはできるものの、高温での変形抵抗が高いため、加工性が悪く微細な熱交換器用構成部材を製造することが困難であり、さらにはチューブ芯材にCuを含有する場合にはフィン材等隣接する材料との組み合わせによっては耐食性が著しく劣化するという問題があった。   However, when Cu is added to the Al—Mn alloy, high strength can be obtained, but since deformation resistance at high temperatures is high, it is possible to manufacture a fine heat exchanger component with poor workability. In addition, when Cu is contained in the tube core material, there is a problem that the corrosion resistance is remarkably deteriorated depending on the combination with adjacent materials such as a fin material.

また、特許文献4に記載されたアルミニウム合金複合材や、特許文献5に記載されたアルミニウムブレージングシートでは、芯材や、芯材にクラッドされた皮材のCu含有量が多いために、やはり耐食性が劣化するという問題があった。   In addition, the aluminum alloy composite material described in Patent Document 4 and the aluminum brazing sheet described in Patent Document 5 have a high Cu content in the core material and the skin material clad on the core material. There was a problem of deterioration.

本発明は、このような事情に鑑みてなされたものであって、高温強度及び耐食性の何れにも優れた熱交換器用材料、例えばチューブまたはヘッダーに用いる材料を提供し、さらには熱交換器の製造方法並びに熱交換器を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a heat exchanger material excellent in both high-temperature strength and corrosion resistance, for example, a material used for a tube or a header. It aims at providing a manufacturing method and a heat exchanger.

上記の目的を達成するために、本発明では、芯材をAl−Si−Cu−Mn−Ti−Zr系合金とし、あるいは更にその芯材の表層にSiの濃度の高い層を形成するとともに、皮材にZnとCuを添加している。Si濃化層が形成されることにより芯材の表面にSiリッチのCu,Mn,Ti,Zr合金が形成され、芯材単体の時よりさらに高温強度が向上する。また、皮材に含まれるZnがチューブ芯材の表層に拡散することにより犠牲防食層となる。なお、皮材に含まれるCu,Znについては、Cuの拡散距離よりもZnの拡散距離の方が大きい(Znの方が拡散し易い)ためにZnの犠牲腐食層内での面腐食が進行し、皮材のCu添加による芯材へ向かう腐食は進行せず、犠牲腐食層(他の部位を保護するために優先的に腐食させる層である層)の内部でのみ腐食が進行するので問題がない。   In order to achieve the above object, in the present invention, the core material is an Al-Si-Cu-Mn-Ti-Zr alloy, or further, a layer having a high Si concentration is formed on the surface layer of the core material, Zn and Cu are added to the skin material. By forming the Si concentrated layer, a Si-rich Cu, Mn, Ti, Zr alloy is formed on the surface of the core material, and the high-temperature strength is further improved as compared with the case of the core material alone. Further, Zn contained in the skin material diffuses into the surface layer of the tube core material to form a sacrificial anticorrosive layer. As for Cu and Zn contained in the skin material, since the diffusion distance of Zn is larger than the diffusion distance of Cu (Zn is more easily diffused), surface corrosion proceeds in the sacrificial corrosion layer of Zn. However, the corrosion toward the core material due to the addition of Cu to the skin does not proceed, and the corrosion proceeds only inside the sacrificial corrosion layer (a layer that is preferentially corroded to protect other parts). There is no.

すなわち、この発明は以下の解決手段を提供する。
(1)Si;1.25質量%以上2.45質量%以下、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.08質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を芯材とし、この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;0.005質量%以上0.4質量%以下を含み、残部がAlと不純物からなるアルミニウム皮材が積層されてなる熱交換器用積層材。
(2)Si;1.25質量%以上2.45質量%以下、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.08質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を芯材とし、この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;1質量%以上5質量%以下を含み、残部がAlと不純物からなるアルミニウム皮材が積層されてなる熱交換器用積層材。
(3)前記芯材において、Si;1.35質量%以上1.65質量%以下、Fe;0.3質量%以上0.5質量%以下、Cu;0.02質量%以上0.04質量%以下、Mn;1.55質量%以上1.75質量%以下、Ti;0.08質量%以上0.15質量%以下、Zr;0.12質量%以上0.2質量%以下であり、前記皮材において、Si;7.5質量%以上9.5質量%以下、Fe;0.2質量%以上0.5質量%以下、Cu;0.005質量%以上0.3質量%以下、Zn;0.005質量%以上0.3質量%以下である前項1に記載の熱交換器用積層材。
(4)前記芯材において、Si;1.35質量%以上1.65質量%以下、Fe;0.3質量%以上0.5質量%以下、Cu;0.02質量%以上0.04質量%以下、Mn;1.55質量%以上1.75質量%以下、Ti;0.08質量%以上0.15質量%以下、Zr;0.12質量%以上0.2質量%以下であり、前記皮材において、Si;7.5質量%以上9.5質量%以下、Fe;0.2質量%以上0.5質量%以下、Cu;0.005質量%以上0.3質量%以下、Zn;1質量%以上2.5質量%以下である前項2に記載の熱交換器用積層材。
(5)芯材の不純物としてのMg量が0.04質量%以下、不純物としてのZn量が0.08質量%以下に制限されてなる前項1〜4のいずれか一項に記載の熱交換器用積層材。
(6)芯材にCrが0.03質量%以上0.25質量%以下含有されてなる前項1〜5のいずれか一項に記載の熱交換器用積層材。
(7)芯材にNiが0.05質量%以上1質量%以下含有されてなる前項1〜6のいずれか一項に記載の熱交換器用積層材。
(8)芯材にScが0.005質量%以上0.1質量%以下含有されてなる前項1〜7のいずれか一項に記載の熱交換器用積層材。
(9)芯材と皮材との間に中間層として、Si;0.05質量%以上2.45質量%以下、Fe;0.05質量%以上1.8質量%以下、Cu;0.01質量%以上0.3質量%以下、Mn;0.05質量%以上2質量%以下、Ti;0.01質量%以上0.2質量%以下、Zn;0.5質量%以上2.5質量%以下、Zr;0.005質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を積層されてなる前項1〜8のいずれか一項に記載の熱交換器用積層材。
(10)芯材の表層に厚さ50μm以上500μm以下のSi濃化層を有し、かつ濃化層の平均Si濃度が1.4質量%以上5質量%以下である前項1〜9のいずれか一項に記載の熱交換器用積層材。
(11)Si;0.9質量%以上1.25質量%未満、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.2質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、不純物としてのMg;0.04質量%以下、Zn;0.08質量%以下に制限されるとともに、残部がAlと不純物からなるアルミニウム材を芯材とし、この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;0.005質量%以上0.4質量%以下を含み、残部がAlと不可避的不純物からなるアルミニウム材からなる皮材が積層され、且つ、芯材の表層に50μm以上、500μm以下のSi濃化層を有し、更に濃化層の平均Si濃度が1.4質量%以上5質量%以下である熱交換器用積層材。
(12)Si;0.9質量%以上1.25質量%未満、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.2質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、不純物としてのMg;0.04質量%以下、Zn;0.08質量%以下に制限されるとともに、残部がAlと不純物からなるアルミニウム材を芯材とし、この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;1質量%以上5質量%以下を含み、残部がAlと不純物からなるアルミニウム皮材が積層されてなる熱交換器用積層材。
(13)芯材にCrが0.03質量%以上0.25質量%以下含有されてなる前項11または前項12に記載の熱交換器用積層材。
(14)芯材にNiが0.05質量%以上1質量%以下含有されてなる前項11〜13のいずれか一項に記載の熱交換器用積層材。
(15)芯材にScが0.005質量%以上0.1質量%以下含有されてなる前項11〜14のいずれか一項に記載の熱交換器用積層材。
(16)芯材と皮材との間に中間層として、Si;0.05質量%以上2.45質量%以下、Fe;0.05質量%以上1.8質量%以下、Cu;0.01質量%以上0.3質量%以下、Mn;0.05質量%以上2質量%以下、Ti;0.01質量%以上0.2質量%以下、Zn;0.5質量%以上2.5質量%以下、Zr;0.005質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を積層されてなる前項11〜15のいずれか一項に記載の熱交換器用積層材。
(17)前記芯材と皮材、または芯材と中間層と皮材の積層処理後に、少なくとも1回以上、400℃以上550℃以下、20分以上10時間以下の熱処理が施されている前項1〜16のいずれか一項に記載の熱交換器用積層材。
(18)前記熱処理が400℃以上500℃以下、30分以上8時間以下である前項17に記載の熱交換器用積層材。
(19)前項1〜4または前項11または前項12のいずれか一項に記載の積層材からなるとともに、前記積層材における皮材が溶射法により形成されていることを特徴とする熱交換器用チューブ材。
(20)前項9または前項16に記載の積層材からなるとともに、前記積層材における中間材が溶射法により形成されていることを特徴とする熱交換器用チューブ材。
(21)前項10または前項11に記載の記載の積層材からなるとともに、前記積層材におけるSi濃化層が、チューブ本体の外周部にAl−Si系合金を溶射法により被覆し、さらにその後熱拡散させることにより形成されていることを特徴とする熱交換器用チューブ材。
(22)前項17または前項18に記載の積層材からなり、前記熱処理後に、相当歪で0.2%以上50%以下の予歪が与えられていることを特徴とする熱交換器用チューブ材。
(23)前項1〜4または前項11または前項12のいずれか一項に記載の積層材からなるとともに、前記積層材における皮材が溶射法により形成されていることを特徴とする熱交換器用ヘッダー材。
(24)前項9または前項16に記載の積層材からなるとともに、前記積層材における中間材が溶射法により形成されていることを特徴とする熱交換器用ヘッダー材。
(25)前項10または前項11に記載の記載の積層材からなるとともに、前記積層材におけるSi濃化層が、ヘッダー本体の外周部にAl−Si系合金を溶射法により被覆し、さらにその後熱拡散させることにより形成されていることを特徴とする熱交換器用ヘッダー材。
(26)前項17または前項18に記載の積層材からなり、前記熱処理後に、相当歪で0.2%以上50%以下の予歪が与えられていることを特徴とする熱交換器用ヘッダー材。
(27)前項1〜9のいずれか一項に記載の熱交換器用積層材を熱交換器構成部材に用い、前記構成部材をフッ化物系フラックスを用いてろう付することにより、芯材の表層に厚さ50μm以上500μm以下のSi濃化層を形成し、かつ濃化層の平均Si濃度を1.4質量%以上5質量%以下とする熱交換器の製造方法。
(28)前項19〜22のいずれか一項に記載のチューブ材を用いることにより作製された熱交換器。
(29)前項23〜26のいずれか一項に記載のヘッダー材を用いることにより作製された熱交換器。
That is, the present invention provides the following solutions.
(1) Si; 1.25% by mass to 2.45% by mass, Fe; 0.15% by mass to 0.8% by mass, Cu; 0.01% by mass to 0.08% by mass, Mn; 1.4 mass% or more and 2.05 mass% or less, Ti; 0.05 mass% or more and 0.2 mass% or less, Zr; 0.12 mass% or more and 0.3 mass% or less, with the balance being Al and impurities The core material is made of an aluminum material, and Si: 7.5% by mass or more and 11.5% by mass or less, Fe: 0.2% by mass or more and 0.8% by mass or less, Cu; 0.005% by mass or more and 0.35% by mass or less, Zn; 0.005% by mass or more and 0.4% by mass or less, and a laminated material for a heat exchanger in which an aluminum skin made of Al and impurities is laminated.
(2) Si; 1.25 mass% to 2.45 mass%, Fe; 0.15 mass% to 0.8 mass%, Cu; 0.01 mass% to 0.08 mass%, Mn; 1.4 mass% or more and 2.05 mass% or less, Ti; 0.05 mass% or more and 0.2 mass% or less, Zr; 0.12 mass% or more and 0.3 mass% or less, with the balance being Al and impurities The core material is made of an aluminum material, and Si: 7.5% by mass or more and 11.5% by mass or less, Fe: 0.2% by mass or more and 0.8% by mass or less, Cu; 0.005 mass% or more and 0.35 mass% or less, Zn; 1 mass% or more and 5 mass% or less, The laminated material for heat exchangers by which the aluminum skin material which consists of Al and an impurity is laminated | stacked.
(3) In the said core material, Si; 1.35 mass% or more and 1.65 mass% or less, Fe; 0.3 mass% or more and 0.5 mass% or less, Cu; 0.02 mass% or more and 0.04 mass% % Or less, Mn: 1.55 mass% or more and 1.75 mass% or less, Ti: 0.08 mass% or more and 0.15 mass% or less, Zr: 0.12 mass% or more and 0.2 mass% or less, In the skin material, Si: 7.5% by mass to 9.5% by mass, Fe: 0.2% by mass to 0.5% by mass, Cu: 0.005% by mass to 0.3% by mass, Zn: The laminated material for heat exchangers according to 1 above, which is 0.005 mass% or more and 0.3 mass% or less.
(4) In the said core material, Si; 1.35 mass% or more and 1.65 mass% or less, Fe; 0.3 mass% or more and 0.5 mass% or less, Cu; 0.02 mass% or more and 0.04 mass% % Or less, Mn: 1.55 mass% or more and 1.75 mass% or less, Ti: 0.08 mass% or more and 0.15 mass% or less, Zr: 0.12 mass% or more and 0.2 mass% or less, In the skin material, Si: 7.5% by mass to 9.5% by mass, Fe: 0.2% by mass to 0.5% by mass, Cu: 0.005% by mass to 0.3% by mass, Zn: The laminated material for heat exchangers of the preceding clause 2 which is 1 mass% or more and 2.5 mass% or less.
(5) The heat exchange according to any one of the preceding items 1 to 4, wherein the Mg content as an impurity of the core material is 0.04 mass% or less and the Zn content as an impurity is limited to 0.08 mass% or less. Laminated material.
(6) The laminated material for a heat exchanger according to any one of 1 to 5 above, wherein Cr is contained in the core material in an amount of 0.03% by mass or more and 0.25% by mass or less.
(7) The laminated material for a heat exchanger according to any one of items 1 to 6, wherein Ni is contained in the core material in an amount of 0.05% by mass to 1% by mass.
(8) The laminated material for a heat exchanger according to any one of items 1 to 7, wherein Sc is contained in the core material in an amount of 0.005% by mass to 0.1% by mass.
(9) As an intermediate layer between the core material and the skin material, Si: 0.05% by mass or more and 2.45% by mass or less, Fe: 0.05% by mass or more and 1.8% by mass or less, Cu; 01% by mass to 0.3% by mass, Mn: 0.05% by mass to 2% by mass, Ti: 0.01% by mass to 0.2% by mass, Zn: 0.5% by mass to 2.5% 9% by mass or less, Zr; 0.005% by mass or more and 0.3% by mass or less, wherein the balance is laminated with an aluminum material made of Al and impurities. Laminated material.
(10) Any of 1 to 9 above, wherein the surface layer of the core material has a Si concentrated layer having a thickness of 50 μm or more and 500 μm or less, and the average Si concentration of the concentrated layer is 1.4% by mass or more and 5% by mass or less. A laminate for a heat exchanger according to claim 1.
(11) Si; 0.9 mass% or more and less than 1.25 mass%, Fe; 0.15 mass% or more and 0.8 mass% or less, Cu; 0.01 mass% or more and 0.2 mass% or less, Mn; 1.4% by mass or more and 2.05% by mass or less, Ti; 0.05% by mass or more and 0.2% by mass or less, Zr; 0.12% by mass or more and 0.3% by mass or less, and Mg as an impurity; 0.04% by mass or less, Zn: 0.08% by mass or less, and an aluminum material composed of Al and impurities as a core is used as a core material, and Si: 7.5% by mass on at least one side of the core material 11.5% by mass or less, Fe: 0.2% by mass or more and 0.8% by mass or less, Cu: 0.005% by mass or more and 0.35% by mass or less, Zn: 0.005% by mass or more and 0.4% by mass % Of aluminum and the balance is made of aluminum and inevitable impurities. For heat exchangers in which the material is laminated, the core layer has a Si concentrated layer of 50 μm or more and 500 μm or less, and the average Si concentration of the concentrated layer is 1.4 mass% or more and 5 mass% or less Laminated material.
(12) Si; 0.9 mass% or more and less than 1.25 mass%, Fe; 0.15 mass% or more and 0.8 mass% or less, Cu; 0.01 mass% or more and 0.2 mass% or less, Mn; 1.4% by mass or more and 2.05% by mass or less, Ti; 0.05% by mass or more and 0.2% by mass or less, Zr; 0.12% by mass or more and 0.3% by mass or less, and Mg as an impurity; 0.04% by mass or less, Zn: 0.08% by mass or less, and an aluminum material composed of Al and impurities as a core is used as a core material, and Si: 7.5% by mass on at least one side of the core material 11.5% by mass or less, Fe: 0.2% by mass or more and 0.8% by mass or less, Cu: 0.005% by mass or more and 0.35% by mass or less, Zn: 1% by mass or more and 5% by mass or less For heat exchangers, the balance of which is laminated with aluminum skin made of Al and impurities Layer material.
(13) The laminated material for a heat exchanger as described in (11) or (12) above, wherein Cr is contained in the core material by 0.03% by mass or more and 0.25% by mass or less.
(14) The laminated material for a heat exchanger according to any one of the above items 11 to 13, wherein Ni is contained in the core material in an amount of 0.05% by mass or more and 1% by mass or less.
(15) The heat exchanger laminate according to any one of the above items 11 to 14, wherein Sc is contained in the core material in an amount of 0.005 mass% to 0.1 mass%.
(16) As an intermediate layer between the core material and the skin material, Si: 0.05% by mass or more and 2.45% by mass or less, Fe: 0.05% by mass or more and 1.8% by mass or less, Cu; 01% by mass to 0.3% by mass, Mn: 0.05% by mass to 2% by mass, Ti: 0.01% by mass to 0.2% by mass, Zn: 0.5% by mass to 2.5% 16% by mass or less, Zr; 0.005% by mass or more and 0.3% by mass or less, and the heat exchanger according to any one of 11 to 15 above, wherein the balance is formed by laminating an aluminum material made of Al and impurities. Laminated material.
(17) The preceding item, wherein the core material and the skin material, or the core material, the intermediate layer and the skin material are subjected to a heat treatment at least once, at least 400 ° C. to 550 ° C., for 20 minutes to 10 hours. The laminated material for heat exchangers as described in any one of 1-16.
(18) The laminated material for a heat exchanger as described in 17 above, wherein the heat treatment is performed at 400 ° C. or more and 500 ° C. or less and 30 minutes or more and 8 hours or less.
(19) The heat exchanger tube, characterized by comprising the laminated material according to any one of (1) to (4) or (11) or (12) above, wherein a skin material in the laminated material is formed by a thermal spraying method. Wood.
(20) A heat exchanger tube material comprising the laminated material according to the preceding item 9 or the preceding item 16, wherein an intermediate material in the laminated material is formed by a thermal spraying method.
(21) The Si-enriched layer in the laminated material is coated with an Al—Si based alloy on the outer peripheral portion of the tube body by a thermal spraying method, and then heated. A heat exchanger tube material characterized by being formed by diffusion.
(22) A tube material for a heat exchanger, comprising the laminated material according to (17) or (18), wherein a pre-strain of 0.2% to 50% is given as the equivalent strain after the heat treatment.
(23) A header for a heat exchanger, comprising the laminated material according to any one of items 1 to 4 or 11 or 12 above, wherein the skin material in the laminated material is formed by a thermal spraying method. Wood.
(24) A header material for a heat exchanger, comprising the laminate material according to item 9 or 16, wherein an intermediate material in the laminate material is formed by a thermal spraying method.
(25) Consisting of the laminated material according to 10 or 11 above, the Si concentrated layer in the laminated material coats the outer peripheral portion of the header body with an Al-Si alloy by thermal spraying, and then heat A header material for a heat exchanger, characterized by being formed by diffusion.
(26) A header material for a heat exchanger, comprising the laminated material according to item (17) or item (18), wherein a pre-strain of 0.2% to 50% is applied as the equivalent strain after the heat treatment.
(27) Using the heat exchanger laminate according to any one of the preceding items 1 to 9 as a heat exchanger constituent member, and brazing the constituent member with a fluoride-based flux, the surface layer of the core material A method for producing a heat exchanger in which a Si concentrated layer having a thickness of 50 μm or more and 500 μm or less is formed, and an average Si concentration of the concentrated layer is 1.4% by mass or more and 5% by mass or less.
(28) A heat exchanger produced by using the tube material according to any one of items 19 to 22.
(29) A heat exchanger produced by using the header material according to any one of items 23 to 26.

前項(1)に記載の発明によれば、芯材と皮材との合金組成の組み合わせにより、高温強度、耐食性に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (1), a laminated material for a heat exchanger excellent in high-temperature strength and corrosion resistance can be formed by a combination of alloy compositions of a core material and a skin material.

前項(2)に記載の発明によれば、芯材と皮材との合金組成の組み合わせにより、高温強度、耐食性に優れた熱交換器用積層材となしうる。   According to the invention described in item (2) above, a laminated material for a heat exchanger excellent in high-temperature strength and corrosion resistance can be formed by a combination of alloy compositions of a core material and a skin material.

前項(3)に記載の発明によれば、高温強度、耐食性にさらに優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (3), a laminate for a heat exchanger that is further excellent in high-temperature strength and corrosion resistance can be obtained.

前項(4)に記載の発明によれば、高温強度、耐食性にさらに優れた熱交換器用積層材となしうる。   According to the invention described in item (4) above, a laminate for a heat exchanger that is further excellent in high-temperature strength and corrosion resistance can be obtained.

前項(5)に記載の発明によれば、ろう付け性が良好で、かつ芯材の自己耐食性を向上した熱交換器用積層材となしうる。   According to the invention described in the preceding item (5), it can be formed as a heat exchanger laminate having good brazing properties and improved self-corrosion resistance of the core material.

前項(6)に記載の発明によれば、芯材が所定範囲のCrを含有することにより、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (6), the core material contains a predetermined range of Cr, so that it can be made a laminated material for a heat exchanger further excellent in high temperature strength.

前項(7)に記載の発明によれば、芯材が所定範囲のNiを含有することにより、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in item (7), when the core material contains Ni in a predetermined range, a laminated material for a heat exchanger that is further excellent in high-temperature strength can be obtained.

前項(8)に記載の発明によれば、芯材が所定範囲のScを含有することにより、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (8), the core material contains Sc in a predetermined range, so that it can be a laminated material for a heat exchanger that is further excellent in high-temperature strength.

前項(9)に記載の発明によれば、中間層の存在によりさらに耐食性に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (9), the presence of the intermediate layer can provide a laminate for a heat exchanger that is further excellent in corrosion resistance.

前項(10)に記載の発明によれば、Si濃化層の存在により、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in item (10) above, the presence of the Si concentrated layer can provide a laminated material for a heat exchanger that is further excellent in high-temperature strength.

前項(11)に記載の発明によれば、芯材と皮材との合金組成の組み合わせ、及びSi濃化層の存在により、高温強度、耐食性に優れた熱交換器用積層材となしうる。   According to the invention described in the above item (11), the combination of the alloy composition of the core material and the skin material and the presence of the Si concentrated layer can be used as a heat exchanger laminate material excellent in high temperature strength and corrosion resistance.

前項(12)に記載の発明によれば、芯材と皮材との合金組成の組み合わせにより、高温強度、耐食性に優れた熱交換器用積層材となしうる。   According to the invention described in item (12) above, a laminated material for a heat exchanger excellent in high-temperature strength and corrosion resistance can be obtained by a combination of alloy compositions of a core material and a skin material.

前項(13)に記載の発明によれば、芯材が所定範囲のCrを含有することにより、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention of the preceding item (13), when the core material contains Cr in a predetermined range, a laminated material for a heat exchanger that is further excellent in high-temperature strength can be obtained.

前項(14)に記載の発明によれば、芯材が所定範囲のNiを含有することにより、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (14), the core material contains Ni in a predetermined range, so that it can be a laminated material for a heat exchanger further excellent in high temperature strength.

前項(15)に記載の発明によれば、芯材が所定範囲のScを含有することにより、さらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (15), when the core material contains Sc in a predetermined range, a laminated material for a heat exchanger that is further excellent in high-temperature strength can be obtained.

前項(16)に記載の発明によれば、中間層の存在によりさらに耐食性に優れた熱交換器用積層材となしうる。   According to the invention described in the above item (16), the presence of the intermediate layer can provide a laminated material for a heat exchanger that is further excellent in corrosion resistance.

前項(17)に記載の発明によれば、熱処理によりさらに高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (17), the heat exchanger can be made into a heat exchanger laminated material that is further excellent in high-temperature strength by heat treatment.

前項(18)に記載の発明によれば、好適な熱処理の実施により、さらに一層高温強度に優れた熱交換器用積層材となしうる。   According to the invention described in the preceding item (18), by performing a suitable heat treatment, a laminate for a heat exchanger that is further excellent in high-temperature strength can be obtained.

前項(19)に記載の発明によれば、高温強度、耐食性に優れた熱交換器用チューブ材となしうる。   According to the invention described in the preceding item (19), it can be a tube material for a heat exchanger excellent in high temperature strength and corrosion resistance.

前項(20)に記載の発明によれば、さらに耐食性に優れた熱交換器用チューブ材となしうる。   According to the invention described in the preceding item (20), the heat exchanger tube material can be further improved in corrosion resistance.

前項(21)に記載の発明によれば、さらに高温強度に優れた熱交換器用チューブ材となしうる。   According to the invention described in the preceding item (21), the heat exchanger tube material can be further excellent in high-temperature strength.

前項(22)に記載の発明によれば、ろう付後の高温強度をさらに向上した熱交換器用チューブ材となしうる。   According to the invention described in the preceding item (22), the tube material for a heat exchanger can be formed with further improved high-temperature strength after brazing.

前項(23)に記載の発明によれば、高温強度、耐食性に優れた熱交換器用ヘッダー材となしうる。   According to the invention described in the preceding item (23), a header material for a heat exchanger excellent in high-temperature strength and corrosion resistance can be obtained.

前項(24)に記載の発明によれば、さらに耐食性に優れた熱交換器用ヘッダー材となしうる。   According to the invention described in the preceding item (24), a header material for a heat exchanger having further excellent corrosion resistance can be obtained.

前項(25)に記載の発明によれば、さらに高温強度に優れた熱交換器用ヘッダー材となしうる。   According to the invention described in the preceding item (25), it can be a header material for a heat exchanger that is further excellent in high-temperature strength.

前項(26)に記載の発明によれば、ろう付後の高温強度をさらに向上した熱交換器用ヘッダー材となしうる。   According to the invention described in the preceding item (26), a header material for a heat exchanger that further improves high-temperature strength after brazing can be obtained.

前項(27)に記載の発明によれば、高温強度、耐食性に優れた熱交換器を製造することができる。   According to the invention described in item (27), a heat exchanger excellent in high-temperature strength and corrosion resistance can be manufactured.

前項(28)に記載の発明によれば、高温強度、耐食性に優れた熱交換器となしうる。   According to the invention described in item (28) above, a heat exchanger excellent in high-temperature strength and corrosion resistance can be obtained.

前項(29)に記載の発明によれば、高温強度、耐食性に優れた熱交換器となしうる。   According to the invention described in the preceding item (29), a heat exchanger excellent in high-temperature strength and corrosion resistance can be obtained.

次に、本発明の構成とその理由について述べる。   Next, the configuration of the present invention and the reason thereof will be described.

CO2を冷媒として用いる熱交換器に使用されるチューブ材、ヘッダー材には、部分的に120〜200℃での高温高圧環境下で使用される部分が存在するため、構成材料には、高温強度が要求される。本発明では、この用途に使用されることに鑑み、高温での強度向上のために材料強度の大部分を担う芯材に含有されるSi、Fe、Cu、Mn、Zrの組み合わせを最適化するとともに、さらに望ましい形態として、芯材の外層に芯材よりもSi濃度の高い層を濃化層として薄く形成させた。さらに、腐食環境下での孔食や粒界腐食抑制のために、Tiを芯材に、ZnとCuを皮材に添加した積層材料構成とすることで本発明を完成させるに至った。 Since the tube material and the header material used in the heat exchanger using CO 2 as a refrigerant partially have a portion used in a high temperature and high pressure environment at 120 to 200 ° C., the constituent material has a high temperature. Strength is required. In the present invention, in view of being used for this purpose, the combination of Si, Fe, Cu, Mn, and Zr contained in the core material that bears most of the material strength is optimized in order to improve the strength at high temperatures. In addition, as a more desirable form, a layer having a higher Si concentration than the core material is formed thinly as a concentrated layer on the outer layer of the core material. Furthermore, in order to suppress pitting corrosion and intergranular corrosion in a corrosive environment, the present invention has been completed by adopting a laminated material structure in which Ti is added to the core material and Zn and Cu are added to the skin material.

このような目的のためには、芯材のSi含有量は0.9質量%以上2.45質量%以下であることが必要である。Si含有量が0.9質量%未満では、高温強度確保の効果がなく、0.9質量%以上1.25質量%未満では、芯材表面のSi濃化層付与との併用によってのみ、強度と耐食性を共に確保することが可能となる。2.45質量%を超えると熱間変形能が著しく低下し、熱間割れの原因となるため、熱間圧延や熱間押出、熱間鍛造等、展伸材としての成形加工性が不十分となる。また、Al−Si系の共晶形成のため、融点が低下し、ろう付け時に芯材内部の溶解が生じ、内部に1μm以上、場合によっては数mmに及ぶポアを形成するため、強度低下の原因となる。望ましいSi含有量は、1.35質量%以上1.65質量%以下である。   For this purpose, the Si content of the core material needs to be 0.9 mass% or more and 2.45 mass% or less. When the Si content is less than 0.9% by mass, there is no effect of securing high-temperature strength. And corrosion resistance can be ensured together. If it exceeds 2.45% by mass, the hot deformability is remarkably reduced and hot cracking is caused. Therefore, the molding processability as a wrought material is insufficient such as hot rolling, hot extrusion, hot forging, etc. It becomes. Also, due to the formation of an Al-Si-based eutectic, the melting point is lowered, the core material is melted during brazing, and pores of 1 μm or more, and in some cases several millimeters are formed inside. Cause. Desirable Si content is 1.35 mass% or more and 1.65 mass% or less.

芯材のFe含有量は0.15質量%以上0.8質量%以下であることが必要である。Fe含有量が0.15質量%未満では、高温強度確保の効果がなく、また0.8質量%を超えると粗大なAl−Fe−Si系の金属間化合物を形成し、耐食性に悪影響を与える。望ましいFe含有量は、0.3質量%以上0.5質量%以下である。   The Fe content of the core material needs to be 0.15% by mass or more and 0.8% by mass or less. When the Fe content is less than 0.15% by mass, there is no effect of securing high-temperature strength, and when it exceeds 0.8% by mass, a coarse Al—Fe—Si intermetallic compound is formed, which adversely affects corrosion resistance. . Desirable Fe content is 0.3 mass% or more and 0.5 mass% or less.

芯材のCu含有量は0.01質量%以上0.2質量%以下であることが必要である。Cuは、材料の高温強度を向上させる元素であるが、Cu含有量が0.01質量%未満では、高温強度確保の効果がなく、また0.2質量%を超えると、耐食性に悪影響を与える。Si含有量が1.25質量%以上2.45質量%以下の範囲においては、耐食性の観点からCu含有量を0.08質量%以下とすることが望ましい。Si含有量が0.9質量%以上1.25質量%未満の範囲においては、Siによる強度向上効果が十分でないため、Cuによる高温強度向上効果を期待して0.2質量%まで含有されても良い。望ましいCu含有量は、0.02質量%以上0.04質量%以下である。   The Cu content of the core material needs to be 0.01% by mass or more and 0.2% by mass or less. Cu is an element that improves the high-temperature strength of the material, but if the Cu content is less than 0.01% by mass, there is no effect of securing high-temperature strength, and if it exceeds 0.2% by mass, the corrosion resistance is adversely affected. . When the Si content is in the range of 1.25% by mass to 2.45% by mass, the Cu content is preferably 0.08% by mass or less from the viewpoint of corrosion resistance. When the Si content is in the range of 0.9% by mass or more and less than 1.25% by mass, the effect of improving the strength by Si is not sufficient. Also good. Desirable Cu content is 0.02 mass% or more and 0.04 mass% or less.

芯材のMn含有量は1.4質量%以上2.05質量%以下であることが必要である。Mnは、再結晶温度を向上させることで高温強度を向上させる元素であるが、Mn含有量が1.4質量%未満では、高温強度確保の効果がなく、また2.05質量%を超えると、Al−(Fe,Mn)−Si系の金属間化合物を形成し、耐食性に悪影響を与える。望ましいMn含有量は、1.55質量%以上2質量%以下、さらに望ましくは1.75質量%以下である。   The Mn content of the core material needs to be 1.4 mass% or more and 2.05 mass% or less. Mn is an element that improves the high temperature strength by improving the recrystallization temperature. However, if the Mn content is less than 1.4% by mass, there is no effect of securing the high temperature strength, and if it exceeds 2.05% by mass. , Al— (Fe, Mn) —Si based intermetallic compounds are formed, which adversely affects the corrosion resistance. Desirable Mn content is 1.55 mass% or more and 2 mass% or less, More desirably, it is 1.75 mass% or less.

芯材のZr含有量は0.12質量%以上0.3質量%以下であることが必要である。Zrは、再結晶温度を向上させることで高温強度を向上させる元素であるが、Zr量が0.12質量%未満では、高温強度確保の効果がなく、また0.3質量%を超えると、溶解時に溶解させるのが困難になる。望ましいZr含有量は、0.12質量%以上0.2質量%以下である。   The Zr content of the core material needs to be 0.12% by mass or more and 0.3% by mass or less. Zr is an element that improves the high temperature strength by improving the recrystallization temperature. However, if the amount of Zr is less than 0.12% by mass, there is no effect of securing high temperature strength, and if it exceeds 0.3% by mass, It becomes difficult to dissolve at the time of dissolution. Desirable Zr content is 0.12 mass% or more and 0.2 mass% or less.

特に、前記Zrは、Si、Mnとの共存により、単体添加よりその性能を向上させる。このため、Zr添加量はアルミニウム合金マトリックス中での状態制御に特に重要である。このため、積層材に400℃以上550℃以下、20分以上10時間以下の熱処理を少なくとも1回施すことが望ましい。更に望ましい範囲は、400℃以上500℃以下、30分以上8時間以下である。もちろん、この熱処理を施さない場合も本発明に記載される高温強度水準は得られる。但し、200℃以上400℃未満の熱処理は、高温強度維持の面からは避けるべきである。   In particular, the Zr improves its performance as compared with the addition of a single substance by coexistence with Si and Mn. For this reason, the amount of Zr added is particularly important for state control in the aluminum alloy matrix. For this reason, it is desirable that the laminated material is subjected to heat treatment at 400 ° C. or higher and 550 ° C. or lower for 20 minutes or longer and 10 hours or shorter at least once. Further desirable ranges are 400 ° C. or more and 500 ° C. or less, and 30 minutes or more and 8 hours or less. Of course, the high temperature strength level described in the present invention can be obtained even without this heat treatment. However, heat treatment at 200 ° C. or more and less than 400 ° C. should be avoided from the viewpoint of maintaining high temperature strength.

芯材のTi含有量は0.05質量%以上0.2質量%以下であることが必要である。Tiは、粒界腐食の進行抑止のために添加される。Ti含有量が0.05質量%未満では、その効果がなく、0.2質量%を超えると、鋳造割れ等の問題が発生しやすくなる。望ましいTi含有量は、0.08質量%以上0.15質量%以下である。   The Ti content of the core material needs to be 0.05% by mass or more and 0.2% by mass or less. Ti is added to suppress the progress of intergranular corrosion. If the Ti content is less than 0.05% by mass, the effect is not obtained. If the Ti content exceeds 0.2% by mass, problems such as casting cracks tend to occur. Desirable Ti content is 0.08 mass% or more and 0.15 mass% or less.

芯材には、不純物元素の含有が許容されるが、特に不純物としてのMg量はろう付け性向上の観点から0.04質量%以下、Zn量は皮材のZnの犠牲防食効果の顕現と芯材の自己耐食性の向上の目的で0.08質量%以下に規制することが望ましい。   The core material is allowed to contain an impurity element. In particular, the amount of Mg as an impurity is 0.04% by mass or less from the viewpoint of improving brazeability, and the amount of Zn is a manifestation of the sacrificial anticorrosive effect of Zn in the skin material. For the purpose of improving the self-corrosion resistance of the core material, it is desirable to regulate it to 0.08% by mass or less.

また、芯材には必要に応じて、Cr:0.03質量%以上0.25質量%以下、Ni:0.05質量%以上1質量%以下、Sc:0.005質量%以上0.1質量%以下の少なくともいずれかを含有させても良い。   Moreover, Cr: 0.03 mass% or more and 0.25 mass% or less, Ni: 0.05 mass% or more and 1 mass% or less, Sc: 0.005 mass% or more and 0.1 as needed for a core material You may contain at least any of the mass% or less.

前記Crは、芯材の高温強度向上のために添加される。Cr含有量が0.03質量%未満では、その効果がなく、0.25質量%を超えると、高温での変形抵抗が高くなりすぎて、成形加工性が低下する。   The Cr is added to improve the high temperature strength of the core material. If the Cr content is less than 0.03% by mass, the effect is not obtained. If the Cr content exceeds 0.25% by mass, the deformation resistance at high temperature becomes too high, and the moldability is lowered.

前記Niは、芯材の高温強度向上のために添加される。Ni含有量が0.05質量%未満では、その効果がなく、1質量%を超えると、耐食性に悪影響を及ぼす。   Ni is added to improve the high-temperature strength of the core material. If the Ni content is less than 0.05% by mass, the effect is not achieved, and if it exceeds 1% by mass, the corrosion resistance is adversely affected.

前記Scは、芯材の高温強度向上のために添加される。Sc含有量が0.005質量%未満では、その効果がなく、0.1質量%を超えるとコストアップとなる。   The Sc is added to improve the high temperature strength of the core material. If the Sc content is less than 0.005% by mass, the effect is not obtained, and if it exceeds 0.1% by mass, the cost increases.

なお、前記Cr、Ni、Scの1種以上とともに、あるいは前記Cr、Ni、Scを含有することなく単独で、芯材の高温強度をさらに向上させる目的でV:0.01〜0.4質量%を含有しても良い。   It should be noted that V: 0.01 to 0.4 mass for the purpose of further improving the high-temperature strength of the core material together with one or more of Cr, Ni, and Sc or without containing Cr, Ni, and Sc. % May be contained.

また、前記Cr、Ni、Scの一種以上とともに、あるいは前記Cr、Ni、Scを含有することなく単独で、芯材の高温強度をさらに向上させる目的でY:0.01〜0.3質量%、La:0.01〜0.3質量%、Ce:0.01〜0.2質量%を含有しても良い。   Moreover, Y: 0.01 to 0.3% by mass for the purpose of further improving the high-temperature strength of the core material together with one or more of Cr, Ni, and Sc or without containing Cr, Ni, and Sc. , La: 0.01 to 0.3 mass%, Ce: 0.01 to 0.2 mass% may be contained.

次に、皮材として芯材の表面に被覆される材料について述べる。   Next, a material coated on the surface of the core material as a skin material will be described.

皮材のSi含有量は7.5質量%以上11.5質量%以下とする必要がある。Si含有量が7.5質量%未満では、ろう流れ性が低下し、安定したフィレットが形成されず、ろう付け性が著しく低下する。また11.5質量%を超えると、フィレットに初晶Siが形成されやすくなり、フィレットの耐食性が著しく低下する。望ましいSi含有量は、7.5質量%以上9.5質量%以下である。   The Si content of the skin material needs to be 7.5% by mass or more and 11.5% by mass or less. When the Si content is less than 7.5% by mass, the brazing flowability is lowered, a stable fillet is not formed, and the brazing performance is significantly lowered. On the other hand, if it exceeds 11.5% by mass, primary Si is likely to be formed in the fillet, and the corrosion resistance of the fillet is significantly reduced. Desirable Si content is 7.5 mass% or more and 9.5 mass% or less.

皮材のFe含有量は0.2質量%以上0.8質量%以下とする必要がある。Fe含有量が0.2質量%未満では、ろう流れ性が低下する。また、0.8質量%を超えると、フィレットの耐食性が低下する。望ましいFe含有量は、0.2質量%以上0.5質量%以下である。   The Fe content of the skin material needs to be 0.2% by mass or more and 0.8% by mass or less. When the Fe content is less than 0.2% by mass, the brazing flowability is lowered. Moreover, when it exceeds 0.8 mass%, the corrosion resistance of a fillet will fall. Desirable Fe content is 0.2 mass% or more and 0.5 mass% or less.

皮材のCu含有量は0.005質量%以上0.35質量%以下とする必要がある。Cu含有量が0.005質量%未満では、ろう材(皮材)の電位が芯材に対して卑になり過ぎ、結果としてろう付け時のフィレットの耐食性を低下させる。また、0.35質量%を超えると、ろう材の電位が芯材に対して貴になり過ぎ、結果としてろう付け時のフィレットと芯材との界面で優先腐食が起こり、耐食性を著しく低下させる。望ましいCu含有量は、0.005質量%以上0.3質量%以下である。   The Cu content of the skin material needs to be 0.005 mass% or more and 0.35 mass% or less. When the Cu content is less than 0.005% by mass, the potential of the brazing material (skin material) becomes too low with respect to the core material, and as a result, the corrosion resistance of the fillet during brazing is lowered. Further, if it exceeds 0.35% by mass, the potential of the brazing material becomes too noble with respect to the core material, and as a result, preferential corrosion occurs at the interface between the fillet and the core material at the time of brazing, and the corrosion resistance is significantly reduced. . Desirable Cu content is 0.005 mass% or more and 0.3 mass% or less.

皮材のZnは、ろう材層並びにろう付け後に形成されるZn濃化層を犠牲腐食層として防食機能効果を持たせるか否かによって使い分けられるべき元素である。すなわち、腐食環境に積極的に曝される部分では、Zn添加による犠牲防食効果を積極的に利用すべきである。このような場合、Zn含有量は1質量%以上5質量%以下とする必要がある。Zn含有量が1質量%未満では、Zn濃化層による犠牲防食効果がなく、孔食が発生しやすくなり、チューブ材、フィン材として用いた場合の寿命が低下する。5質量%を超えると、ろう材、ひいては芯材を含む積層材全体の耐食性を著しく低下させる。望ましいZn含有量は、1質量%以上2.5質量%以下である。   Zn of the skin material is an element that should be properly used depending on whether the brazing material layer and the Zn concentrated layer formed after brazing have a sacrificial corrosion layer and have an anticorrosive function effect. In other words, the sacrificial anticorrosive effect due to the addition of Zn should be positively utilized in the part that is actively exposed to the corrosive environment. In such a case, the Zn content needs to be 1% by mass or more and 5% by mass or less. When the Zn content is less than 1% by mass, there is no sacrificial anticorrosive effect due to the Zn concentrated layer, and pitting corrosion is likely to occur, and the life when used as a tube material or a fin material is reduced. If it exceeds 5% by mass, the corrosion resistance of the entire laminated material including the brazing material and by extension the core material will be significantly reduced. Desirable Zn content is 1 mass% or more and 2.5 mass% or less.

一方、犠牲防食の必要がないチューブ、ヘッダー内面では、Zn含有量を0.005質量%以上0.4質量%以下とし、Zn添加による不必要な自己耐食性の低下を抑止することが有効である。この場合の望ましいZn含有量は、0.005質量%以上0.3質量%以下である。   On the other hand, on the tube and header inner surface that do not require sacrificial corrosion protection, it is effective to set Zn content to 0.005% by mass or more and 0.4% by mass or less to suppress unnecessary reduction in self-corrosion resistance due to the addition of Zn. . Desirable Zn content in this case is 0.005 mass% or more and 0.3 mass% or less.

本発明は、もちろん、チューブ、ヘッダー内面であっても作動液の性質により、犠牲防食効果が必要な場合は、必要に応じてZnを添加すること、また、外面であっても防食の必要性が低いか、あるいは全くない場合には、Znを添加しない構成を取ることを制限するものではない。   In the present invention, of course, even if it is the inner surface of the tube or header, if sacrificial anticorrosive effect is required due to the nature of the working fluid, Zn should be added as necessary, and the necessity of anticorrosion even on the outer surface Is low or not at all, it does not limit the structure in which Zn is not added.

図1に示すように、本発明の積層体1は、芯材2の片面のみに皮材3が積層された構成であっても良いし、図2に示すように、芯材2の両面に皮材3及び4が積層された構成であっても良い。芯材2の両面に皮材3及び4が積層されている場合、皮材3と皮材4は同一組成のものとしても良いし、前述のようにZn量等の異なる皮材としても良い。   As shown in FIG. 1, the laminate 1 of the present invention may have a configuration in which the skin material 3 is laminated only on one surface of the core material 2, or on both surfaces of the core material 2 as shown in FIG. 2. The structure by which the skin materials 3 and 4 were laminated | stacked may be sufficient. When the skin materials 3 and 4 are laminated | stacked on both surfaces of the core material 2, the skin material 3 and the skin material 4 are good also as a thing of the same composition, and it is good also as a skin material from which Zn amount etc. differ as mentioned above.

更に、耐食性を付与する方法として、図3に示すように、芯材2と皮材3または4の間に中間層5を設けても良い。この場合、中間層5の組成をSi;0.05質量%以上2.45質量%以下、Fe;0.05質量%以上1.8質量%以下、Cu;0.01質量%以上0.3質量%以下、Mn;0.05質量%以上2質量%以下、Ti;0.01質量%以上0.2質量%以下、Zn;0.5質量%以上2.5質量%以下、Zr;0.005質量%以上0.3質量%以下とすることでも効果が認められるが、更に、芯材のZn量を0.08質量%以下とし、中間層のSi、Fe、Mn、Ti含有量を芯材組成と同等かそれより少ないものとし、その上でCu含有量を0.01質量%以上0.3質量%以下、Zn含有量を0.5質量%以上2.5質量%以下とすることで、中間層で腐食の進行を止めることが可能になる。このような構成とすることで、芯材にまで腐食が進行しなくなるため、芯材の腐食による減肉に起因する材料強度、特に高温強度ならびに高温疲労強度の低下を抑止することができる。もちろん、中間層には、その犠牲防食機能を損なわない範囲で、Mg、Cr、Ni等の他の微量元素を含有することができる。   Furthermore, as a method of imparting corrosion resistance, an intermediate layer 5 may be provided between the core material 2 and the skin material 3 or 4 as shown in FIG. In this case, the composition of the intermediate layer 5 is Si: 0.05% by mass or more and 2.45% by mass or less, Fe: 0.05% by mass or more and 1.8% by mass or less, Cu: 0.01% by mass or more and 0.3% by mass or more. % By mass or less, Mn: 0.05% by mass or more and 2% by mass or less, Ti: 0.01% by mass or more and 0.2% by mass or less, Zn: 0.5% by mass or more and 2.5% by mass or less, Zr: 0 Although the effect is also recognized by setting it to 0.005 mass% or more and 0.3 mass% or less, the Zn content of the core material is 0.08 mass% or less, and the Si, Fe, Mn, and Ti contents of the intermediate layer are It is assumed to be equal to or less than the core material composition, and Cu content is 0.01 mass% or more and 0.3 mass% or less, and Zn content is 0.5 mass% or more and 2.5 mass% or less. This makes it possible to stop the progress of corrosion in the intermediate layer. By adopting such a configuration, since corrosion does not progress to the core material, it is possible to suppress a decrease in material strength, particularly high-temperature strength and high-temperature fatigue strength, due to thinning due to corrosion of the core material. Of course, the intermediate layer can contain other trace elements such as Mg, Cr, and Ni as long as the sacrificial anticorrosive function is not impaired.

次に、Si濃化層の効果について述べる。前述のように芯材2には、Siが0.9質量%以上2.45質量%以下の範囲で含有される。このSi量は展伸材としての成形性を別にすれば、5質量%まで強度向上に効果が認められる。そこで、図4に示すように、芯材2の表層にSi濃化層6を形成させることで、Zr、Mnとの共存による効果を更に高めることが可能となる。この高温強度の向上に寄与するSi濃化層6は、層厚さ50μm未満では、層厚さが薄すぎてその効果を顕現させることが認められず、層厚さ500μmを超えると表層の耐食性が低下し、腐食減肉により実環境下での強度がかえって低下する。また、濃化層の平均Si濃度が1.4質量%未満では、芯材との比較で高温強度アップ効果が認められず、5質量%を超えると、耐食性に悪影響を及ぼす。   Next, the effect of the Si concentrated layer will be described. As described above, the core material 2 contains Si in a range of 0.9 mass% to 2.45 mass%. This Si amount is effective in improving the strength up to 5% by mass, except for the moldability as a wrought material. Therefore, as shown in FIG. 4, the effect of coexistence with Zr and Mn can be further enhanced by forming the Si concentrated layer 6 on the surface layer of the core material 2. The Si-enriched layer 6 contributing to the improvement of the high-temperature strength has a layer thickness of less than 50 μm, and the layer thickness is too thin to reveal its effect. When the layer thickness exceeds 500 μm, the corrosion resistance of the surface layer is not observed. The strength in the actual environment is reduced by the reduction of corrosion. Further, if the average Si concentration of the concentrated layer is less than 1.4% by mass, the effect of increasing the high-temperature strength is not recognized as compared with the core material, and if it exceeds 5% by mass, the corrosion resistance is adversely affected.

なお、Si濃化層は、少なくとも強度が要求される部位に形成されていればよい。   In addition, the Si concentrated layer should just be formed in the site | part where intensity | strength is requested | required at least.

また、積層材1の熱処理は、上記Si濃化層の形成と前述の芯材への熱処理効果の両方の観点から重要である。このため、前述した芯材の高温強度向上を目的とした400℃以上550℃以下、20分以上10時間以下の熱処理、更に望ましい範囲として、400℃以上500℃以下、30分以上8時間以下の熱処理の過程を利用して、Si濃化層6を形成しても良いし、あるいはろう付け時の熱履歴を利用してSi濃化層6を形成しても良い。但し、芯材2との積層後は、芯材2の高温強度低下を防止するために200℃以上400℃未満で保持する熱処理を避けるべきであることは言うまでもない。   The heat treatment of the laminated material 1 is important from the viewpoints of both the formation of the Si concentrated layer and the heat treatment effect on the core material. For this reason, heat treatment of 400 ° C. or more and 550 ° C. or less and 20 minutes or more and 10 hours or less for the purpose of improving the high-temperature strength of the above-described core material, more preferably 400 ° C. or more and 500 ° C. or less, 30 minutes or more and 8 hours or less The Si concentrated layer 6 may be formed by using a heat treatment process, or the Si concentrated layer 6 may be formed by using a thermal history during brazing. However, it goes without saying that after lamination with the core material 2, heat treatment held at 200 ° C. or higher and lower than 400 ° C. should be avoided in order to prevent the high-temperature strength of the core material 2 from decreasing.

前記皮材3または4の芯材2への積層方法は限定されることはなく、圧延によって形成しても良いし、溶射によって形成してもよい。溶射による場合、その溶射方法は、特に限定されるわけではないが、アーク溶射機あるいは粉末によるフレーム溶射機等を使用して行えば良い。溶射条件も特に限定されることはなく一般的な溶射条件を採用すればよい。また、かかる溶射はアルミニウム材表面に形成される溶射層の酸化を可及的防止するため、N2雰囲気やAr雰囲気等の非酸化性雰囲気で行っても良い。 The method for laminating the skin material 3 or 4 on the core material 2 is not limited, and may be formed by rolling or by thermal spraying. In the case of thermal spraying, the thermal spraying method is not particularly limited, but an arc sprayer or a flame sprayer using powder may be used. The spraying conditions are not particularly limited, and general spraying conditions may be employed. Further, such spraying may be performed in a non-oxidizing atmosphere such as N 2 atmosphere or Ar atmosphere in order to prevent oxidation of the sprayed layer formed on the surface of the aluminum material as much as possible.

なお、溶射については溶射ガンをワークに対して走査する方法や、コイル状のアルミニウム芯材をほどきながら溶射する方法や、あるいはアルミニウム芯材が特に押出材の場合には、アルミニウム芯材を押出機から押出しながら、連続的に溶射するのが生産効率上望ましい。   For thermal spraying, a method of scanning the spray gun with respect to the work, a method of spraying while unwinding the coiled aluminum core material, or an aluminum core material is extruded when the aluminum core material is an extruded material. It is desirable from the viewpoint of production efficiency that the thermal spraying is performed while extruding from the machine.

また、溶射層はアルミニウム芯材の片面のみ形成してもよく、アルミニウム芯材の上下に溶射ガンを配置して溶射を行うことにより、上下両面に溶射層を形成しても良い。   Further, the sprayed layer may be formed only on one surface of the aluminum core material, or the sprayed layers may be formed on both the upper and lower surfaces by performing spraying by arranging spray guns on the upper and lower surfaces of the aluminum core material.

積層材1を加工して用いる場合、ろう付け後の再結晶による軟化を抑制するために、前述したように、積層処理後に少なくとも1回以上、400℃以上550℃以下、30分以上10時間以下の熱処理を施しても良い。また、ろう付け時の強度低下防止に必要な予歪を付与しても良い。この予歪は、積層材を所定の寸法形状に加工することにより付与しても良い。このような工程とすることで、積層材1のチューブ材やヘッダー材としての成形能(加工性)の確保と、ろう付け処理後の高温強度の更なる向上を両立させることができる。もちろん、この目的によらず、単にろう付け処理後の高温強度の向上の目的だけで、予歪加工を施しても良い。この予歪は相当歪で0.2%以上50%以下であれば、その効果は発揮される。   When the laminated material 1 is processed and used, in order to suppress softening due to recrystallization after brazing, as described above, at least once after the lamination treatment, 400 ° C. or more and 550 ° C. or less, 30 minutes or more and 10 hours or less. You may perform the heat processing of. Moreover, you may give the pre-strain required for the strength fall prevention at the time of brazing. This pre-strain may be applied by processing the laminated material into a predetermined dimensional shape. By setting it as such a process, the ensuring of the moldability (workability) as a tube material and header material of the laminated material 1 and the further improvement of the high temperature strength after a brazing process can be made compatible. Of course, pre-straining may be performed only for the purpose of improving the high-temperature strength after the brazing process, regardless of this purpose. If the pre-strain is an equivalent strain of 0.2% or more and 50% or less, the effect is exhibited.

図5は、前記積層材1をチューブ10及びヘッダー20に用い、ヘッダー20の挿入孔にチューブ10を挿入して複数のチューブ10を並列状に配置し、チューブ10とヘッダー20とをフッ化物系フラックスを用いてろう付けすることにより製造した熱交換器を示している。   FIG. 5 shows that the laminated material 1 is used for the tube 10 and the header 20, the tube 10 is inserted into the insertion hole of the header 20, a plurality of tubes 10 are arranged in parallel, and the tube 10 and the header 20 are made of fluoride. The heat exchanger manufactured by brazing using a flux is shown.

表1に示すA〜Pの各種組成の芯材ないしは中間材と、表2に示す丸数字1〜9の各種組成の皮材を用意した。   Core materials or intermediate materials having various compositions A to P shown in Table 1 and skin materials having various compositions 1 to 9 shown in Table 2 were prepared.

Figure 0004860203
Figure 0004860203

Figure 0004860203
Figure 0004860203

[試験1]
(表3の実施例1〜6、比較例1)
半連続鋳造法にて作製した厚さ400mmの鋳塊に熱間圧延、冷間圧延を施し、厚さ1mmの冷間圧延板を得て芯材とする。この芯材の両面に厚さ1μmのSi溶射を行い、次いで480℃で4hの拡散処理を施す。この積層板の両面に皮材組成合金からなる線材を用いた溶射を行い、厚さ50μmの皮材を積層して、供サンプルとする。このサンプルについて、600℃×1minの加熱処理温度での保持を実施する。
[Test 1]
(Examples 1 to 6 in Table 3, Comparative Example 1)
A 400 mm-thick ingot produced by the semi-continuous casting method is hot-rolled and cold-rolled to obtain a cold-rolled plate having a thickness of 1 mm, which is used as a core material. A 1 μm-thick Si spray is applied to both sides of the core, followed by a diffusion treatment at 480 ° C. for 4 h. Thermal spraying using a wire material made of a skin material composition alloy is performed on both surfaces of this laminate, and a skin material having a thickness of 50 μm is laminated to obtain a sample. This sample is held at a heat treatment temperature of 600 ° C. × 1 min.

このような工程により、表3の実施例1〜6及び比較例1のような材料構成を有する複数のサンプルを製作した。そして、これらのサンプルのSi濃化層の深さ及び平均濃度を調べた。その後、引張試験形状にサンプルを切り出し、180℃における引張試験を実施した。更に別サンプルにてSWAAT960時間試験を実施した。
<SWAAT(Synthetic sea Water Acetic Acid salt spray Test)>
腐食試験については、ASTM−G85−A3に規定されたSWAAT試験を実施した。試験条件は、ASTM D1141による人工海水に酢酸を添加してpH3に調整した腐食試験液を用い、腐食試験液を0.5時間噴霧−湿潤1.5時間を1サイクルとし、このサイクルを960時間実施するものとした。
By such a process, a plurality of samples having material configurations as in Examples 1 to 6 and Comparative Example 1 in Table 3 were manufactured. And the depth and average density | concentration of Si concentration layer of these samples were investigated. Thereafter, a sample was cut into a tensile test shape, and a tensile test at 180 ° C. was performed. Furthermore, a SWAAT 960 hour test was conducted on another sample.
<SWAAT (Synthetic sea Water Acid salt spray Test)>
For the corrosion test, the SWAAT test defined in ASTM-G85-A3 was performed. The test conditions were a corrosion test solution prepared by adding acetic acid to artificial seawater according to ASTM D1141 and adjusted to pH 3, and spraying the corrosion test solution for 0.5 hour-wetting 1.5 hour was one cycle, and this cycle was 960 hours. It was supposed to be implemented.

腐食試験の評価として光学顕微鏡による表面観察、断面観察を実施し、全面腐食が発生し、かつその深さが200μm以下で良好な耐食性を示したものを「◎」、孔食はその深さが200μm以下のもの、粒界腐食はその深さが150μm以下のものを「○」、全面腐食または孔食はその深さが200μmを超えるもの、粒界腐食はその深さが150μmを超えるものを「×」とした。
(比較例2及び3)
厚さ1μmのSi溶射を実施しないこと以外は実施例1〜6、比較例1と同様の工程で、サンプルを作成し、Si濃化層の深さ及び平均濃度と180℃における引張強さを調べるとともに、SWAAT320時間の腐食試験を実施した。
As an evaluation of the corrosion test, surface observation and cross-sectional observation were carried out with an optical microscope. “◎” indicates that the entire surface corrosion occurred and the depth was 200 μm or less and showed good corrosion resistance. 200 μm or less, intergranular corrosion is “O” when the depth is 150 μm or less, general corrosion or pitting corrosion is that the depth exceeds 200 μm, and intergranular corrosion is that the depth exceeds 150 μm It was set as “x”.
(Comparative Examples 2 and 3)
Samples were prepared in the same steps as in Examples 1 to 6 and Comparative Example 1 except that 1 μm thick Si spraying was not performed, and the depth and average concentration of the Si concentrated layer and the tensile strength at 180 ° C. were determined. In addition to the investigation, a SWAAT 320 hour corrosion test was performed.

以上の結果を表3に示す。   The above results are shown in Table 3.

Figure 0004860203
Figure 0004860203

表3の結果からわかるように、本発明実施例1〜6は、機械的強度、耐食性ともに優れているのに対し、芯材組成が本発明範囲を逸脱する比較例1〜3は、いずれも強度に劣るものであった。
[試験2]
(表4の実施例11〜22、比較例11〜16)
半連続鋳造法にて作製した厚さ300mmの鋳塊を熱間圧延し厚さ20mmの皮材とする。更に、同じく半連続鋳造法にて作製した厚さ400mmの芯材用鋳塊の両面に皮材を溶接にて仮固定し、開始温度480℃で熱間圧延し、厚さ10mmの熱間圧延板を得る。この熱間圧延板を加熱処理後、冷間圧延を施し、芯材の両面に皮材が積層された厚さ1mmの冷間圧延板を得る。このサンプルについて、600℃×5minの加熱処理を実施する。
As can be seen from the results in Table 3, Examples 1 to 6 of the present invention are excellent in both mechanical strength and corrosion resistance, whereas Comparative Examples 1 to 3 in which the core material composition departs from the scope of the present invention are all. It was inferior in strength.
[Test 2]
(Examples 11-22 of Table 4 and Comparative Examples 11-16)
A 300 mm-thick ingot produced by the semi-continuous casting method is hot-rolled to obtain a skin material having a thickness of 20 mm. Furthermore, a skin material is temporarily fixed by welding on both sides of a 400 mm-thick core ingot similarly produced by the semi-continuous casting method, hot-rolled at a starting temperature of 480 ° C., and hot-rolled with a thickness of 10 mm. Get a board. This hot-rolled sheet is heat-treated and then cold-rolled to obtain a cold-rolled sheet having a thickness of 1 mm in which a skin material is laminated on both surfaces of the core material. This sample is subjected to heat treatment at 600 ° C. for 5 minutes.

このような工程により、表4の実施例11〜22、比較例11〜16のような材料構成を有する複数のサンプルを製作した。各サンプルについての熱間圧延板の加熱処理条件を表4に示す。   By such a process, a plurality of samples having material configurations as in Examples 11 to 22 and Comparative Examples 11 to 16 in Table 4 were manufactured. Table 4 shows the heat treatment conditions of the hot-rolled sheet for each sample.

そして、これらのサンプルのSi濃化層の深さ及び平均濃度を調べた。   And the depth and average density | concentration of Si concentration layer of these samples were investigated.

その後、引張試験形状にサンプルを切り出し、180℃における引張試験を実施した。更に別サンプルにてSWAAT960時間試験を実施した。   Thereafter, a sample was cut into a tensile test shape, and a tensile test at 180 ° C. was performed. Furthermore, a SWAAT 960 hour test was conducted on another sample.

腐食試験の評価として光学顕微鏡による表面観察、断面観察を実施し、全面腐食が発生し、かつその深さが200μm以下で良好な耐食性を示したものを「◎」、孔食はその深さが200μm以下のもの、粒界腐食はその深さが150μm以下のものを「○」、全面腐食または孔食はその深さが200μmを超えるもの、粒界腐食はその深さが150μmを超えるものを「×」とした。   As an evaluation of the corrosion test, surface observation and cross-sectional observation were carried out with an optical microscope. “◎” indicates that the entire surface corrosion occurred and the depth was 200 μm or less and showed good corrosion resistance. 200 μm or less, intergranular corrosion is “O” when the depth is 150 μm or less, general corrosion or pitting corrosion is that the depth exceeds 200 μm, and intergranular corrosion is that the depth exceeds 150 μm It was set as “x”.

以上の結果を表4に示す。   The results are shown in Table 4.

Figure 0004860203
Figure 0004860203

表4の結果からわかるように、本発明実施例11〜22は、機械的強度、耐食性ともに優れているのに対し、芯材組成及び/又は皮材組成が本発明範囲を逸脱する比較例11〜16は、いずれも強度または耐食性の少なくとも一方に劣るものであった。
[試験3]
(表5の実施例31及び32)
半連続鋳造法にて作製した厚さ300mmの鋳塊を熱間圧延し厚さ20mmの皮材、及び5mmの中間層材とする。更に、同じく半連続鋳造法にて作製した厚さ400mmの芯材用鋳塊の両面に、皮材/中間材/芯材/中間材/皮材の構成になるように中間材と皮材を溶接にて仮固定し、開始温度480℃で熱間圧延し、厚さ10mmの熱間圧延板を得る。この熱間圧延板を450℃×5時間の加熱処理後、冷間圧延を施し、厚さ1mmの冷間圧延板を得る。このサンプルについて、600℃×5minの加熱処理を実施する。
As can be seen from the results in Table 4, Examples 11 to 22 of the present invention are excellent in both mechanical strength and corrosion resistance, whereas Comparative Example 11 in which the core material composition and / or the skin material composition depart from the scope of the present invention. -16 were inferior to at least one of intensity | strength or corrosion resistance.
[Test 3]
(Examples 31 and 32 in Table 5)
An ingot having a thickness of 300 mm produced by a semi-continuous casting method is hot-rolled to obtain a skin material having a thickness of 20 mm and an intermediate layer material having a thickness of 5 mm. Furthermore, the intermediate material and the skin material are arranged on both sides of the 400 mm-thick core ingot produced by the semi-continuous casting method so that the structure of the skin material / intermediate material / core material / intermediate material / skin material is obtained. Temporarily fixed by welding and hot-rolled at a starting temperature of 480 ° C. to obtain a hot-rolled sheet having a thickness of 10 mm. This hot-rolled sheet is subjected to heat treatment at 450 ° C. for 5 hours, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 1 mm. This sample is subjected to heat treatment at 600 ° C. for 5 minutes.

このような工程により、表5の実施例31及び32のような材料構成を有するサンプルを製作した。そして、これらのサンプルのSi濃化層の深さ及び平均濃度を調べた。   By such a process, a sample having a material configuration as shown in Examples 31 and 32 in Table 5 was manufactured. And the depth and average density | concentration of Si concentration layer of these samples were investigated.

その後、引張試験形状にサンプルを切り出し、180℃における引張試験を実施した。更に別サンプルにてSWAAT960時間試験を実施した。   Thereafter, a sample was cut into a tensile test shape, and a tensile test at 180 ° C. was performed. Furthermore, a SWAAT 960 hour test was conducted on another sample.

腐食試験の評価として光学顕微鏡による表面観察、断面観察を実施し、全面腐食が発生し、かつその深さが200μm以下で良好な耐食性を示したものを「◎」、孔食はその深さが200μm以下のもの、粒界腐食はその深さが150μm以下のものを「○」、全面腐食または孔食はその深さが200μmを超えるもの、粒界腐食はその深さが150μmを超えるものを「×」とした。
(表5の実施例33及び34、比較例31)
中間材が存在しないこと以外は実施例31及び32と同様の工程で、サンプルを作成し、Si濃化層の深さ及び平均濃度と180℃における引張強さを調べるとともに、SWAAT960時間の腐食試験を実施した。
As an evaluation of the corrosion test, surface observation and cross-sectional observation were carried out with an optical microscope. “◎” indicates that the entire surface corrosion occurred and the depth was 200 μm or less and showed good corrosion resistance. 200 μm or less, intergranular corrosion is “O” when the depth is 150 μm or less, general corrosion or pitting corrosion is that the depth exceeds 200 μm, and intergranular corrosion is that the depth exceeds 150 μm It was set as “x”.
(Examples 33 and 34 in Table 5, Comparative Example 31)
Samples were prepared in the same manner as in Examples 31 and 32 except that no intermediate material was present, and the depth and average concentration of the Si-concentrated layer and the tensile strength at 180 ° C. were examined, and a SWAAT 960 hour corrosion test was performed. Carried out.

以上の結果を表5に示す。   The results are shown in Table 5.

Figure 0004860203
Figure 0004860203

表5の結果からわかるように、本発明実施例31〜34は、機械的強度、耐食性ともに優れているのに対し、芯材組成が本発明範囲を逸脱する比較例31は、強度、耐食性ともに劣るものであった。
[試験4]
(表6の実施例41〜46、比較例41〜44)
半連続鋳造法にて作製した厚さ250mmの鋳塊を熱間圧延し厚さ20mmの皮材とする。更に、同じく半連続鋳造法にて作製した厚さ300mmの芯材用鋳塊の両面に皮材を溶接にて仮固定し、開始温度480℃で熱間圧延し、厚さ5mmの熱間圧延板を得る。この熱間圧延板に冷間圧延を施し、芯材の両面に皮材が積層された厚さ1.5mmの冷間圧延板を得る。このサンプルについて、加熱処理を実施する。
As can be seen from the results in Table 5, Examples 31 to 34 of the present invention are excellent in both mechanical strength and corrosion resistance, whereas Comparative Example 31 in which the core material composition departs from the scope of the present invention has both strength and corrosion resistance. It was inferior.
[Test 4]
(Examples 41 to 46 in Table 6 and Comparative Examples 41 to 44)
An ingot having a thickness of 250 mm produced by a semi-continuous casting method is hot-rolled to obtain a skin material having a thickness of 20 mm. Further, a skin material is temporarily fixed by welding on both sides of a 300 mm thick core ingot produced by the semi-continuous casting method, hot rolled at a starting temperature of 480 ° C., and hot rolled with a thickness of 5 mm. Get a board. The hot-rolled sheet is cold-rolled to obtain a cold-rolled sheet having a thickness of 1.5 mm in which a skin material is laminated on both sides of the core material. This sample is subjected to a heat treatment.

このような工程により、表6の各実施例及び比較例のような材料構成を有する複数のサンプルを製作した。各サンプルについての冷間圧延板の加熱処理条件を表6に示す。   By such a process, a plurality of samples having material configurations as in the examples and comparative examples in Table 6 were manufactured. Table 6 shows the heat treatment conditions of the cold-rolled plate for each sample.

そして、これらのサンプルのSi濃化層の深さ及び平均濃度を調べた。その後、引張試験形状にサンプルを切り出し、180℃における引張試験を実施した。更に別サンプルにてSWAAT960時間試験を実施した。   And the depth and average density | concentration of Si concentration layer of these samples were investigated. Thereafter, a sample was cut into a tensile test shape, and a tensile test at 180 ° C. was performed. Furthermore, a SWAAT 960 hour test was conducted on another sample.

腐食試験の評価として光学顕微鏡による表面観察、断面観察を実施し、全面腐食が発生し、かつその深さが200μm以下で良好な耐食性を示したものを「◎」、孔食はその深さが200μm以下のもの、粒界腐食はその深さが150μm以下のものを「○」、全面腐食または孔食はその深さが200μmを超えるもの、粒界腐食はその深さが150μmを超えるものを「×」とした。   As an evaluation of the corrosion test, surface observation and cross-sectional observation were carried out with an optical microscope. “◎” indicates that the entire surface corrosion occurred and the depth was 200 μm or less and showed good corrosion resistance. 200 μm or less, intergranular corrosion is “O” when the depth is 150 μm or less, general corrosion or pitting corrosion is that the depth exceeds 200 μm, and intergranular corrosion is that the depth exceeds 150 μm It was set as “x”.

以上の結果を表6に示す。   The results are shown in Table 6.

Figure 0004860203
Figure 0004860203

本発明実施例41〜46は、機械的強度、耐食性ともに優れているのに対し、芯材組成あるいはさらに皮材組成が本発明範囲を逸脱する比較例41〜44は、強度や耐食性に劣るものであった。   While Examples 41 to 46 of the present invention are excellent in both mechanical strength and corrosion resistance, Comparative Examples 41 to 44 in which the core material composition or the skin material composition departs from the scope of the present invention are inferior in strength and corrosion resistance. Met.

この発明の一実施形態に係る積層材の断面図である。It is sectional drawing of the laminated material which concerns on one Embodiment of this invention. この発明の他の実施形態に係る積層材の断面図である。It is sectional drawing of the laminated material which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る積層材の断面図である。It is sectional drawing of the laminated material which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る積層材の断面図である。It is sectional drawing of the laminated material which concerns on other embodiment of this invention. この発明の一実施形態に係る積層材を用いた熱交換器の一例を示す断面図である。It is sectional drawing which shows an example of the heat exchanger using the laminated material which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 積層材
2 芯材
3 皮材
4 皮材
5 中間材
6 Si濃化層
10 チューブ
20 ヘッダー
30 熱交換器
DESCRIPTION OF SYMBOLS 1 Laminated material 2 Core material 3 Skin material 4 Skin material 5 Intermediate material 6 Si concentrated layer 10 Tube 20 Header 30 Heat exchanger

Claims (25)

Si;1.25質量%以上2.45質量%以下、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.08質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を芯材とし、
この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;0.005質量%以上0.4質量%以下を含み、残部がAlと不純物からなるアルミニウム皮材が積層されてなる熱交換器用積層材。
Si: 1.25 mass% to 2.45 mass%, Fe: 0.15 mass% to 0.8 mass%, Cu: 0.01 mass% to 0.08 mass%, Mn: 1.4 Aluminum containing 0.05% by mass or more and 0.2% by mass or less, Zr; 0.12% by mass or more and 0.3% by mass or less, with the balance being Al and impurities. With the material as the core material,
On at least one surface of the core material, Si: 7.5% by mass to 11.5% by mass, Fe: 0.2% by mass to 0.8% by mass, Cu: 0.005% by mass to 0.35% by mass %, Zn: 0.005 mass% or more and 0.4 mass% or less, and a laminated material for a heat exchanger in which an aluminum skin made of Al and impurities is laminated.
Si;1.25質量%以上2.45質量%以下、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.08質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を芯材とし、
この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;1質量%以上5質量%以下を含み、残部がAlと不純物からなるアルミニウム皮材が積層されてなる熱交換器用積層材。
Si: 1.25 mass% to 2.45 mass%, Fe: 0.15 mass% to 0.8 mass%, Cu: 0.01 mass% to 0.08 mass%, Mn: 1.4 Aluminum containing 0.05% by mass or more and 0.2% by mass or less, Zr; 0.12% by mass or more and 0.3% by mass or less, with the balance being Al and impurities. With the material as the core material,
On at least one surface of the core material, Si: 7.5% by mass to 11.5% by mass, Fe: 0.2% by mass to 0.8% by mass, Cu: 0.005% by mass to 0.35% by mass %, Zn: 1 mass% or more and 5 mass% or less, The laminated material for heat exchangers by which the aluminum skin | leather which consists of Al and an impurity is laminated | stacked.
前記芯材において、Si;1.35質量%以上1.65質量%以下、Fe;0.3質量%以上0.5質量%以下、Cu;0.02質量%以上0.04質量%以下、Mn;1.55質量%以上1.75質量%以下、Ti;0.08質量%以上0.15質量%以下、Zr;0.12質量%以上0.2質量%以下であり、
前記皮材において、Si;7.5質量%以上9.5質量%以下、Fe;0.2質量%以上0.5質量%以下、Cu;0.005質量%以上0.3質量%以下、Zn;0.005質量%以上0.3質量%以下である請求項1に記載の熱交換器用積層材。
In the core material, Si: 1.35% by mass or more and 1.65% by mass or less, Fe: 0.3% by mass or more and 0.5% by mass or less, Cu: 0.02% by mass or more and 0.04% by mass or less, Mn: 1.55 mass% or more and 1.75 mass% or less, Ti: 0.08 mass% or more and 0.15 mass% or less, Zr: 0.12 mass% or more and 0.2 mass% or less,
In the skin material, Si: 7.5% by mass to 9.5% by mass, Fe: 0.2% by mass to 0.5% by mass, Cu: 0.005% by mass to 0.3% by mass, Zn: 0.005 mass% or more and 0.3 mass% or less, The laminated material for heat exchangers of Claim 1.
前記芯材において、Si;1.35質量%以上1.65質量%以下、Fe;0.3質量%以上0.5質量%以下、Cu;0.02質量%以上0.04質量%以下、Mn;1.55質量%以上1.75質量%以下、Ti;0.08質量%以上0.15質量%以下、Zr;0.12質量%以上0.2質量%以下であり、
前記皮材において、Si;7.5質量%以上9.5質量%以下、Fe;0.2質量%以上0.5質量%以下、Cu;0.005質量%以上0.3質量%以下、Zn;1質量%以上2.5質量%以下である請求項2に記載の熱交換器用積層材。
In the core material, Si: 1.35% by mass or more and 1.65% by mass or less, Fe: 0.3% by mass or more and 0.5% by mass or less, Cu: 0.02% by mass or more and 0.04% by mass or less, Mn: 1.55 mass% or more and 1.75 mass% or less, Ti: 0.08 mass% or more and 0.15 mass% or less, Zr: 0.12 mass% or more and 0.2 mass% or less,
In the skin material, Si: 7.5% by mass to 9.5% by mass, Fe: 0.2% by mass to 0.5% by mass, Cu: 0.005% by mass to 0.3% by mass, Zn: 1 mass% or more and 2.5 mass% or less, The laminated material for heat exchangers of Claim 2.
芯材の不純物としてのMg量が0.04質量%以下、不純物としてのZn量が0.08質量%以下に制限されてなる請求項1〜4のいずれか一項に記載の熱交換器用積層材。   The stack for a heat exchanger according to any one of claims 1 to 4, wherein the amount of Mg as an impurity of the core material is limited to 0.04 mass% or less and the amount of Zn as an impurity is limited to 0.08 mass% or less. Wood. 芯材にCrが0.03質量%以上0.25質量%以下含有されてなる請求項1〜5のいずれか一項に記載の熱交換器用積層材。   The laminated material for a heat exchanger according to any one of claims 1 to 5, wherein Cr is contained in the core material in an amount of 0.03% by mass or more and 0.25% by mass or less. 芯材にNiが0.05質量%以上1質量%以下含有されてなる請求項1〜6のいずれか一項に記載の熱交換器用積層材。   The laminated material for a heat exchanger according to any one of claims 1 to 6, wherein Ni is contained in the core material in an amount of 0.05 mass% to 1 mass%. 芯材にScが0.005質量%以上0.1質量%以下含有されてなる請求項1〜7のいずれか一項に記載の熱交換器用積層材。   The laminated material for a heat exchanger according to any one of claims 1 to 7, wherein Sc is contained in the core material in an amount of 0.005 mass% to 0.1 mass%. 芯材と皮材との間に中間層として、Si;0.05質量%以上2.45質量%以下、Fe;0.05質量%以上1.8質量%以下、Cu;0.01質量%以上0.3質量%以下、Mn;0.05質量%以上2質量%以下、Ti;0.01質量%以上0.2質量%以下、Zn;0.5質量%以上2.5質量%以下、Zr;0.005質量%以上0.3質量%以下を含み、残部がAlと不純物からなるアルミニウム材を積層されてなる請求項1〜8のいずれか一項に記載の熱交換器用積層材。   As an intermediate layer between the core material and the skin material, Si: 0.05% by mass or more and 2.45% by mass or less, Fe: 0.05% by mass or more and 1.8% by mass or less, Cu: 0.01% by mass 0.3% by mass or less, Mn: 0.05% by mass or more and 2% by mass or less, Ti: 0.01% by mass or more and 0.2% by mass or less, Zn: 0.5% by mass or more and 2.5% by mass or less Zr: Laminated material for heat exchanger according to any one of claims 1 to 8, which is formed by laminating an aluminum material containing 0.005 mass% to 0.3 mass% with the balance being Al and impurities. . 芯材の表層に厚さ50μm以上500μm以下のSi濃化層を有し、かつ濃化層の平均Si濃度が1.4質量%以上5質量%以下である請求項1〜9のいずれか一項に記載の熱交換器用積層材。   The surface layer of the core material has a Si concentrated layer having a thickness of 50 µm or more and 500 µm or less, and the average Si concentration of the concentrated layer is 1.4 mass% or more and 5 mass% or less. The laminated material for heat exchangers as described in the item. Si;0.9質量%以上1.25質量%未満、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.2質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、不純物としてのMg;0.04質量%以下、Zn;0.08質量%以下に制限されるとともに、残部がAlと不純物からなるアルミニウム材を芯材とし、
この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;0.005質量%以上0.4質量%以下を含み、残部がAlと不可避的不純物からなるアルミニウム材からなる皮材が積層され、
且つ、芯材の表層に50μm以上、500μm以下のSi濃化層を有し、更に濃化層の平均Si濃度が1.4質量%以上5質量%以下である熱交換器用積層材。
Si: 0.9 mass% or more and less than 1.25 mass%, Fe: 0.15 mass% or more and 0.8 mass% or less, Cu: 0.01 mass% or more and 0.2 mass% or less, Mn: 1.4 Mass% to 2.05 mass%, Ti; 0.05 mass% to 0.2 mass%, Zr; 0.12 mass% to 0.3 mass%, Mg as impurities; 0.04 Mass% or less, Zn; limited to 0.08 mass% or less, with the balance being an aluminum material composed of Al and impurities,
On at least one surface of the core material, Si: 7.5% by mass to 11.5% by mass, Fe: 0.2% by mass to 0.8% by mass, Cu: 0.005% by mass to 0.35% by mass % Or less, Zn: 0.005% by mass or more and 0.4% by mass or less, and a skin material made of an aluminum material made of Al and inevitable impurities is laminated,
And the laminated material for heat exchangers which has Si concentration layer of 50 micrometers or more and 500 micrometers or less in the surface layer of a core material, and also the average Si density | concentration of concentration layer is 1.4 to 5 mass%.
Si;0.9質量%以上1.25質量%未満、Fe;0.15質量%以上0.8質量%以下、Cu;0.01質量%以上0.2質量%以下、Mn;1.4質量%以上2.05質量%以下、Ti;0.05質量%以上0.2質量%以下、Zr;0.12質量%以上0.3質量%以下を含み、不純物としてのMg;0.04質量%以下、Zn;0.08質量%以下に制限されるとともに、残部がAlと不純物からなるアルミニウム材を芯材とし、
この芯材の少なくとも片面に、Si;7.5質量%以上11.5質量%以下、Fe;0.2質量%以上0.8質量%以下、Cu;0.005質量%以上0.35質量%以下、Zn;1質量%以上5質量%以下を含み、残部がAlと不純物からなるアルミニウム皮材が積層されてなる熱交換器用積層材。
Si: 0.9 mass% or more and less than 1.25 mass%, Fe: 0.15 mass% or more and 0.8 mass% or less, Cu: 0.01 mass% or more and 0.2 mass% or less, Mn: 1.4 Mass% to 2.05 mass%, Ti; 0.05 mass% to 0.2 mass%, Zr; 0.12 mass% to 0.3 mass%, Mg as impurities; 0.04 Mass% or less, Zn; limited to 0.08 mass% or less, with the balance being an aluminum material composed of Al and impurities,
On at least one surface of the core material, Si: 7.5% by mass to 11.5% by mass, Fe: 0.2% by mass to 0.8% by mass, Cu: 0.005% by mass to 0.35% by mass %, Zn: 1 mass% or more and 5 mass% or less, The laminated material for heat exchangers by which the aluminum skin | leather which consists of Al and an impurity is laminated | stacked.
前記芯材と皮材、または芯材と中間層と皮材の積層処理後に、少なくとも1回以上、400℃以上550℃以下、20分以上10時間以下の熱処理が施されている請求項1〜10のいずれか一項に記載の熱交換器用積層材。The heat treatment of at least once, 400 ° C. or more and 550 ° C. or less, and 20 minutes or more and 10 hours or less is performed after the lamination treatment of the core material and the skin material, or the core material, the intermediate layer, and the skin material. The laminate for a heat exchanger according to any one of 10. 前記熱処理が400℃以上500℃以下、30分以上8時間以下である請求項13に記載の熱交換器用積層材。The laminated material for a heat exchanger according to claim 13, wherein the heat treatment is 400 ° C or higher and 500 ° C or lower and 30 minutes or longer and 8 hours or shorter. 請求項1〜4または請求項11または請求項12のいずれか一項に記載の積層材からなるとともに、前記積層材における皮材が溶射法により形成されていることを特徴とする熱交換器用チューブ材。A tube for a heat exchanger, comprising the laminated material according to any one of claims 1 to 4, or 11 or 12, wherein a skin material in the laminated material is formed by a thermal spraying method. Wood. 請求項9に記載の積層材からなるとともに、前記積層材における中間材が溶射法により形成されていることを特徴とする熱交換器用チューブ材。A tube material for a heat exchanger, comprising the laminated material according to claim 9, wherein an intermediate material in the laminated material is formed by a thermal spraying method. 請求項10または請求項11に記載の記載の積層材からなるとともに、前記積層材におけるSi濃化層が、チューブ本体の外周部にAl−Si系合金を溶射法により被覆し、さらにその後熱拡散させることにより形成されていることを特徴とする熱交換器用チューブ材。It consists of the laminated material of Claim 10 or Claim 11, and Si concentration layer in the said laminated material coat | covers the outer peripheral part of a tube main body with the Al-Si type alloy by a thermal spraying method, and also heat diffusion after that. It is formed by making it the tube material for heat exchangers characterized by the above-mentioned. 請求項13または請求項14に記載の積層材からなり、前記熱処理後に、相当歪で0.2%以上50%以下の予歪みが与えられていることを特徴とする熱交換器用チューブ材。A tube material for a heat exchanger, comprising the laminated material according to claim 13 or 14, wherein a pre-strain of 0.2% or more and 50% or less is given as an equivalent strain after the heat treatment. 請求項1〜4または請求項11または請求項12のいずれか一項に記載の積層材からなるとともに、前記積層材における皮材が溶射法により形成されていることを特徴とする熱交換器用ヘッダー材。A header for a heat exchanger, comprising the laminated material according to any one of claims 1 to 4 or 11 or 12, wherein a skin material in the laminated material is formed by a thermal spraying method. Wood. 請求項9に記載の積層材からなるとともに、前記積層材における中間材が溶射法により形成されていることを特徴とする熱交換器用ヘッダー材。A header material for a heat exchanger, comprising the laminated material according to claim 9, wherein an intermediate material in the laminated material is formed by a thermal spraying method. 請求項10または請求項11に記載の記載の積層材からなるとともに、前記積層材におけるSi濃化層が、ヘッダー本体の外周部にAl−Si系合金を溶射法により被覆し、さらにその後熱拡散させることにより形成されていることを特徴とする熱交換器用ヘッダー材。It consists of the laminated material of Claim 10 or Claim 11, and Si concentration layer in the said laminated material coat | covers the outer peripheral part of a header main body with the Al-Si type alloy by a thermal spraying method, and also heat diffusion after that. It is formed by making it the header material for heat exchangers characterized by the above-mentioned. 請求項13または請求項14に記載の積層材からなり、前記熱処理後に、相当歪で0.2%以上50%以下の予歪みが与えられていることを特徴とする熱交換器用ヘッダー材。A header material for a heat exchanger, comprising the laminated material according to claim 13 or 14, wherein a pre-strain of 0.2% to 50% is given as an equivalent strain after the heat treatment. 請求項1〜9のいずれか一項に記載の熱交換器用積層材を熱交換器構成部材に用い、前記構成部材をフッ化物系フラックスを用いてろう付することにより、芯材の表層に厚さ50μm以上500μm以下のSi濃化層を形成し、かつ濃化層の平均Si濃度を1.4質量%以上5質量%以下とする熱交換器の製造方法。The laminated material for a heat exchanger according to any one of claims 1 to 9 is used as a heat exchanger constituent member, and the constituent member is brazed using a fluoride-based flux, whereby the surface layer of the core material is thickened. A method for producing a heat exchanger, wherein a Si concentrated layer having a thickness of 50 μm or more and 500 μm or less is formed, and the average Si concentration of the concentrated layer is 1.4 mass% or more and 5 mass% or less. 請求項15〜18のいずれか一項に記載のチューブ材を用いることにより作製された熱交換器。The heat exchanger produced by using the tube material as described in any one of Claims 15-18. 請求項19〜22のいずれか一項に記載のヘッダー材を用いることにより作製された熱交換器。The heat exchanger produced by using the header material as described in any one of Claims 19-22.
JP2005227701A 2004-08-06 2005-08-05 Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger Expired - Fee Related JP4860203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227701A JP4860203B2 (en) 2004-08-06 2005-08-05 Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004231376 2004-08-06
JP2004231376 2004-08-06
JP2005077137 2005-03-17
JP2005077137 2005-03-17
JP2005227701A JP4860203B2 (en) 2004-08-06 2005-08-05 Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger

Publications (2)

Publication Number Publication Date
JP2006289489A JP2006289489A (en) 2006-10-26
JP4860203B2 true JP4860203B2 (en) 2012-01-25

Family

ID=37410645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227701A Expired - Fee Related JP4860203B2 (en) 2004-08-06 2005-08-05 Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger

Country Status (1)

Country Link
JP (1) JP4860203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288854B1 (en) * 2011-04-08 2013-07-23 한국기계연구원 Manufacturing method of high strength clad sheet having a strip-cast aluminum alloy
JP2013234801A (en) * 2012-05-09 2013-11-21 Mitsubishi Heavy Ind Ltd Heat exchanger and vehicle air conditioning device
JP6307331B2 (en) * 2014-04-17 2018-04-04 株式会社Uacj Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185855A (en) * 1986-02-13 1987-08-14 Nippon Radiator Co Ltd Sheet for heat exchanger made of aluminum
JP2846581B2 (en) * 1993-06-22 1999-01-13 川崎製鉄株式会社 Aluminum alloy brazing sheet excellent in formability and method for manufacturing heat exchanger using the same
JPH0790452A (en) * 1993-09-06 1995-04-04 Furukawa Electric Co Ltd:The Production of aluminum alloy for heat exchanger, aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH07179972A (en) * 1993-12-22 1995-07-18 Mitsubishi Alum Co Ltd Al alloy brazing sheet for heat exchanger structural member
JPH09194975A (en) * 1996-01-18 1997-07-29 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet
JPH09316577A (en) * 1996-05-30 1997-12-09 Furukawa Electric Co Ltd:The Brazing sheet for refrigerant passage member for heat exchanger
JPH1088266A (en) * 1996-09-06 1998-04-07 Sky Alum Co Ltd Brazing sheet made of aluminum alloy
JP2000008130A (en) * 1998-06-19 2000-01-11 Mitsubishi Alum Co Ltd Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JP4485671B2 (en) * 2000-09-11 2010-06-23 古河スカイ株式会社 Anti-corrosion aluminum alloy brazing material for heat exchanger and high corrosion resistance aluminum alloy composite for heat exchanger
JP4166613B2 (en) * 2002-06-24 2008-10-15 株式会社デンソー Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material

Also Published As

Publication number Publication date
JP2006289489A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
CN103805820B (en) Aluminum-alloy brazing sheet and method of manufacturing same
JP5054404B2 (en) Aluminum alloy clad material and brazing sheet for heat exchanger
JPH08134574A (en) Aluminum alloy brazing sheet, production of the brazing sheet, heat exchanger using the brazing sheet, and production of the heat exchanger
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
US11458577B2 (en) Aluminum alloy brazing sheet for heat exchanger
WO2013024732A1 (en) Aluminum alloy fin material for heat exchanger offering excellent post-brazing strength and corrosion resistance
US11370067B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP4860203B2 (en) Laminated material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, manufacturing method of heat exchanger, and heat exchanger
WO2019044545A1 (en) Brazing sheet for heat exchanger fin and manufacturing method thereof
JP5084490B2 (en) Aluminum alloy clad material
JP5388084B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and pitting corrosion resistance
JP2016182616A (en) Aluminum alloy cladding material and manufacturing method of the same
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP5184112B2 (en) Aluminum alloy clad material
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPH11209837A (en) Sacrificial corrosionproof aluminum alloy for heat exchanger and aluminum alloy composite material for heat exchanger using this
JP2018053279A (en) Aluminum alloy clad material and manufacturing method therefor
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JP4352457B2 (en) Method for producing brazing sheet excellent in strength and wax erosion resistance
JP6970841B2 (en) Aluminum alloy brazing sheet and its manufacturing method
JP2005161383A (en) Method for manufacturing brazing sheet for heat exchanger excellent in strength and brazing erosion resistance
JPH09310139A (en) Brazing sheet made of aluminum alloy for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4860203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees