JP4857659B2 - Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus - Google Patents

Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus Download PDF

Info

Publication number
JP4857659B2
JP4857659B2 JP2005242663A JP2005242663A JP4857659B2 JP 4857659 B2 JP4857659 B2 JP 4857659B2 JP 2005242663 A JP2005242663 A JP 2005242663A JP 2005242663 A JP2005242663 A JP 2005242663A JP 4857659 B2 JP4857659 B2 JP 4857659B2
Authority
JP
Japan
Prior art keywords
film
film thickness
polishing
data point
polishing time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005242663A
Other languages
Japanese (ja)
Other versions
JP2007059597A (en
Inventor
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005242663A priority Critical patent/JP4857659B2/en
Publication of JP2007059597A publication Critical patent/JP2007059597A/en
Application granted granted Critical
Publication of JP4857659B2 publication Critical patent/JP4857659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、膜の研磨中に、膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルの差分信号を算出し、差分信号を解析することによって研磨時間tにおける膜の膜厚を評価する膜厚評価方法、算出された膜厚に基づいて研磨終点を検出する研磨終点検出方法、及び、膜を研磨してデバイスを製造するデバイス製造装置に関する。   The present invention calculates the difference signal of the reflection spectrum of the polishing time t and the polishing time t−Δt separated by the time difference Δt by irradiating the surface of the film during the polishing of the film, and analyzes the difference signal. The present invention relates to a film thickness evaluation method for evaluating a film thickness at a polishing time t, a polishing end point detection method for detecting a polishing end point based on a calculated film thickness, and a device manufacturing apparatus for manufacturing a device by polishing a film.

現在、デバイスの製造プロセスにおいて、ウェハに形成された酸化膜及び金属膜等を研磨するため、CMP(Chemical Mechanical Polishing)が用いられている。このCMPによる研磨において、研磨される酸化膜及び金属膜等の膜厚を正確に評価することにより、研磨を終了させる時点(「研磨終点」という)を正確に把握することが重要となっている。   Currently, in the device manufacturing process, CMP (Chemical Mechanical Polishing) is used to polish an oxide film and a metal film formed on a wafer. In this polishing by CMP, it is important to accurately grasp the time point at which polishing is finished (referred to as “polishing end point”) by accurately evaluating the film thickness of the oxide film and metal film to be polished. .

回路パターンが形成されている領域(「回路領域」という)、及び、回路パターンが形成されていない領域(「非回路領域」という)を有するウェハに形成された酸化膜及び金属膜等を研磨し、この膜厚を評価する場合、酸化膜及び金属膜等の研磨中に、酸化膜及び金属膜等の表面に光を照射することによる反射スペクトルを計測し、この反射スペクトルの周期に基づいて膜厚を評価している。しかし、回路領域からの散乱成分を有する反射スペクトルがノイズとなって干渉成分だけを抽出しにくいので、膜厚を評価することは困難になっている。   Polish an oxide film and a metal film formed on a wafer having a region where a circuit pattern is formed (referred to as “circuit region”) and a region where a circuit pattern is not formed (referred to as “non-circuit region”). When evaluating the film thickness, during the polishing of the oxide film and the metal film, the reflection spectrum by irradiating light on the surface of the oxide film and the metal film is measured, and the film is based on the period of the reflection spectrum Evaluate the thickness. However, it is difficult to evaluate the film thickness because the reflection spectrum having the scattered component from the circuit region becomes noise and it is difficult to extract only the interference component.

ここで、酸化膜及び金属膜等の研磨中に、酸化膜及び金属膜等の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルを計測し、散乱成分を除去するため、研磨時間t及び研磨時間t−Δtの反射スペクトルの差分信号を算出し、この差分信号の周期に基づいて膜厚を評価する技術が提案されている(特願2004−053947)。   Here, during the polishing of the oxide film and the metal film, the reflection spectrum of the polishing time t and the polishing time t−Δt separated by the time difference Δt by irradiating the surface of the oxide film and the metal film is measured and scattered. In order to remove the components, a technique has been proposed in which a difference signal between the reflection spectra of the polishing time t and the polishing time t−Δt is calculated, and the film thickness is evaluated based on the period of the difference signal (Japanese Patent Application No. 2004-053947). ).

しかし、従来の技術では、反射スペクトルが有する短周期のノイズ、及び、反射スペクトルの絶対値のゆらぎ等により、差分信号の波形が乱れて差分信号の周期の算出が困難になっている。この差分信号の乱れが大きい場合、評価された膜厚のばらつきが大きくなり、この差分信号の周期に基づいて膜厚を正確に評価できなくなっている。   However, in the conventional technique, the waveform of the differential signal is disturbed due to short-period noise included in the reflection spectrum, fluctuations in the absolute value of the reflection spectrum, and the like, making it difficult to calculate the period of the differential signal. When the difference signal is greatly disturbed, the variation in the evaluated film thickness becomes large, and the film thickness cannot be accurately evaluated based on the period of the difference signal.

本発明は、このような点に鑑みてなされたものであり、膜を研磨する際に研磨中の膜厚を正確に評価できる膜厚評価方法を提供することを目的とする。
また、本発明の他の目的は、膜を研磨する際に研磨中の膜厚を正確に評価して研磨終点を正確に把握できる研磨終点検出方法を提供することである。
This invention is made | formed in view of such a point, and it aims at providing the film thickness evaluation method which can evaluate the film thickness in grinding | polishing correctly when grind | polishing a film | membrane.
Another object of the present invention is to provide a polishing end point detection method capable of accurately evaluating the film thickness during polishing and accurately grasping the polishing end point when polishing the film.

また、本発明の他の目的は、膜を研磨する際に研磨中の膜厚を正確に評価できるデバイス製造装置を提供することである。   Another object of the present invention is to provide a device manufacturing apparatus capable of accurately evaluating the film thickness during polishing when the film is polished.

本発明では、上記課題を解決するために、膜の研磨中に、前記膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルの差分信号を、媒質中の光の波数をx、前記研磨時間tの前記膜の膜厚をd、前記研磨時間t−Δtの前記膜の膜厚をd+Δd、Aを比例定数としたときに、2Asin(2πΔdx)×sin{2π(2d+Δd)x}で表される光学モデルを用いて算出し、前記差分信号を解析することによって前記研磨時間tにおける前記膜の膜厚を評価する膜厚評価方法において、前記研磨時間t−Δtの反射スペクトルの振幅強度の平均値を、前記研磨時間tの反射スペクトルの振幅強度の平均値に揃えるように補正する補正ステップと、前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントの平均値に置換して成形する抑制ステップと、前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントを直線近似し、直線近似された直線の傾きに置換して成形する振幅成形ステップと、前記差分信号から振幅強度及び周期が所定の範囲以外となった不良成分を除去する除去ステップと、を有することを特徴とする膜厚評価方法が提供される。 In the present invention, in order to solve the above-mentioned problem, during polishing of the film, a difference signal between the reflection spectrum of the polishing time t and the polishing time t−Δt separated by the time difference Δt by irradiating the surface of the film with light , When the wave number of light in the medium is x, the film thickness of the film at the polishing time t is d, the film thickness of the film at the polishing time t−Δt is d + Δd, and A is a proportional constant, 2Asin (2πΔdx) × calculated using the optical model represented by sin {2π (2d + Δd) x}, the thickness evaluation method for evaluating the film thickness of the film in the polishing time t by analyzing the differential signal, said polishing A correction step for correcting the average value of the amplitude intensity of the reflection spectrum at time t-Δt so as to be aligned with the average value of the amplitude intensity of the reflection spectrum at the polishing time t, and among the data points constituting the difference signal Predetermined day The value of point, the predetermined data points, the predetermined number of data points in the immediately preceding predetermined data points, and, the suppression step of molding by substituting the average value of a predetermined number of data points immediately after the predetermined data points, the differential signal Linearly approximate the value of a predetermined data point in each data point constituting the predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point; an amplitude shaping step of shaping by substituting the inclination of the straight line is a straight line approximation, the amplitude intensity and the period from the difference signal and having and a removal step of removing the defective component became other than a predetermined range A film thickness evaluation method is provided.

このような膜厚評価方法によると、膜の研磨中に、振幅強度が補正された研磨時間t及び研磨時間t−Δtの反射スペクトルから差分信号を算出し、この差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、微小変動が抑制された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、振幅の中心が揃えられた差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、不良成分が除去された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。   According to such a film thickness evaluation method, during polishing of the film, a difference signal is calculated from the reflection spectrum of the polishing time t and the polishing time t−Δt whose amplitude intensity is corrected, and the film thickness is evaluated from the difference signal. Therefore, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which minute fluctuations are suppressed, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which the centers of the amplitudes are aligned, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished. Further, since the film thickness is evaluated from the difference signal from which the defective component has been removed, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished.

また、本発明では、上記課題を解決するために、膜の研磨中に、前記膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルの差分信号を、媒質中の光の波数をx、前記研磨時間tの前記膜の膜厚をd、前記研磨時間t−Δtの前記膜の膜厚をd+Δd、Aを比例定数としたときに、2Asin(2πΔdx)×sin{2π(2d+Δd)x}で表される光学モデルを用いて算出し、前記差分信号を解析することによって前記研磨時間tにおける前記膜の膜厚を評価し、算出された前記膜厚に基づいて研磨終点を検出する研磨終点検出方法において、前記研磨時間t−Δtの反射スペクトルの振幅強度の平均値を、前記研磨時間tの反射スペクトルの振幅強度の平均値に揃えるように補正する補正ステップと、前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントの平均値に置換して成形する抑制ステップと、前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントを直線近似し、直線近似された直線の傾きに置換して成形する振幅成形ステップと、前記差分信号から振幅強度及び周期が所定の範囲以外となった不良成分を除去する除去ステップと、を有することを特徴とする研磨終点検出方法が提供される。 Further, in the present invention, in order to solve the above-mentioned problem, during the polishing of the film, the difference signal between the reflection spectrums of the polishing time t and the polishing time t−Δt separated by the time difference Δt by irradiating the surface of the film with light. Where x is the wave number of light in the medium, d is the film thickness of the film at the polishing time t, d + Δd is the film thickness of the film at the polishing time t−Δt, and A is a proportional constant. 2πΔdx) × sin {2π (2d + Δd) x} is calculated using an optical model, and the difference signal is analyzed to evaluate the film thickness of the film at the polishing time t. In the polishing end point detection method for detecting the polishing end point based on the thickness, the average value of the amplitude intensity of the reflection spectrum at the polishing time t−Δt is corrected to be equal to the average value of the amplitude intensity of the reflection spectrum at the polishing time t. Correction steps to , The value of the predetermined data points in each data point constituting the differential signal, a predetermined data points, the predetermined number of data points in the immediately preceding predetermined data points, and, a predetermined number of data points immediately after the predetermined data points A suppression step of replacing with an average value and shaping, a value of a predetermined data point in each data point constituting the difference signal, a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined An amplitude shaping step in which a predetermined number of data points immediately after the data point are linearly approximated and replaced with the slope of the linearly approximated straight line, and a defect whose amplitude intensity and period are outside the predetermined range from the difference signal polishing end point detecting method characterized by comprising a removing step of removing the component, it is provided.

このような研磨終点検出方法によると、膜の研磨中に、振幅強度が補正された研磨時間t及び研磨時間t−Δtの反射スペクトルから差分信号を算出し、この差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、微小変動が抑制された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、振幅の中心が揃えられた差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、不良成分が除去された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。よって、差分信号を逐次算出して膜厚の推移を正確に把握でき、研磨終点を正確に把握できる。   According to such a polishing end point detection method, during polishing of the film, a difference signal is calculated from the reflection spectrum of the polishing time t and the polishing time t−Δt whose amplitude intensity is corrected, and the film thickness is evaluated from the difference signal. Therefore, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which minute fluctuations are suppressed, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which the centers of the amplitudes are aligned, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished. Further, since the film thickness is evaluated from the difference signal from which the defective component has been removed, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished. Therefore, the difference signal is sequentially calculated to accurately grasp the transition of the film thickness, and the polishing end point can be accurately grasped.

また、本発明では、上記課題を解決するために、膜を研磨してデバイスを製造するデバイス製造装置において、前記膜を研磨する研磨手段と、前記膜の研磨中に、前記膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルを計測する計測手段と、前記研磨時間t及び前記研磨時間t−Δtの反射スペクトルの差分信号を、媒質中の光の波数をx、前記研磨時間tの前記膜の膜厚をd、前記研磨時間t−Δtの前記膜の膜厚をd+Δd、Aを比例定数としたときに、2Asin(2πΔdx)×sin{2π(2d+Δd)x}で表される光学モデルを用いて算出する差分信号算出手段と、前記差分信号を解析することによって前記研磨時間tにおける前記膜の膜厚を評価する膜厚算出手段と、を有し、前記研磨時間t−Δtの反射スペクトルの振幅強度の平均値を、前記研磨時間tの反射スペクトルの振幅強度の平均値に揃えるように補正する補正手段と、前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントの平均値に置換して成形する抑制手段と、前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントを直線近似し、直線近似された直線の傾きに置換して成形する振幅成形手段と、前記差分信号から振幅強度及び周期が所定の範囲以外となった不良成分を除去する除去手段と、を有することを特徴とするデバイス製造装置が提供される。
According to the present invention, in order to solve the above-described problem, in a device manufacturing apparatus for manufacturing a device by polishing a film, polishing means for polishing the film, and light on the surface of the film during polishing of the film Measuring means for measuring the reflection spectrum of the polishing time t and the polishing time t−Δt separated by a time difference Δt, and a difference signal between the reflection spectra of the polishing time t and the polishing time t−Δt in the medium. When the wave number of light is x, the film thickness of the film at the polishing time t is d, the film thickness of the film at the polishing time t−Δt is d + Δd, and A is a proportionality constant, 2Asin (2πΔdx) × sin { Difference signal calculation means for calculating using an optical model represented by 2π (2d + Δd) x}, film thickness calculation means for evaluating the film thickness at the polishing time t by analyzing the difference signal, has the The average value of the amplitude intensity of the reflection spectrum of the grinding time t-Delta] t, and correcting means for correcting to align the average value of the amplitude intensity of the reflection spectrum of the polishing time t, in each data point constituting the differential signal A predetermined data point, a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a suppression means that replaces and shapes the average value of the predetermined number of data points immediately after the predetermined data point ; The value of a predetermined data point in each data point constituting the difference signal is a straight line of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. approximated, an amplitude shaping means for shaping by substituting the inclination of the linear approximation straight lines, the amplitude intensity and the period from the difference signal Device manufacturing apparatus is provided, characterized in that it comprises a removal means for removing the defective component became non constant range, the.

このようなデバイス製造装置によると、膜の研磨中に、振幅強度が補正された研磨時間t及び研磨時間t−Δtの反射スペクトルから差分信号を算出し、この差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、微小変動が抑制された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、振幅の中心が揃えられた差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、不良成分が除去された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。   According to such a device manufacturing apparatus, during polishing of the film, the difference signal is calculated from the reflection spectrum of the polishing time t and the polishing time t−Δt whose amplitude intensity is corrected, and the film thickness is evaluated from the difference signal. The variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which minute fluctuations are suppressed, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which the centers of the amplitudes are aligned, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished. Further, since the film thickness is evaluated from the difference signal from which the defective component has been removed, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished.

本発明では、膜の研磨中に、振幅強度が補正された研磨時間t及び研磨時間t−Δtの反射スペクトルから差分信号を算出し、この差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、微小変動が抑制された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、振幅の中心が揃えられた差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、不良成分が除去された差分信号から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。よって、差分信号を逐次算出して膜厚の推移を正確に把握でき、研磨終点を正確に把握できる。   In the present invention, during polishing of the film, a difference signal is calculated from the reflection spectrum of the polishing time t and the polishing time t−Δt whose amplitude intensity is corrected, and the film thickness is evaluated from the difference signal. The variation in thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which minute fluctuations are suppressed, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. In addition, since the film thickness is evaluated from the difference signal in which the centers of the amplitudes are aligned, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished. Further, since the film thickness is evaluated from the difference signal from which the defective component has been removed, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately evaluated when the film is polished. Therefore, the difference signal is sequentially calculated to accurately grasp the transition of the film thickness, and the polishing end point can be accurately grasped.

以下、本発明の実施の形態を、デバイスの製造プロセスでウェハに形成された酸化膜及び金属膜等を研磨する場合を例に、図面を参照して詳細に説明する。
まず、ウェハに形成された酸化膜及び金属膜等を研磨する際に、研磨中の膜厚の評価に用いる光学モデルについて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking as an example the case of polishing an oxide film, a metal film, and the like formed on a wafer in a device manufacturing process.
First, an optical model used for evaluating the film thickness during polishing when polishing an oxide film, a metal film, and the like formed on the wafer will be described.

研磨時間tにおける膜厚をd、この研磨時間tにおける媒質中の波数xの光に対する反射率をR1(x)とする。また、研磨時間tから比較的短い時間差Δtを隔てた研磨時間t−Δtにおける膜厚をd+Δd、この研磨時間t−Δtにおける媒質中の波数xの光に対する反射率をR0(x)とする。これらのR1(x)及びR0(x)をそれぞれ次式(1)及び(2)の光学モデルで表される。ここで、A及びBは、比例定数である。 It is assumed that the film thickness at the polishing time t is d, and the reflectance with respect to light of wave number x in the medium at the polishing time t is R 1 (x). Further, the film thickness at the polishing time t−Δt that is separated from the polishing time t by a relatively short time difference Δt is d + Δd, and the reflectance with respect to light of wave number x in the medium at the polishing time t−Δt is R 0 (x). . These R 1 (x) and R 0 (x) are represented by optical models of the following formulas (1) and (2), respectively. Here, A and B are proportional constants.

1(x)=Acos(4πdx)+B ・・・(1)
0(x)=Acos{4π(d+Δd)x}+B ・・・(2)
デバイスの製造プロセスでウェハに形成された酸化膜及び金属膜等を研磨する場合、比例定数Bは、波数xに対して依存性を有するが、研磨中の膜厚差Δdに対して変化が緩慢であるため、次式(3)の光学モデルで表される差分信号R1(x)−R0(x)で除去できる。
R 1 (x) = Acos (4πdx) + B (1)
R 0 (x) = Acos {4π (d + Δd) x} + B (2)
When polishing an oxide film, a metal film, or the like formed on a wafer in a device manufacturing process, the proportionality constant B has a dependency on the wave number x, but changes slowly with respect to the film thickness difference Δd during polishing. Therefore, the difference signal R 1 (x) −R 0 (x) represented by the optical model of the following equation (3) can be removed.

1(x)−R0(x)
=Acos(4πdx)−Acos{4π(d+Δd)x}
=2Asin(2πΔdx)×sin{2π(2d+Δd)x} ・・・(3)
ここで、式(3)の光学モデルにおいて、1/(2d+Δd)を1周期とする短周期のサインカーブに、1/Δdを1周期とする長周期のサインカーブが重なっている。よって、差分信号R1(x)−R0(x)について、この短周期から2d+Δdが算出され、これから所定のΔdを差し引いて1/2を掛けると膜厚が算出される。
R 1 (x) -R 0 (x)
= Acos (4πdx) −Acos {4π (d + Δd) x}
= 2Asin (2πΔdx) × sin {2π (2d + Δd) x} (3)
Here, in the optical model of Expression (3), a short-period sine curve with 1 / (2d + Δd) as one cycle overlaps a long-period sine curve with 1 / Δd as one cycle. Therefore, for the difference signal R 1 (x) −R 0 (x), 2d + Δd is calculated from this short period, and the film thickness is calculated by subtracting the predetermined Δd from this and multiplying by 1/2.

次に、本発明の実施の形態で用いる、反射率計測機能をもったCMP装置であるデバイス製造装置について説明する。図1は、デバイス製造装置を示す図である。
デバイス製造装置1は、表面側に研磨パッド2が配置された回転テーブル3、及び、研磨パッド2に対向した回転自在の研磨ヘッド4を有している。この研磨ヘッド4の研磨パッド2側に、ウェハ10が配置されている。
Next, a device manufacturing apparatus that is a CMP apparatus having a reflectance measurement function used in the embodiment of the present invention will be described. FIG. 1 is a diagram illustrating a device manufacturing apparatus.
The device manufacturing apparatus 1 includes a rotary table 3 having a polishing pad 2 disposed on the front surface side, and a rotatable polishing head 4 facing the polishing pad 2. A wafer 10 is disposed on the polishing pad 2 side of the polishing head 4.

研磨中は、研磨パッド2上にスラリー5を滴下しながら、ウェハ10を研磨パッド2に押し付け、回転テーブル3及び研磨ヘッド4を共に回転させ、ウェハ10表面を研磨する。   During polishing, the slurry 10 is dropped on the polishing pad 2 and the wafer 10 is pressed against the polishing pad 2 to rotate both the rotary table 3 and the polishing head 4 to polish the surface of the wafer 10.

また、デバイス製造装置1の研磨パッド2には、研磨中にウェハ10が配置される部分に、石英で形成された覗き窓2aが設けられている。この覗き窓2aに対応する回転テーブル3の部分に、貫通孔3aが設けられている。回転テーブル3の裏面側には、覗き窓2aに対向した光学ヘッド6が配置されている。この光学ヘッド6は分光反射率計測装置7に接続され、分光反射率計測装置7はコンピュータ8に接続されている。   In addition, the polishing pad 2 of the device manufacturing apparatus 1 is provided with a viewing window 2a made of quartz at a portion where the wafer 10 is disposed during polishing. A through hole 3a is provided in a portion of the turntable 3 corresponding to the viewing window 2a. On the back side of the turntable 3, an optical head 6 facing the viewing window 2a is disposed. The optical head 6 is connected to a spectral reflectance measuring device 7, and the spectral reflectance measuring device 7 is connected to a computer 8.

研磨中は、ウェハ10に形成された酸化膜及び金属膜等の表面に光を照射し、反射スペクトルを計測する。通常、回転テーブル3及び研磨ヘッド4を1回転させるごとに1回計測し、この計測に伴うデータ処理及びデータ保存が、コンピュータ8によって実行される。   During polishing, the surface of the oxide film and metal film formed on the wafer 10 is irradiated with light, and the reflection spectrum is measured. Usually, the measurement is performed once every time the rotary table 3 and the polishing head 4 are rotated, and data processing and data storage accompanying this measurement are executed by the computer 8.

以下、チップサイズ3.1mm×3.8mmのIC(Integrated Circuit)の酸化膜及び金属膜等を研磨する際に、研磨中の膜厚を評価するシーケンスについて説明する。このICは、パワー用のトレンチMOS(Metal Oxide Semiconductor)等からなるアナログ回路及び制御用のデジタル回路を搭載している。また、研磨前のICの酸化膜及び金属膜等の膜厚は、約2.5μmである。研磨条件は、回転テーブル3の回転数が90rpm、研磨レートが750nm/分である。   Hereinafter, a sequence for evaluating the film thickness during polishing when polishing an oxide film and a metal film of an IC (Integrated Circuit) having a chip size of 3.1 mm × 3.8 mm will be described. This IC is equipped with an analog circuit composed of a trench MOS (Metal Oxide Semiconductor) for power and a digital circuit for control. The film thickness of the oxide film and metal film of the IC before polishing is about 2.5 μm. The polishing conditions are that the rotation speed of the turntable 3 is 90 rpm and the polishing rate is 750 nm / min.

まず、波長に関するスペクトルデータを、波数に関するスペクトルデータに変換する。この変換は、光学計算の簡素化を目的とする。
ここで、屈折率をnとし、波長をλとし、算出される波数をkとして式で表すと、
k=2πn/λ ・・・(4)
となる。なお、波数kの単位をcm-1としてデータ処理する。
First, the spectral data regarding the wavelength is converted into spectral data regarding the wave number. This conversion is intended to simplify optical calculations.
Here, when the refractive index is n, the wavelength is λ, and the calculated wave number is k,
k = 2πn / λ (4)
It becomes. Note that data processing is performed with the unit of wavenumber k as cm −1 .

次に、時間差Δtを隔てた研磨時間t及び研磨時間t−Δtにおける酸化膜及び金属膜等の表面に光を照射することによる反射スペクトルを計測し、研磨時間tの反射スペクトルと研磨時間t−Δtの反射スペクトルとの差分信号を算出する。図2は、差分信号を示す図である。図2において、横軸は波数、縦軸は差分信号を表している。   Next, the reflection spectrum by irradiating light on the surface of the oxide film, the metal film, etc. at the polishing time t and the polishing time t−Δt separated by the time difference Δt is measured, and the reflection spectrum at the polishing time t and the polishing time t− A difference signal from the reflection spectrum of Δt is calculated. FIG. 2 is a diagram illustrating the difference signal. In FIG. 2, the horizontal axis represents the wave number, and the vertical axis represents the difference signal.

ここで、計測m回目の反射スペクトルをRm(k)とし、計測m−x回目の反射スペクトルをRm-x(k)とし、計測m回目で算出される差分信号をDm(k)として式で表すと、
m(k)=Rm(k)−Rm-x(k) ・・・(5)
となる。例えば、図2に例示する差分信号Dm(k)は、計測12回目以降の所定の反射スペクトルと、この所定の反射スペクトルの回から11回遡った回の反射スペクトルとの差分信号であり、xは“11”である。
Here, the m-th reflection spectrum is R m (k), the measurement m−x-th reflection spectrum is R mx (k), and the differential signal calculated at the measurement m-th is D m (k). In terms of
D m (k) = R m (k) −R mx (k) (5)
It becomes. For example, the differential signal D m (k) illustrated in FIG. 2 is a differential signal between a predetermined reflection spectrum after the twelfth measurement and a reflection spectrum that has been traced 11 times from the predetermined reflection spectrum. x is “11”.

次に、算出された差分信号Dm(k)を補正処理する。
ここで、反射スペクトルRm(k)、Rm-x(k)は、計測方法の問題から、約10%以下の絶対値のゆらぎを有する。この反射スペクトルの絶対値のゆらぎの影響を抑えるため、反射スペクトルRm(k)及び反射スペクトルRm-x(k)の絶対値が揃うように補正処理する。具体的には、式(5)において、Rm-x(k)の振幅強度の平均値がRm(k)の振幅強度の平均値に揃うように、Rm-x(k)の振幅強度の平均値に補正係数を掛けて補正処理する。補正係数をCとし、補正処理された差分信号をDm’(k)として式で表すと、
m’(k)=Rm(k)−Rm-x(k)×C ・・・(6)
となる。
Next, the calculated difference signal D m (k) is corrected.
Here, the reflection spectra R m (k) and R mx (k) have a fluctuation of an absolute value of about 10% or less due to the problem of the measurement method. In order to suppress the influence of fluctuation of the absolute value of the reflection spectrum, correction processing is performed so that the absolute values of the reflection spectrum R m (k) and the reflection spectrum R mx (k) are aligned. Specifically, in equation (5), so that the average value of the amplitude intensities of R mx (k) is aligned to the average value of the amplitude intensity of R m (k), the average value of the amplitude intensities of R mx (k) The correction processing is performed by multiplying by a correction coefficient. When the correction coefficient is C and the corrected differential signal is expressed as D m ′ (k),
D m ′ (k) = R m (k) −R mx (k) × C (6)
It becomes.

次に、反射スペクトルが有する短周期のノイズを除去し、差分信号Dm’(k)の微小変動を抑制するため、補正処理された差分信号Dm’(k)をスムージングする。図3は、スムージングされた差分信号を示す図である。図3において、横軸は波数、縦軸は差分信号を表している。 Then, the noise of a short cycle having the reflection spectrum was removed, 'to suppress the minute fluctuation of (k), the correction processed difference signal D m' difference signal D m to smooth (k). FIG. 3 is a diagram illustrating the smoothed difference signal. In FIG. 3, the horizontal axis represents the wave number, and the vertical axis represents the difference signal.

ここで、差分信号Dm’(k)の各データポイントの中の所定データポイントの値を、この所定データポイント、この所定データポイントの直前の3つのデータポイント、及び、この所定データポイントの直後の3つのデータポイントの平均値に置換してスムージングする。 Here, the value of a predetermined data point in each data point of the difference signal D m ′ (k) is set to the predetermined data point, three data points immediately before the predetermined data point, and immediately after the predetermined data point. And smoothing by replacing with the average value of the three data points.

次に、差分信号Dm’(k)が有する右上がりまたは右下がりの傾斜を除去し、差分信号Dm’(k)の振幅の中心を揃えるため、差分信号Dm’(k)を微分処理する。図4は、微分処理された差分信号を示す図である。図4において、横軸は波数、縦軸は差分信号を表している。 Next, the difference signal D m ′ (k) is differentiated in order to remove the upward or downward slope of the difference signal D m ′ (k) and align the center of the amplitude of the difference signal D m ′ (k). To process. FIG. 4 is a diagram showing a differential signal subjected to differentiation processing. In FIG. 4, the horizontal axis represents the wave number, and the vertical axis represents the difference signal.

ここで、差分信号Dm’(k)の各データポイントの中の所定データポイントの値を、この所定データポイント、この所定データポイントの直前の3つのデータポイント、及び、この所定データポイントの直後の3つのデータポイントを直線近似し、この直線の傾きを微分値として算出して置換して微分処理する。微分処理することにより、差分信号Dm’(k)の波数kの周期を算出しやすくなる。なお、微分処理すると、差分信号Dm’(k)の振幅強度が変化し、且つ、位相が90°ずれるが、波数kの周期は変化しないので、微分処理しても問題はない。 Here, the value of a predetermined data point in each data point of the difference signal D m ′ (k) is set to the predetermined data point, three data points immediately before the predetermined data point, and immediately after the predetermined data point. These three data points are approximated by a straight line, and the slope of this straight line is calculated as a differential value and replaced to perform differential processing. By performing the differentiation process, the period of the wave number k of the difference signal D m ′ (k) can be easily calculated. When differential processing is performed, the amplitude intensity of the difference signal D m ′ (k) changes and the phase is shifted by 90 °, but the period of the wave number k does not change, so there is no problem even if differential processing is performed.

なお、説明の便宜のために図4の波形は正常波形となっているが、実際は振幅強度不良及び周期不良を有している。
次に、振幅強度不良を除去するため、差分信号Dm’(k)をスクリーニングする。図5は、振幅強度不良を有する差分信号を示す図である。図5において、横軸は波数、縦軸は差分信号を表している。
For convenience of explanation, the waveform of FIG. 4 is a normal waveform, but actually has an amplitude strength defect and a period defect.
Next, the difference signal D m ′ (k) is screened in order to remove the amplitude strength defect. FIG. 5 is a diagram illustrating a differential signal having an amplitude strength defect. In FIG. 5, the horizontal axis represents the wave number and the vertical axis represents the difference signal.

ここで、例えば、計測波数領域で、差分信号Dm’(k)の振幅強度の平均値が所定の範囲以内である場合、振幅強度は十分であって不良データでないとする。この所定の範囲以外である場合、振幅強度は不十分であって不良データであるとして除去する。平均値をAとし、所定値を例えば“1”として式で表すと、
A≧1 ・・・(7)
となる。スクリーニングすることで、振幅強度不良を除去して図4の正常波形を算出できるようになる。
Here, for example, when the average value of the amplitude intensity of the difference signal D m ′ (k) is within a predetermined range in the measurement wave number region, it is assumed that the amplitude intensity is sufficient and not defective data. If it is outside this predetermined range, the amplitude intensity is insufficient and is removed as defective data. Assuming that the average value is A and the predetermined value is “1” for example,
A ≧ 1 (7)
It becomes. By screening, it becomes possible to calculate the normal waveform of FIG.

また、周期不良を除去するため、差分信号Dm’(k)をスクリーニングする。図6は、周期不良を有する差分信号を示す図である。図6において、横軸は波数、縦軸は差分信号を表している。 Further, the differential signal D m ′ (k) is screened in order to remove periodic defects. FIG. 6 is a diagram illustrating a differential signal having a periodic failure. In FIG. 6, the horizontal axis represents the wave number and the vertical axis represents the difference signal.

ここで、例えば、計測波数領域で、最も高い波数の周期と全ての平均周期との誤差が所定の範囲以内である場合、周期は安定して不良データでないとする。この所定の範囲以外である場合、周期は安定しないで不良データであるとして除去する。最も高い波数の周期をK1とし、全ての平均周期をK2とし、周期K1の所定の範囲を例えば“0.8×K2”から“1.2×K2”までとして式で表すと、
0.8<K1/K2<1.2 ・・・(8)
となる。スクリーニングすることで、周期不良を除去して図4の正常波形を算出できるようになる。
Here, for example, when the error between the cycle of the highest wave number and all the average cycles is within a predetermined range in the measurement wave number region, the cycle is assumed to be stable and not defective data. If it is outside this predetermined range, the period is not stabilized and is removed as defective data. If the period of the highest wave number is K1, all the average periods are K2, and a predetermined range of the period K1 is expressed by an expression, for example, from “0.8 × K2” to “1.2 × K2”,
0.8 <K1 / K2 <1.2 (8)
It becomes. By performing the screening, it becomes possible to calculate the normal waveform in FIG.

これらのスクリーニングの前後について、研磨回数の増加に従った膜厚の推移について説明する。図7は、スクリーニング前の膜厚の推移を示す図である。図8は、スクリーニング後の膜厚の推移を示す図である。図7及び図8において、横軸は研磨回数、縦軸は膜厚を表している。   The transition of the film thickness according to the increase in the number of polishings will be described before and after the screening. FIG. 7 is a diagram showing the transition of the film thickness before screening. FIG. 8 is a diagram showing the transition of the film thickness after screening. 7 and 8, the horizontal axis represents the number of polishing times, and the vertical axis represents the film thickness.

スクリーニング前は、図7に例示するように、研磨回数の増加に従って図中丸印で示された膜厚は減少し、振幅強度不良及び周期不良によって膜厚はばらついている。スクリーニング後は、図8に例示するように、膜厚はばらつかず、膜厚の推移を把握しやすくなっている。なお、図中四角印で示された膜厚は、光学膜厚計(ナノメトリクス社製ナノスペック9100)で計測したものであり、図中丸印で示された膜厚の推移と対応している。   Before the screening, as illustrated in FIG. 7, the film thickness indicated by a circle in the figure decreases with an increase in the number of polishings, and the film thickness varies due to an amplitude strength defect and a cycle defect. After the screening, as illustrated in FIG. 8, the film thickness does not vary and it is easy to grasp the transition of the film thickness. In addition, the film thickness shown by the square mark in a figure was measured with the optical film thickness meter (Nanometrics 9100 by Nanometrics), and respond | corresponds with transition of the film thickness shown by the circle mark in the figure. .

次に、差分信号Dm’(k)の波数kの周期から、研磨時間tの酸化膜及び金属膜等の膜厚を評価する。
ここで、事前に評価した概略の研磨レートをrとし、算出された膜厚をd(t)として式で表すと、
d(t)=π/k−rΔt/2 ・・・(9)
となる。
Next, the film thicknesses of the oxide film, the metal film, etc. during the polishing time t are evaluated from the period of the wave number k of the difference signal D m ′ (k).
Here, when the approximate polishing rate evaluated in advance is represented by r and the calculated film thickness is represented by d (t),
d (t) = π / k−rΔt / 2 (9)
It becomes.

以上のシーケンスにより、酸化膜及び金属膜等を研磨する際に、研磨中の膜厚d(t)が算出される。
なお、差分信号Dm’(k)の波数kの周期が大きくなって計測波数領域と同程度になり、波数kの周期を算出しにくくなる場合、算出された差分信号Dm’(k)のサインカーブと、データベースに記憶されたサインカーブとを比較し、適合したデータベースのサインカーブに対応する周期及び振幅強度を、算出された差分信号Dm’(k)の周期及び振幅強度として取得してもよい。このデータベースには、周期及び振幅強度をパラメータとしたサインカーブが複数記憶されている。
With the above sequence, the thickness d (t) during polishing is calculated when polishing the oxide film, the metal film, and the like.
In addition, when the period of the wave number k of the difference signal D m ′ (k) becomes large and is about the same as the measurement wave number region, and it becomes difficult to calculate the period of the wave number k, the calculated difference signal D m ′ (k) Is compared with the sine curve stored in the database, and the period and amplitude intensity corresponding to the matched database sine curve are obtained as the period and amplitude intensity of the calculated differential signal D m ′ (k) May be. This database stores a plurality of sine curves using the period and amplitude intensity as parameters.

次に、時間差Δtの決定方法について説明する。図9は、各位相差における膜厚の合格率である。図9において、横軸は位相差、縦軸はスクリーニングの合格率を表している。
ここで、時間差Δtを、時間差Δtよりも普遍性のある位相差に変換する。反射率計測の中心波長をλCとし、研磨される膜の屈折率をnとし、変換された位相差をφとして式で表すと、
φ=4nπrΔt/λC ・・・(10)
となる。
Next, a method for determining the time difference Δt will be described. FIG. 9 is a film thickness pass rate at each phase difference. In FIG. 9, the horizontal axis represents the phase difference and the vertical axis represents the screening pass rate.
Here, the time difference Δt is converted into a phase difference that is more universal than the time difference Δt. When the central wavelength of reflectance measurement is λ C , the refractive index of the film to be polished is n, and the converted phase difference is φ,
φ = 4nπrΔt / λ C (10)
It becomes.

図9に例示するように、位相が反転する位相差付近で、合格率は最大になる。具体的には、位相差φが180°及び540°付近で、合格率は最大になる。また、位相差φが90°〜270°付近で、合格率は最大の合格率の約80%になる。また、360°毎に周期性がある。このことから、位相差φが90°〜270°の範囲で時間差Δtを決定することが好ましい。式で表すと、
λC/8n≦rΔt≦3λC/8n ・・・(11)
となる。
As illustrated in FIG. 9, the pass rate is maximized in the vicinity of the phase difference where the phase is reversed. Specifically, the pass rate becomes maximum when the phase difference φ is around 180 ° and 540 °. Moreover, when the phase difference φ is in the vicinity of 90 ° to 270 °, the pass rate is about 80% of the maximum pass rate. Further, there is periodicity every 360 °. Therefore, it is preferable to determine the time difference Δt in the range where the phase difference φ is 90 ° to 270 °. Expressed as a formula:
λ C / 8n ≦ rΔt ≦ 3λ C / 8n (11)
It becomes.

このようにすると、膜の研磨中に、振幅強度が補正された研磨時間t及び研磨時間t−Δtの反射スペクトルから差分信号Dm’(k)を算出し、この差分信号Dm’(k)から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、微小変動が抑制された差分信号Dm’(k)から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、振幅の中心が揃えられた差分信号Dm’(k)から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、不良成分が除去された差分信号Dm’(k)から膜厚を評価するので、評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。よって、差分信号Dm’(k)を逐次算出して膜厚の推移を正確に把握でき、研磨終点を正確に把握できる。また、デバイスの特性のばらつきが小さくなり、デバイスの歩留まりが向上する。 In this way, during the polishing of the film, the difference signal D m ′ (k) is calculated from the reflection spectrum of the polishing time t and the polishing time t−Δt whose amplitude intensity is corrected, and this difference signal D m ′ (k ), The variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. Further, since the film thickness is evaluated from the differential signal D m ′ (k) in which minute fluctuations are suppressed, the variation in the evaluated film thickness is reduced, and the film thickness during polishing is accurately evaluated when the film is polished. it can. Further, since the film thickness is evaluated from the difference signal D m ′ (k) in which the centers of the amplitudes are aligned, the variation in the evaluated film thickness is reduced, and the film thickness being polished can be accurately determined when polishing the film. Can be evaluated. Further, since the film thickness is evaluated from the differential signal D m ′ (k) from which the defective component has been removed, the variation in the evaluated film thickness is reduced, and the film thickness being polished is accurately evaluated when the film is polished. it can. Therefore, the difference signal D m ′ (k) can be sequentially calculated to accurately grasp the transition of the film thickness, and the polishing end point can be accurately grasped. In addition, variation in device characteristics is reduced, and device yield is improved.

ここで、段差を有する酸化膜及び金属膜等を研磨する際に、前述のスクリーニングで除去されるデータ数が多くなる傾向があり、膜厚のばらつきが大きくなってしまう。図10は、段差を有する膜を示す図である。図11は、欠落するデータ数が多い場合の膜厚の推移を示す図である。図11において、横軸は研磨回数、縦軸は膜厚を表している。   Here, when polishing an oxide film, a metal film, or the like having a step, there is a tendency that the number of data to be removed by the above-described screening tends to increase, resulting in large variations in film thickness. FIG. 10 is a diagram showing a film having a step. FIG. 11 is a diagram illustrating the transition of the film thickness when the number of missing data is large. In FIG. 11, the horizontal axis represents the number of polishing times and the vertical axis represents the film thickness.

図10に例示するように、シリコン基板24上に埋め込み酸化膜23が形成され、この埋め込み酸化膜23上にポリシリコン22が形成されている。このポリシリコン22を含めたシリコン基板24上に酸化膜21が形成されている。   As illustrated in FIG. 10, the buried oxide film 23 is formed on the silicon substrate 24, and the polysilicon 22 is formed on the buried oxide film 23. An oxide film 21 is formed on a silicon substrate 24 including the polysilicon 22.

このような段差を有する酸化膜及び金属膜等を研磨すると、例えば、図11に例示するように、研磨回数20〜40回付近で、欠落するデータ数が多くなっている。
欠落するデータ数を減少させるため、時間差Δtを1つでなくて複数用意し、研磨時間t及び複数の研磨時間t−Δtの反射スペクトルの複数の差分信号Dm’(k)を算出する。例えば、時間差Δtを5個用意し、5個の差分信号Dm’(k)を算出する。図12は、位相差128°の差分信号を示す図である。図13は、位相差157°の差分信号を示す図である。図14は、位相差171°の差分信号を示す図である。図15は、位相差185°の差分信号を示す図である。図16は、位相差257°の差分信号を示す図である。図17は、図12〜図16の差分信号を重ね合わせて示す図である。図12〜図17において、横軸は研磨回数、縦軸は膜厚を表している。
When the oxide film and the metal film having such a step are polished, for example, as illustrated in FIG. 11, the number of missing data increases in the vicinity of 20 to 40 polishing times.
In order to reduce the number of missing data, a plurality of time differences Δt are prepared instead of one, and a plurality of differential signals D m ′ (k) of the reflection spectra of the polishing time t and the polishing times t−Δt are calculated. For example, five time differences Δt are prepared, and five difference signals D m ′ (k) are calculated. FIG. 12 is a diagram illustrating a differential signal having a phase difference of 128 °. FIG. 13 is a diagram illustrating a differential signal having a phase difference of 157 °. FIG. 14 is a diagram illustrating a differential signal having a phase difference of 171 °. FIG. 15 is a diagram illustrating a differential signal having a phase difference of 185 °. FIG. 16 is a diagram illustrating a differential signal having a phase difference of 257 °. FIG. 17 is a diagram showing the difference signals of FIGS. 12 to 17, the horizontal axis represents the number of polishing times and the vertical axis represents the film thickness.

図12〜図16に例示するように、1つの差分信号から膜厚を評価すると、欠落するデータ数は多くなっているが、図17に例示するように、複数の差分信号Dm’(k)から膜厚を評価すると、欠落するデータ数は少なくなっている。 As illustrated in FIGS. 12 to 16, when the film thickness is evaluated from one difference signal, the number of missing data increases, but as illustrated in FIG. 17, a plurality of difference signals D m ′ (k ), The number of missing data is reduced.

このようにすると、複数の差分信号Dm’(k)を算出するので、差分信号Dm’(k)のデータ数が増加する。よって、増加した分スクリーニングしてもデータ数が減少せず、膜厚の推移を正確に把握でき、研磨終点を正確に把握できる。また、デバイスの特性のばらつきが小さくなり、デバイスの歩留まりが向上する。 In this way, since a plurality of difference signals D m ′ (k) are calculated, the number of data of the difference signals D m ′ (k) increases. Therefore, the number of data does not decrease even when screening is performed for the increased amount, the transition of the film thickness can be accurately grasped, and the polishing end point can be accurately grasped. In addition, variation in device characteristics is reduced, and device yield is improved.

また、複数の差分信号Dm’(k)を算出するので、1つの差分信号からでなくて複数の差分信号から膜厚を評価でき、膜厚の信頼性が向上する。
なお、10個のサンプルについて、以上説明した膜厚評価方法に用いて実際に研磨中の膜厚を評価してみたところ、時間差Δtを1つ用意する場合、膜厚は設定値から最大で93nm、最小で−68nmばらついていた。また、時間差Δtを5つ用意する場合、膜厚は設定値から最大で42nm、最小で−24nmばらついていた。設定値からのばらつきは100nm〜−100nmであり、デバイスの製造プロセスにおいて有効であることが確認された。
In addition, since a plurality of difference signals D m ′ (k) are calculated, the film thickness can be evaluated from a plurality of difference signals instead of one difference signal, and the film thickness reliability is improved.
When 10 samples were actually evaluated for film thickness during polishing using the film thickness evaluation method described above, when one time difference Δt was prepared, the film thickness was 93 nm at the maximum from the set value. The minimum variation was −68 nm. When five time differences Δt were prepared, the film thickness varied from the set value to 42 nm at the maximum and −24 nm from the minimum. The variation from the set value was 100 nm to −100 nm, which was confirmed to be effective in the device manufacturing process.

また、上記の研磨中の膜厚を評価するシーケンスの説明では、補正処理、スムージング、微分処理、振幅強度不良の除去及び周期不良の除去のステップを連続的に実行するように記載したが、各ステップを単独で実行しても評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。また、補正処理、スムージング、微分処理、振幅強度不良の除去及び周期不良の除去のステップの中から、任意のステップを省略しても評価された膜厚のばらつきが小さくなり、膜を研磨する際に研磨中の膜厚を正確に評価できる。   In the description of the sequence for evaluating the film thickness during polishing, the correction process, the smoothing process, the differential process, the amplitude intensity defect removal and the periodic defect removal steps are described as being executed continuously. Even if the step is executed alone, the variation in the evaluated film thickness is reduced, and the film thickness during polishing can be accurately evaluated when the film is polished. Moreover, even if any step is omitted from the steps of correction processing, smoothing, differentiation processing, amplitude strength defect removal and period defect removal, the evaluated film thickness variation is reduced, and the film is polished. In addition, the film thickness during polishing can be accurately evaluated.

デバイス製造装置を示す図である。It is a figure which shows a device manufacturing apparatus. 差分信号を示す図である。It is a figure which shows a difference signal. スムージングされた差分信号を示す図である。It is a figure which shows the smoothed difference signal. 微分処理された差分信号を示す図である。It is a figure which shows the differential signal by which the differential process was carried out. 振幅強度不良を有する差分信号を示す図である。It is a figure which shows the difference signal which has an amplitude strength defect. 周期不良を有する差分信号を示す図である。It is a figure which shows the difference signal which has a periodic defect. スクリーニング前の膜厚の推移を示す図である。It is a figure which shows transition of the film thickness before screening. スクリーニング後の膜厚の推移を示す図である。It is a figure which shows transition of the film thickness after screening. 各位相差における膜厚の合格率である。It is the pass rate of the film thickness at each phase difference. 段差を有する膜を示す図である。It is a figure which shows the film | membrane which has a level | step difference. 欠落するデータ数が多い場合の膜厚の推移を示す図である。It is a figure which shows transition of the film thickness when there are many missing data numbers. 位相差128°の差分信号を示す図である。It is a figure which shows the difference signal of phase difference 128 degrees. 位相差157°の差分信号を示す図である。It is a figure which shows the difference signal of phase difference 157 degrees. 位相差171°の差分信号を示す図である。It is a figure which shows the difference signal of 171 degrees of phase differences. 位相差185°の差分信号を示す図である。It is a figure which shows the difference signal of phase difference 185 degrees. 位相差257°の差分信号を示す図である。It is a figure which shows the difference signal of phase difference 257 degrees. 図12〜図16の差分信号を重ね合わせて示す図である。It is a figure which superimposes and shows the difference signal of FIGS.

符号の説明Explanation of symbols

1 デバイス製造装置
2 研磨パッド
2a 覗き窓
3 回転テーブル
3a 貫通孔
4 研磨ヘッド
5 スラリー
6 光学ヘッド
7 分光反射率計測装置
8 コンピュータ
10 ウェハ
DESCRIPTION OF SYMBOLS 1 Device manufacturing apparatus 2 Polishing pad 2a Viewing window 3 Rotary table 3a Through-hole 4 Polishing head 5 Slurry 6 Optical head 7 Spectral reflectance measuring device 8 Computer 10 Wafer

Claims (6)

膜の研磨中に、前記膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルの差分信号を、媒質中の光の波数をx、前記研磨時間tの前記膜の膜厚をd、前記研磨時間t−Δtの前記膜の膜厚をd+Δd、Aを比例定数としたときに、2Asin(2πΔdx)×sin{2π(2d+Δd)x}で表される光学モデルを用いて算出し、前記差分信号を解析することによって前記研磨時間tにおける前記膜の膜厚を評価する膜厚評価方法において、
前記研磨時間t−Δtの反射スペクトルの振幅強度の平均値を、前記研磨時間tの反射スペクトルの振幅強度の平均値に揃えるように補正する補正ステップと、
前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントの平均値に置換して成形する抑制ステップと、
前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントを直線近似し、直線近似された直線の傾きに置換して成形する振幅成形ステップと、
前記差分信号から振幅強度及び周期が所定の範囲以外となった不良成分を除去する除去ステップと、
有することを特徴とする膜厚評価方法。
During polishing of the film, the difference between the reflection spectrum of the polishing time t and the polishing time t−Δt separated by a time difference Δt by irradiating light on the surface of the film, the wave number of light in the medium x, and the polishing time When the film thickness of the film at t is d, the film thickness of the film at the polishing time t−Δt is d + Δd, and A is a proportionality constant, it is expressed as 2Asin (2πΔdx) × sin {2π (2d + Δd) x}. In the film thickness evaluation method for evaluating the film thickness at the polishing time t by calculating using an optical model and analyzing the difference signal,
A correction step of correcting the average value of the amplitude intensity of the reflection spectrum at the polishing time t-Δt so as to be aligned with the average value of the amplitude intensity of the reflection spectrum at the polishing time t ;
The value of a predetermined data point in each data point constituting the differential signal is an average of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. A suppression step of forming by replacing with a value ;
The value of a predetermined data point in each data point constituting the difference signal is a straight line of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. Amplitude shaping step that approximates and replaces with the straight line approximation of the straight line, and shaping ,
A removal step of removing a defective component whose amplitude intensity and period are outside a predetermined range from the difference signal ;
The film thickness evaluation method characterized by having.
前記研磨時間t及び複数の研磨時間t−Δtの反射スペクトルの複数の差分信号を算出することを特徴とする請求項1記載の膜厚評価方法。The film thickness evaluation method according to claim 1, wherein a plurality of difference signals of reflection spectra of the polishing time t and the polishing times t−Δt are calculated. 前記膜を研磨するレートをr、反射スペクトルの計測可能な波長の範囲の中心波長をλThe rate at which the film is polished is r, and the center wavelength in the wavelength range where the reflection spectrum can be measured is λ. CC 、前記膜の屈折率をnとしたときに、前記時間差Δtを、λWhen the refractive index of the film is n, the time difference Δt is expressed as λ CC /8n≦rΔt≦3λ/ 8n ≦ rΔt ≦ 3λ CC /8nの範囲に設定することを特徴とする請求項1または2記載の膜厚評価方法。The film thickness evaluation method according to claim 1, wherein the film thickness is set in a range of / 8n. データベースに周期及び振幅強度をパラメータとしたサインカーブをあらかじめ複数記憶し、前記差分信号のサインカーブと前記データベースに記憶されたサインカーブとを比較することにより、前記差分信号の周期及び振幅強度を取得することを特徴とする請求項1〜3のいずれか1項に記載の膜厚評価方法。A plurality of sine curves with parameters of period and amplitude intensity are stored in advance in the database, and the period and amplitude intensity of the difference signal are obtained by comparing the sine curve of the difference signal with the sine curve stored in the database. The film thickness evaluation method according to claim 1, wherein the film thickness is evaluated. 膜の研磨中に、前記膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルの差分信号を、媒質中の光の波数をx、前記研磨時間tの前記膜の膜厚をd、前記研磨時間t−Δtの前記膜の膜厚をd+Δd、Aを比例定数としたときに、2Asin(2πΔdx)×sin{2π(2d+Δd)x}で表される光学モデルを用いて算出し、前記差分信号を解析することによって前記研磨時間tにおける前記膜の膜厚を評価し、算出された前記膜厚に基づいて研磨終点を検出する研磨終点検出方法において、During polishing of the film, the difference between the reflection spectrum of the polishing time t and the polishing time t−Δt separated by a time difference Δt by irradiating light on the surface of the film, the wave number of light in the medium x, and the polishing time When the film thickness of the film at t is d, the film thickness of the film at the polishing time t−Δt is d + Δd, and A is a proportional constant, it is expressed by 2Asin (2πΔdx) × sin {2π (2d + Δd) x}. In the polishing end point detection method, wherein the film thickness of the film at the polishing time t is evaluated by calculating using the optical model and analyzing the difference signal, and the polishing end point is detected based on the calculated film thickness. ,
前記研磨時間t−Δtの反射スペクトルの振幅強度の平均値を、前記研磨時間tの反射スペクトルの振幅強度の平均値に揃えるように補正する補正ステップと、  A correction step of correcting the average value of the amplitude intensity of the reflection spectrum at the polishing time t-Δt so as to be aligned with the average value of the amplitude intensity of the reflection spectrum at the polishing time t;
前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントの平均値に置換して成形する抑制ステップと、  The value of a predetermined data point in each data point constituting the differential signal is an average of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. A suppression step of forming by replacing with a value;
前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントを直線近似し、直線近似された直線の傾きに置換して成形する振幅成形ステップと、  The value of a predetermined data point in each data point constituting the difference signal is a straight line of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. Amplitude shaping step that approximates and replaces with the straight line approximation of the straight line, and shaping,
前記差分信号から振幅強度及び周期が所定の範囲以外となった不良成分を除去する除去ステップと、  A removal step of removing a defective component whose amplitude intensity and period are outside a predetermined range from the difference signal;
を有することを特徴とする研磨終点検出方法。  A method for detecting a polishing end point, comprising:
膜を研磨してデバイスを製造するデバイス製造装置において、
前記膜を研磨する研磨手段と、
前記膜の研磨中に、前記膜の表面に光を照射して時間差Δtを隔てた研磨時間t及び研磨時間t−Δtの反射スペクトルを計測する計測手段と、
前記研磨時間t及び前記研磨時間t−Δtの反射スペクトルの差分信号を、媒質中の光の波数をx、前記研磨時間tの前記膜の膜厚をd、前記研磨時間t−Δtの前記膜の膜厚をd+Δd、Aを比例定数としたときに、2Asin(2πΔdx)×sin{2π(2d+Δd)x}で表される光学モデルを用いて算出する差分信号算出手段と、
前記差分信号を解析することによって前記研磨時間tにおける前記膜の膜厚を評価する膜厚算出手段と、を有し、
前記研磨時間t−Δtの反射スペクトルの振幅強度の平均値を、前記研磨時間tの反射スペクトルの振幅強度の平均値に揃えるように補正する補正手段と、
前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントの平均値に置換して成形する抑制手段と、
前記差分信号を構成する各データポイントの中の所定データポイントの値を、所定データポイント、所定データポイントの直前の所定数のデータポイント、及び、所定データポイントの直後の所定数のデータポイントを直線近似し、直線近似された直線の傾きに置換して成形する振幅成形手段と、
前記差分信号から振幅強度及び周期が所定の範囲以外となった不良成分を除去する除去手段と、
を有することを特徴とするデバイス製造装置
In a device manufacturing apparatus for manufacturing a device by polishing a film,
Polishing means for polishing the film;
A measuring means for irradiating the surface of the film with light during polishing of the film and measuring a reflection spectrum of the polishing time t and the polishing time t−Δt separated by a time difference Δt;
The difference signal of the reflection spectrum between the polishing time t and the polishing time t−Δt, the wave number of light in the medium is x, the film thickness of the film at the polishing time t is d, and the film at the polishing time t−Δt. A differential signal calculation means for calculating using an optical model represented by 2A sin (2πΔdx) × sin {2π (2d + Δd) x}, where d + Δd and A is a proportional constant;
A film thickness calculating means for evaluating the film thickness of the film at the polishing time t by analyzing the difference signal;
Correction means for correcting the average value of the amplitude intensity of the reflection spectrum at the polishing time t−Δt so as to be aligned with the average value of the amplitude intensity of the reflection spectrum at the polishing time t;
The value of a predetermined data point in each data point constituting the differential signal is an average of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. A suppression means for substituting with a value and molding;
The value of a predetermined data point in each data point constituting the difference signal is a straight line of a predetermined data point, a predetermined number of data points immediately before the predetermined data point, and a predetermined number of data points immediately after the predetermined data point. Amplitude shaping means for approximating and substituting with the slope of the straight line approximated,
Removing means for removing a defective component whose amplitude intensity and period are outside the predetermined range from the difference signal;
A device manufacturing apparatus comprising:
JP2005242663A 2005-08-24 2005-08-24 Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus Expired - Fee Related JP4857659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242663A JP4857659B2 (en) 2005-08-24 2005-08-24 Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242663A JP4857659B2 (en) 2005-08-24 2005-08-24 Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007059597A JP2007059597A (en) 2007-03-08
JP4857659B2 true JP4857659B2 (en) 2012-01-18

Family

ID=37922824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242663A Expired - Fee Related JP4857659B2 (en) 2005-08-24 2005-08-24 Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4857659B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301931B2 (en) * 2008-09-12 2013-09-25 株式会社荏原製作所 Polishing method and polishing apparatus
JP5583946B2 (en) * 2009-10-06 2014-09-03 株式会社荏原製作所 Polishing end point detection method and polishing end point detection device
JP5728239B2 (en) * 2010-03-02 2015-06-03 株式会社荏原製作所 Polishing monitoring method, polishing method, polishing monitoring apparatus, and polishing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894367B2 (en) * 1995-04-26 2007-03-22 富士通株式会社 Polishing equipment
JP4460659B2 (en) * 1997-10-22 2010-05-12 株式会社ルネサステクノロジ Thin film thickness measuring method and apparatus, thin film device manufacturing method and apparatus using the same
JP2001176074A (en) * 1999-12-20 2001-06-29 Nec Corp Optical disk recording device
JP2002359217A (en) * 2001-05-31 2002-12-13 Omron Corp Method and device for detecting polishing end point
JP2005051093A (en) * 2003-07-30 2005-02-24 Shimadzu Corp Data collector and substrate polishing apparatus using the same
JP2005101114A (en) * 2003-09-22 2005-04-14 Lam Res Corp In-situ detection of border of metal thin film state using optical interference through dynamic update reference
JP4581427B2 (en) * 2004-02-27 2010-11-17 富士電機システムズ株式会社 Film thickness evaluation method, polishing end point detection method

Also Published As

Publication number Publication date
JP2007059597A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP3327289B2 (en) Process end point measuring device, measuring method, polishing device, semiconductor device manufacturing method, and recording medium recording signal processing program
CN100367468C (en) System and method of broad band optical end point detection for film change indication
US7057744B2 (en) Method and apparatus for measuring thickness of thin film and device manufacturing method using same
JP5992570B2 (en) Polishing monitoring method, polishing monitoring apparatus, and polishing apparatus
JP5774059B2 (en) Determination of polishing end point using spectrum
JP5675617B2 (en) Polishing speed adjustment using spectral monitoring of substrates during processing
KR100434189B1 (en) Apparatus and method for chemically and mechanically polishing semiconductor wafer
KR102036387B1 (en) Polishing method and polishing apparatus
JP2002343842A (en) Method for measuring film thickness of semiconductor layer and method for manufacturing semiconductor substrate
JP2011520264A (en) Endpoint detection in chemical mechanical polishing using multiple spectra
JP2013219248A (en) Polishing device and polishing method
TW201347912A (en) Feedback control using detection of clearance and adjustment for uniform topography
TW202103845A (en) Method, apparatus, and system for determining optimum operation recipe for optical film-thickness measuring device
JP4857659B2 (en) Film thickness evaluation method, polishing end point detection method, and device manufacturing apparatus
JP2011082286A (en) Polishing endpoint detection method and polishing endpoint detection apparatus
JP6844530B2 (en) Work double-sided polishing device and double-sided polishing method
JP5274105B2 (en) Polishing end point detection method
JP4581427B2 (en) Film thickness evaluation method, polishing end point detection method
KR20210087398A (en) Substrate polishing machine and substrate polishing mathod using machine learning
US6514775B2 (en) In-situ end point detection for semiconductor wafer polishing
JP7010166B2 (en) Work double-sided polishing device and double-sided polishing method
JP3044040B1 (en) Material Layer Thickness and Chemical-A Method for Determining the End of Mechanical Polishing
JP2005101114A (en) In-situ detection of border of metal thin film state using optical interference through dynamic update reference
JP4147675B2 (en) Detection method, detection apparatus, and polishing apparatus
JP2010192700A (en) Calculating method of thickness of third light transmission layer of three-layer structure, and manufacturing method of soi wafer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees