JP4857202B2 - Radioactive material storage method - Google Patents

Radioactive material storage method Download PDF

Info

Publication number
JP4857202B2
JP4857202B2 JP2007163284A JP2007163284A JP4857202B2 JP 4857202 B2 JP4857202 B2 JP 4857202B2 JP 2007163284 A JP2007163284 A JP 2007163284A JP 2007163284 A JP2007163284 A JP 2007163284A JP 4857202 B2 JP4857202 B2 JP 4857202B2
Authority
JP
Japan
Prior art keywords
storage
tube
stored
storage tube
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007163284A
Other languages
Japanese (ja)
Other versions
JP2009002762A (en
Inventor
直己 熊谷
圭太 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007163284A priority Critical patent/JP4857202B2/en
Publication of JP2009002762A publication Critical patent/JP2009002762A/en
Application granted granted Critical
Publication of JP4857202B2 publication Critical patent/JP4857202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Building Environments (AREA)

Description

本発明は、発熱を伴う放射性物質の貯蔵方法と、その放射性物質貯蔵施設に関する。   The present invention relates to a method for storing a radioactive substance accompanied by heat generation and a radioactive substance storage facility therefor.

原子力発電所で使用された後の使用済燃料集合体は、原子力発電所の燃料貯蔵プール内に所定期間貯蔵保管され、その後に、ウラン及びプルトニウム等の再使用可能な核燃料物質を使用済燃料集合体から回収するために再処理施設で再処理される。   After being used at a nuclear power plant, the spent fuel assembly is stored and stored in the fuel storage pool of the nuclear power plant for a predetermined period of time, and then reusable nuclear fuel materials such as uranium and plutonium are used in the spent fuel assembly. Reprocessed at a reprocessing facility for recovery from the body.

この再処理で生じた高レベル放射性廃棄物はガラス固化体に製造されて、最終的には地下に設けられた処分場にて埋設処分される。しかし、そのガラス固化体は、製造直後は発熱量が高いため、数十年間専用の放射性物質貯蔵施設にて冷却しながら貯蔵し、埋設処分可能な発熱量にまで低下した後に埋設処分される。   The high-level radioactive waste generated by this reprocessing is produced into a vitrified body and finally buried in a disposal site provided underground. However, since the vitrified body has a high calorific value immediately after production, it is stored while cooling in a dedicated radioactive material storage facility for several decades, and is buried after being reduced to a calorific value that can be buried.

ガラス固化体の貯蔵施設の一例が特許文献1に記載されている。この例のガラス固化体貯蔵施設は、ガラス固化体を収納する複数の収納管を貯蔵ピット内に設置している。通風管が収納管の周囲を同心状に取り囲んでおり、収納管と通風管の間に貯蔵施設外から取り入れた空気を流している。   An example of a storage facility for vitrified bodies is described in Patent Document 1. In the vitrified body storage facility of this example, a plurality of storage tubes for housing the vitrified body are installed in the storage pit. A ventilation pipe concentrically surrounds the storage pipe, and air taken from outside the storage facility flows between the storage pipe and the ventilation pipe.

ガラス固化体はこの空気によって冷却される。ガラス固化体を冷却した空気は、暖められて貯蔵施設内に形成される排気通路を通って外部へ排出される。この冷却用の空気は、暖められた空気が上昇する力を利用して、自然循環により貯蔵施設内を流れる。   The vitrified body is cooled by this air. The air that has cooled the vitrified body is heated and discharged to the outside through an exhaust passage formed in the storage facility. The cooling air flows through the storage facility by natural circulation using the force by which the warmed air rises.

特許文献2も、放射性物質を収納する複数の収納管が貯蔵ピット内に設置された放射性物質貯蔵施設を記載し、その貯蔵施設への放射性物質の貯蔵方法を示している。この例の放射性物質貯蔵方法は、収納管の配置間隔が異なる貯蔵ピットを同じ貯蔵建屋内に備え、発熱量の高い貯蔵開始時点では放射性物質を収納管の配置間隔が大きい貯蔵ピットに収納し、一定期間経過して発熱量が所定の値以下に減衰したら収納管の配置間隔が小さい貯蔵ピットにある収納管に放射性物質を移し変えて貯蔵する。   Patent Document 2 also describes a radioactive material storage facility in which a plurality of storage tubes for storing radioactive materials are installed in a storage pit, and shows a method for storing the radioactive material in the storage facility. The radioactive material storage method of this example includes storage pits with different storage pipe arrangement intervals in the same storage building, and stores radioactive substances in storage pits with large storage pipe arrangement intervals at the start of storage with a high calorific value. When the calorific value is attenuated to a predetermined value or less after a certain period of time, the radioactive material is transferred and stored in the storage tube in the storage pit where the storage tube is arranged at a small interval.

特許文献3は、ガラス固化体を貯蔵施設へと収納する際の方法が記載されており、複数の貯蔵ピットを備えたガラス固化体貯蔵施設に対し、ガラス固化体を1つの貯蔵ピットが満杯になるまで収納してから次の貯蔵ピットに収納するのではなく、複数の貯蔵ピットに分散して収納していくことにより、冷却空気の出口温度を低くする方法が記載されている。また、貯蔵施設の例として、特許文献1,2と同様に、ガラス固化体を収納する複数の収納管を貯蔵ピット内に設置し、通風管が収納管の周囲を同心状に取り囲んでおり、収納管と通風管の間に貯蔵施設外から取り入れた空気を流す貯蔵施設の例が示されている。   Patent Document 3 describes a method for storing a vitrified body in a storage facility. One vitrified storage pit is filled with the vitrified body storage facility having a plurality of storage pits. A method is described in which the outlet temperature of the cooling air is lowered by dispersing the plurality of storage pits and storing them instead of storing them in the next storage pit. In addition, as an example of the storage facility, similarly to Patent Documents 1 and 2, a plurality of storage tubes for storing the vitrified body are installed in the storage pit, and the ventilation tube surrounds the storage tube concentrically, An example of a storage facility is shown in which air taken from outside the storage facility flows between the storage tube and the ventilation tube.

特開2001−305291号公報JP 2001-305291 A 特開平9−43384号公報Japanese Patent Laid-Open No. 9-43384 特開2001−33588号公報JP 2001-33588 A

自然循環で放射性物質貯蔵施設の貯蔵ピット内に冷却用の空気を流す場合、その空気の循環流量は貯蔵されるガラス固化体に含まれる放射性物質の発熱量に従って決まるため、空気流量を更に増加させてガラス固化体の冷却性能を向上させることは難しい。   When cooling air is allowed to flow in the storage pit of a radioactive material storage facility by natural circulation, the air flow rate is determined according to the calorific value of the radioactive material contained in the vitrified material to be stored. Therefore, it is difficult to improve the cooling performance of the vitrified body.

そこで、例えば、特許文献1に記載の貯蔵施設では、空気流量を増加せずに冷却性能を向上させるため、通風管を設けて収納管表面の空気流路を絞り込んで流速が増すような構造としている。   Thus, for example, in the storage facility described in Patent Document 1, in order to improve the cooling performance without increasing the air flow rate, a structure is provided in which a ventilation pipe is provided and the air flow path on the surface of the storage pipe is narrowed to increase the flow velocity. Yes.

冷却用の空気を収納管と通風管の間に形成される狭い環状流路に流すことによって、空気流速を増しているため、収納管表面の熱伝達率が大きくなる。このため、この貯蔵施設は、発熱量の大きな放射性物質も貯蔵可能になる。しかしながら、各収納管毎に通風管を設ける必要があり、構造が複雑になるとともに必要な部材量や設備費が増大することとなる。   By flowing the cooling air through a narrow annular passage formed between the storage tube and the ventilation tube, the air flow rate is increased, so that the heat transfer coefficient on the surface of the storage tube is increased. For this reason, this storage facility can also store radioactive materials having a large calorific value. However, it is necessary to provide a ventilation pipe for each storage pipe, which complicates the structure and increases the amount of necessary members and equipment costs.

構造簡素化のため通風管を排除した場合、貯蔵ピット内の収納管相互間の広い空間が空気流路となるため、収納管表面での空気流速は遅く、収納管表面の熱伝達率は小さくなる。そのため、除熱量が限られ、通風管を設けた場合に比べ発熱量の大きな放射性物質は貯蔵することができない。   When the ventilation pipe is excluded for the simplification of the structure, the wide space between the storage pipes in the storage pit becomes the air flow path, so the air flow rate on the storage pipe surface is slow and the heat transfer coefficient on the storage pipe surface is small. Become. Therefore, the amount of heat removal is limited, and a radioactive substance having a large calorific value cannot be stored as compared with the case where a ventilation pipe is provided.

一方、放射性物質の発熱量は貯蔵中に減衰していくため、貯蔵開始時点での発熱量に対する冷却性能をもつ設備は、一定期間貯蔵した放射性物質に対しては、過剰な冷却性能をもつ設備となる。そこで、特許文献2のように、発熱量の減衰に応じて冷却性能の異なる設備に放射性物質を貯蔵しようとした場合、設備は合理化が可能であるが、放射性物質を貯蔵中に移し変える作業が新たに必要となる。   On the other hand, since the calorific value of radioactive material decays during storage, facilities that have cooling performance for the calorific value at the start of storage are facilities that have excessive cooling performance for radioactive materials that have been stored for a certain period of time. It becomes. Therefore, as in Patent Document 2, when trying to store radioactive materials in equipment with different cooling performance according to the decay of the calorific value, the equipment can be rationalized, but the work of transferring the radioactive material during storage is not possible. Newly needed.

特許文献3のように、複数の貯蔵ピットに分散させて貯蔵した場合、1つの貯蔵ピットに集中して貯蔵した場合に比べて貯蔵ピット全体の総発熱量は小さくなるため、冷却空気出口温度を低減させることは可能である。しかし、特許文献3に記載されている貯蔵施設構造の例は、特許文献1と同じく収納管の周囲に通風管を設けた構造であり、新規に貯蔵する放射性物質に対して必要な冷却性能は変わらないので、全ての収納管に対して貯蔵開始時点での発熱量に対する冷却性能をもつように、通風管を備えておく必要がある。   As in Patent Document 3, when the storage is distributed and stored in a plurality of storage pits, the total heat generation amount of the entire storage pit is smaller than when the storage pits are concentrated and stored. It is possible to reduce. However, the example of the storage facility structure described in Patent Document 3 is a structure in which a ventilation pipe is provided around the storage pipe in the same manner as Patent Document 1, and the cooling performance required for a radioactive substance to be newly stored is Since it does not change, it is necessary to provide a ventilation pipe so that all the storage pipes have a cooling performance with respect to the amount of heat generated at the start of storage.

また、特許文献3は、貯蔵ピット内での放射性物質の収納順は示されていない。そこで、例えば通風管のない貯蔵施設に特許文献3を適用し、貯蔵ピット内の放射性物質の収納順として冷却空気の出口側又は入口側の収納管より順に収納した場合、ほぼ同時期に放射性物質を収納した収納管に周囲を囲まれた収納管が発生する恐れがある。その場合、着目する収納管とその周囲の収納管との温度差がほとんど無く、周囲の収納管への輻射放熱が期待できない状況となる可能性が十分考えられる。   Moreover, patent document 3 does not show the storage order of radioactive materials in the storage pit. Therefore, for example, when Patent Document 3 is applied to a storage facility without a ventilation pipe, and the storage order of radioactive materials in the storage pit is stored in order from the storage pipe on the outlet side or the inlet side of the cooling air, the radioactive material is almost at the same time. There is a possibility that a storage tube surrounded by the storage tube containing the gas will be generated. In that case, there is almost no temperature difference between the storage tube of interest and the surrounding storage tubes, and there is a possibility that radiation heat radiation to the surrounding storage tubes cannot be expected.

従って、本発明の目的は、放射性物質貯蔵施設の貯蔵ピット内の構造を簡素化しつつ、発熱量が高い貯蔵開始直後の放射性物質に必要な冷却性能を持つことができる放射性物質貯蔵方法および貯蔵施設を提供することにある。   Accordingly, an object of the present invention is to provide a radioactive material storage method and storage facility that can have the cooling performance necessary for a radioactive material immediately after the start of storage with a high calorific value while simplifying the structure in the storage pit of the radioactive material storage facility. Is to provide.

本発明の方法による解決手段は、冷却空気が通される貯蔵ピットに設けられた複数の収納管内に放射性物質を収納して前記放射性物質を貯蔵する放射性物質の貯蔵方法において、前記放射性物質を収納した前記収納管が前記貯蔵ピットの側壁に隣接しているか、前記放射性物質を収納した前記収納管に隣接している前記収納管のうち少なくとも1つが空のままの状態となるように、前記放射性物質を前記収納管に収納していき、次に、前記状態が保てない状態にまで前記放射性物質の前記貯蔵ピット内への貯蔵が進んだ後には、前記貯蔵ピット内に空で残されている前記収納管に前記放射性物質を収納する過程を有することを特徴とする放射性物質の貯蔵方法である。   According to another aspect of the present invention, there is provided a solution for storing a radioactive material by storing the radioactive material in a plurality of storage tubes provided in a storage pit through which cooling air is passed. The radioactive tube is adjacent to a side wall of the storage pit or at least one of the storage tubes adjacent to the storage tube storing the radioactive substance is left empty. After the substance is stored in the storage tube and then stored in the storage pit until the state where the state cannot be maintained, the radioactive substance is left empty in the storage pit. A method for storing a radioactive material, comprising the step of storing the radioactive material in the storage tube.

更には、冷却空気が通される貯蔵ピットに設けられた複数の収納管内に放射性物質を収納して前記放射性物質を貯蔵する放射性物質の貯蔵方法において、前記複数の収納管の内、相対的に冷却性能の低い前記収納管へ前記放射性物質を収納していき、冷却性能の低い前記収納管の全てに前記放射性物質を収納し終えたら、次に、前記複数の収納管の内、相対的に冷却性能の高い前記収納管へ前記放射性物質を収納する過程を有することを特徴とする放射性物質の貯蔵方法である。   Further, in the radioactive material storage method of storing the radioactive material by storing the radioactive material in a plurality of storage tubes provided in a storage pit through which cooling air is passed, When the radioactive material is stored in the storage pipe having a low cooling performance, and the radioactive material is stored in all the storage pipes having a low cooling performance, next, among the plurality of storage pipes, A method for storing a radioactive material comprising the step of storing the radioactive material in the storage tube having a high cooling performance.

また、冷却空気が通される貯蔵ピットに設けられた複数の収納管内に放射性物質を収納して前記放射性物質を貯蔵する放射性物質の貯蔵方法において、前記複数の収納管として、フィンが設けられた複数の収納管と前記フィンの無い収納管とが採用され、前記フィンの無い収納管へ前記放射性物質を収納していき、前記フィンの無い収納管の全てに前記放射性物質を収納し終えたら、次に、前記フィンが設けられた収納管へ前記放射性物質を収納する過程を有することを特徴とする放射性物質の貯蔵方法である。   Further, in the radioactive material storage method for storing the radioactive material by storing the radioactive material in a plurality of storage tubes provided in a storage pit through which cooling air is passed, fins are provided as the plurality of storage tubes. When a plurality of storage tubes and storage tubes without fins are employed, the radioactive material is stored in the storage tubes without fins, and when the radioactive material is stored in all of the storage tubes without fins, Next, the radioactive substance storage method is characterized by having a process of storing the radioactive substance in a storage tube provided with the fins.

また、冷却空気が通される貯蔵ピットに設けられた複数の収納管内に放射性物質を収納して前記放射性物質を貯蔵する放射性物質の貯蔵方法において、前記複数の収納管の内、輻射による熱の授受が可能な前記収納管が相対的に多く隣接している第1の前記収納管と相対的に少なく隣接している第2の前記収納管の内、前記第1の前記収納管に前記放射性物質を収納していき、前記第1の前記収納管の全てに前記放射性物質を収納し終えたら、次に、前記第2の前記収納管へ前記放射性物質を収納する過程を有することを特徴とする放射性物質の貯蔵方法である。   Further, in the radioactive material storage method of storing the radioactive material by storing the radioactive material in a plurality of storage tubes provided in a storage pit through which the cooling air is passed, the heat of the radiation due to radiation is contained in the plurality of storage tubes. Of the second storage pipes that are relatively few adjacent to the first storage pipes that are relatively adjacent to the storage pipes that can be exchanged, the radioactive rays are added to the first storage pipes. A step of storing the radioactive substance in the second storage tube after storing the radioactive material in the first storage tube. This is a method for storing radioactive materials.

本発明の施設による解決手段は、貯蔵ピットと、前記貯蔵ピット内に冷却空気を導く吸気通路と、前記貯蔵ピットから前記冷却空気を前記貯蔵ピットの外部に導く排気通路と、前記貯蔵ピット内に列数が縦横ともに3列以上の碁盤目状に配置され、内部に放射性物質が収納される複数の収納管と、を有する放射性物質貯蔵施設において、前記複数の収納管の内、前記放射性物質が収納された前記収納管は、前記放射性物質貯蔵ピットの側壁に直接的に面しているか、あるいは、前記放射性物質が収納された前記収納管に隣接する前記収納管のうち少なくとも1つの前記収納管が前記放射性物質を収納していない空の状態であることを特徴とする放射性物質貯蔵施設である。   The solution provided by the facility of the present invention includes a storage pit, an intake passage that guides cooling air into the storage pit, an exhaust passage that guides the cooling air from the storage pit to the outside of the storage pit, and the storage pit. In a radioactive material storage facility having a plurality of storage tubes in which the number of rows is arranged in a grid pattern with three or more rows both vertically and horizontally, and in which radioactive materials are stored, the radioactive material is included in the plurality of storage tubes. The stored storage tube directly faces the side wall of the radioactive material storage pit, or at least one of the storage tubes adjacent to the storage tube in which the radioactive material is stored. Is a radioactive substance storage facility characterized by being in an empty state in which the radioactive substance is not accommodated.

更には、貯蔵ピットと、前記貯蔵ピット内に冷却空気を導く吸気通路と、前記貯蔵ピットから前記冷却空気を前記貯蔵ピットの外部に導く排気通路と、前記貯蔵ピット内に列数が縦横ともに3列以上の碁盤目状に配置され、内部に放射性物質が収納される複数の収納管と、を有する放射性物質貯蔵施設において、前記複数の収納管の内、前記放射性物質が収納された前記収納管は、前記放射性物質が収納された前記収納管に隣接する前記収納管のうち少なくとも1つの前記収納管が前記放射性物質を収納していない空の状態であり、前記放射性物質が収納された前記収納管と前記空の前記収納管との間で輻射伝熱が可能とされていることを特徴とする放射性物質貯蔵施設である。   Furthermore, the storage pit, the intake passage for introducing the cooling air into the storage pit, the exhaust passage for guiding the cooling air from the storage pit to the outside of the storage pit, and the number of rows in the storage pit are 3 in both vertical and horizontal directions. In a radioactive material storage facility, the storage tube having a plurality of storage pipes arranged in a grid pattern in rows or more, and storing the radioactive substance therein, wherein the storage pipe in which the radioactive substance is stored among the plurality of storage pipes Is an empty state in which at least one of the storage tubes adjacent to the storage tube in which the radioactive material is stored does not store the radioactive material, and the storage in which the radioactive material is stored A radioactive substance storage facility characterized in that radiant heat transfer is possible between a tube and the empty storage tube.

また、貯蔵ピットと、前記貯蔵ピット内に冷却空気を導く吸気通路と、前記貯蔵ピットから前記冷却空気を前記貯蔵ピットの外部に導く排気通路と、前記貯蔵ピット内に列数が縦横ともに3列以上の碁盤目状に配置され、内部に放射性物質が収納される複数の収納管と、を有する放射性物質貯蔵施設において、前記収納管の内、最初に前記放射性物質が収納される第1の前記収納管と、前記第1の前記収納管に隣接する他の前記収納管の少なくとも1つの間に、前記第1の前記収納管と前記他の前記収納管との相互間の熱的輻射を遮断する配置で、且つ前記第1と他の前記収納管に面する両面が前記冷却空気に接するように前記貯蔵ピット内に仕切り部材が配置されていることを特徴とする放射性物質貯蔵施設である。   A storage pit; an intake passage for guiding cooling air into the storage pit; an exhaust passage for guiding the cooling air from the storage pit to the outside of the storage pit; In the radioactive substance storage facility having a plurality of storage pipes arranged in a grid pattern as described above and containing radioactive substances therein, the first of the radioactive pipes in which the radioactive substances are first stored among the storage pipes Thermal radiation between the first storage tube and the other storage tube is blocked between at least one of the storage tube and the other storage tube adjacent to the first storage tube. And a partition member is disposed in the storage pit so that both surfaces facing the first and other storage tubes are in contact with the cooling air.

本発明によれば、貯蔵ピット内の構造を簡素化し、かつ発熱量が高い貯蔵開始直後の放射性物質に必要な冷却性能を持つことができる。   According to the present invention, the structure in the storage pit can be simplified and the cooling performance necessary for the radioactive material immediately after the start of storage with a high calorific value can be obtained.

本発明の目的を達成するための一実施例における特徴は、初めに放射性物質を、隣接する収納管のうち少なくとも1つが空の状態となるような順に収納管に収納し、最後に、空の状態にある収納管に収納する貯蔵方法にある。   In one embodiment for achieving the object of the present invention, the radioactive substance is first stored in the storage tube in such an order that at least one of the adjacent storage tubes is empty, and finally the empty material is stored. The storage method is to store in a storage tube in a state.

このような特徴を備えて、放射性物質を収納する収納管に隣接して空の収納管が在ると、放射性物質から発生した熱は、放射性物質を収納した収納管の表面より冷却空気へと伝わる他に、放射性物質を収納した収納管から隣接する空の収納管へと輻射で伝わった後、空の収納管表面より冷却空気へと伝わることができる。このため、実質的に冷却空気への放熱面積が増大することになり、冷却空気の流速を増加させなくとも、発熱量の高い貯蔵開始時点の放射性物質に必要な冷却性能を持つことができる。   With this feature, if there is an empty storage tube adjacent to the storage tube that stores the radioactive material, the heat generated from the radioactive material is transferred to the cooling air from the surface of the storage tube that stores the radioactive material. In addition to being transmitted, after being transmitted by radiation from the storage tube containing the radioactive substance to the adjacent empty storage tube, it can be transmitted from the empty storage tube surface to the cooling air. For this reason, the heat radiation area to the cooling air is substantially increased, and the cooling performance necessary for the radioactive material at the start of storage with a high calorific value can be obtained without increasing the flow velocity of the cooling air.

また、最後に放射性物質を収納する収納管は、既に隣接する収納管すべてに放射性物質が収納された状態となるが、その場合、隣接する収納管に収納されている放射性物質は最初の方に貯蔵したものであるため、貯蔵開始時点より発熱量の減衰が進んでいるため、その収納管の温度は相当に低下したものとなる。このため、新しく放射性物質を収納した収納管から隣接する温度の低い収納管へと輻射によって熱が伝わるため、実質的に放熱面積が増大する効果が得られ、発熱量の高い貯蔵開始時点の放射性物質に必要な冷却性能を持つことができる。   In addition, the storage tube that stores the radioactive substance at the end is in a state where the radioactive substance is already stored in all the adjacent storage pipes. In this case, the radioactive substance stored in the adjacent storage pipe is in the first direction. Since it has been stored, since the amount of heat generation has been attenuated since the start of storage, the temperature of the storage tube is considerably reduced. For this reason, since heat is transferred by radiation from the storage tube containing the new radioactive substance to the adjacent storage tube having a low temperature, the effect of substantially increasing the heat radiation area is obtained, and the radiation at the start of storage with a high calorific value is obtained. It can have the cooling performance required for the substance.

貯蔵ピットに放射性物質を収納していく時、初期は貯蔵ピット内に貯蔵されている放射性物質が少なく、周囲に空の収納管が多いため、周囲の収納管への輻射放熱量を多くすることができるが、満杯に近づくと周囲には既に放射性物質を収納した収納管が多く在り、周囲への輻射放熱量が減衰する。そこで、放射性物質を収納する順番が後となる収納管の除熱性能を、初めのほうに収納する収納管に比べて、あらかじめ高めておくことで、冷却用の設備量を低減させることができる。   When storing radioactive material in the storage pit, initially there is little radioactive material stored in the storage pit and there are many empty storage pipes in the surrounding area, so increase the amount of radiation heat radiation to the surrounding storage pipes. However, when it is almost full, there are many storage tubes already containing radioactive materials, and the amount of radiated heat to the surroundings is attenuated. Therefore, the amount of cooling equipment can be reduced by increasing the heat removal performance of the storage pipe that is later in the order in which radioactive materials are stored compared to the storage pipe stored at the beginning. .

また、収納管や、隣接する収納管の間に設置する仕切り部材の表面を、塗装や溶射等で輻射率が増加するように表面処理すれば、収納管からの輻射による放熱量をさらに高めることができ、放射性物質の冷却性能を向上することができる。   In addition, if the surface of the storage tube or the partition member installed between adjacent storage tubes is surface-treated so that the emissivity is increased by painting or spraying, the amount of heat released by the radiation from the storage tube can be further increased. And the cooling performance of the radioactive substance can be improved.

以下に本発明の実施例を一層具体的に説明する。即ち、本発明の好適な一実施例である放射性物質貯蔵施設を以下に説明するとおりである。なお、本例では使用済核燃料の再処理で発生した高レベル放射性廃棄物をガラス固化したガラス固化体を貯蔵することを想定した場合の例を示す。   Examples of the present invention will be described more specifically below. That is, the radioactive substance storage facility which is a preferred embodiment of the present invention is as described below. In addition, in this example, the example at the time of presuming storing the vitrified body which vitrified the high level radioactive waste generated by reprocessing of a spent nuclear fuel is shown.

本実施例の放射性物質貯蔵施設1は、貯蔵建屋30を有し、この貯蔵建屋30内に、天井スラブ5によって仕切られた貯蔵ピット2及び搬送エリア6を設けている。上端部が天井スラブ5に取り付けられた複数の収納管4は、貯蔵ピット2内に配置される。   The radioactive substance storage facility 1 of the present embodiment has a storage building 30, and a storage pit 2 and a transport area 6 partitioned by a ceiling slab 5 are provided in the storage building 30. A plurality of storage tubes 4 whose upper ends are attached to the ceiling slab 5 are arranged in the storage pit 2.

ガラス固化体3(放射性物質)が内部に収納されるこれらの収納管4の下面と床スラブ12の間には下部プレナム部13が形成され、収納管4は垂直方向に熱膨張による伸びを吸収する構造となっている。   A lower plenum portion 13 is formed between the lower surface of the storage tube 4 in which the glass solidified body 3 (radioactive material) is stored and the floor slab 12, and the storage tube 4 absorbs the elongation due to thermal expansion in the vertical direction. It has a structure to do.

各収納管4の上端部は、プラグ10によって密封される。ガラス固化体3を任意の収納管4に収納,搬出するための移動可能な搬送台車7が、搬送エリア6内に設けられている。   The upper end of each storage tube 4 is sealed with a plug 10. A movable transport carriage 7 for storing and unloading the glass solidified body 3 in an arbitrary storage tube 4 is provided in the transport area 6.

本放射性物質貯蔵施設1は、貯蔵ピット2を6つ有する施設であり、各貯蔵ピット2内には、収納管4が縦横ともに3列以上で、具体的には縦7列,横20列にて140本備えられている。さらに1本の収納管にはガラス固化体3を9段収納することができる。なお、図2ないし図3は収納管4の列数を簡略化して図示している。   This radioactive material storage facility 1 is a facility having six storage pits 2. In each storage pit 2, there are three or more storage tubes 4 in both vertical and horizontal directions, specifically, in 7 vertical columns and 20 horizontal columns. 140 are provided. Furthermore, nine glass vitrified bodies 3 can be stored in one storage tube. 2 to 3 show the storage tube 4 in a simplified number of rows.

収納管4は、強度と耐熱性から鉄鋼やステンレス鋼等の金属管で構成される。鉄鋼の場合、外表面を塗装やメッキ,溶射等の防食処理が施されている。   The storage tube 4 is composed of a metal tube such as steel or stainless steel because of its strength and heat resistance. In the case of steel, the outer surface is subjected to anticorrosion treatment such as painting, plating, and thermal spraying.

収納管4内に収納されているガラス固化体3を冷却するための冷却空気を外部より取り入れる吸気通路8、及びガラス固化体3を冷却し温度が上昇した冷却空気を外部へ放出する排気通路9が、貯蔵建屋30内に設けられている。吸気通路8は下部プレナム部13に連絡され、排気通路9は上部プレナム部14に連絡されている。   An intake passage 8 for taking in cooling air for cooling the vitrified body 3 stored in the storage tube 4 from the outside, and an exhaust passage 9 for cooling the vitrified body 3 and releasing the cooling air whose temperature has risen to the outside. Is provided in the storage building 30. The intake passage 8 communicates with the lower plenum portion 13, and the exhaust passage 9 communicates with the upper plenum portion 14.

搬送台車7によって他の建屋から貯蔵建屋30に運ばれてきたガラス固化体3は、そのまま搬送台車7によって所定の収納管4の上方に運ばれ、プラグ10が外された収納管4内に収納され貯蔵される。ガラス固化体3を収納した後、搬送台車7によってプラグ10が収納管4の上端部に取り付けられ、収納管4が密封される。   The vitrified body 3 transported from the other building to the storage building 30 by the transport carriage 7 is transported as it is above the predetermined storage tube 4 by the transport cart 7 and stored in the storage tube 4 from which the plug 10 has been removed. And stored. After the glass solidified body 3 is stored, the plug 10 is attached to the upper end portion of the storage tube 4 by the transport carriage 7, and the storage tube 4 is sealed.

冷却空気は、貯蔵建屋30の外部から吸気通路8内に取り込まれ、下部プレナム部13に導かれる。冷却空気は、貯蔵ピット2内の収納管4周囲を上昇しながら収納管4内のガラス固化体3から放出される熱を除去する。ここで、暖められた冷却空気は、上部プレナム部14を通り、排気通路9を経て貯蔵建屋30の外部に放出される。この冷却空気は、暖められた空気が上昇する力を利用して、自然循環により貯蔵建屋30内を流れる。   The cooling air is taken into the intake passage 8 from the outside of the storage building 30 and guided to the lower plenum portion 13. The cooling air removes heat released from the vitrified body 3 in the storage tube 4 while rising around the storage tube 4 in the storage pit 2. Here, the warmed cooling air passes through the upper plenum portion 14 and is discharged to the outside of the storage building 30 through the exhaust passage 9. This cooling air flows through the storage building 30 by natural circulation, using the force by which the warmed air rises.

ガラス固化体3は、まず貯蔵ピット2内の収納管4のうち、図1に示すように、縦に7列あるうちの、1列おきの収納管4に収納する。1列おきにガラス固化体3を収納していくため、必ずガラス固化体3を収納した収納管4の両隣の列は、貯蔵ピット2の壁面か、空の収納管4となる。   First, the vitrified body 3 is stored in every other storage tube 4 out of seven storage columns 4 in the storage pit 2 as shown in FIG. Since the vitrified bodies 3 are accommodated every other row, the adjacent rows of the storage tubes 4 in which the vitrified bodies 3 are stored are either the wall surfaces of the storage pits 2 or empty storage tubes 4.

このため、図4に示すように、ガラス固化体3を収納した収納管4の表面から冷却空気へ熱伝達により放熱される他に、隣の列の空の収納管4に輻射で熱が伝わり、空の収納管4の表面から冷却空気へ熱伝達により放熱される。このため、放熱面積が増加する効果が得られ、ガラス固化体3に対する冷却性能が増加する。   Therefore, as shown in FIG. 4, heat is transferred from the surface of the storage tube 4 storing the glass solidified body 3 to the cooling air by heat transfer, and heat is transmitted to the empty storage tube 4 in the adjacent row by radiation. The heat is transferred from the surface of the empty storage tube 4 to the cooling air by heat transfer. For this reason, the effect that the heat dissipation area increases is obtained, and the cooling performance for the vitrified body 3 increases.

本発明を適用せず、貯蔵ピット2の端にある収納管4より隣接の収納管4へと順番にガラス固化体3を収納した場合、貯蔵して間もないガラス固化体3が収納された収納管4に周囲を囲まれた収納管4が発生する。その場合、周囲のガラス固化体3との発熱量の差がなくなるため、隣接収納管への輻射がほとんどなく、収納管4の表面から冷却空気への熱伝達のみとなり、冷却性能は小さくなる。   When the glass solidified body 3 is stored in order from the storage pipe 4 at the end of the storage pit 2 to the adjacent storage pipe 4 without applying the present invention, the glass solidified body 3 that has just been stored is stored. A storage tube 4 surrounded by the storage tube 4 is generated. In that case, since there is no difference in the amount of heat generated from the surrounding vitrified body 3, there is almost no radiation to the adjacent storage tube, only heat transfer from the surface of the storage tube 4 to the cooling air, and the cooling performance is reduced.

本実施例では、収納管4の周囲の流速を増加させる通風管を設置していないため、収納管4の表面から冷却空気への熱伝達率は小さく、貯蔵開始直後の高い発熱量では冷却性能が不足する。しかしながら、収納管4表面からの熱伝達に加えて、隣接する空の収納管4を通じて放熱すれば、通風管を用いて流速を増加させなくとも必要な冷却性能が得られ、通風管の削減による構造の簡素化を図ることができる。   In this embodiment, since the ventilation pipe that increases the flow velocity around the storage pipe 4 is not installed, the heat transfer rate from the surface of the storage pipe 4 to the cooling air is small, and the cooling performance is high at a high calorific value immediately after the start of storage. Is lacking. However, in addition to heat transfer from the surface of the storage tube 4, if the heat is radiated through the adjacent empty storage tube 4, the necessary cooling performance can be obtained without increasing the flow velocity using the ventilation tube. The structure can be simplified.

放射性物質貯蔵施設1内の全ての貯蔵ピット2に対して、1列おきにガラス固化体3を収納し終えたら、次に、図1の2順目に示す、空の収納管の中央列を除く2列に収納していく。このとき、貯蔵施設1全体の貯蔵容量に対して、4/7の量のガラス固化体が貯蔵されたことになる。仮に、この貯蔵施設1を満杯にするまでの期間を7年とすると、最初のガラス固化体が貯蔵されてから既に4年が経過したことになる。   After storing the vitrified bodies 3 in every other row for all the storage pits 2 in the radioactive material storage facility 1, next, the middle row of empty storage tubes shown in the second order in FIG. It will be stored in two rows. At this time, 4/7 of the vitrified body is stored with respect to the storage capacity of the entire storage facility 1. Assuming that the period until the storage facility 1 is full is 7 years, 4 years have already passed since the first vitrified body was stored.

2順目の収納する時には、両側の列の収納管4には、既に1順目でガラス固化体3を収納しているため、空の収納管4に比べて温度が上昇している。しかしながら、1順目で収納したガラス固化体3は4年が経過しているため、発熱量は減衰して貯蔵開始時点よりも小さくなっている。   When storing in the second order, the vitrified bodies 3 are already stored in the storage tubes 4 on both sides in the first order, so that the temperature rises compared to the empty storage tube 4. However, since the vitrified body 3 stored in the first order has passed four years, the calorific value is attenuated and is smaller than the storage start time.

図10にガラス固化体3の貯蔵開始時からの発熱量の減衰の例を示す。図10の減衰の例では、貯蔵してから4年経過した場合、発熱量はほぼ半分にまで減衰している。このため、2順目にガラス固化体3を収納していく時には、1順目に収納した両側の収納管内のガラス固化体3の発熱量もほぼ半分になる。   FIG. 10 shows an example of attenuation of the calorific value from the start of storage of the vitrified body 3. In the example of attenuation in FIG. 10, when four years have passed since storage, the calorific value is attenuated to almost half. For this reason, when the vitrified bodies 3 are stored in the second order, the heat generation amount of the vitrified bodies 3 in the storage tubes on both sides stored in the first order is also almost halved.

収納管4の温度は、収納しているガラス固化体3の発熱量が大きいほど高くなるため、2順目で新たにガラス固化体3を収納した収納管4よりも、1順目でガラス固化体3を収納した収納管4の方が温度が低い。このため、空の収納管よりは小さいが、2順目に収納した収納管から1順目に収納した収納管への輻射による放熱面積増加のため、新しく収納したガラス固化体3に対する冷却性能が、周囲の収納管への輻射の無い場合に比べて向上する。   The temperature of the storage tube 4 becomes higher as the calorific value of the stored glass-solidified body 3 increases, and therefore, the glass-solidified body 3 becomes vitrified in the first order than the storage tube 4 that newly stores the glass-solidified body 3 in the second order The temperature of the storage tube 4 storing the body 3 is lower. For this reason, although it is smaller than an empty storage tube, the cooling performance with respect to the newly stored vitrified body 3 is increased due to an increase in heat radiation area due to radiation from the storage tube stored in the second order to the storage tube stored in the first order. Improved compared to the case where there is no radiation to the surrounding storage tube.

一方、1順目にガラス固化体3を収納した収納管は、逆に2順目に収納した収納管からの輻射を受けるため、冷却性能が低下することになる。しかしながら、既に発熱量が減少し、ガラス固化体3の制限温度に対して余裕があるため、新しくガラス固化体3を収納した収納管4から輻射を受けて温度が上昇したとしても、制限温度を超えることは無く、問題ない。   On the other hand, since the storage tube in which the vitrified body 3 is stored in the first order receives radiation from the storage tube stored in the second order, the cooling performance is lowered. However, since the heat generation amount has already decreased and there is room for the limit temperature of the vitrified body 3, even if the temperature rises due to radiation from the storage tube 4 that newly accommodates the vitrified body 3, the limit temperature is reduced. It does not exceed, and there is no problem.

さらに、2順目の収納管4が満杯になったら、中央列の残りの収納管4に収納していく。このとき、両隣の列の収納管4に収納されたガラス固化体は6年が経過しており、さらに発熱量が減少していることになる。   Further, when the second storage tube 4 is full, it is stored in the remaining storage tubes 4 in the center row. At this time, six years have passed since the vitrified bodies stored in the storage tubes 4 in both adjacent rows, and the amount of heat generation has further decreased.

ガラス固化体3の収納順は、放射性物質の発熱量の減衰量や収納管の配列等によって、図1に示す順以外に様々な収納順が考えられる。図5には、他の収納順の例として、1順目は前後左右1つ置きの収納管4に収納し、2順目で残りの収納管4に収納する例を示している。この例では、隣接する4本の収納管への輻射放熱が期待できる。   As for the storage order of the vitrified body 3, various storage orders other than the order shown in FIG. 1 are conceivable depending on the attenuation of the calorific value of the radioactive substance, the arrangement of the storage tubes, and the like. FIG. 5 shows an example of another storage order in which the first order is stored in every other storage pipe 4 in the front, rear, left and right, and the second order is stored in the remaining storage pipes 4. In this example, radiation heat dissipation to the four adjacent storage tubes can be expected.

隣接する空や低発熱の収納管4への輻射量は、お互いの収納管外表面の輻射率によって変化する。隣接する収納管への輻射量を増やして冷却性能を上げるには、収納管外表面の輻射率が大きいほうが良い。そこで、例えば収納管表面に塗装やメッキ,溶射等を用いて、輻射率を増加させれば、隣接する収納管4への輻射量が増加して、より冷却性能を向上させることができる。   The amount of radiation to the adjacent empty or low heat generating storage tubes 4 varies depending on the radiation rate of the outer surfaces of the storage tubes. In order to increase the amount of radiation to the adjacent storage tube and improve the cooling performance, it is better that the radiation rate of the outer surface of the storage tube is large. Therefore, for example, if the radiation rate is increased by using coating, plating, thermal spraying or the like on the surface of the storage tube, the amount of radiation to the adjacent storage tube 4 is increased, and the cooling performance can be further improved.

図16は、貯蔵ピット2内に千鳥状に配置した収納管4に本発明を適用した例を示す。収納管4は、貯蔵ピット2内の短辺方向に7本および6本並んだ列がそれぞれ交互に配置されている。まず1順目では、1列に7本ある収納管4Mにガラス固化体3を収納する。ガラス固化体3を収納する収納管4Mの列の間には空の状態の収納管4Nがあるため、収納管4Mより直接空気へと伝わる伝熱経路のほかに、収納管4Mより収納管4Nに放射で熱が伝えられ収納管4Nより空気へと熱が伝わる伝熱経路が加わるため、端の収納管4より順に貯蔵する場合に比べて放熱面積が増えることになり、冷却性能が向上する。   FIG. 16 shows an example in which the present invention is applied to the storage pipes 4 arranged in a staggered manner in the storage pit 2. In the storage tube 4, seven and six rows arranged in the short side direction in the storage pit 2 are alternately arranged. First, in the first order, the vitrified bodies 3 are stored in seven storage tubes 4M in one row. Since there is an empty storage tube 4N between the rows of storage tubes 4M that store the glass solid bodies 3, in addition to the heat transfer path that is directly transferred from the storage tube 4M to the air, the storage tube 4N is connected to the storage tube 4M. Since heat is transmitted by radiation to the heat transfer path through which heat is transferred from the storage tube 4N to the air, the heat radiation area is increased as compared with the case where the storage tube 4 is sequentially stored from the end storage tube 4, and the cooling performance is improved. .

貯蔵施設1にある全ての貯蔵ピット2にある収納管4Mにガラス固化体を収納し終えた時点で、この貯蔵施設1を満杯にする期間に対して、およそ0.56倍 の期間が経過していることになる。仮に、この貯蔵施設1を満杯にする期間を10年とすると、5,6年が経過したことになる。   When the vitrified material has been stored in the storage pipes 4M in all the storage pits 2 in the storage facility 1, a period of about 0.56 times has elapsed with respect to the period in which the storage facility 1 is full. Will be. If the period for filling the storage facility 1 is 10 years, 5 or 6 years have passed.

続いて2順目で、空いている収納管4Nにガラス固化体を収納していく。今度は、両隣の列の収納管4Mは既に1順目にガラス固化体3を収納し終えているので、中のガラス固化体3からの発熱によって収納管4Mの温度が上昇している。しかし、貯蔵開始直後の収納管4Nのガラス固化体3に比べて、収納管4Mのガラス固化体は少なくとも5,6年経過しているため、仮に図10のように発熱量が減衰するとすれば、収納管4Mの発熱量は収納管4Nのほぼ半分となる。したがって、収納管4Nより収納管4Mへと放射伝熱が起こり、冷却性能が向上する。   Subsequently, in a second order, the vitrified body is stored in an empty storage tube 4N. In this case, since the storage tubes 4M in the adjacent rows have already stored the vitrified bodies 3 in the first order, the temperature of the storage tubes 4M rises due to heat generated from the vitrified bodies 3 inside. However, compared with the vitrified body 3 of the storage tube 4N immediately after the start of storage, since the vitrified body of the storage tube 4M has passed at least 5 or 6 years, if the calorific value attenuates as shown in FIG. The calorific value of the storage tube 4M is almost half that of the storage tube 4N. Therefore, radiant heat transfer occurs from the storage tube 4N to the storage tube 4M, and the cooling performance is improved.

また、図1や図5に示す方法だけでは冷却性能が足りない場合には、冷却性能をあげるため、図14に示すように、隣接する収納管4の間に仕切り板11を設け、収納管4より仕切り板11へ輻射で熱を伝え、仕切り板11より冷却空気へと放熱させることで冷却性能を向上させることができる。   In addition, when the cooling performance is insufficient only by the method shown in FIGS. 1 and 5, in order to improve the cooling performance, as shown in FIG. 14, a partition plate 11 is provided between the adjacent storage tubes 4, and the storage tubes Heat can be transmitted from 4 to the partition plate 11 by radiation, and the cooling performance can be improved by dissipating heat from the partition plate 11 to the cooling air.

仕切り板11は、収納管4の間を仕切るように設置された板状の構造物で、図14に示すように、両端を貯蔵ピット2の床スラブ12と天井スラブ5に接続された垂直支持柱16や、両端を貯蔵ピット2の両側の壁に接続された水平支持柱17に溶接あるいはボルト止めにより取り付けられる。仕切り板11は十分な強度と耐熱性が必要なことから鉄鋼、あるいはステンレス鋼,アルミ合金等の金属で構成される。また、腐食に対する長期間の耐久性も必要なことから、鉄鋼には塗装や溶射,メッキ,アルミ合金には陽極酸化による表面の防食処理を施している。   The partition plate 11 is a plate-like structure installed so as to partition between the storage pipes 4 and is vertically supported with both ends connected to the floor slab 12 and the ceiling slab 5 of the storage pit 2 as shown in FIG. It is attached to the column 16 or a horizontal support column 17 having both ends connected to the walls on both sides of the storage pit 2 by welding or bolting. Since the partition plate 11 needs sufficient strength and heat resistance, the partition plate 11 is made of metal such as steel, stainless steel, or aluminum alloy. In addition, since long-term durability against corrosion is also required, steel is subjected to surface anticorrosion treatment by painting, spraying, plating, and aluminum alloy by anodization.

仕切り板11の役割は、前述のように収納管4の輻射熱を受けて冷却空気へと放熱することであり、冷却空気の流路を完全に分割することではない。このため、放射性物質の冷却に必要な輻射熱を受けることができれば、多少の隙間が空いていても良い。また、形状も、平らな板でなく、湾曲していたり、突起物があっても問題ない。   The role of the partition plate 11 is to receive the radiant heat of the storage tube 4 and dissipate heat to the cooling air as described above, and does not completely divide the cooling air flow path. For this reason, as long as it can receive the radiant heat required for cooling of a radioactive substance, some clearance gaps may be vacant. Also, the shape is not a flat plate, and there is no problem even if it is curved or has protrusions.

仕切り板11を用いた場合にも、本発明のように、収納管4への収納順を考慮することでさらに冷却性能を向上させることができる。図6にその例を示す。図6の例では、仕切り板11を、3列おきの収納管4に対して2枚設置する。そうすると、片側のみ仕切り板11に面した収納管4Bと、両側で仕切り板11に面した収納管4Cとに大きく分けられる。   Even when the partition plate 11 is used, the cooling performance can be further improved by considering the storage order in the storage tube 4 as in the present invention. An example is shown in FIG. In the example of FIG. 6, two partition plates 11 are installed for every three rows of storage tubes 4. If it does so, it will be divided roughly into the storage tube 4B which faced the partition plate 11 only on one side, and the storage tube 4C which faced the partition plate 11 on both sides.

等発熱量のガラス固化体が全ての収納管に収納されたと仮定した場合、両側で仕切り板11に面している収納管4Cは、片側のみで仕切り板11に面する4Bよりも、仕切り板11を介して放熱する経路が増えるため、冷却性能が高いと言える。   When it is assumed that the glass solids having the same heat generation amount are stored in all the storage tubes, the storage tube 4C facing the partition plate 11 on both sides is separated from the partition plate 4B facing the partition plate 11 only on one side. 11 can be said to have high cooling performance because the number of paths for heat dissipation increases through 11.

そこで、周囲への輻射放熱が多大に期待できる1順目および2順目は、片側のみ仕切り板11に面した収納管4Bに収納し、最後に、貯蔵量が増えて周囲への輻射放熱が小さくなる3順目には、冷却性能の高い両側に仕切り板11に面した収納管4Cに収納することで、効率よく放射性物質の制限温度以下を維持しながら、最低限の部材量で貯蔵可能となる。   Therefore, the first and second orders in which radiation radiation to the surroundings can be greatly expected are stored in the storage tube 4B facing the partition plate 11 only on one side, and finally, the amount of storage increases and radiation radiation to the surroundings is reduced. In order of decreasing 3rd order, it can be stored in a minimum amount of material while maintaining the temperature below the limit of radioactive material efficiently by storing in the storage tube 4C facing the partition plate 11 on both sides with high cooling performance. It becomes.

図11を用いてもう少し詳細に説明する。1順目および2順目は、片側のみ仕切り板11に面した収納管4Bにガラス固化体3Xを収納する。このときガラス固化体3Xからの熱は、収納管4Bの表面より空気へと熱伝達で伝えられる経路と、輻射によって仕切り板11へと伝わり、仕切り板11より空気へと熱伝達で伝えられる経路によって放熱される。   This will be described in more detail with reference to FIG. In the first order and the second order, the vitrified body 3X is stored in the storage tube 4B facing the partition plate 11 only on one side. At this time, heat from the vitrified body 3X is transferred from the surface of the storage tube 4B to the air by heat transfer, and transferred from the partition plate 11 to the air by radiation and transferred from the partition plate 11 to the air by heat transfer. Radiated by

仕切り板11は収納管4Bの片側のみであるが、仕切り板11を挟んで隣の収納管4Cにはまだガラス固化体が収納されていないので、仕切り板11は両側から空気に放熱することができる。   Although the partition plate 11 is only on one side of the storage tube 4B, since the vitrified body is not yet stored in the adjacent storage tube 4C across the partition plate 11, the partition plate 11 can radiate heat to the air from both sides. it can.

3順目は、両側に仕切り板11がある収納管4Cにガラス固化体3Yを収納する。このときもガラス固化体3Yからの熱は、収納管4Cの表面より空気へと熱伝達で伝えられる経路と、輻射によって仕切り板11へと伝わり、仕切り板11より空気へと熱伝達で伝えられる経路によって放熱される。   In the third order, the vitrified body 3Y is stored in the storage tube 4C having the partition plates 11 on both sides. Also at this time, the heat from the vitrified body 3Y is transferred to the air from the surface of the storage tube 4C to the air and to the partition plate 11 by radiation, and is transferred from the partition plate 11 to the air by heat transfer. Heat is dissipated by the route.

ここで1,2順目と異なるのは、仕切り板11を挟んで隣の収納管4Bは空ではなく、既に1,2順目でガラス固化体3Xを収納しているため、仕切り板11から空気への放熱量が1,2順目に比べて少なくなることである。その分、収納管4Cは両側に仕切り板11が設置されているので、ガラス固化体3Yを十分に冷却することができる。   Here, the difference from the first and second orders is that the adjacent storage tube 4B across the partition plate 11 is not empty, and the vitrified bodies 3X are already stored in the first and second orders. The amount of heat released to the air is smaller than the first and second orders. Accordingly, since the partition plates 11 are installed on both sides of the storage tube 4C, the vitrified body 3Y can be sufficiently cooled.

収納管4の場合と同様に、仕切り板11表面の輻射率が大きいほど、収納管4から仕切り板11への輻射量も大きくなる。このため、仕切り板11表面の輻射率が大きくなるように仕切り板11表面を加工することで、収納管4の冷却性能をより向上させることができる。例えば、仕切り板表面に対して塗装やメッキ,溶射,陽極酸化等を用いることで、輻射率を増加させればよい。   As in the case of the storage tube 4, the greater the radiation rate on the surface of the partition plate 11, the greater the amount of radiation from the storage tube 4 to the partition plate 11. For this reason, the cooling performance of the storage pipe | tube 4 can be improved more by processing the partition plate 11 surface so that the radiation rate of the partition plate 11 surface may become large. For example, the emissivity may be increased by using painting, plating, thermal spraying, anodizing, or the like on the partition plate surface.

仕切り板11を設置することで、貯蔵ピット2内の構造部材が増加することになる。しかし、各収納管4毎に通風管15を設置する構造に比べて、通風管15と仕切り板11の厚さが同じ場合、部材の量は約35%程度となり、構造簡素化を図ることができる。   The installation of the partition plate 11 increases the number of structural members in the storage pit 2. However, when the ventilation pipe 15 and the partition plate 11 have the same thickness as compared with the structure in which the ventilation pipe 15 is installed for each storage pipe 4, the amount of members is about 35%, and the structure can be simplified. it can.

さらに、通風管のように、板を曲げて管形状を作る必要がなく、板状の部材をそのまま設置するのみで良いので、部材を加工する手間を削減することもできる。   Furthermore, unlike a ventilation pipe, it is not necessary to bend a plate to form a pipe shape, and it is only necessary to install a plate-like member as it is, so that it is possible to reduce labor for processing the member.

図15には、仕切り板11を用いた他の貯蔵例を示す。図15の例では、仕切り板11を、1列おきの収納管4に対して1枚設置する。そうすると、各列の収納管4は両側が仕切り板11に面する。   FIG. 15 shows another example of storage using the partition plate 11. In the example of FIG. 15, one partition plate 11 is installed for every other row of storage tubes 4. Then, both sides of the storage tubes 4 in each row face the partition plate 11.

1順目は、仕切り板11で区分された各収納管4の列のうち、貯蔵ピット側壁面31に面した収納管4Hと、各列の中央の収納管4Jに収納する。図15の例では、仕切り板11を挟んで同じ発熱量の収納管4Hないし収納管4Jが並ぶため、仕切り板11は両側の収納管より同量の放射熱を受ける。このため、仕切り板11の反対側の面からの放熱は期待できないが、仕切り板11に平行な側には貯蔵ピットの側壁面31か空の収納管4Kが位置するため、そちらへの放射による放熱は期待できる。   The first order is stored in the storage pipe 4H facing the storage pit side wall surface 31 and the storage pipe 4J in the center of each of the storage pipes 4 divided by the partition plate 11. In the example of FIG. 15, since the storage tubes 4H to 4J having the same calorific value are arranged across the partition plate 11, the partition plate 11 receives the same amount of radiant heat from the storage tubes on both sides. For this reason, heat radiation from the surface opposite to the partition plate 11 cannot be expected, but the side wall surface 31 of the storage pit or the empty storage tube 4K is located on the side parallel to the partition plate 11, and therefore, due to radiation to that side. Heat dissipation can be expected.

2順目は、仕切り板11で区分された各収納管4の列のうち、各列の中央の収納管4Jの両隣の収納管4Lに収納する。収納管4Lは、1順目で既に貯蔵済みの収納管4Jと、空の収納管4Kに隣接する。空の収納管4Kへはもちろんのこと、1順目に収納した収納管4Jも、既に貯蔵施設1が満杯になるまでの期間の3/7の期間が経過し、収納管4Lよりも発熱量が低くなっているため、収納管4Lより収納管4Kおよび収納管4Jへの放射による放熱が期待できる。   In the second order, among the storage tube 4 rows divided by the partition plate 11, the storage tubes 4L are stored in the storage tubes 4L adjacent to the storage tube 4J at the center of each row. The storage tube 4L is adjacent to the storage tube 4J already stored in the first order and the empty storage tube 4K. Of course, the storage tube 4J stored first, as well as the empty storage tube 4K, has already passed 3/7 of the period until the storage facility 1 is full, and the amount of heat generated is higher than that of the storage tube 4L. Therefore, heat radiation by radiation from the storage tube 4L to the storage tube 4K and the storage tube 4J can be expected.

最後の3順目には、空の状態で残っている収納管4Kに収納する。収納管4Kの両隣は1順目で既に貯蔵済みの収納管4Hと、2順目で既に収納済みの収納管4Lに隣接する。収納管4Hおよび収納管4Lともに収納管4Hよりも貯蔵期間が長いために発熱量は小さく、したがって収納管4Kより収納管4Hおよび収納管4Lへの放射による放熱が期待できる。   In the last third order, they are stored in the storage tube 4K that remains empty. Both sides of the storage tube 4K are adjacent to the storage tube 4H already stored in the first order and the storage tube 4L already stored in the second order. Since both the storage tube 4H and the storage tube 4L have a longer storage period than the storage tube 4H, the amount of heat generated is small. Therefore, heat radiation from the storage tube 4K to the storage tube 4H and the storage tube 4L can be expected.

仕切り板11の代わりに、収納管4にフィンを設ける場合、例えば、図12に示すように、フィンのついた収納管4Dと、フィンの無い収納管4Eを交互に1列ずつ配置する。   When fins are provided in the storage tube 4 instead of the partition plate 11, for example, as shown in FIG. 12, the storage tubes 4D with fins and the storage tubes 4E without fins are alternately arranged in a row.

まず、図12に示すように、冷却性能の低い、フィンのついていない収納管4Eにガラス固化体3を収納する。1列おきにフィンがついた空の収納管4Dが配置されるので、ガラス固化体の収納した収納管4Eから空の収納管4Dへと輻射で熱が伝わり、空の収納管4Dから空気へと放熱される。このため、フィンがなくとも十分な冷却性能を持つことができる。   First, as shown in FIG. 12, the vitrified body 3 is stored in a storage tube 4E having low cooling performance and having no fins. Since empty storage tubes 4D with fins arranged in every other row are arranged, heat is transmitted from the storage tube 4E containing the glass solidified body to the empty storage tube 4D by radiation, and from the empty storage tube 4D to the air. And dissipate heat. For this reason, sufficient cooling performance can be obtained without fins.

2順目は、既に1順目でガラス固化体が収納された収納管4Eの間に収納していくため、1順目に比べて隣接する収納管への輻射が期待できないが、2順目に収納する収納管4Dにはフィンがついているため、フィンの無い収納管4Eと比べて冷却性能は高く、十分な冷却性能を持つことができる。このように貯蔵することで、フィンのついた収納管4Dの本数を削減することができる。   In the second order, since it is stored between the storage tubes 4E in which the vitrified bodies are already stored in the first order, radiation to the adjacent storage tubes cannot be expected compared to the first order. Since the storage tube 4D stored in the housing has fins, the cooling performance is higher than that of the storage tube 4E without fins, and sufficient cooling performance can be obtained. By storing in this way, the number of storage tubes 4D with fins can be reduced.

もし、ガラス固化体3の収納順を規定せず、貯蔵ピット2の端の収納管4より順に収納していくなどした場合、隣接の収納管への輻射を確実に期待できないので、全ての収納管4にフィンをつける必要がある。   If the storage order of the vitrified bodies 3 is not specified and if the storage tubes 4 are stored in order from the storage tube 4 at the end of the storage pit 2, radiation to the adjacent storage tubes cannot be expected with certainty. It is necessary to attach a fin to the tube 4.

これに対し、本発明を適用することで、フィンのついた収納管4Dの本数を削減することができ、構造簡素化を図ることができる。   On the other hand, by applying the present invention, the number of storage tubes 4D with fins can be reduced, and the structure can be simplified.

また、図13に示すように、隣接する収納管の本数の多い収納管より順にガラス固化体を収納する方法もある。図13はこれまでの例と異なり、収納管が貯蔵ピット内に4列×11列配置された場合の例である。   Moreover, as shown in FIG. 13, there is also a method of storing the vitrified body in order from the storage tubes having a large number of adjacent storage tubes. FIG. 13 is an example in which the storage tubes are arranged in 4 rows × 11 rows in the storage pit, unlike the previous examples.

図13の1順目に黒で示した収納管4Fは、周囲を他の収納管に囲まれている。そこで、まず周囲を他の収納管で囲まれた収納管4Fより先にガラス固化体を収納すると、片側が貯蔵ピットの壁に面した収納管4Gは空のままなので、輻射によって空の収納管4Gへと熱が伝わり、空の収納管4Gより空気へと放熱される。   The storage tube 4F shown in black in the first order in FIG. 13 is surrounded by another storage tube. Therefore, when the vitrified body is first stored prior to the storage tube 4F surrounded by another storage tube, the storage tube 4G with one side facing the wall of the storage pit remains empty. Heat is transferred to 4G and is radiated from the empty storage tube 4G to the air.

もし、貯蔵ピットの端の収納管より順に収納していった場合、貯蔵ピットの中ほどにある収納管4Fは、ガラス固化体を既に収納した収納管に周囲を囲まれることになり、他の収納管への輻射が期待できなくなり、その分、冷却性能が小さくなる。   If the storage pipes are stored in order from the storage pipe at the end of the storage pit, the storage pipe 4F in the middle of the storage pit is surrounded by a storage pipe that already stores the glass solidified body. Radiation to the storage tube cannot be expected, and the cooling performance is reduced accordingly.

周囲を他の収納管で囲まれた収納管4Fに全て収納し終えたら、2順目に片面を貯蔵ピット2の壁面に面した収納管4Gに収納する。片面が壁面に面しているため、壁面への輻射による放熱が期待できることになる。   When all the storage is completed in the storage tube 4F surrounded by other storage tubes, the one surface is stored in the storage tube 4G facing the wall surface of the storage pit 2 in the second order. Since one side faces the wall surface, heat radiation by radiation to the wall surface can be expected.

このように、隣接する収納管の本数が多い収納管より先に収納していく方法を用いても、効率よく冷却することが可能となる。   As described above, even when a method of storing before the storage tubes having a large number of adjacent storage tubes is used, it is possible to efficiently cool.

これまでに述べたように、貯蔵開始時の発熱量が高い期間には隣接する収納管4や仕切り板11に輻射で熱を伝え、空気へと放熱させることにより高い冷却性能を得る方法は、図4に示すように、隣接する収納管4との間に輻射を遮る構造物がほとんど無い場合か、図7に示すように、隣接する収納管4との間に仕切り板11があり、仕切り板の両面より空気への放熱が可能な構造とすることで大きな効果が得られる。   As described so far, in the period when the amount of heat generated at the start of storage is high, the method of obtaining high cooling performance by transferring heat to the adjacent storage tube 4 or partition plate 11 by radiation and dissipating it to the air, As shown in FIG. 4, when there is almost no structure that blocks radiation between the adjacent storage tubes 4, or as shown in FIG. 7, there is a partition plate 11 between the adjacent storage tubes 4, and the partition A great effect can be obtained by adopting a structure capable of releasing heat to the air from both sides of the plate.

これに対し、図8および図9に示す、収納管4の周囲に通風管15を設置した従来の放射性物質貯蔵施設では、収納管4からの輻射は収納管周囲にある通風管15で遮られてしまう。このため、収納管4が空の場合であっても、発熱量の高いガラス固化体3が収納されていても、隣接する収納管4の冷却性能に影響を及ぼさず、周囲に空の収納管4を配置したとしても冷却性能が向上することは無い。   On the other hand, in the conventional radioactive substance storage facility shown in FIGS. 8 and 9 in which the ventilation pipe 15 is installed around the storage pipe 4, radiation from the storage pipe 4 is blocked by the ventilation pipe 15 around the storage pipe. End up. For this reason, even if the storage tube 4 is empty or the vitrified body 3 having a high calorific value is stored, the cooling performance of the adjacent storage tube 4 is not affected, and the empty storage tube is surrounded. Even if 4 is arranged, the cooling performance is not improved.

また、本発明は、放射性物質の貯蔵順は規定するが、貯蔵中に放射性物質を移し変える手間を必要とせず、貯蔵中に特別な設備を加えることもなく、貯蔵ピット内の構造を簡素化し、かつ発熱量が高い放射性物質に対して効率よく冷却することができる。   In addition, the present invention defines the storage order of radioactive materials, but does not require the trouble of transferring the radioactive materials during storage, and does not require special equipment during storage, simplifying the structure in the storage pit. In addition, it is possible to efficiently cool a radioactive substance having a high calorific value.

これまで例に示した貯蔵方法および貯蔵施設は、ガラス固化体ではなく、使用済燃料集合体を貯蔵する場合においても同様に適用可能である。   The storage method and storage facility shown in the examples so far can be applied to the case of storing spent fuel assemblies instead of vitrified bodies.

本発明は、原子力発電所で発生する使用済燃料集合体の使用済燃料再処理施設で発生する高レベル放射性廃棄物のガラス固化体等の、発熱を伴う放射性物質を貯蔵するのに好適な放射性物質貯蔵施設に利用分野がある。   The present invention relates to a radioactive material suitable for storing radioactive materials that generate heat, such as vitrified bodies of high-level radioactive waste generated at spent fuel reprocessing facilities for spent fuel assemblies generated at nuclear power plants. There is a field of use in material storage facilities.

本発明の好適な一実施例である放射性物質の貯蔵方法を示す概念図である。It is a conceptual diagram which shows the storage method of the radioactive material which is one preferable Example of this invention. 本発明の好適な一実施例である放射性物質の垂直断面図である。1 is a vertical sectional view of a radioactive substance which is a preferred embodiment of the present invention. 図2の水平断面図である。FIG. 3 is a horizontal sectional view of FIG. 2. 図2の貯蔵ピット内の拡大図である。FIG. 3 is an enlarged view in the storage pit of FIG. 2. 放射性物質の貯蔵方法の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the storage method of a radioactive substance. 貯蔵建屋の他の構成例での貯蔵方法の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the storage method in the other structural example of a storage building. 図6での貯蔵ピット内の拡大図である。It is an enlarged view in the storage pit in FIG. 従来の放射性物質貯蔵施設の断面図にして、上図が立て断面を、下図が平断面を表す。In the sectional view of the conventional radioactive substance storage facility, the upper figure shows the vertical section and the lower figure shows the flat section. 図8の貯蔵ピット内の拡大図である。It is an enlarged view in the storage pit of FIG. 放射性物質の発熱量の減衰を示す例である。It is an example which shows attenuation | damping of the emitted-heat amount of a radioactive substance. 図6での伝熱形態を示す図である。It is a figure which shows the heat-transfer form in FIG. 貯蔵建屋の他の構成例での貯蔵方法の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the storage method in the other structural example of a storage building. 貯蔵建屋の他の構成例での貯蔵方法の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the storage method in the other structural example of a storage building. 図6の貯蔵ピット内の拡大図である。It is an enlarged view in the storage pit of FIG. 貯蔵建屋の他の構成例での貯蔵方法の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the storage method in the other structural example of a storage building. 貯蔵建屋の他の構成例での貯蔵方法の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the storage method in the other structural example of a storage building.

符号の説明Explanation of symbols

1 放射性物質貯蔵施設
2 貯蔵ピット
3 ガラス固化体
4 収納管
5 天井スラブ
6 搬送エリア
7 搬送台車
8 吸気通路
9 排気通路
10 収納管プラグ
11 仕切り板
12 床スラブ
13 下部プレナム部
14 上部プレナム部
15 通風管
16 垂直支持柱
17 水平支持柱
21 冷却流路
30 貯蔵建屋
31 貯蔵ピット側壁面
DESCRIPTION OF SYMBOLS 1 Radioactive material storage facility 2 Storage pit 3 Vitrified body 4 Storage pipe 5 Ceiling slab 6 Transfer area 7 Transfer carriage 8 Intake passage 9 Exhaust passage 10 Storage pipe plug 11 Partition plate 12 Floor slab 13 Lower plenum part 14 Upper plenum part 15 Ventilation Pipe 16 Vertical support column 17 Horizontal support column 21 Cooling flow path 30 Storage building 31 Storage pit side wall surface

Claims (1)

貯蔵ピットを複数ピット用意し、冷却空気が通される貯蔵ピットに設けられた複数の収納管内に放射性物質を収納して前記放射性物質を貯蔵する放射性物質の貯蔵方法において、
前記放射性物質を収納した前記収納管が前記貯蔵ピットの側壁に隣接しているか、前記放射性物質を収納した前記収納管に隣接している前記収納管のうち少なくとも1つが空のままの状態となるように、前記放射性物質を前記収納管に収納する第1の過程を全ての前記貯蔵ピットに対して実施し、
前記状態が保てない状態にまで前記放射性物質の前記貯蔵ピット内への貯蔵が進んだ後には、前記貯蔵ピット内に空で残されている前記収納管に前記放射性物質を収納する第2の過程を実施することを特徴とする放射性物質の貯蔵方法。
In the storage method of the radioactive substance which prepares a plurality of storage pits, stores the radioactive substance by storing the radioactive substance in a plurality of storage pipes provided in the storage pit through which cooling air is passed,
The storage tube storing the radioactive material is adjacent to the side wall of the storage pit, or at least one of the storage tubes adjacent to the storage tube storing the radioactive material is left empty. As described above, the first process of storing the radioactive substance in the storage pipe is performed for all the storage pits ,
After the radioactive material is stored in the storage pit until the state cannot be maintained, the second radioactive material is stored in the storage pipe left empty in the storage pit. A method for storing radioactive material, characterized in that the process is carried out.
JP2007163284A 2007-06-21 2007-06-21 Radioactive material storage method Expired - Fee Related JP4857202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163284A JP4857202B2 (en) 2007-06-21 2007-06-21 Radioactive material storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163284A JP4857202B2 (en) 2007-06-21 2007-06-21 Radioactive material storage method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011185440A Division JP4961502B2 (en) 2011-08-29 2011-08-29 Radioactive material storage method

Publications (2)

Publication Number Publication Date
JP2009002762A JP2009002762A (en) 2009-01-08
JP4857202B2 true JP4857202B2 (en) 2012-01-18

Family

ID=40319311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163284A Expired - Fee Related JP4857202B2 (en) 2007-06-21 2007-06-21 Radioactive material storage method

Country Status (1)

Country Link
JP (1) JP4857202B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380785B1 (en) 2009-01-08 2009-12-09 パナソニック電工株式会社 Light irradiation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943384A (en) * 1995-07-26 1997-02-14 Ishikawajima Harima Heavy Ind Co Ltd Storage method and facility for radioactive waste
JP2001033588A (en) * 1999-07-19 2001-02-09 Ishikawajima Harima Heavy Ind Co Ltd Method for storing vitreous solid in vitreous solid storage facility
JP2004226217A (en) * 2003-01-22 2004-08-12 Toshiba Corp Radioactive material dry storage facility
JP2007010527A (en) * 2005-06-30 2007-01-18 Mitsubishi Heavy Ind Ltd Radioactive material storage body and radioactive material storage facility

Also Published As

Publication number Publication date
JP2009002762A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP3205179B2 (en) Radioactive material dry storage facility
Wu et al. The design features of the HTR-10
US9786395B2 (en) Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials
Poškas et al. Thermal analysis of CASTOR RBMK-1500 casks during long-term storage of spent nuclear fuel
Poškas et al. Modeling of decay heat removal from CONSTOR RBMK-1500 casks during long-term storage of spent nuclear fuel
JP4961502B2 (en) Radioactive material storage method
JP4857202B2 (en) Radioactive material storage method
Vergari et al. Spent fuel management strategies for fluoride-cooled pebble bed reactors
JP2009008436A (en) Radioactive material storage facility
CA1169693A (en) Apparatus for storing heat-releasing radionuclide configurations
JP2023055218A (en) Liquid metal cooled nuclear reactor incorporating completely passive decay heat removal (dhr) system with modular cold source
JP2008020440A (en) Radioactive material storage facility
Federovich Technical issues of wet and dry storage facilities for spent nuclear fuel
JP2007010527A (en) Radioactive material storage body and radioactive material storage facility
Nakano et al. Conceptual reactor design study of very high temperature reactor (VHTR) with prismatic-type core
JP2005241314A (en) Spent fuel storing basket and spent fuel container
JP3566971B2 (en) Radioactive material dry storage facility
JP2001356192A (en) Radioactive material dry storage method
JP5912786B2 (en) Storage method of radioactive material
JP2005291796A (en) Radioactive material dry storage facility and method
Guenadou et al. Presentation of the RESCUE facilities for in Vessel Corium Retention studies: Toolbox for improving the modelling
Higley et al. Effect of basket/rail gap on temperature prediction in the TN-32 cask under storage and drying conditions
JP2948332B2 (en) Shielding container
JP2007127500A (en) Cask storage facility
JP4660518B2 (en) Radioactive waste cooling storage facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees