JP4859651B2 - Optical amplifier and optical communication system - Google Patents

Optical amplifier and optical communication system Download PDF

Info

Publication number
JP4859651B2
JP4859651B2 JP2006336874A JP2006336874A JP4859651B2 JP 4859651 B2 JP4859651 B2 JP 4859651B2 JP 2006336874 A JP2006336874 A JP 2006336874A JP 2006336874 A JP2006336874 A JP 2006336874A JP 4859651 B2 JP4859651 B2 JP 4859651B2
Authority
JP
Japan
Prior art keywords
gain
stage
light
output
equalizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006336874A
Other languages
Japanese (ja)
Other versions
JP2008153270A (en
Inventor
浩次 増田
浩孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006336874A priority Critical patent/JP4859651B2/en
Publication of JP2008153270A publication Critical patent/JP2008153270A/en
Application granted granted Critical
Publication of JP4859651B2 publication Critical patent/JP4859651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

本発明は、信号光を光増幅する光ファイバ増幅器および光ファイバ通信システムに関する。   The present invention relates to an optical fiber amplifier and an optical fiber communication system for optically amplifying signal light.

従来技術の光ファイバ通信システムで用いられる光増幅器としてのエルビウム添加ファイバ増幅器(EDFA)の利得一定制御に関する構成を図1および図2に示す(例えば、非特許文献1または2参照)。   A configuration relating to constant gain control of an erbium-doped fiber amplifier (EDFA) as an optical amplifier used in a conventional optical fiber communication system is shown in FIGS. 1 and 2 (see, for example, Non-Patent Document 1 or 2).

図1がエルビウム添加ファイバ(EDF)ゲインブロック(以下ではGBと呼ぶ)を2つと、それらの中間段に利得等化器(GEQ)を1つ用いた構成、すなわちGBユニットが一つの構成、また、図2がGBユニットを2つ用いた構成を示している。ただし、GBユニットは、2つのGBとそれらの中間段に設置した利得等化器とからなる。そこで、便宜上、図1の構成を1GEQ構成、図2の構成を2GEQ構成と呼ぶ。また、図1および図2の光部品4、18は、分散補償ファイバ、可変減衰器、光スイッチなどである。   FIG. 1 shows a configuration using two erbium-doped fiber (EDF) gain blocks (hereinafter referred to as GB) and one gain equalizer (GEQ) between them, that is, one GB unit. FIG. 2 shows a configuration using two GB units. However, the GB unit is composed of two GBs and a gain equalizer installed at an intermediate stage between them. Therefore, for convenience, the configuration in FIG. 1 is referred to as a 1GEQ configuration, and the configuration in FIG. 2 is referred to as a 2GEQ configuration. 1 and 2 are dispersion compensating fibers, variable attenuators, optical switches, and the like.

利得等化器3、12、21は、EDFAの利得スペクトルを平坦化し、平坦な利得帯域を拡大するために用いられており、より大きなピーク損失の利得等化器を用いることによって、より広い利得帯域が得られることが知られている。しかしながら、1GEQ構成において、利得等化器3、12、21のピーク損失があまり大きくなると、EDFAの雑音指数(NF)が劣化することがわかっている。   The gain equalizers 3, 12, and 21 are used for flattening the gain spectrum of the EDFA and expanding the flat gain band. By using a gain equalizer with a larger peak loss, a wider gain is obtained. It is known that bandwidth can be obtained. However, it has been found that in the 1GEQ configuration, the noise figure (NF) of the EDFA deteriorates when the peak loss of the gain equalizers 3, 12, and 21 becomes too large.

そこで、1GEQ構成に代えて、2GEQ構成を用いて、より広い利得帯域が得られることが知られている。また、各GBユニットで、利得等化器3、12、21の前後にGB2、5、11、13、20、22を設置する理由は、そのGBユニットを低NFかつ高出力で動作させるためである。   Therefore, it is known that a wider gain band can be obtained by using the 2GEQ configuration instead of the 1GEQ configuration. Also, the reason why GBs 2, 5, 11, 13, 20, and 22 are installed before and after the gain equalizers 3, 12, and 21 in each GB unit is to operate the GB unit with low NF and high output. is there.

ここで、GBの利得スペクトルの例を図8に示す。図8は横軸に波長をとり、縦軸に利得をとる。ただし、このスペクトル形状は、わかり易さのため簡略化してある。1550nmおよび1600nmにおける利得が10dBのとき、1560nmにおける利得が15dBである。したがって、例えば、1560nmにおけるピーク損失が5dBの利得等化器を用いてこのGBの利得スペクトルを平坦化できる。   Here, an example of the gain spectrum of GB is shown in FIG. In FIG. 8, the horizontal axis represents wavelength and the vertical axis represents gain. However, this spectrum shape is simplified for easy understanding. When the gain at 1550 nm and 1600 nm is 10 dB, the gain at 1560 nm is 15 dB. Therefore, for example, the gain spectrum of this GB can be flattened using a gain equalizer having a peak loss of 5 dB at 1560 nm.

また、図1および図2のEDFAにおける利得一定制御は、一般に、各GBユニット間において、入力信号光パワーと出力信号光パワーとを比較することにより行われている。すなわち、図1について説明すると、EDFAへの入力光および出力光を、それぞれ前段および後段の分岐(それぞれ前段分岐1および後段分岐6)で分岐し、前段および後段の受光器(それぞれ前段受光器7および後段受光器9)で受光して入力および出力信号光パワーを得る。   1 and 2 is generally performed by comparing the input signal light power and the output signal light power between the GB units. That is, with reference to FIG. 1, the input light and the output light to the EDFA are branched at the front stage and the rear stage branch (the front stage branch 1 and the rear stage branch 6 respectively), and the front stage and the rear stage light receivers (the front stage light receiver 7 respectively). Then, the light is received by the rear light receiver 9) to obtain the input and output signal light power.

その後、それらのパワーから、利得制御回路8において利得を算出し、前段および後段のGB(それぞれ第一GB2および第二GB5)を所望の利得が得られるように一定制御する。この利得一定制御(AGC)を用いた波長多重の光ネットワークシステムでは、特に、入力信号光のチャネル数およびチャネル配置が変わったときに、各WDM波長において利得を一定に制御する。   After that, the gain control circuit 8 calculates the gain from these powers, and the front stage and the rear stage GB (first GB 2 and second GB 5, respectively) are controlled so as to obtain a desired gain. In the wavelength division multiplexing optical network system using the constant gain control (AGC), the gain is controlled to be constant at each WDM wavelength particularly when the number of channels and the channel arrangement of the input signal light are changed.

上記の利得一定制御動作は、図2に関しても明らかに同様である。このとき、各GBユニットは前段分岐10、19および後段分岐14、23の間で、最適動作において、利得スペクトルが平坦になるように設計されている。したがって、任意の入力信号光のチャネル数およびチャネル配置に対して各GBユニットはAGC動作することができる。   The above-described constant gain control operation is obviously the same as in FIG. At this time, each GB unit is designed so that the gain spectrum is flat in the optimum operation between the front-stage branches 10 and 19 and the rear-stage branches 14 and 23. Therefore, each GB unit can perform an AGC operation with respect to an arbitrary number and channel arrangement of input signal light.

Masuda et al.,Electron.Lett.,vol.33,no.12,pp.1070−1071,1997Masuda et al. Electron. Lett. , Vol. 33, no. 12, pp. 1070-1071, 1997 Masuda et al.,Electron.Lett.,vol.34,no.6,pp.567−568,1998Masuda et al. Electron. Lett. , Vol. 34, no. 6, pp. 567-568, 1998

上記従来技術においては、各GBを個別に利得一定制御できない。また、利得等化器の数の2倍のGBが必要となり、EDFAの部品点数が多く、EDFAが高価になるといった欠点がある。   In the above prior art, each GB cannot be individually controlled with a constant gain. Further, GB twice as many as the number of gain equalizers is required, and there are disadvantages that the number of parts of the EDFA is large and the EDFA is expensive.

すなわち、従来技術の利得一定制御動作では、利得制御回路において、制御の利得を算出するフィードバック制御を行うため、例えば、GB−1は一定の励起光パワーレベルで励起し、GB−2の利得を、EDFAの利得が一定になるように制御する。そのため、GB−1の利得は、EDFAへの入力信号光パワーレベルに応じて変化するという欠点がある。   That is, in the constant gain control operation of the prior art, in order to perform feedback control for calculating the control gain in the gain control circuit, for example, GB-1 is excited at a constant pumping light power level, and the gain of GB-2 is increased. The EDFA gain is controlled to be constant. Therefore, there is a drawback that the gain of GB-1 changes according to the input signal light power level to the EDFA.

本発明は、このような背景の下に行われたものであって、従来技術で問題であった、各GBを個別に利得一定制御できない、また、利得等化器の数の2倍のGBが必要となり、EDFAの部品点数が多く、EDFAが高価になるといった欠点を解決することができる光増幅器および光通信システムを提供することを目的とする。   The present invention has been performed under such a background, and has been a problem in the prior art. Each GB cannot be controlled individually with a constant gain, and the number of gain equalizers is twice the number of gain equalizers. Therefore, an object of the present invention is to provide an optical amplifier and an optical communication system that can solve the disadvantages that the number of parts of the EDFA is large and the EDFA is expensive.

本発明は、単一あるいは複数波長の信号光を光増幅するGBと、前記GBの信号光入力段および出力段にそれぞれ設置された分岐と、前記GBの利得スペクトル偏差を補正する損失スペクトルを有し、前記出力段に設置された分岐により分岐した前記GBからの出力光の信号光スペクトルを等化するモニタ用利得等化器と、前記モニタ用利得等化器の出力を入力とする受光器と、前記受光器の前記モニタ用利得等化器の出力に応じた受光レベルに基づいて前記GBの利得を一定制御する利得制御回路とを備えた光増幅器である。   The present invention has a GB for optically amplifying signal light of a single wavelength or a plurality of wavelengths, a branch installed at each of the signal light input stage and output stage of the GB, and a loss spectrum for correcting the gain spectrum deviation of the GB. And a monitor gain equalizer for equalizing the signal light spectrum of the output light from the GB branched by the branch installed in the output stage, and a photoreceiver receiving the output of the monitor gain equalizer as inputs And a gain control circuit that controls the gain of the GB to be constant based on the light reception level corresponding to the output of the monitor gain equalizer of the light receiver.

あるいは、前記モニタ用利得等化器に代えて、前記GBの利得スペクトル偏差を補正する損失スペクトルを反転した損失スペクトル形状を有し、前記入力段に設置された分岐により分岐した前記GBへの入力光の信号光レベルを等化する反転型モニタ用利得等化器を備えてもよい。これらを第一の光増幅器と呼ぶ。   Alternatively, instead of the monitor gain equalizer, an input to the GB having a loss spectrum shape obtained by inverting a loss spectrum for correcting the gain spectrum deviation of the GB and branched by a branch installed in the input stage An inversion monitor gain equalizer for equalizing the signal light level of light may be provided. These are called first optical amplifiers.

さらに、複数の第一の光増幅器の間に、利得等化器がそれぞれ設置された光増幅器を構成することができる。前記利得等化器は、複数の第一の光増幅器の総合利得のスペクトル偏差を等化することができる。これを第二の光増幅器と呼ぶ。   Further, an optical amplifier in which a gain equalizer is installed between each of the plurality of first optical amplifiers can be configured. The gain equalizer can equalize the spectral deviation of the total gain of the plurality of first optical amplifiers. This is called a second optical amplifier.

本発明では、従来のように、複数のGBユニット間における入力信号光パワーと出力信号光パワーとを比較する必要はないので、各GBを個別に利得一定制御できる。また、利得等化器の数も従来の半分となり、EDFAの部品点数が多く、EDFAが高価になるといった欠点を解決することができる。   According to the present invention, it is not necessary to compare the input signal light power and the output signal light power between the plurality of GB units as in the prior art, so that each GB can be individually controlled with a constant gain. In addition, the number of gain equalizers is halved compared to the prior art, and the disadvantage that the number of EDFA parts is large and the EDFA is expensive can be solved.

あるいは、本発明の光増幅器は、単一あるいは複数波長の信号光を光増幅する第一および第二のGBと、前記第一および第二のGBの間に設置された利得等化器と、前記第一および第二のGBおよび前記利得等化器からなる光回路の信号光入力段および出力段にそれぞれ設置された分岐と、前記光回路の利得スペクトル偏差を補正する損失スペクトルを有し、前記出力段に設置された分岐により分岐した前記光回路からの出力光の信号光スペクトルを等化するモニタ用利得等化器と、前記モニタ用利得等化器の出力を入力とする受光器と、前記受光器の前記モニタ用利得等化器の出力に応じた受光レベルに基づいて前記光回路の利得を一定制御する利得制御回路とを備えた構成とすることもできる。   Alternatively, the optical amplifier of the present invention includes a first and second GB that optically amplifies signal light having a single wavelength or a plurality of wavelengths, and a gain equalizer disposed between the first and second GBs, A branch installed in each of the signal light input stage and output stage of the optical circuit comprising the first and second GB and the gain equalizer, and a loss spectrum for correcting the gain spectrum deviation of the optical circuit; A monitor gain equalizer that equalizes the signal light spectrum of the output light from the optical circuit branched by the branch installed in the output stage; and a light receiver that receives the output of the monitor gain equalizer as input A gain control circuit that controls the gain of the optical circuit at a constant level based on the received light level corresponding to the output of the monitor gain equalizer of the light receiver may be provided.

また、前記モニタ用利得等化器に代えて、前記光回路の利得スペクトル偏差を補正する損失スペクトルを反転した損失スペクトル形状を有し、前記入力段に設置された分岐により分岐した前記光回路への入力光の信号光レベルを等化する反転型モニタ用利得等化器を備えてもよい。これらを第三の光増幅器と呼ぶ。   Further, instead of the monitor gain equalizer, the optical circuit has a loss spectrum shape obtained by inverting the loss spectrum for correcting the gain spectrum deviation of the optical circuit, and is branched by a branch installed in the input stage. An inverting type monitor gain equalizer for equalizing the signal light level of the input light may be provided. These are called third optical amplifiers.

また、前記第一の光増幅器と前記第三の光増幅器との間に利得等化器が設置された光増幅器を構成することもできる。このときに、前記利得等化器は、第一の光増幅器および第三の光増幅器の総合利得のスペクトル偏差を等化することができる。   An optical amplifier in which a gain equalizer is installed between the first optical amplifier and the third optical amplifier can also be configured. At this time, the gain equalizer can equalize the spectral deviation of the total gain of the first optical amplifier and the third optical amplifier.

また、本発明の光増幅器を、送信装置または中継装置に含む光通信システムを本発明の別の観点とすることもできる。   An optical communication system including the optical amplifier of the present invention in a transmission apparatus or a relay apparatus can be another aspect of the present invention.

本発明によれば、各GBを個別に利得一定制御でき、また、従来と比べて、EDFAの部品点数を少なくでき、EDFAを低廉に構成することができる。   According to the present invention, each GB can be individually controlled at a constant gain, and the number of parts of the EDFA can be reduced as compared with the conventional case, so that the EDFA can be configured at a low cost.

(第一実施例)
本発明第一実施例における光増幅器の構成を図3に示した。図1の従来技術とは以下の点が主に異なる。すなわち、本実施例では各GBで利得一定制御を行っている。その利得一定制御動作を第一GB31について示すと、まず、第一GB31の前段および後段に前段分岐30および後段分岐32を設置している。
(First Example)
The configuration of the optical amplifier in the first embodiment of the present invention is shown in FIG. The following points are mainly different from the prior art of FIG. That is, in this embodiment, constant gain control is performed for each GB. When the constant gain control operation is shown for the first GB 31, first, the front branch 30 and the rear branch 32 are installed at the front stage and the rear stage of the first GB 31.

そして、後段分岐32と後段受光器35との間にモニタ用利得等化器36を設置している。このモニタ用利得等化器36の損失スペクトルは、第一GB31の利得スペクトルの非平坦性を等化するものである。したがって、後段受光器35で受光した信号光パワーと前段受光器33で受光した信号光パワーとの差は、入力信号光の波長配置によらず、第一GB31の平坦化利得に等しい。   A monitor gain equalizer 36 is installed between the rear branch 32 and the rear light receiver 35. The loss spectrum of the monitor gain equalizer 36 equalizes the non-flatness of the gain spectrum of the first GB 31. Therefore, the difference between the signal light power received by the rear-stage light receiver 35 and the signal light power received by the front-stage light receiver 33 is equal to the flattening gain of the first GB 31 regardless of the wavelength arrangement of the input signal light.

すなわち、入力信号光の波長配置によらず、第一GB31の平坦化利得を検出して制御できる。上記動作は明らかに第二GB40についても成り立つ。ただし、第二GB40で用いたモニタ用利得等化器をモニタ用利得等化器45とする。ただし、各GB31、40は、利得媒質とそれを励起する励起回路を有する。また、光増幅器の種類としては、希土類添加ファイバ増幅器、ファイバラマン増幅器、半導体増幅器などがある。   That is, the flattening gain of the first GB 31 can be detected and controlled regardless of the wavelength arrangement of the input signal light. The above operation clearly holds for the second GB 40. However, the monitor gain equalizer 45 used in the second GB 40 is referred to as a monitor gain equalizer 45. However, each GB 31 and 40 has a gain medium and an excitation circuit for exciting it. Examples of the optical amplifier include a rare earth doped fiber amplifier, a fiber Raman amplifier, and a semiconductor amplifier.

一方、本実施例では、第一GB31および第二GB40の利得等化後の平坦利得をともに15dB、光部品38の波長無依存損失を10dB、EDFA全体の平坦利得を20dBとする。   On the other hand, in this embodiment, the flat gains after gain equalization of the first GB 31 and the second GB 40 are both 15 dB, the wavelength-independent loss of the optical component 38 is 10 dB, and the flat gain of the entire EDFA is 20 dB.

図9に第一GB31および第二GB40の利得スペクトルを示す。図9は横軸に波長をとり、縦軸に利得をとる。それらは同じスペクトルであるため、グラフの線は一本に見えるが二つのスペクトルが重なっている。また、図10に利得等化器37の損失スペクトルを示す。図10は横軸に波長をとり、縦軸に利得等化器10の損失をとる。ただし、説明を簡単にするために、この利得等化器37の波長無依存損失は0dBとした。一方、モニタ用利得等化器36および45の損失スペクトルを図11に示した。図11は横軸に波長をとり、縦軸にモニタ用利得等化器損失をとる。それらは同じスペクトルであるため、グラフの線は一本に見えるが二つのスペクトルが重なっている。   FIG. 9 shows gain spectra of the first GB 31 and the second GB 40. In FIG. 9, the horizontal axis represents wavelength and the vertical axis represents gain. Since they are the same spectrum, the graph line appears to be a single line, but the two spectra overlap. FIG. 10 shows a loss spectrum of the gain equalizer 37. In FIG. 10, the horizontal axis indicates the wavelength, and the vertical axis indicates the loss of the gain equalizer 10. However, in order to simplify the explanation, the wavelength-independent loss of the gain equalizer 37 is set to 0 dB. On the other hand, the loss spectra of the monitor gain equalizers 36 and 45 are shown in FIG. In FIG. 11, the horizontal axis indicates the wavelength, and the vertical axis indicates the monitor gain equalizer loss. Since they are the same spectrum, the graph line appears to be a single line, but the two spectra overlap.

ただし、第一GB31へのチャネル当りの入力信号光パワーおよびチャネル数が一定であれば、第一GB31に対する前段分岐30および前段受光器33を省略でき、後段受光器35の受光レベルを一定にすることによりAGC動作できる。   However, if the input signal light power per channel to the first GB 31 and the number of channels are constant, the front branch 30 and the front light receiver 33 for the first GB 31 can be omitted, and the light receiving level of the rear light receiver 35 is made constant. AGC operation is possible.

上記のように、本実施例では、モニタ用利得等化器36および45を用いて、それぞれ第一GB31および第二GB40を個別に一定制御でき、前述の従来技術の欠点を解決できる。   As described above, in the present embodiment, the first GB 31 and the second GB 40 can be individually and individually controlled using the monitor gain equalizers 36 and 45, respectively, and the above-described drawbacks of the prior art can be solved.

(第二実施例)
本発明第二実施例における光増幅器の構成を図4に示した。図3の第一実施例とは以下の点が主に異なる。すなわち、第一実施例では後段分岐32、41と後段受光器35、44との間に、モニタ用利得等化器36または45を設置しているが、本実施例では、反転型モニタ用利得等化器53および62を、前段分岐50、59と前段受光器54、63との間に設置する。
(Second embodiment)
The configuration of the optical amplifier in the second embodiment of the present invention is shown in FIG. The following points are mainly different from the first embodiment of FIG. That is, in the first embodiment, the monitor gain equalizer 36 or 45 is installed between the rear branch 32, 41 and the rear light receiver 35, 44. However, in this embodiment, the inverting monitor gain is provided. Equalizers 53 and 62 are installed between the pre-stage branches 50 and 59 and the pre-stage light receivers 54 and 63.

第一GB51および第二GB60に対する反転型モニタ用利得等化器を反転型モニタ用利得等化器53および62とする。それら反転型モニタ用利得等化器53および62の損失スペクトルを図12に示した。図12は横軸に波長をとり、縦軸に反転型モニタ用利得等化器損失をとる。それらは同じスペクトルであるため、グラフの線は一本に見えるが二つのスペクトルが重なっている。すなわち、反転型モニタ用利得等化器53および62の損失スペクトルは、モニタ用利得等化器36および45の損失スペクトルを上下反転し、最低損失値を0dBとしたものである。   The inverted monitor gain equalizers for the first GB 51 and the second GB 60 are referred to as inverted monitor gain equalizers 53 and 62, respectively. The loss spectra of the inverting type monitor gain equalizers 53 and 62 are shown in FIG. In FIG. 12, the horizontal axis represents the wavelength, and the vertical axis represents the inverting monitor gain equalizer loss. Since they are the same spectrum, the graph line appears to be a single line, but the two spectra overlap. That is, the loss spectrum of the inverting type monitor gain equalizers 53 and 62 is obtained by inverting the loss spectrum of the monitor gain equalizers 36 and 45 up and down to set the minimum loss value to 0 dB.

本実施例の利得一定制御動作を第一GB51について示す。第一実施例の場合と同様に、後段受光器56で受光した信号光パワーと前段受光器54で受光した信号光パワーとの差は、入力信号光の波長配置によらず、一定値を除き、第一GB51の平坦化利得に等しい。すなわち、入力信号光の波長配置によらず、第一GB51の平坦化利得を検出および制御できる。   The constant gain control operation of the present embodiment will be described for the first GB 51. As in the case of the first embodiment, the difference between the signal light power received by the rear-stage light receiver 56 and the signal light power received by the front-stage light receiver 54 is a fixed value regardless of the wavelength arrangement of the input signal light. , Equal to the flattening gain of the first GB 51. That is, the flattening gain of the first GB 51 can be detected and controlled regardless of the wavelength arrangement of the input signal light.

上記のように、本実施例では、反転型モニタ用利得等化器53および62を用いて、それぞれ第一GB51および第二GB60を個別に一定制御でき、前述の従来技術の欠点を解決できる。   As described above, in this embodiment, the first GB 51 and the second GB 60 can be individually controlled individually by using the inverting type monitor gain equalizers 53 and 62, respectively, and the above-mentioned drawbacks of the prior art can be solved.

(第三実施例)
本発明第三実施例における光増幅器の構成を図5に示した。図2の従来技術とは以下の点が主に異なる。すなわち、2つの利得等化器77および86に対し、従来技術ではGBの数が4であるが、本実施例ではGBの数が3である。すなわち、2つの利得等化器77および86で3つのGB71、79、88の利得偏差すなわち非平坦性を等化している。このとき、第一GB71の1550nmおよび1600nmにおける利得を10dBとする。このときの利得スペクトルは図7と同じである。また、第二GB79および第三GB88の利得も第一GB71の利得と同じとする。
(Third embodiment)
The configuration of the optical amplifier in the third embodiment of the present invention is shown in FIG. The following points are mainly different from the prior art of FIG. That is, for the two gain equalizers 77 and 86, the number of GB is 4 in the conventional technique, but the number of GB is 3 in the present embodiment. That is, two gain equalizers 77 and 86 equalize the gain deviation, that is, non-flatness of the three GBs 71, 79, and 88. At this time, the gain of the first GB 71 at 1550 nm and 1600 nm is set to 10 dB. The gain spectrum at this time is the same as in FIG. The gains of the second GB 79 and the third GB 88 are also the same as the gain of the first GB 71.

本実施例では、従来技術と異なり、利得等化器77および86のピーク損失値は各GB71、79、88の利得とは独立に任意の値に設定できる。第一の例としては、利得等化器77および86のピーク損失値をともに7.5dBとする。このときの利得等化器77および86の損失スペクトルを図13に示した。図13は横軸に波長をとり、縦軸に利得等化器損失をとる。それらは同じスペクトルであるため、グラフの線は一本に見えるが二つのスペクトルが重なっている。また、第二の例としては、利得等化器77および86のピーク損失値をそれぞれ5dBおよび10dBとしてもよい。すなわち、利得等化器77および86のピーク損失値を、EDFAの構成および動作に応じて最適化できるという利点がある。   In this embodiment, unlike the prior art, the peak loss values of the gain equalizers 77 and 86 can be set to arbitrary values independently of the gains of the GBs 71, 79 and 88. As a first example, the peak loss values of the gain equalizers 77 and 86 are both 7.5 dB. The loss spectrum of the gain equalizers 77 and 86 at this time is shown in FIG. In FIG. 13, the horizontal axis represents wavelength and the vertical axis represents gain equalizer loss. Since they are the same spectrum, the graph line appears to be a single line, but the two spectra overlap. As a second example, the peak loss values of the gain equalizers 77 and 86 may be 5 dB and 10 dB, respectively. That is, there is an advantage that the peak loss values of the gain equalizers 77 and 86 can be optimized according to the configuration and operation of the EDFA.

一方、従来技術では、2つのGBと1つの利得等化器とが組になっており、その2つのGBの総合利得偏差を、その利得等化器の損失偏差で等化している。したがって、利得等化器の損失スペクトルは、組み合わせに用いた2つのGBの総合利得偏差で一意的に決まってしまう。   On the other hand, in the prior art, two GBs and one gain equalizer are paired, and the total gain deviation of the two GBs is equalized by the loss deviation of the gain equalizer. Therefore, the loss spectrum of the gain equalizer is uniquely determined by the total gain deviation of the two GBs used for the combination.

また、本実施例におけるモニタ用利得等化器76、84、93のピーク損失は、上記各GB71、79、88の利得偏差から、ともに5dBとなる。そのピーク損失スペクトルを図14に示した。図14は横軸に波長をとり、縦軸にモニタ用利得等化器損失をとる。それらは同じスペクトルであるため、グラフの線は一本に見えるが三つのスペクトルが重なっている。   Further, the peak losses of the monitor gain equalizers 76, 84, 93 in this embodiment are all 5 dB from the gain deviations of the GBs 71, 79, 88. The peak loss spectrum is shown in FIG. In FIG. 14, the horizontal axis indicates the wavelength, and the vertical axis indicates the monitor gain equalizer loss. Since they are the same spectrum, the graph line appears to be a single line, but the three spectra overlap.

上記のように、本実施例では、GBの数を低減でき、前述の従来技術の欠点を解決できる。   As described above, in this embodiment, the number of GBs can be reduced, and the above-described drawbacks of the conventional technology can be solved.

また、モニタ用利得等化器76、84、93に代えて、図4(第二実施例)で説明した反転型モニタ用利得等化器を前段分岐70、78、87と前段受光器73、81、90との間にそれぞれ設けてもよい。   Further, instead of the monitor gain equalizers 76, 84, 93, the inverting type monitor gain equalizer described in FIG. 4 (second embodiment) is replaced with the front stage branches 70, 78, 87 and the front stage light receiver 73, You may provide between 81 and 90, respectively.

(第四実施例)
本発明第四実施例における光増幅器の構成を図6に示した。第三実施例とは以下の点が主に異なる。すなわち、第三実施例では第一GB71および第二GB79を個別に利得一定制御しているが、本実施例では、第一GB101および第二GB103をまとめて利得一定制御している。本実施例では、第一GB101の前段に前段分岐100を、第二GB103の後段に後段分岐104を設置し、第一GB101および第二GB103に対する利得制御回路106で第一GB101および第二GB103を制御している。
(Fourth embodiment)
The configuration of the optical amplifier in the fourth embodiment of the present invention is shown in FIG. The following points are mainly different from the third embodiment. That is, in the third embodiment, the first GB 71 and the second GB 79 are individually controlled with a constant gain, but in this embodiment, the first GB 101 and the second GB 103 are collectively controlled with a constant gain. In this embodiment, a front branch 100 is installed at the front stage of the first GB 101 and a rear branch 104 is installed at the rear stage of the second GB 103. I have control.

本実施例では、第一GB101および第二GB103は、まとめて利得一定制御しているが、第三GB112は個別に利得一定制御している。   In this embodiment, the first GB 101 and the second GB 103 are collectively controlled at a constant gain, but the third GB 112 is individually controlled at a constant gain.

第一GB101および第二GB103に対するモニタ用利得等化器108の損失スペクトルを図15に示す。図15は横軸に波長をとり、縦軸にモニタ用利得等化器損失をとる。モニタ用利得等化器108および利得等化器102の総合損失は、第一GB101および第二GB103の総合利得を等化する。第一GB101および第二GB103の総合利得のスペクトル偏差が10dB、利得等化器102の損失のスペクトル偏差が7.5dBであるから、モニタ用利得等化器108の損失のスペクトル偏差は、差し引き2.5dBとなる。   FIG. 15 shows the loss spectrum of the monitor gain equalizer 108 for the first GB 101 and the second GB 103. In FIG. 15, the horizontal axis indicates the wavelength, and the vertical axis indicates the monitor gain equalizer loss. The total loss of the monitor gain equalizer 108 and the gain equalizer 102 equalizes the total gain of the first GB 101 and the second GB 103. Since the spectral deviation of the total gain of the first GB 101 and the second GB 103 is 10 dB and the spectral deviation of the loss of the gain equalizer 102 is 7.5 dB, the spectral deviation of the loss of the monitoring gain equalizer 108 is subtracted by 2 .5 dB.

本実施例は、第三実施例より構成部品点数が少ないという利点を有する。すなわち、本実施例により、利得等化器の数の2倍のGBが必要となり、EDFAの部品点数が多く、EDFAが高価になるといった、前述の従来技術の欠点を解決できる。   This embodiment has an advantage that the number of component parts is smaller than that of the third embodiment. That is, according to the present embodiment, the GB of twice the number of gain equalizers is required, the number of parts of the EDFA is large, and the drawbacks of the above-described conventional technology such that the EDFA is expensive can be solved.

また、モニタ用利得等化器108、117に代えて、図4(第二実施例)で説明した反転型モニタ用利得等化器を前段分岐100、111と前段受光器105、114との間にそれぞれ設けてもよい。   Further, instead of the monitor gain equalizers 108 and 117, the inverting type monitor gain equalizer described in FIG. 4 (second embodiment) is connected between the front branch 100, 111 and the front light receivers 105, 114. May be provided respectively.

(第五実施例)
本発明第五実施例における光増幅器の構成を図7に示した。本実施例では、第一実施例における各GB31、40の利得一定制御系の構成を、より具体的に示したものである。すなわち、本実施例では、光増幅器の利得媒質として、エルビウム添加ファイバ(EDF)122を用いており、そのEDF122の前段および後段に、信号光と励起光の合波器(それぞれ前段合波器121および後段合波器123)を設置している。
(Fifth embodiment)
The configuration of the optical amplifier in the fifth embodiment of the present invention is shown in FIG. In the present embodiment, the configuration of the constant gain control system for each GB 31 and 40 in the first embodiment is shown more specifically. That is, in this embodiment, an erbium-doped fiber (EDF) 122 is used as the gain medium of the optical amplifier, and signal light and pump light multiplexers (each front-stage multiplexer 121 are respectively provided upstream and downstream of the EDF 122. And a post-stage multiplexer 123).

前記励起光は、前段合波器121および後段合波器123にそれぞれ接続した励起光源(それぞれ前段励起光源128および後段励起光源129)から出射する。前段励起光源128および後段励起光源129は、それらに隣接した利得制御回路126で制御される。   The pumping light is emitted from pumping light sources (the pre-stage pumping light source 128 and the post-stage pumping light source 129, respectively) connected to the pre-stage multiplexer 121 and the post-stage multiplexer 123, respectively. The front-stage pumping light source 128 and the rear-stage pumping light source 129 are controlled by a gain control circuit 126 adjacent to them.

本発明の第一〜第四実施例は、その動作から明らかであるが、上記EDFを用いた光増幅器、すなわちEDFAでもよいし、他の希土類添加ファイバ増幅器、ファイバラマン増幅器、および半導体増幅器でもよい。   The first to fourth embodiments of the present invention are apparent from the operation thereof, but may be an optical amplifier using the EDF, that is, an EDFA, or another rare earth-doped fiber amplifier, a fiber Raman amplifier, and a semiconductor amplifier. .

本発明によれば、従来技術で問題であった、各GBを個別に利得一定制御できない、また、利得等化器の数の2倍のGBが必要となり、EDFAの部品点数が多く、EDFAが高価になるといった欠点を解決できるので、安価であり構成の簡単な光増幅器および光通信システムを実現できる。   According to the present invention, each GB cannot be controlled individually with constant gain, which is a problem in the prior art, and requires twice as many GB as the number of gain equalizers. Since the disadvantage of being expensive can be solved, an optical amplifier and an optical communication system which are inexpensive and simple in configuration can be realized.

従来の光増幅器の構成図(その1)。1 is a configuration diagram of a conventional optical amplifier (part 1). 従来の光増幅器の構成図(その2)。2 is a configuration diagram of a conventional optical amplifier (part 2). FIG. 第一実施例の光増幅器の構成図。The block diagram of the optical amplifier of a 1st Example. 第二実施例の光増幅器の構成図。The block diagram of the optical amplifier of a 2nd Example. 第三実施例の光増幅器の構成図。The block diagram of the optical amplifier of a 3rd Example. 第四実施例の光増幅器の構成図。The block diagram of the optical amplifier of a 4th Example. 第五実施例の光増幅器の構成図。The block diagram of the optical amplifier of 5th Example. 従来のEDFGBの利得スペクトル例を示す図。The figure which shows the example of a gain spectrum of the conventional EDFGB. 第一実施例におけるEDFGBの利得スペクトルを示す図。The figure which shows the gain spectrum of EDFGB in a 1st Example. 第一実施例における利得等化器損失スペクトルを示す図。The figure which shows the gain equalizer loss spectrum in a 1st Example. 第一実施例におけるモニタ用利得等化器損失スペクトルを示す図。The figure which shows the gain equalizer loss spectrum for a monitor in a 1st Example. 第二実施例における反転型モニタ用利得等化器損失スペクトルを示す図。The figure which shows the gain equalizer loss spectrum for inversion type monitors in a 2nd Example. 第三実施例における利得等化器損失スペクトルを示す図。The figure which shows the gain equalizer loss spectrum in a 3rd Example. 第三実施例におけるモニタ用利得等化器損失スペクトルを示す図。The figure which shows the gain equalizer loss spectrum for a monitor in a 3rd Example. 第四実施例におけるモニタ用利得等化器損失スペクトルを示す図。The figure which shows the gain equalizer loss spectrum for a monitor in a 4th Example.

符号の説明Explanation of symbols

1、10、19、30、39、50、59、70、78、87、100、111、120 前段分岐
2、11、31、51、71、101 第一GB
3、12、21、37、57、77、86、102、110 利得等化器
4、18、38、58、85、109 光部品
5、13、40、60、79、103 第二GB
6、14、23、32、41、52、61、72、80、89、104、113、124 後段分岐
7、15、24、33、42、54、63、73、81、90、105、114、125 前段受光器
8、16、25、34、43、55、64、74、82、91、106、115、126 利得制御回路
9、17、26、35、44、56、65、75、83、92、107、116、127 後段受光器
20、88、112 第三GB
22 第四GB
36、45、76、84、93、108、117、130 モニタ用利得等化器
53、62 反転型モニタ用利得等化器
121 前段合波器
122 EDF
123 後段合波器
128 前段励起光源
129 後段励起光源
1, 10, 19, 30, 39, 50, 59, 70, 78, 87, 100, 111, 120 First branch 2, 11, 31, 51, 71, 101 First GB
3, 12, 21, 37, 57, 77, 86, 102, 110 Gain equalizer 4, 18, 38, 58, 85, 109 Optical component 5, 13, 40, 60, 79, 103 Second GB
6, 14, 23, 32, 41, 52, 61, 72, 80, 89, 104, 113, 124 Rear branch 7, 15, 24, 33, 42, 54, 63, 73, 81, 90, 105, 114 , 125 Pre-stage photoreceiver 8, 16, 25, 34, 43, 55, 64, 74, 82, 91, 106, 115, 126 Gain control circuit 9, 17, 26, 35, 44, 56, 65, 75, 83 , 92, 107, 116, 127 Subsequent optical receivers 20, 88, 112 Third GB
22 4th GB
36, 45, 76, 84, 93, 108, 117, 130 Monitor gain equalizer 53, 62 Inverted monitor gain equalizer 121 Pre-stage multiplexer 122 EDF
123 Back-stage multiplexer 128 Front-stage pumping light source 129 Back-stage pumping light source

Claims (5)

数波長の信号光を光増幅する第1および第2のゲインブロックと、
前記第1および第2のゲインブロックの信号光入力段にそれぞれ設置され、前記第1および第2のゲインブロックへの入力光をそれぞれ分岐し、一方の出力光を前記第1および第2のゲインブロックへそれぞれ入力させる第1および第2の前段分岐と、
前記第1および第2の前段分岐により分岐した他方の出力光をそれぞれ入力とする第1および第2の前段受光器と、
前記第1および第2のゲインブロックの信号光出力段にそれぞれ設置された第1および第2の後段分岐と、
前記第1および第2のゲインブロックの利得スペクトル偏差をそれぞれ補正する損失スペクトルを有し、前記第1および第2の後段分岐により分岐した一方の出力光をそれぞれ入力し、前記第1および第2のゲインブロックからの出力光の信号光スペクトルをそれぞれ等化する第1および第2のモニタ用利得等化器と、
前記第1および第2のモニタ用利得等化器の出力をそれぞれ入力とする第1および第2の後段受光器と、
前記第1の後段受光器の前記第1のモニタ用利得等化器の出力に応じた受光レベルと前記第1の前段受光器の受光レベルとの差に基づいて前記第1のゲインブロックの利得を一定制御する第1の利得制御回路と
前記第2の後段受光器の前記第2のモニタ用利得等化器の出力に応じた受光レベルと前記第2の前段受光器の受光レベルとの差に基づいて前記第2のゲインブロックの利得を一定制御する第2の利得制御回路と、
前記第1および第2のゲインブロックの間に設置された前記第1および第2のゲインブロックを総合した総合利得スペクトル偏差を補正する損失スペクトルを有する利得等化器と
を備え
入力信号光を前記第1の前段分岐に入力し、前記第1の後段分岐により分岐した他方の出力光を前記利得等化器を介して前記第2の前段分岐に入力し、前記第2の後段分岐により分岐した他方の出力光を出力する構成である
ことを特徴とする光増幅器。
First and second gain block optically amplify signal light in multiple wavelength,
Said first and respectively installed in the signal light input stage of the second gain block, wherein the first and second input light to the gain block branches respectively, the first and second gain one of the output light First and second preceding branches to be input to the block, respectively
First and second front-stage photoreceivers that receive the other output light branched by the first and second front-stage branches, respectively;
First and second subsequent branches respectively installed in the signal light output stages of the first and second gain blocks;
The first and second gain blocks have loss spectra for correcting gain spectrum deviations, respectively , and one of the output lights branched by the first and second rear-stage branches is input, respectively . first and second monitor gain equalizer for equalizing the signal spectrum of the output light from the gain block, respectively,
First and second post-stage photoreceivers that receive the outputs of the first and second monitoring gain equalizers, respectively ;
The gain of the first gain block is based on the difference between the light reception level corresponding to the output of the first monitor gain equalizer of the first rear-stage light receiver and the light reception level of the first front-stage light receiver. a first gain control circuit for constant control,
The gain of the second gain block is based on the difference between the light reception level corresponding to the output of the second monitor gain equalizer of the second rear-stage light receiver and the light reception level of the second front-stage light receiver. A second gain control circuit for constant control of
A gain equalizer having a loss spectrum for correcting a total gain spectrum deviation obtained by combining the first and second gain blocks installed between the first and second gain blocks ;
Input signal light is input to the first front branch, and the other output light branched by the first rear branch is input to the second front branch via the gain equalizer, and the second It is a configuration that outputs the other output light branched by the latter branch.
An optical amplifier characterized by that .
前記第1および第2のモニタ用利得等化器に代えて、前記第1および第2のゲインブロックの利得スペクトル偏差をそれぞれ補正する損失スペクトルを反転した損失スペクトル形状を有し、前記第1および第2の前段分岐により分岐した他方の出力光をそれぞれ入力し、前記第1および第2のゲインブロックへの入力光の信号光レベルをそれぞれ等化する第1および第2の反転型モニタ用利得等化器を備え
前記第1および第2の前段受光器は、前記第1および第2の反転型モニタ用利得等化器の出力をそれぞれ入力とし、
前記第1および第2の後段受光器は、前記第1および第2の後段分岐により分岐した一方の出力光をそれぞれ入力とする
ことを特徴とする請求項1記載の光増幅器。
Wherein instead of the first and second monitor gain equalizer having an inverted loss spectrum shape loss spectrum for correcting the gain spectrum deviation of the first and second gain blocks respectively, the first and First and second inverted monitor gains that respectively input the other output light branched by the second preceding branch and equalize the signal light level of the input light to the first and second gain blocks, respectively. Equipped with an equalizer ,
The first and second front-stage photoreceivers have the outputs of the first and second inverting monitor gain equalizers as inputs, respectively.
The first and second post-stage photoreceivers each receive one of the output lights branched by the first and second post-stage branches.
The optical amplifier according to claim 1.
数波長の信号光を光増幅する第1、第2および第のゲインブロックと、
前記第および第のゲインブロックの間に設置された第1の利得等化器と、
前記第および第のゲインブロックおよび前記第1の利得等化器からなる光回路、および前記第3のゲインブロックの信号光入力段にそれぞれ設置され、前記光回路および第3のゲインブロックへの入力光をそれぞれ分岐し、一方の出力光を前記光回路および第3のゲインブロックへそれぞれ入力させる第1および第2の前段分岐と、
前記第1および第2の前段分岐により分岐した他方の出力光をそれぞれ入力とする第1および第2の前段受光器と、
前記光回路および第3のゲインブロックの信号光出力段にそれぞれ設置された第1および第2の後段分岐と、
前記光回路および第3のゲインブロックの利得スペクトル偏差をそれぞれ補正する損失スペクトルを有し、前記第1および第2の後段分岐により分岐した一方の出力光をそれぞれ入力し、前記光回路および第3のゲインブロックからの出力光の信号光スペクトルをそれぞれ等化する第1および第2のモニタ用利得等化器と、
前記第1および第2のモニタ用利得等化器の出力をそれぞれ入力とする第1および第2の後段受光器と、
前記第1の後段受光器の前記第1のモニタ用利得等化器の出力に応じた受光レベルと前記第1の前段受光器の受光レベルとの差に基づいて前記光回路の利得を一定制御する第1の利得制御回路と
前記第2の後段受光器の前記第2のモニタ用利得等化器の出力に応じた受光レベルと前記第2の前段受光器の受光レベルとの差に基づいて前記第3のゲインブロックの利得を一定制御する第2の利得制御回路と、
前記光回路および第3のゲインブロックの間に設置された前記光回路および第3のゲインブロックを総合した総合利得スペクトル偏差を補正する損失スペクトルを有する第2の利得等化器と
を備え
入力信号光を前記第1の前段分岐に入力し、前記第1の後段分岐により分岐した他方の出力光を前記第2の利得等化器を介して前記第2の前段分岐に入力し、前記第2の後段分岐により分岐した他方の出力光を出力する構成である
ことを特徴とする光増幅器。
First, second and third gain block optically amplify signal light in multiple wavelength,
A first gain equalizer disposed between the first and second gain blocks;
An optical circuit comprising the first and second gain blocks and the first gain equalizer , and a signal light input stage of the third gain block , respectively , are connected to the optical circuit and the third gain block. First and second preceding branches for branching one input light to the optical circuit and the third gain block, respectively .
First and second front-stage photoreceivers that receive the other output light branched by the first and second front-stage branches, respectively;
First and second subsequent branches respectively installed in the signal light output stage of the optical circuit and the third gain block;
The optical circuit and the third gain block have loss spectra that respectively correct gain spectrum deviations, and one of the output lights branched by the first and second subsequent branches is input, and the optical circuit and the third gain block are respectively input . first and second monitor gain equalizer for equalizing the signal spectrum of the output light from the gain block, respectively,
First and second post-stage photoreceivers that receive the outputs of the first and second monitoring gain equalizers, respectively ;
The gain of the optical circuit is controlled to be constant based on the difference between the light reception level corresponding to the output of the first monitor gain equalizer of the first rear-stage light receiver and the light reception level of the first front-stage light receiver. first gain control circuit,
The gain of the third gain block is based on the difference between the light reception level corresponding to the output of the second monitor gain equalizer of the second rear-stage light receiver and the light reception level of the second front-stage light receiver. A second gain control circuit for constant control of
A second gain equalizer having a loss spectrum for correcting a total gain spectrum deviation obtained by combining the optical circuit and the third gain block installed between the optical circuit and the third gain block ;
Input signal light is input to the first front branch, and the other output light branched by the first rear branch is input to the second front branch via the second gain equalizer, The other output light branched by the second rear branch is output.
An optical amplifier characterized by that .
前記第1および第2のモニタ用利得等化器に代えて、前記光回路および第3のゲインブロックの利得スペクトル偏差をそれぞれ補正する損失スペクトルを反転した損失スペクトル形状を有し、前記第1および第2の前段分岐により分岐した他方の出力光をそれぞれ入力し、前記光回路および第3のゲインブロックへの入力光の信号光レベルをそれぞれ等化する第1および第2の反転型モニタ用利得等化器を備え
前記第1および第2の前段受光器は、前記第1および第2の反転型モニタ用利得等化器の出力をそれぞれ入力とし、
前記第1および第2の後段受光器は、前記第1および第2の後段分岐により分岐した一方の出力光をそれぞれ入力とする
ことを特徴とする請求項記載の光増幅器。
Wherein instead of the first and second monitor gain equalizer has the optical circuit and the third loss spectrum shape obtained by inverting the loss spectrum for correcting respective gain spectrum deviation of the gain block, the first and First and second inverted monitor gains that respectively input the other output light branched by the second preceding branch and equalize the signal light levels of the input light to the optical circuit and the third gain block , respectively. Equipped with an equalizer ,
The first and second front-stage photoreceivers have the outputs of the first and second inverting monitor gain equalizers as inputs, respectively.
The first and second post-stage photoreceivers each receive one of the output lights branched by the first and second post-stage branches.
The optical amplifier according to claim 3 .
請求項1ないし4のいずれか記載の光増幅器を、送信装置または中継装置に含む光通信システム。 The optical amplifier according to any one of claims 1 to 4, an optical communication system including the transmitting device or the relay device.
JP2006336874A 2006-12-14 2006-12-14 Optical amplifier and optical communication system Expired - Fee Related JP4859651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336874A JP4859651B2 (en) 2006-12-14 2006-12-14 Optical amplifier and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336874A JP4859651B2 (en) 2006-12-14 2006-12-14 Optical amplifier and optical communication system

Publications (2)

Publication Number Publication Date
JP2008153270A JP2008153270A (en) 2008-07-03
JP4859651B2 true JP4859651B2 (en) 2012-01-25

Family

ID=39655179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336874A Expired - Fee Related JP4859651B2 (en) 2006-12-14 2006-12-14 Optical amplifier and optical communication system

Country Status (1)

Country Link
JP (1) JP4859651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680283B2 (en) 2013-12-20 2017-06-13 Oplink Communications, Llc Switchable-gain optical amplifier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306712B2 (en) * 1996-05-02 2002-07-24 富士通株式会社 Control method of WDM optical transmission system
JPH09321740A (en) * 1996-05-31 1997-12-12 Fujitsu Ltd Optical amplifier for wavelength division and multiplexing
JPH1012951A (en) * 1996-06-18 1998-01-16 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP3903650B2 (en) * 1999-06-18 2007-04-11 住友電気工業株式会社 Optical amplifier and optical amplifier control method
JP2001144353A (en) * 1999-09-02 2001-05-25 Sumitomo Electric Ind Ltd Optical amplifier
JP3803000B2 (en) * 1999-09-28 2006-08-02 富士通株式会社 Method for monitoring optical power deviation between wavelengths, and optical equalizer and optical amplifier using the same
JP2001111495A (en) * 1999-10-04 2001-04-20 Fujitsu Ltd Light branching and inserting device and its control method
JP2001136127A (en) * 1999-11-04 2001-05-18 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2003087204A (en) * 2001-09-12 2003-03-20 Fujitsu Ltd Optical amplifier and optical transmitter
JP4337545B2 (en) * 2003-12-26 2009-09-30 住友電気工業株式会社 Optical communication system

Also Published As

Publication number Publication date
JP2008153270A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US7085043B2 (en) Optical amplifier
JP4388705B2 (en) Optical amplifier
JP3844902B2 (en) Wavelength multiplexing optical amplifier and optical communication system
JP5633266B2 (en) WDM optical transmission system and control method thereof
JP5245747B2 (en) Optical amplifier and optical receiver module
US6373625B1 (en) Method, apparatus, and system for optical amplification
EP3591862B1 (en) Transmitting device, receiving device, optical transmission system, and optical power control method
US8351112B2 (en) Optical amplifier
US20070058241A1 (en) Optical amplification apparatus having function of flattening channel output spectrum
JP2002232362A (en) Optical relay transmission system and optical relay transmitting method
Sindhi et al. Performance analysis of 32-channel WDM system using erbium doped fiber amplifier
JP2012146785A (en) Optical amplifier
JP4859651B2 (en) Optical amplifier and optical communication system
JP2008042096A (en) Optical amplifier and light transmission system
US10027414B2 (en) Bidirectional amplifier
US6417960B1 (en) Method of equalizing gain utilizing asymmetrical loss-wavelength characteristics and optical amplifying apparatus using same
JP2007067235A (en) Optical amplifier
JP2009164565A (en) Gain equalizer, optical amplifier, and optical amplification method
US8681420B2 (en) Optical transmission system
JP2008153558A (en) Light transmission system and its signal spectrum correction method
JP5304378B2 (en) Optical amplifier
JP2015133519A (en) Light amplification device
JP2001223646A (en) Optical amplification repeater and optical transmitter using the same
JP4083942B2 (en) Optical amplifier
JP3379104B2 (en) Optical amplifier for WDM transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees